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Multivariate Temporal Dictionary Learning for EEG

Q. Barttelemy*?, C. Gouy-Paillet, Y. Isaaé, A. Souloumiag, A. Larué**, J.I. Mar$-P

aCEA, LIST, Data Analysis Tools Laboratory, Gif-sur-Yvette Cedex, 91191, France
bGIPSA-lab, DIS, UMR 5216 CNRS, Grenoble INP, Grenoble, 38402, France

Abstract

This article addresses the issue of representing electepbalographic (EEG) signals in affieient way. While classical ap-
proaches use a fixed Gabor dictionary to analyze EEG sigtiassarticle proposes a data-driven method to obtain antadap
dictionary. To reach anfigcient dictionary learning, appropriate spatial and teraporodeling is required. Inter-channels links
are taken into account in the spatial multivariate moded, strift-invariance is used for the temporal model. Multiate learned
kernels are informative (a few atoms code plentiful eneegy interpretable (the atoms can have a physiological mganising
real EEG data, the proposed method is shown to outperformdissical multichannel matching pursuit used with a Galodiad
nary, as measured by the representative power of the ledictamhary and its spatial flexibility. Moreover, dictiorydearning can
capture interpretable patterns: this ability is illusthbn real data, learning a P300 evoked potential.

Keywords: Dictionary learning, orthogonal matching pursuit, mudtiate, shift-invariance, EEG, evoked potentials, P300.

1. Introduction e Epileptic activity: transient electrical bursts of parfdfe
brain.

Scalp electroencephalography (EEG) measures electdcal a
tivity produced by post-synaptic potentials of large nexalo While EEG devices are known to be able to record such afore-
assemblies. Although this old medical imaging techniqife su mentioned activities through the wide areas of the sensors,
fers from poor spatial resolution, EEG is still widely used i Mmethodologists are usually necessary in EEG experimemts. |
medical contexts (sleep analysis, anesthesia and comaanoni deed, they have to provide the practitioners with tools tiaat
ing, encephalopathies) as well as entertainment and fighabi capture the temporal, frequential and spatial content &fte@.
tion contexts (Brain-Computer Interfaces — BCI). EEG desic Consequently, signal interpretation usually yieldsepresen-
are re|ative|y Cheap Compared to other |mag|ng techniqmgs ( tation problem: which diCtionary is able to best represent the
MEG, fMRI, PET), and they fier both high temporal resolu- information recorded in the EEG?
tion (a short period of time between two acquisitions) amy ve Fourier and wavelets dictionaries allow spectral analgsis
low latency (a delay between the mental task and the reaprdinthe signals through well-defined mathematical bases (Durka

on the electrodes). 2007; Mallat, 2009), although they show a lack of flexibility
These features are of particular concern for the practtion to represent the shape diversity of EEG patterns. The Gabor
interested in (Sanei and Chambers, 2007): dictionary has also attracted high interest due to its teaipo

shift-invariance property. Nevertheless, it alsd¢fers from a
» Event-related potentials (ERPs) or evoked potentials-tra |ack of flexibility to represent evoked potentials and EE@shal
sient electrical activity that results from external segso (Niedermeyer and da Silva, 2004). For example widely stidie
stimulation €.g. P300); sleep activities such as spindles (centroparietal or &lareas)
e Steady-state evoked potentials: oscillatory brain agtivi consist of a complex EEG shape; as same epileptic activities
that results from repetitive external sensory stimulagtion such as inter-epileptic peaks are another examples of trepea
e Event-related synchronizati@hesynchronization able and complexely shaped cerebral activities (Niedeemey
(ERSERD): oscillatory activity that results from in- and da Silva, 2004). In these two cases practitioners should
volvement of a specialized part of the brain; for example,probably benefit from a custom-based dictionary approaeh ov
activation of the primary motor area, known@a¢8 — 13  Fourier or wavelets dictionaries. While these approaches ar
Hz) or 8 (13 - 30 Hz) bandpower synchronization or based oma priori models of the data, recent methodological
desynchronization, have been widely studied; developments focus on data-driven representatidicsionary
learning algorithms (T&ic and Frossard, 2011).
In EEG analysis, the spatial modeling consists of taking int
*Corresponding author. Tek 33 1 69 08 84 39. account inter-channels links, and this has been done inaleve
Email address: ~quentin.barthelenyCcea. fr, studies searching for more spatial flexibility (Durka, 2p0he
cedric.gouy-pailler@cea.fr, yoann.isaac@cea.fr, . E f
EEG temporal modeling is morefiicult. Some approaches

antoine.souloumiac@cea.fr, anthony.larue@cea.fr, ) ] )
jerome.mars@gipsa-lab.grenoble-inp.fr (J.l. Mars) use a hypothesis of temporal stationarity and treat onlgplae
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tial aspect, but this brings about loss of information. ®the 2.2. Multichannel sparse approximations
approaches use the generic Gabor dictionary which is shift- Hereafter, the EEG signgl € RVC composed of several

invariant. But it remains diicult to learn an EEG dictionary channelsc = 1..C are considered. The" channel of the sig-
thatintegrates these two aspects (Jost etal., 2005; Hahakr naly is denoted byj[c]. The following reviewed methods link

