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. This new contribution focuses on the natural case when the maximally monotone operator governing the given inclusion has a domain with nonempty interior. This setting permits to have nonincreasing Lyapunov functions on the whole trajectory of the solution to the given differential inclusion. It also allows some more explicit criteria for Lyapunov's pairs. Some consequences to the viability of closed sets are given, as well as some useful cases relying on the continuity or/and convexity of the involved functions. Our analysis makes use of standard tools from convex and variational analysis.

Introduction and notations

In various applications modeled by ODE's, one may be forced to work with systems that have non-differentiable solutions. Also, Lyapunov's functions, that is positive definite functions whose decay along the trajectories of the system, which are used to establish a stability property of the system, may be nondifferentiable. The need to extend the classical differentiable Lyapunov's stability to the nonsmooth case is unavoidable when studying stability properties of discontinuous systems. In practice, many systems in physics, engineering, biology etc exhibit generally nonsmooth energy functions, which are usually a typical candidates for Lyapunov functions; thus elements of nonsmooth analysis become essential [START_REF] Bacciotti | Stability and stabilization of discontinuous systems and nonsmooth Lyapunov functions[END_REF][START_REF] Clarke | Nonsmooth analysis and control theory[END_REF][START_REF] Kamlibel | Lyapunov stability of complementarity and extended systems[END_REF][START_REF] Shevitz | Lyapunov stability theory of nonsmooth systems[END_REF]. A typical example is given by the case of piecewise linear dynamical systems called Linear Complementarity Systems (LCS) for which the analysis of asymptotic and exponential stability uses a piecewise quadratic Lyapunov function [START_REF] Kamlibel | Lyapunov stability of complementarity and extended systems[END_REF]. Let us remind that LCS are defined as follows:

LCS(A, B, C, D) ẋ(t; x 0 ) = Ax(t) + Bu(t), x(t 0 ) = x 0 , 0 ≤ u(t) ⊥ Cx + Du ≥ 0,
where A ∈ R n×n , B ∈ R n×m , C ∈ R m×n and D ∈ R m×m are real matrices, x 0 is the initial condition, ẋ is the time derivative of the trajectory x(t) and a ⊥ b means that the two vectors a and b are orthogonal. Linear and nonlinear complementarity problems belong to the more general mathematical formalism of Differential Variational Inequalities (DVI), introduced by J.S. Pang and D. Stewart [START_REF] Pang | Differential variational inequalities[END_REF]. It is a combination of an ordinary differential equation (ODE) with a variational inequality or a complementarity constraint. A DVI consists to find trajectories t → x(t) and t → u(t) such that DV I(f, F, K) ẋ(t) = f (t, x(t), u(t)), x(t 0 ) = x 0 , F (t, x(t), u(t)), vu(t) ≥ 0, ∀v ∈ K, u(t) ∈ K for a.e. t ≥ t 0 , where K is a closed convex subset of a Hilbert space H, f and F are given mappings. When K is a closed convex cone, then problem DV I(f, F, K) is equivalent to a Differential Complementarity Problem (DCP):

DCP (f, F, K) ẋ(t) = f (t, x(t), u(t)), x(t 0 ) = x 0 , K ∋ u(t) ⊥ F (t, x(t), u(t)) ∈ K * , a.e. t ≥ t 0 .

Since DVI and DCP formalisms unify several known mathematical problems such that ordinary differential equations with discontinuous right-hand term, differential algebraic equations, dynamic complementarity problems etc .. (see [START_REF] Camlibel | Conewise linear systems: non-Zenoness and observability[END_REF][START_REF] Camlibel | Lyapunov stability of complementarity and extended systems[END_REF] for more details), it was proved to be powerful for the treatment of many problems in science and engineering such that: unilateral contact problems in mechanics, finance, traffic networks, electrical circuits etc . . . . According also to the fact that LCS formalism has many of applications in various areas including for instance robotics, economics, finance, non smooth mechanics, etc (see Camlibel, Pang and Shen, [START_REF] Kamlibel | Lyapunov stability of complementarity and extended systems[END_REF] and the monograph by Facchinei and Pang, [START_REF] Facchinei | Finite-Dimensional Variational Inequalities and Complementarity Problems[END_REF]), it has received recently a great interest from the mathematical programming and control communities from the theoretical and numerical point of view.