2011)'_ ) . ) these channels spatially with the multichannel modeltitated
In this article, time-frequency analysis tools that areduse in Fig. 1(left).
deal with EEG are first reviewed in Section 2. Then, tempo- A multichannel MP (Gribonval, 2003) was set up using a spa-

ral ”?"de"”g is proposed_ ba_sed on the_shift-in\_/arian_ce_,eand tial (or topographic) prior based on structured sparsithisT
spatial model called multivariate to provide affiéent dictio- model is an extension of Eq. (1), withe RN, & ¢ RN*M

nary learning in Section 3. As validation, the multivariateth- andx € RMC, The multichannel model linearly mixes an atom

odshare applied to real E,EG"data' ind thr:an.compared 10 OthEY the channels, each channel being characterized by fi-coe

methods in Section 4. Finally, to show the interpretabiity iont The underlying assumption is that few EEG events are

the learned kernels, methods are applied for learning tio@® P3 spatially spread over in all of theféiérent channels.

evoked potential. In (Durka, 2007), dierent multichannel selections are enu-
merated:

2. EEG analysis o ) )

e the original multichannel MP (Gribonval, 2003), called

In this section, some of the classical signal processinigtoo MMP_1 by Durka, selects the maximal energy such that:

that are applied to EEG data for time-frequency analysis are

reviewed: monochannnel and multichannel sparse apprexima
tions, shift-invariant dictionaries, and dictionary legug algo-

rithms.

C
m = arg maan‘ <Ek_l[C],¢m> '2 ; (4)
c=1

¢ the multichannel MP (Durka et al., 2005) called M\2P

2.1. Monochannel sparse approximation selects the maximal multichannel inner product:

In this paragraph, the EEG analysis is provided indepen-
C

dently for the diferent electrodeg channels, so it is called
monochannel. A single channel signale RN of N tem-
poral samples and a normalized dictionaye RN*M com-
posed ofM time-frequency atomspm}:\r",:l are considered. The
monochannel decomposition of the sigpé carried out on the
dictionary® such that:

y=0x+e€, (2)

assumingx € RM for the coding cofficients, and: € RN for
the residual error. The approximatigrnis"®x. The dictionary
is redundant sinc®! > N, and thus the linear system of Eq. (1)
is under-determined. Consequently, sparsity, smoottoress
other constraint is needed to regularize the solutio@onsid-
ering the constark < M, the sparse approximation is written
as:

min, ||y - ®x|1* s.t. [IXlo<K ,

)

mk = arg max, ; (5)

(el om)
=1

c

e the multichannel MP (Matysiak et al., 2005) called
MMP_3 selects the maximal energy as Eqg. (4), but with
complex co€ficients that allows it to have a varying phase.
In (Matysiak et al., 2005), the channels have the same
varying phasep whereas, in (Gratkowski et al., 2007),
each channet has its own varying phasg,, which is the
version that is used hereafter;

e the multichannel MP (Siekycki et al., 2009b), which will
call MMP_4 selects the maximal multichannel inner prod-
uct as Eq. (5), with complex céiicients that allows it to
have a phase. for each channel.

Note that other algorithms deal with EEG decomposition.

For example, a multichannel decomposition was proposed in
Koenig et al., 2001), but it was based on the method of frames
Daubechies, 1988).

with .|| for the Frobenius norm, anjik|, for the ¢y pseudo-
norm, defined as the number of nonzero elements of vect
X. The well-known Matching Pursuit (MP) (Mallat and Zhang,
1993) tackles this diicult problem iteratively, but in a subopti-
mal way. At iteratiork, it iteratively selects the atom that is the
most correlated to the residéé?® as :

2.3. Shift-invariant dictionaries

The dictionary® used in the decomposition can have a par-
ticular form. In the shift (also called translation or termgld
invariant model (Jost et al., 2005; Bagtemy et al., 2012), the
signaly is coded as a sum of a few structures, named kernels,
that are characterized independently of their positionse [T
shiftable kernels of the compatt dictionary are replicated
at all positions, to provide th&1 atoms of thed dictionary.
Kernels{zm}'L:l can have dterent lengthd|, so they are zero-
padded. Thé& samples of the signgl the residue, the atoms
¢m and the kernelg, are indexed by. The subsetr, collects

m¢ = arg ma>ﬁ1| (ek’l, ¢m> | .

To carry out time-frequency analysis for EEG, MP is applied
(Durka and Blinowska, 2001) with the Gabor parametric dicti
nary, which is a generic dictionary that is widely used talgtu
EEG signals.