Instead of considering LCSs or DVIs, throughout this contribution we are interested in the general framework of infinite-dimensional dynamical systems, that is systems of the form: ẋ(t; x 0 ) ∈ f (x(•; x 0 )) -Ax(•; x 0 ), x 0 ∈ cl(Dom A) a.e. t ≥ 0.

(1.1)

Here, and thereafter, cl(Dom A) is the closure of the domain of a maximally monotone operator A : H ⇉ H defined on a real Hilbert space H, possibly nonlinear and multivalued with domain Dom A and f is a Lipschitz continuous mapping defined on cl(Dom A).

A pair of proper lower semicontinuous (lsc for short) functions V, W : H → R ∪ {+∞} is said to form a Lyapunov pair for (1.1) if for all x 0 ∈ cl(Dom A) the solution of (1.1), in a sense that will be precised in Section 3, denoted by x(•; •, x 0 ) satisfies V (x(t; x 0 )) -V (x(s; x 0 )) + t s W (x(τ ; x 0 ))dτ ≤ 0 for all t ≥ s ≥ 0.

(1.2)

Observe that when W ≡ 0 one recovers the classical notion of Lyapunov functions; e.g., [START_REF] Smirnov | Introduction to the theory of differential inclusions[END_REF]. More generally, instead of (1.2), we are going to consider functions V, W satisfying for some a ≥ 0 e at V (x(t; x 0 ))e as V (x(s; x 0 )) + t s W (x(τ ; x 0 ))dτ for all t ≥ s ≥ 0.

In this case, the (weighted) pair (V, W ) will be refered to as a a-Lyapunov pair. The main motivation in using a-Lyapunov pairs instead of simply functions is that many stability concepts for the equilibrium sets of (1.1), namely stability, asymptotic or finite-time stability, can be obtained just by choosing appropriate functions W in (1.2). The weight e at is useful for instance when exponential stability is concerned. So, even in autonomous systems like those of (1.1), the function W or the weight e at may be of a certain utility since, in some sense, it emphasizes the decreasing of the Lyapunov function V . The method of Lyapunov functions is a corner stone of the study of the controllability and stabilizability of control systems. Its history is rich and has been described in several places and various seminal contributions has been made to the subject. We refer to Clarke [START_REF] Clarke | Lyapunov functions and feedback in nonlinear control[END_REF][START_REF] Clarke | Nonsmooth analysis in systems and control theory[END_REF] for an overview of the recent developments of the theory where he pointed out that for nonlinear systems, Lyapunov's method turns out to be essential to consider nonsmooth Lyapunov functions, even if the underlying control dynamics are themselves smooth.

Over the years, among the various contributions, Kocan & Soravia [START_REF] Kocan | Lyapunov functions for infinite-dimensional systems[END_REF], characterized Lyapunov's pairs in terms of viscosity solutions of a related partial differential inequality.

Another well-established approach consists of characterizing Lyapunov's pairs by means of the contingent derivative of the maximally monotone operator A, see for instance Cârjȃ & Motreanu [START_REF] Cârjȃ | Flow-invariance and Lyapunov pairs[END_REF], for the case of a maximally linear monotone operator and also when A is a multivalued m-accretive operator on an arbitrary Banach space [START_REF] Cârjȃ | Characterization of Lyapunov pairs in the nonlinear case and applications[END_REF]. In these approaches the authors used tangency and flow-invariance arguments combined with a priori estimates and approximation.

The starting point of this contribution is the paper by Adly & Goeleven [START_REF] Adly | A stability theory for second-order nonsmooth dynamical systems with application to friction problems[END_REF] in which smooth Lyapunov functions were used in the framework of the second order differential equations, and non-linear mechanical systems with frictional unilateral constraints.

In this article we provide a different approach that don't make use of viscosity solutions or contingent derivatives associated to the operator A. Our objective is to emphasize our previous contribution [START_REF] Adly | Nonsmooth Lyapunov pairs for infinite-dimensional first-order differential inclusions[END_REF] to the setting where the involved maximally monotone operator has a domain with nonempty interior. This case includes the finite dimensional framework since in this case the relative interior of the domain of the operator is always nonempty. Moreover, the criteria for Lyapunov's pairs are checked only in the interior of the domain (or the relative interior) instead of the closure of the whole domain as in [START_REF] Adly | A stability theory for second-order nonsmooth dynamical systems with application to friction problems[END_REF]. In contrary to [START_REF] Adly | A stability theory for second-order nonsmooth dynamical systems with application to friction problems[END_REF], this setting also ensures obtaining global Lyapunov's pairs and permits in this way to control the whole trajectory of the solution to the given differential inclusion.

The summary of the paper is as follows. In Section 2 we introduce the main tools and basic results used in the paper. In Section 3 we give a new primal and dual criteria for lower semicontinuous Lyapunov pairs. This is achieved in Proposition 2 and Theorem 3.1. In Section 4, we make a review of some old and recent criteria for Lyapunov pairs. Section 5 is dedicated to complete the proofs of the main results given in Section 3.

Notation and main tools

Throughout the paper, H is a (real) Hilbert space endowed with the inner (or scalar) product •, • and the associated norm is denoted by • . We identify H * (the space of continuous linear functionals defined on H) to H, and we denote the weak limits (wlim, for short) by the symbol ⇀ to distinguish it from the usual symbol → used for strong limits. The zero vector in H is denoted by θ.

We start this section by reviewing some notations used throughout the paper. Given a nonempty set S ⊂ H (or S ⊂ H × R), by co S, cone S, and aff S, we denote the convex hull, the conic hull, and the affine hull of the set S, respectively. Moreover, Int S is the topological interior of S, and cl S and S are indistinctly used for the closure of S (with respect to the norm topology on H). We also use cl w S or S w when we deal with the closure of S with respect to the weak topology. We note ri S the (topological) relative interior of S, i.e., the interior of S in the topology relative to aff S whatever this set is nonempty (see [START_REF] Rockafellar | Convex Analysis[END_REF]Chapter 6] for more on this fundamental notion). For Finally, for α ∈ R, we note α + for max{0, α}.

x ∈ H (or x ∈ H × R), ρ ≥ 0, B ρ (x)
Our notation is the standard one used in convex and variational analysis and in monotone operator theory; see, e.g., [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF][START_REF] Rockafellar | Variational analysis, volume 317 of Grundlehren der Mathematischen Wissenschaften[END_REF]. The indicator function of S is the function defined as

I S (x) := 0 if x ∈ S +∞ otherwise.
The distance function to S is denoted by d(x, S) := inf{ xy | y ∈ S}, and the orthogonal projection on S, π S , is defined as

π S (x) := {y ∈ S | x -y = d(x, S)}.
If S is closed and convex, S ∞ ⊂ H (or H × R) denotes its recession cone: S ∞ := {y | x + λy ∈ S for some x and all λ ≥ 0}, while, S • ⊂ H (or H × R) denotes the polar of S given by

S • := {y | y, v ≤ 1 for all v ∈ S}.
Given a function ϕ : H → R, its (effective) domain and epigraph are defined by

Dom ϕ := {x ∈ H | ϕ(x) < +∞}, epi ϕ := {(x, α) ∈ H × R | ϕ(x) ≤ α}. For λ ∈ R, the open sublevel set of ϕ at λ is [ϕ > λ] := {x ∈ H | ϕ(x) > λ}; [ϕ ≥ λ], [ϕ ≤ λ]
, and [ϕ < λ] are defined similarly. We say that ϕ is proper if Dom ϕ = ∅ and ϕ(x) > -∞ for all x ∈ H. We say that ϕ is convex if epi ϕ is convex, and (weakly) lower semicontinuous (lsc, for short) if epi ϕ is closed with respect to the (weak topology) norm-topology on H. We denote F (H; R + ) and F w (H; R + ) stand for the subsets of nonnegative functions of F (H) and F w (H), respectively.

As maximally monotone set-valued operators play an important role in this work, it is useful to recall some of basic definitions and some of their properties. More generally, they have frequently shown themselves to be a key class of objects in both modern Optimization and Analysis; see, e.g., [4-6, 8, 24, 26].