1(A, By = trace(BH A) is the matrix inner product.



the translations of the kernely(t). For the fewL kernels that
generate all of the atoms, Eq. (1) becomes:

M
YO = 3 %X dmlt) + () (6) =2 ’ = <
m:l
=3 Xt = 7) + (). (7)
|=1 t€o

. . . Figure 1: lllustration of the multichannel (left) and the nixdtiate (right) mod-
This model is also called convolutional, and as aresultsipe g5,

naly is approximated as a weighted sum of a few shiftable ker-

nelsy,. Itis thus adapted to overcome the latency variability . ) o
Analysis or Independent Component Analysis (Lewicki and Se

(also called the jitter) of the events studied. ! ) -
Algorithms described in Section 2.2 are widely used with a"0Wski, 1998). Moreover, such methods provide only a base
= N), and are not adapted to cope with the shift-

Gabor dictionary for EEG (Durka, 2007). Its generic atomsWith M = 0 co
dGaporare paramyeteriZed as((MaIIat 2009))- J invariance required by the temporal variability of the EEG.
abor , .

2.5. Summary of the state of the art

1 t—ar
Poaboll) Vs g( S ) cos(2rft+e¢). ®) To sum up, the previous paragraph on dictionary learning has
already shown the relevance of the shift-invariance tonlélae

whereg(t) = -6 is a Gaussian windog is a normalization  EEG temporal atom. Thatis also why the parametric Gabor dic-
factor, sis the scaler is the shift parametey is the shift fac-  tionary, which is quasi shift-invariant, is well-adaptea such
tor, f is the frequency andg is the phase used in MMB and  data and is widely used with the multichannel MPs (Durka,
MMP _4 algorithms. Note that a multiscale Gabor dictionary is2007). In multichannel decompositions, th&elient MPs try to
not properly shift-invariant since the shift facter which de-  be flexible to match the spatial variability. The use of coempl
pends on the dyadic scag is not equal to 1 (Mallat, 2009). Gabor atoms adds a degree of freedom that improves theyqualit
The drawback of such a dictionary is that generic atoms-introof the representation (or reconstruction) (Matysiak e24105).

ducea priori for data analysis. The proposed multivariate approach takes into accounethes
two aspects in a dictionary learning approach: a relevaifit sh
2.4. Dictionary learning invariant temporal model and a spatial flexibility which sah

- . . ers all of the channels.
Recently, dictionary learning algorithms (DLAs) have al-

lowed the learning of dictionary atoms in a data-driven and

unsupervised way (Lewicki and Sejnowski, 19983itoand 3. The multivariate approach

Frossard, 2011). A set of iterations between sparse appeaxi ] ) o )

tion and dictionary update provides learned atoms, whiemar [N this section, the general multivariate approach intoexb

more generic but are adapted to the studied data. Thusettarnin (Barthélemy et al., 2012) is adapted to the context of the

dictionaries overcome generic ones, showing better degfior EEG. The und.erlymg mo.deI.|s first detailed, and then the meth

processing (Téic and Frossard, 2011; Baélemy et al., 2012). ods _are_expla}mfed: mult|var_|ate orth(_)gonal MP (M-OMP) and

Different algorithms deal with this problem: the method of op-Multivariate dictionary learning algorithm (M-DLA).

timal directions (MOD) (Engan et al., 2000) generalized un-Note that the r_1ammu|t|var|ate is used in (Sielaycki et_ al.,

der the name iterative least-squares DLA (ILS-DLA) (Engan2009a) to designate MMP (Durka et al., 2005) applied to

et al., 2007), the K-SVD (Aharon et al., 2006), the online DLA MEG data, and in (Sielycki et al., 2009b) for its complex

(Mairal et al., 2010) and others (316 and Frossard, 2011). exten§|on .MMF34; they are totally dferent from the methods
Only two studies have proposed to include dictionary learn€xPlained in (Bartelemy et al., 2012).

ing for EEG data. In (Jost et al., 2005), the MoTIF algorithm, o

which is a shift-invariant DLA, is applied to EEG. Itthusfea  3-1. Multivariate model

a kernels dictionary, but only in a monochannel case, which In the multivariate model, Eq. (1) is kept, but wighe RN<C,

does not consider the spatial aspect. In (Hamner et al.,)2011d € RNMXC andx € RM, and now considering the multiplica-

the well-known K-SVD algorithm (Aharon et al., 2006) is used tion ®x as an element-wise product along the dimendibrin

to carry out spatial or temporal EEG dictionary learning.eTh the multichannel model, a same monochannel atom is linearly

spatial learning is ficient and can be viewed as a general-diffused in the dferent channels (imposing a rank-1 matrix).

ization of the N-Microstate algorithm (Pascual-Marqui &t a Whereas in the multivariate model illustrated in Fig. 1(t)gh

1995). Conversely, results of the temporal learning areant  each component has its own atom, forming a flexible multi-

vincing, mainly because the shift-invariant model is n@dis ~ component atom, multiplied by one dtieient. The diferences
The dictionary redundancy gives a mor@aent represen- between multichannel and multivariate models are detailed

tation than learning methods based on Principal Componer{Barthelemy et al., 2012).