For an operator A : H ⇉ H, the domain and the graph of A are given respectively by

Dom A := {z ∈ H | Az = ∅} and gph A := {(x, y) ∈ H × H | y ∈ Ax};
for notational simplicity we identify the operator A to its graph. The inverse operator of A, denoted by A -1 , is defined as (y, x) ∈ A -1 ⇐⇒ (x, y) ∈ A.

We say that an operator A is monotone if

y 1 -y 2 , x 1 -x 2 ≥ 0 for all(x 1 , y 1 ), (x 2 , y 2 ) ∈ A,
and maximally monotone if A is monotone and has no proper monotone extension (in the sense of graph inclusion). If A is maximally monotone, it is well known (e.g., [START_REF] Simons | Minimax and monotonicity[END_REF]) that Dom A is convex, and Ax is convex and closed for every

x ∈ Dom A. Moreover, if Int(Dom A) = ∅, then Int(Dom A) is convex, Int(Dom A) = Int(Dom A),
and A is bounded locally on Int(Dom A). Note that the domain or the range of a maximally monotone operator may fail to be convex, see, e.g., [24, page 555]. In particular, if A is the subdifferential ∂ϕ of some lower semicontinuous (lsc for short) convex and proper function ϕ : H → R, then A is a classical example of a maximally monotone operator, as is a linear operator with a positive symmetric part. We know that

Dom A ⊂ Dom ϕ ⊂ Dom ϕ = Dom A.
For x ∈ Dom A, we shall use the notation (Ax) • to denote the principal section of A, i.e., the set of points of minimal norm in Ax.

Nonsmooth and variational analysis play a central role in this study. Hence, we need to recall briefly some concepts used through the paper. More details can be found for instance in [START_REF] Borwein | Techniques of variational analysis[END_REF][START_REF] Clarke | Optimization and nonsmooth analysis[END_REF][START_REF] Clarke | Nonsmooth analysis and control theory[END_REF][START_REF] Mordukhovich | Variational analysis and generalized differentiation. I[END_REF][START_REF] Rockafellar | Variational analysis, volume 317 of Grundlehren der Mathematischen Wissenschaften[END_REF]. We assume that ϕ ∈ F (H), and take x ∈ Dom ϕ.

A vector ξ ∈ H is called a proximal subgradient of ϕ at x, written ξ ∈ ∂ P ϕ(x), if there are ρ > 0 and σ ≥ 0 such that ϕ(y) ≥ ϕ(x) + ξ, yxσ yx 2 for all y ∈ B ρ (x);

the domain of ∂ P ϕ is then given by

Dom ∂ P ϕ := {x ∈ H | ∂ P ϕ(x) = ∅}.
The set ∂ P ϕ(x) is convex, possibly empty and not necessarily closed.

A vector ξ ∈ H is called a Fréchet subgradient of ϕ at x, written ξ ∈ ∂ F ϕ(x), if ϕ(y) ≥ ϕ(x) + ξ, y -x + o( y -x ).
Associated to proximal and Fréchet subdifferentials, limiting objects have been introduced. A vector ξ ∈ H belongs to the limiting proximal subdifferential of ϕ at x, written ∂ L ϕ(x), if there exist sequences (x k ) k∈N and (ξ k ) k∈N such that

x k ⇀ ϕ x (that is, x k ⇀ x and ϕ(x k ) → ϕ(x)), ξ k ∈ ∂ P ϕ(x k ) and ξ k ⇀ ξ. A vector ξ ∈ H is called a horisontal subgradient of ϕ at x, written ξ ∈ ∂ ∞ ϕ(x), if there exist sequences (α k ) k∈N ⊂ R + , (x k ) k∈N and (ξ k ) k∈N such that α k → 0 + , x k → ϕ x, ξ k ∈ ∂ P ϕ(x k ) and α k ξ k ⇀ ξ.
The Clarke subdifferential of ϕ at x is defined by the following so-called representation formula; see, e.g., Mordukhovich [START_REF] Mordukhovich | Variational analysis and generalized differentiation. I[END_REF] and Rockafellar [START_REF] Rockafellar | Variational analysis, volume 317 of Grundlehren der Mathematischen Wissenschaften[END_REF],