3



3.2. Multivariate methods ' , ' ' '
A brief description of the methods is given in this paragtaph Y WNM ]

as all of the computational details can be found in (Belgmy M\W.¢WW ]

et al., 2012). First, note that the OMP (Pati et al., 1993nis a k

optimal version of the MP, as the provided €o@ents vectox

is the least-squares solution of Eq. (2), contrary to the e

multivariate OMP is the extension of the OMP to the multivari
ate model described previously. The selection step is dkfine

e
=
=V

TR2EE L
§§
=
&

C {oos A VW\W |
mt = arg max,| > (“Yc]. gmlc]) | . ©) W Mﬂ WVE
= arg max,| Zzeéi dm) | - | (10) J\/\ﬂgf

u] a0 100 15ID 200 250
. L . Ti |
Concerning the M-DLA, for more simplicity, a non-shift- e (Sarmples)

invariant formalism is used, with the atoms dictionary A

training set of multivariate signa[slp}:= L is considered (the in- Figure 2: EEG signa}p4 sampled at 250 Hz witl =22 channels.
dex pis added to the other variables). In M-DLA, each tyal

is treated one at a time. This is anline _alter_nation betwee_n 41 EEG data

two steps: a multivariate sparse approximation and a nawitiv

ate dictionary update. The multivariate sparse approxanas Real data are used in the following experiments and compar-
carried out by M-OMP: isons. Dataset 2a (Brunner et al., 2008) from BCI Compaetitio

IV is considered. There are four classes of motor tasks, but
(11) they are not taken into account in this paper. EEG signals are
sampled at 250 Hz using = 22 channels. Compliance to our

and the multivariate dictionary update is based on maximunnodel is natural, as signals are organized into trials. &l tri
likelihood criterion (Olshausen and Field, 1997), on the asC0nsists oN = 501 temporal samples, during which subjects
sumption of Gaussian noise: are asked to perform one among four specific motor tasks. Data

come from 9 subjects, and the trials are divided in a traisitg
(12) and a testing set. Each set is composeH ef288 signals.

Raw data are filtered between 8 Hz and 30 Hz (motor imagery
concerng: andg bands) and zero-padded. Data resulting from
this preprocessing are the inputs of the M-DLA. The first sam-
ples of the EEG signaj,-; are plotted in Fig. 2.

Xp = arg min || yp - cI)x||2 s.t.|IXlo < K,

@ = arg miny || yp, — ©Xp ||2 S.t.VY meNwy, [l¢mll=1.

This dictionary update step is solved by a stochastic gnadie
descent. At the end of the M-DLA, the learned dictionary is
adapted to the training set. Note that these multivariathods
are already given in a shift-invariant way in (Ba&étemy et al., _
2012). 4.2. Models and Comparisons

Besides applying the M-DLA on high-noised data, the evo- M-DLA is applied to the training set of the first subject, and
lution of the kernels length has been improved (Experiment X dictionary ofL = 20 kernels is learned with 100 iteratiohs
and 2) and specific EEG activities have been time-localized t To show the novelty of the proposed multivariate model,
favour the learning (Experiment 2). Moreover, only two hy- the existing multicomponent dictionaries are comparedh wi
potheses are followed in this approach: EEG noise is a Gau€ = 22 channels. In Fig. 3 and 4, at the top, amplitudes
sian additive noise, and EEG events can be considered as stg; x ¢, (ordinate) of one atom are represented as a function
tistically repeated following the same stimulus. Therermwe of samples (abscissa), and on the bottom, spectrograms in re
spatial or temporal assumptions made on the dictionary: thduced frequencies (ordinate) are represented as a furmftion
learning results are data-driven at most. samples (abscissa). A Gabor atom is plotted in Fig. 3, based o

4. Experiment 1: dictionary learning and decompositions 2During the DLA, the control of the kernels length is trickyedto the low

signal-to-noise ratio of the data. For the original M-DLAgtkernels were

. . . . . first initialized on an arbitrary lengtii’, and they were then lengthened or
The following two experiments aim at showing that multi- shortened during the update step, depending on the eneeggme in their

variate learned kernels are informative (Experiment 1)iand edges. Nevertheless, with these rough data, kernels teadgdthened without

terpretable (Experiment 2). In this first experiment, thgoal stopping. So, a new control method is set up: a limit leriBthborders the

: : rnels over the first/3 of the iterations, and then, the border is fixed f+40
rithms presented are applled to EEG data. They are Compar%oar the last iterations. This allows kernels to begin to age, and to then have

to other degompOSition n_]EthOdS to highlight their model-noV e possibvility to obtain quasi-null edges, which avoidscdntinuities in the
elty and their representative performances. latter decompositions using this dictionary.
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nal y; around samples = 75 of Fig. 2. Moreover, they

o

[}

Amnplitudes

(Fig. 3(bottom) and 4(bottom)). In the multivariate modsdch

01

which gives an excellent spatial adaptability.

0.05

Amplitudes

Reduced frequencies

10 20 30 40 50
Time (samples)

Figure 3: Gabor atom used with the multichannel MP: the tempoddiles of
each channel (top) and the time-frequency visualizatiott¢ho.

Amplitudes

40 =in] 80 100
Time (samples)

[am)
[
[mm)

Amplitudes

Figure 5: Kernels of the learned multivariate dictionaryrrig| =9 (top) and
kernell =17 (bottom).

Reduced frequencies

Reduced frequencies

20 40 60 80 100

10 20 30 40 50
Time (samples)

Figure 4: Gabor atom used with the topographic MP case: thpdeal profiles
of each channel (top) and the time-frequency visualizatimtt¢m). Only the
phase of the dierent channels varies, not the spectral content.

Reduced frequencies

MMP_1 (Gribonval, 2003) or on MME (Durka et al., 2005), a 40 B0 a0 100
which gives the same kind of atoms. Gabor atom parameter:
are randomly chosen. In Fig. 4, a Gabor atom is plotted basec
on MMP_3 (Gratkowski et al., 2007) or on MMR (Sieluzycki

et al.,, 2009b). Since this atom has a specific phase for eac
channel, it is more adaptive than the first one. Neverthgiass
these two cases, the spectral content is identical in eaach
nel.

In Fig. 5, two learned multivariate kernels are plottee, 9 a0 “DTime (sam |£)D &0 a0
(top) andl = 17 (bottom). Components of Fig. 5(top) are sim- "
ilar, that is adapted to fit data structured like siggabkround
samples = 175 of Fig. 2. Components of Fig. 5(bottom) are Figure 6: Spectrograms of three components of the kéradl7: component
not so diferent: they appear to be continuously and smoothlye=10 (top), component=14 (middle), componert=20 (bottom).
distorted, which corresponds exactly to data structukegidig-

0z

Reduced frequencies

0.1

have various spectral contents, as seen in Fig. 6, contrary
to Gabor atoms, which look like monochannel filter banks

channel has its own profile, and so its own spectral content,



4.3. Decompositions and Comparisons | |
In this paragraph, the reconstructive power of thedént ' X
dictionaries and multichannel sparse algorithms is evatha
In a first round, the training set of the first subject is con- nar |
sidered. Learned dictionaries (LD) used with M-OMP, and =
a Gabor dictionary used with MMB, MMP_2, MMP_3 and £ 04 e
MMP_4, are compared. The Gabor dictionary Ihis= 30720 = AT
atoms. Two learned dictionaries are used: one With20 ker- é naf //f |
nels (learned in Section 4.2), which gives ~ 10000 atoms; & //’
and one withL = 60 which givesM ~ 30000 atoms, whichis & ;.| o — = Gabor +MMP 1 ||
a size similar to the Gabor dictionary. For each c#ssparse e S
approximations are computed on the training set, and tlomrec 01l __ A7 Gabar + MMP 4
struction rate is then computed. This is defined as: V —&— LD(L=20) + M-OMP
,/ —+— LD{L=R0) + M-OMP
1 ”EP” B2 4 v & 10 12 14 5 1w w»
p= 1- E pz; m : (13) Sparsity K of the approximation

The ratep is represented as a function Kfin Fig. 7. First, _ _ o _ _
MIMP_1 (blue dash-dot ine) is better than MMP(plue dot. {9 Recoretuetor ey e g st o o cten of e sprsiy
ted line), and MMP3 (green solid line) is better than MM#

(green dashed line), because the selection of Eq.(5) is more ' ' -
constraining than selection of Eq.(4) as well explained in 08
(Barthelemy et al., 2012). Then, MMB and MMP4 are better

than the other MMPL and MMP.2 due to their spatial flexibil- 05
ity on phases atoms. Finally, learned dictionaries (blaikls
lines) are better than other approaches, even with thresstim
fewer atoms. These two representations (LD witk 20 and

L = 60) are more compact since they are adapted to the studg
ied signals. If learned kernels code more energy than Gabol
atoms, the learned dictionary takes more memory (for seorag
or transmission) than the parametric Gabor dictionaryntide
cal results are observed in (Bagthmy et al., 2012), but only in

a monochannel case: the learned dictionary overcomesigener 0.1
ones for sparse reconstructive power.