∂ C ϕ(x) = co w {∂ L ϕ(x) + ∂ ∞ ϕ(x)}.
From a geometrical point of view, if S ⊂ H is closed and x ∈ S, the proximal normal cone to S at x is

N P S (x) := ∂ P I S (x).
We also denote by N P S (x) the subset of N P S (x) given by

N P S (x) := {ξ ∈ H | ξ, y -x ≤ y -x 2 for all y ∈ S closed to x}.
It can be proved; e.g., [START_REF] Clarke | Optimization and nonsmooth analysis[END_REF], that

N P S (x) = cone(π -1 S (x) -x), if π -1 S (x) = ∅, {θ} if π -1 S (x) = ∅, where π -1 S (x) := {y ∈ H \ S | x ∈ π S (y)}. Similarly, N L S (x) := ∂ L I S (x) (= ∂ ∞ I S (x))
is the limiting normal cone to S at x, and N C S (x) := co w {N L S (x)} is the Clarke normal cone to S at x.

In that way, the above subdifferentials of ϕ ∈ F (H) can be geometrically described as

∂ P ϕ(x) = {ξ ∈ H | (ξ, -1) ∈ N P epi ϕ (x, ϕ(x))}, ∂ ∞ ϕ(x) = {ξ ∈ H | (ξ, 0) ∈ N P epi ϕ (x, ϕ(x))}.
We call contingent cone to S at x ∈ S (or the Bouligand tangent cone), written T S (x), the cone given by

T S (x) := {ξ ∈ H | x + τ k ξ k ∈ S for some ξ k → ξ and τ k → 0 + }.
The Dini directional derivative of the function ϕ

(∈ F (H)) at x ∈ Dom ϕ in the direction v ∈ H is given by ϕ ′ (x, v) = lim inf t→0 + ,w→v ϕ(x + tw) -ϕ(x) t . Hence, epi ϕ ′ (x, •) = T epi ϕ (x, ϕ(x)). The Gâteaux derivative of ϕ at x is a linear continuous form on H, written ϕ ′ G (x), satisfying lim t→0 + ϕ(x + tv) -ϕ(x) t = ϕ ′ G (x), v for all v ∈ H.
We close this section by giving some properties of the subdifferential sets defined above that will be used later on. First, it follows easily from the definitions that

∂ P ϕ(x) ⊂ ∂ F ϕ(x) ⊂ ∂ L ϕ(x) ⊂ ∂ C ϕ(x). If ϕ is convex, then ∂ P ϕ(x) = ∂ C ϕ(x) = ∂ϕ(x),
where ∂ϕ(x) is the usual Moreau-Rockafellar subdifferential of ϕ at x :

∂ϕ(x) := {ξ ∈ H | ϕ(y) -ϕ(x) ≥ ξ, y -x for all y ∈ H}. If ϕ ∈ F (H) is Gâteaux-differentiable at x ∈ Dom ϕ, we have ∂ P ϕ(x) ⊂ {ϕ ′ G (x)} ⊂ ∂ C ϕ(x). If ϕ is C 1 then ∂ P ϕ(x) ⊂ {ϕ ′ (x)} = ∂ C ϕ(x) and ∂ ∞ ϕ(x) = {θ}. If ϕ is C 2 then ∂ P ϕ(x) = ∂ C ϕ(x) = {ϕ ′ (x)}.
In particular, if ϕ := d(•, S) with S ⊂ H closed, for x ∈ S we have that

∂ C ϕ(x) = N C S (x) ∩ B,
while, for x ∈ S such that ∂ P ϕ(x) = ∅, π S (x) is a singleton and (e.g., [START_REF] Clarke | Nonsmooth analysis and control theory[END_REF])

∂ P ϕ(x) = x -π S (x) ϕ(x) ; hence ∂ L ϕ(x) = w -lim k x k -π S (x k ) ϕ(x) ; x k ⇀ x .
More generally, we have that

N P S (x) = R + ∂ P d S (x) and N C S (x) = R + ∂ C d S (x)
w (with the convention that 0.∅ = {θ}).