The generalization is tested in a second round, determininc g 1 I 1
whether if the adapted representation that was learnedeon th > Sparsity mggappmimm ' .
training set of the subject 1, remaingieent for other acquisi-
tions and other subjects. Thus, the testing sets of the @stshj
are now considered. In the same wilysparse approximations Figure 8: Reconstruction rateof the M-OMP used with the LDL(=60), as a
are computed with the LDK — 60) on the diferent testing function of the sparsitK of the approximation on the 9 testing sets.
sets, and the rajeis plotted as a function df in Fig. 8. The
different curves are very similar and look like the curve of LD 5 1 p300 data

(black solid line with stars) in Fig. 7, that shows the intiser _ . . . .
In this section, the experiment is carried out on datasetf2b o

and inter-user robustness of the learned representation. .
Since it has good representation properties, the learred dithe P300 speller paradigm (Blankertz and Schalk, 2002 fro

tionary can be useful for EEG data simulation. Moreover, a?CI Competition II. To sum up, a subject is exposed to visual

noted in (T&i¢ and Frossard, 2011), learned dictionaries over—_St'mu“' Wh?” Itis a t_arget S“m“'F’S’ a P300 evoked potential
provoked in the brain of the subject 300 ms after, contrary

come classical approaches for processing such as denOiSidgnon-target stimulus. Thefifculty is the low SNR (signal-to-

etc. . : d
noise ratio) of the evoked potentials.

In this datasetP = 1261 target stimuli are carried out. Con-

5. Experiment 2: Evoked Potentials L earning sidering the complete acquisitidhe RV*C of A samples, it is
The previous experiment has shown the performances ariRfrsed irP epoched signal%yp}z:l of N samplesD € RV is

the relevance of such adaptive representations. The quésti a Toeplitz matrix, the first column of which is defined suchttha
to know if these learned kernels can capture behaviorat-stru D(tP,1) = 1, wheretP is the onset of thepth target stimulus.
tures with physiological interpretations. To answer, wé foi Acquired signals hav€ = 64 channels and are sampled at 240
cus on the P300 evoked potential. Hz. They are filtered between 1 Hz and 20 Hz by a 3rd order

0.4

on rate p

03

econstr

T2
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Figure 9: Multivariate temporal patterns of the P300 compbtethe grand average (a), by least-squares (b) and by midtigatictionary learning (c). Sampled

at 240 Hz, the amplitudes are given as a function of the temparaples.

(c)

Figure 10: Spatial patterns of the P300 computed by the greeréige (a), by least-squares (b) and by multivariate diatiplearning (c).

Butterworth filter.

5.2. Review of models and methods

There are two models for the P300 waveform. Withgo €
RNXC | the classical additive model can be written as:

Y = ¢p3oo+ €, (14)

and, with shift-invariance and an amplitude, it gives a nfleve
ible model (J&kowski and Verleger, 1999):

Y(t) = X¢paodt — 7) + €(t) . (15)

Note that Eq. (6) is retrieved, but reduced to one kerhet (1)
and in a multivariate case.

One classical way for working on P300 is thlectionary
design, which uses a templaté.e. a pre-determined pattern
designed to fit a P300 waveform. Aa priori is thus in-
jected through this prototype, generally with the shiftanant

model. For example, monochannel patterns as Gaussian func-
tions (Lange et al., 1997), time-limited sinosoids&{davski

and Verleger, 1999), generic mass potentials (Melkonia. et
2003), Gamma functions (Li et al., 2009) and Gabor functions
(Jorn et al., 2011) have been used to match the P300 and other
evoked potentials.

Another way isdictionary learning, which learns EEG pat-
terns in a data-driven way. Bérent recent methods allow the
learning of evoked potentials, but only with monochannet pa
terns (D’Avanzo et al., 2011; Wu and Gao, 2011; Nonclercq
et al., 2012). Here, we are interested in learning multatari
patterns. Based on Eq. (14), (Rivet et al., 2009) gives d-leas
squares (LS) estimation that takes into account overlapsrof
secutive target stimuli, defined as:

¢paoo= arg min, || Y — D¢ ||
=(D'D)DTY. (16)

This estimation is optimal if there is no variability in laiges
and amplitudes. Furthermore, without overlap, this ediona



is equivalent to the grand average (GA) carried out on efbche5.4. Quantitative comparisons by anal ogy

P
signals{yp}pzl: A solution consists in validating the previous case by anal-
b ogy with a simulation case. A P300 pattern previously ledrne
Pp300= }DTY _1 Z 17) with C = 64 channels is chosen to be the reference P300 of the
P30~ b P ] Yo simulation. P = 1000 signals are created using this reference

P300 with shift parameters drawn from a Gaussian distobuti
However, these two multivariate estimations made StroRg asspatially correlated noise, reproduced with a FIR filtereal
sumptions on latencies and amplitudes, which is a lack oiflex on EEG data (Anderson et al., 1998), is added to signals & giv
bility. Based on model (15), we propose to use dictionaryriea 5 signal-to-noise ratio 0£10 dB. First, the GA estimation is
ing, which can be viewed as an iterative online least-squarecomputed for this dataset. Secondly, this estimation isl use
estimation: for the initialization of M-DLA, which is then applied to the
P 5 dataset. This experimentation is carried out 50 times fibedi
min,, Z MiN, 7, | Yo = Xp w(t—7p) | st Iwll=1, (18)  entstandard deviations of the shift parameters. The patas-

p=1 timated from these two approaches are compared quargitativ
with the variabler restricted to an interval around 300 ms. The computing their correlations with the reference patterimc&
estimated kernel is denoted Byso0 the patterns are normalized, the correlations absoluteesare

Note that spatial filtering is not considered, which progide Petween 0and 1.
enhanced but projected signals (for example, the secomdfpar
(Rivet et al., 2009)).