Finally, we recall that ϕ ∈ F (R) is nonincreasing if and only if ξ ≤ 0 for every ξ ∈ ∂ P ϕ(x) and x ∈ R, (e.g., [START_REF] Clarke | Nonsmooth analysis and control theory[END_REF]). We shall use the following version of the Gronwall Lemma (e.g., [START_REF] Adly | A stability theory for second-order nonsmooth dynamical systems with application to friction problems[END_REF]Lemma 1]).

Lemma 1 Given t 2 > t 1 ≥ 0, a = 0, and b ≥ 0, we assume that an absolutely continuous function ψ

: [t 1 , t 2 ] → R + satisfies ψ ′ (t) ≤ aψ(t) + b a.e. t ∈ [t 1 , t 2 ].
Then, for all t ∈ [t 1 , t 2 ],

ψ(t) ≤ (ψ(t 1 ) + b a )e a(t-t 1 ) - b a .

Local characterization of Lyapunov pairs on the interior of the domain of A

In this section we provide the desired explicit criterion for lower semicontinuous (weighted-) Lyapunov pairs associated to the differential inclusion (1.1):

ẋ(t; x 0 ) ∈ f (x(•; x 0 )) -Ax(•; x 0 ), x 0 ∈ cl (Dom A) ,
where A : H ⇉ H is a maximally monotone operator and f : cl (Dom A) ⊂ H → H is a Lipschitz continuous mapping. Recall that for fixed T > 0 and x 0 ∈ cl (Dom A) , a strong solution of (1.1), x(•; x 0 ) : [0, T ] → H, is a uniquely defined absolute continuous function which satisfies x(0; x 0 ) = x 0 together with (see, e.g., [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF])

ẋ(t; x 0 ) ∈ L ∞ loc ((0, T ], H), (3.3) 
x(t; x 0 ) ∈ Dom A, for all t > 0, (3.4) 
ẋ(t; x 0 ) ∈ f (x(t; x 0 )) -Ax(t; x 0 ), a.e. t ≥ 0. (3.5)
Existence of strong solutions is known to occur if for instance:

-x 0 ∈ Dom A, Int (co (Dom A)) = ∅; -dim H < ∞; -or if A ≡ ∂ϕ where ϕ : H → R ∪ {+∞} is a lsc extended-real-valued convex proper function.
Moreover, we have that ẋ(•;

x 0 ) ∈ L ∞ ([0, T ], H) if and only if x 0 ∈ Dom A. In this later case, x(•; x 0 ) is derivable from right at each s ∈ [0, T ) and d + x(•; x 0 ) t (s) = f (x(s; x 0 )) -π Ax(s;x 0 ) (f (x(s; x 0 ))).
The strong solution also satisfies the so-called semi-group property,

x(s; x(t; x 0 )) = x(s + t; x 0 ) for all s, t ≥ 0,

together with the relationship x(t; x 0 )x(t; y 0 ) ≤ e L f t x 0y 0 whenever t ≥ 0 and x 0 , y 0 ∈ cl(Dom A); hereafter, L f denotes the Lipschitz constant of the mapping f on cl(Dom A).

In the general case, it is well established that (1.1) admits a unique weak solution x(•; x 0 ) ∈ C(0, T ; H) which satisfies x(t; x 0 ) ∈ cl(Dom A) for all t ≥ 0. More precisely, there exists a sequence (x n ) n∈N ⊂ Dom A converging to x 0 such that the strong solution x k (•; z k ) of the equation

ẋk (t; z k ) ∈ f (x(t; z k )) -Ax k (t; z k ), x k (0, z k ) = z k , (3.7) 
converges uniformly to x(•; x 0 ) on [0, T ]. Moreover, we have that

x(s; x(t; x 0 )) = x(s + t; x 0 ) for all s, t ≥ 0 (3.8)
(called the semigroup property). If L f denotes the Lipschitz constant of f on cl(Dom A), then for every t ≥ 0 and x 0 , y 0 ∈ cl(Dom A) we have that

x(t; x 0 ) -x(t; y 0 ) ≤ e L f t x 0 -y 0 .
In the remaining part of the paper, x(•; x 0 ) denotes the weak solution of Equation (1.1) (which is also, a strong one whenever a strong solution exists.)

From now on, we suppose throughout this section that

§ ¦ ¤ ¥ Int (co (Dom A)) = ∅. Hence, Int (Dom A) is convex, Int (Dom A) = Int (co (Dom A)) = Int (cl (Dom A))
, and A is locally bounded on Int (Dom A). Therefore, a (unique) strong solution of (1.1) always exists [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF]. We have the following technical lemma, adding more information about the qualitative behavior of this solution.

Lemma 2 Let ȳ ∈ Dom A and ρ > 0 be such that B ρ (ȳ) ⊂ Int (co (Dom A)) . Then, M := sup z∈B ρ (ȳ) (f (z) -Az) • < ∞ and for all y ∈ B ρ (ȳ) and t ≤ 1 we have that

d + x(•; y) dt (t) ≤ e L f M.
Proof By virtue of the semi-group property (3.6), the following inequality holds for all y ∈ cl(Dom A) and 0 ≤ t < s (e.g., [8, Lemma 1.1])

x(t + s; y)x(t; y) = x(t; x(s; y))x(t; y) ≤ e L f t x(s; y)y .

(3.9)

In particular, for y ∈ B ρ (ȳ) and t ≤ 1 we get that

d + x(•; y) dt (t) = lim s↓0 s -1 x(t + s; y) -x(t; y) ≤ e L f t lim s↓0 s -1 x(s; y) -y = e L f t d + x(•; y) dt (0) = e L f t (f (y) -Ay) • ≤ e L f M.
The fact that M is finite follows from the maximal monotonicity of A together with the Lipschitz continuity of f.△ Definition 1 Let be given functions V ∈ F (H), W ∈ F (H; R + ) and a number a ∈ R + . We say that (V, W ) forms a a-Lyapunov pair for (1.1) with respect to a set D ⊂ cl(Dom A) if for all y ∈ D we have that

e at V (x(t; y)) + t 0 W (x(τ ; y))dτ ≤ V (y) for all t ≥ 0. (3.10) 
a-Lyapunov pairs with respect to cl(Dom A) are simply called a-Lyapunov pairs (see [START_REF] Adly | Nonsmooth Lyapunov pairs for infinite-dimensional first-order differential inclusions[END_REF]); in addition, if a = 0 and W = 0, we recover the classical concept of Lyapunov functions. The case D = Int(Dom A) (when nonmepty), or D = ri(Dom A) in the finite-dimensional setting, is useful too since it allows recovering the behaviour of V on the whole set cl(Dom A) when, as in Proposition 1 below, some continuity conditions on V are known. More precisely, our characterization theorem, Theorem 3.1 below, provides criteria for Lyapunov pairs with respect to small sets, for instance balls, rather than the whole set Int(Dom A). The lack of regularity properties of a-Lyapunov pairs (V, W ) in Definition 1 is mainly due to the non-smoothness of the function V. Let us remind that inequality (3.10) also holds if instead of W one considers its Moreau-Yosida regularization, which is Lipschitz continuous on every bounded subset of H. This follows from the next Lemma 3 (e.g [START_REF] Adly | Nonsmooth Lyapunov pairs for infinite-dimensional first-order differential inclusions[END_REF]).

Lemma 3 For every W ∈ F (H; R + ), there exists a sequence of functions (W k ) k∈N ⊂ F (H, R + ) converging to W (for instance, W k ↑ W ) such that each W k is Lipschitz continuous on every bounded subset of H, and satisfies V (y) > 0 if and only if V k (y) > 0.

Consequently, if V, D ⊂ cl(Dom A), and a ∈ R + are as in Definition 1 then, with respect to D, (V, W ) forms an a-Lyapunov pair for (1.1) if and only if each pair (V, W k ) forms an a-Lyapunov pair for (1.1).

Proposition 1 Let be given functions V ∈ F (H), W ∈ F (H; R + ) and a number a ∈ R + . If V verifies lim inf Dom A∋z→y V (z) = V (y) for all y ∈ cl(Dom A) ∩ Dom V, (3.11)
then it is equivalent to saying that (V, W ) forms an a-Lyapunov pair with respect to either Dom A or cl(Dom A).