1

098 -

5.3. Learning and qualitative comparisons

M-DLA is applied to the training se{typ};l, with K = 1.
The grand average estimatiq?agoois used for initialization, to
provide a warm start, and the M-DLA is used on 20 iterations
on the training set. The kernel lengthlis= 65 samples, which
represents 270 ms, and it is constant during the learning. Ths 83}
optimal parameter is searched only on an interval of 9 points
centered around 300 ms after the target stiméilushich gives
a latency tolerance of 16.7 ms. _ 086 -

To be compared to the kerngbsgo estimationsppsoe and
z?)pg,oo are firstly limited to 65 samples and then normalized.
Note that considered patterns hae= 64 channels and they 0o . . ]
are not spatially filtered to be enhanced. Multivariate temp 0 St deviation of ahif paralfeters 15
ral patterns are plotted in Fig. 9, wihp300 estimated by grand
average (a)¢pa0o estimated by least-squares (b) aighoo by
multivariate dictionary learning (c). The amplitude is@ivin  Figure 11: Correlations averaged over 50 experiments asciéarof the stan-
ordinate and the samples in abscissa. Patterns (a) ande(b) a*ar_d dev_iat_ion of shift parameters, for the grand average) @W the multi-
very similar, whereas kernel (c) is thinner and the comptmen Y211ate dictionary leaming (M-DLA).
are in-phase.

Associated spatial patterns are composed of the amplitudes Correlations are plotted in Fig. 11 as a function of the stan-
of the temporal maximum of the patterns. They are then plotdard deviation of the shift parameters. If the recovery querf
ted in Fig. 10, where (a) is the pattern estimated by the granflances of GA and M-DLA are similar for small standard de-
average, (b) by least-squares, and (c) by multivariatéotiaty viations, the more patterns are shifted, and the more the M-
learning. We observe that, similarly to the temporal compar DLA outperforms GA. This shows quantitatively that the shif
ison, patterns (a) and (b) are quite similar. The topogmphiinvariant diCtionary Iearning is better than the grand ayerap-
scalp (c) is smoother than the others and does not exhibji-a suProach (equivalent to the LS estimation in this case, sineget
plementary component behind the head. But, as the true P3d®n0 overlap between signals).

reference pattern is unknown, itisfitult to have a quantitative ~ Temporal patterns from one experiment are plotted in Fig. 12

comparison between these patterns. with a standard deviation af = 6. Note that the reference
P300 pattern (a) comes from learning of Section 5.3, but with

3However, an edgeftect is observed during the learning: temporal shifts &1 |r_1terval of 1. It_ is thus estimated with _S|gnals givingithe
7p of plentiful signals are localized on the interval edgesmétans that the maximum correlation at 300 ms exactly. First, we observe tha

global maximum of the gorrelation has not be‘found in this 'yabrandrp averaging shifted patterns gives a spread estimated pdkkr
Is a value by default. This can be due to the high level of ntiiaé prevents ., nared to the reference one (a). Then, the M-DLA pattern
the correlation from detecting the P300 position. Suchalgwill damage the . . , . .
¥paooif they are used for the dictionary update, since the shifapeeters are (c)is thmne_r than (b). This confirms the results obtained fo
not optimal. To avoid this, the kernel update is not carrietfousuch signals.  the correlations. By analogy, we can assume that the referen
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Figure 12: Temporal patterns of the P300: the referenceh@grtand average (b) and the multivariate dictionary legr(gh

P300 is a thin pattern, spread by the average of the shifted oto as multivariate, that is very flexible, with one specifiopr
currences. The M-DLA allows a thinner pattern to be extmcte file in each component, and with a shift-invariance used for
due to its shift-invariance flexibility. the temporal model that is obviously pertinent for EEG data.

As shift-invariance is not easily integrated into EEG pssce This provides multivariate and shift-invariant temporaitich-
ing, the hypothesis of temporal stationarity is often eaout  nary learning. Our approach has been shown to outperform
through the covariance matrix (Blankertz et al., 2008) @r th the Gabor dictionaries in terms of their sparse represeatat
grand average (Hamner et al., 2011). This experiment showsower;i.e. the number of atoms necessary to represent a fixed
that this hypothesis is rough and provides a loss of temporglercentage of the EEG signals. Specifically high-energyend
information. Although the shift-invariance model and tipas peated patterns have been learned and the resulting digtion
tial flexibility of our approach is an obvious improvemertitet has been shown to be robust to intra-user and inter-user vari
goal is not to say that the learned pattern is better thantthe o ability. Interestingly, the proposed approach has also lagde
erd, but to present a new estimation method, with the prospedb extract custom patterns in a very low signal-to-noisérat
to move forward with the knowledge of the P300, and to im-context. This property is here demonstrated in the pagtrcul
prove the processings based on the P300 estimation. Mareoveontext of the P300 signals, which are repeated and approxi-
we observe that components of learned kernels are rather imately time-localized. In the context of the EEG, the result
phase contrary to GA and LS estimations. This data driven resbtained can be interpreted according to two distinct jgodrfit
sult opens a question: are repeatable and energy EEG iastivit view.
rather in-phase or rather with opposite phases?

This experiment shows that learned kernels are interdeetab  First, EEG signal interpretation entails the analysis aféu
However, due to the high noise, in order to be interpreted wit amounts of multicomponent signals in the temporal domain.
physiological meaning, the dictionary learning algorithas to ~ Consequently the best representation domain for neurophys
time-localize activities of interest as presented in Ekpent 2,  ologists would be the ability toféciently concentrate the infor-
contrary to Experiment 1. Note that the M-DLA can be appliedmation using a small number of active and informative compo-
to other kinds of evoked potentials, such as mismatch négati nents. In this sense, our sparse approach is shown to outperf
and the N200, among others. classical approaches based on Gabor atoms. In other woeds, a
low and fixed number of active atoms, our method is able to bet-
ter render the information available in initial EEG signalsis
is also interesting for simulating multivariate EEG datheTs-
sue of generating realistic multivariate EEG signals hdeénul
a%ecome recurrent over the past few years, to provide experi-
mentally validated algorithms in a tightly controlled cextt
As shown in our first experiment, our approach céiicently
represent the diversity of EEG signals. Consequently, we be
lieve that it represents a relevant and competitive carelifia
realistic EEG generation.

6. Discussion and Conclusions

After reviewing the classical time-frequency approactogs f
representing EEG signals, our dictionary-based method h
been described. It is characterized by a spatial modelresfe

“Moreover, between patterns plotted in Fig. 9(c) and 12(ath kstimated
by M-DLA, we are not able to say which is the best.



Secondly, it should be kept in mind that strasgriori con-
ditions are considered by methodologists when they ardadons O 50 41
ering pre-deflngd models based on generic qlcuonanes'eNhIIG_ribonval R. Piecewise linear source separation. In: F38¢E 5207. 2003. p.
these assumptions can be accurate enough in the case ef oscil2g7_310.
latory activities é.g., Fourier, wavelets or Gabor), various EEG Hamner B, Chavarriaga R, del R. Mith J. Learning dictionaries of spatial and
patterns cannot beffeciently represented through these dictio- ‘?mptora'dEEG P,ft'm'r'ves_f‘)f bfz‘n']fompmerlgﬁfggﬁi 12'83 ritéhop on

. - . structured sparsity: learning and inference ;

X ' X R Jaskowski P, Verleger R.  Amplitudes and latencies of singl-tERP’S
naries. The flexibility of our approach relies on the factttha ;. o\ | litud g es of sincil
shiftable kernels are learned directly from data. This pisiof estimated by a maximum-likelihood method. IEEE Trans Biomed Eng
particular interest for evoked potentials, or event-eglgtoten- ~ 1999;46:987-93. _ . _ -
tials. To conclude, multivariate learned kernels are imiative % M. Sielycki C, Matysiak M.Zygierewicz J, Scheich H, Durka P oiig

dint tabl hich i llent for EEG lvsi R. Single-trial reconstruction of auditory evoked magnégtds by means
and interpretable, whic . IS exce er_] or ana ysIS. of template matching pursuit. J Neurosci Methods 2011;198:28.

For the propects relating to a brain-computer interfacelYBC Jost P, Vandergheynst P, Lesage S, Gribonval R. Learninmzoht dictionar-
on the one hand, classical BCl methods can be improved taking ies with translation invariance property: the MoTIF algiom. In: Work-
into account the shift flexibility. Then. on the other hand. a shop Structure et parcimonie pour la regentation adaptative de signaux

. ~ ., . . ' SPARS '05. 2005. .
npte(_j In (T_CS'C and Fro_ssard’ 20'11)’ d'Ct'Onar_'e.S I‘?amed W'thKoenig T, Marti-Lopez F, Valds-Sosa P. Topographic time-frequency decom-
discriminative constraints ardfeient for classification. The position of the EEG. Neurolmage 2001;14:383-90.
future prospect will thus be to modify the proposed muliivar Lange D, Pratt H, Inbar G. Modeling and estimation of singlekex brain

Gratkowski M, Haueisen J, Arendt-Nielsen L, Zanow F. Toppdic match-
ing pursuit of spatio-temporal bioelectromagnetic data. Blektrotech

ate temporal method to give a spatio-temporal approach fq_r

BCI. Finally, wavelet parameters learning methods as (éger

potential components. IEEE Trans Biomed Eng 1997;44:791-9.
ewicki M, Sejnowski T. Learning overcomplete represewotadi Neural Com-
put 1998;12:337-65.

Rakotomamonjy, 2011) can be extended to the multicomponent R, Keil A, Principe J. Single-trial P300 estimation with patiotemporal

case.
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