Property (3.11) has been already used in [START_REF] Kocan | Lyapunov functions for infinite-dimensional systems[END_REF], and implicitely in [START_REF] Pazy | The Lyapunov method for semigroups of nonlinear contractions in Banach spaces[END_REF], among other works. It holds, if for instance, V (∈ F (H) ) is convex and its effective domain has a nonempty interior such that Int(Dom V ) ⊂ Dom A.

Our starting point is the next result which characterizes a -Lyapunov pairs locally in Int(Dom A). The general form corresponding to a -Lyapunov pairs in cl(Dom A) was recently established in [START_REF] Adly | Nonsmooth Lyapunov pairs for infinite-dimensional first-order differential inclusions[END_REF]. For the reader convenience we include here a sketch of the proof.

Proposition 2 Assume that Int (co{Dom A}) = ∅. Let V ∈ F w (H) satisfy Dom V ⊂ cl(Dom A), W ∈ F (H; R + ), and a ∈ R + . Let ȳ ∈ H, λ ∈ [-∞, V (ȳ))
, and ρ ∈ (0, +∞] be such that

Dom V ∩ B ρ( ȳ) ∩ [V > λ] ⊂ Int(Dom A).
Then, the following statements are equivalent:

(i) ∀y ∈ Dom V ∩ B ρ( ȳ) ∩ [V > λ] sup ξ∈∂ P V (y) min υ∈Ay ξ, f (y) -υ + aV (y) + W (y) ≤ 0; (ii) ∀y ∈ Dom V ∩ B ρ( ȳ) ∩ [V > λ] sup ξ∈∂ P V (y) ξ, f (y) -π Ay (f (y)) + aV (y) + W (y) ≤ 0; (iii) ∀y ∈ B ρ( ȳ) ∩ [V > λ] we have that e at V (x(t; y)) + t 0 W (x(τ ; y))dτ ≤ V (y) ∀t ∈ [0, ρ(y)] ,
where

ρ(y) := sup      ν > 0 ∃ρ > 0 s.t. B ρ (y) ⊂ B ρ( ȳ) ∩ [V > λ]
, and for all t ∈ [0, ν] 2 x(t; y)y < ρ 2 and (e -at -1)V (y)

-t 0 W (x(τ ; y))dτ < ρ 2      . (3.12)
Remark 1 (Before the proof) the constant ρ(y) defined in (3.12) is positive whenever

y ∈ cl(Dom A)∩B ρ( ȳ)∩[V > λ]. Hence, when ρ = -λ = ∞ one can easily show that (iii) is equivalent to (see [2, Proposition 3.2]) e at V (x(t; y)) + t 0 W (x(τ ; y))dτ ≤ V (y) for all t ≥ 0;
that is, (V, W ) forms a Lyapunov pair with respect to Int(Dom A).

Proof For simplicity, we suppose that W ≡ 0.

(iii) =⇒ (ii) Let us fix y ∈ B ρ( ȳ) ∩ [V > λ] and ξ ∈ ∂ P V (y) so that y ∈ B ρ( ȳ) ∩ [V > λ]
∩ Dom V ⊂ Dom A and there exist α > 0 and T ∈ (0, ρ(y)) such that ξ, x(t; y)y ≤ V (x(t; y)) -V (y) + α x(t; y)y 2 ≤ α x(t; y)y 2 for all t ∈ [0, T ).

But y ∈ Dom A and so there exists a constant l ≥ 0 such that ξ, t -1 (x(t; y)y) ≤ l x(t; y)y for all t ∈ [0, T ); hence, taking the limit as t → 0 + we obtain that ξ, f (y)π Ay (f (y)) ≤ 0; that is, (ii) follows.

(i) =⇒ (iii) To simplify the proof of this part, we assume that f ≡ 0, W ≡ 0 and a = 0. For this aim we fix y ∈ Dom V ∩ B ρ( ȳ) ∩ [V > λ] and let ρ > 0 and v > 0 be such that

B ρ (y) ⊂ B ρ( ȳ) ∩ [V > λ] and (3.13) sup t∈[0,ν] 2 x(t; y) -y < ρ; (3.14)
the existence of such scalars ρ and v is a consequence of the lower semicontinuity of V and the Lipschitz continuity of x(•; •) (see Lemma 2). Let T < ν be fixed and define the functions z(•)

: [0, T ] ⊂ R + → H × R and η(•) : [0, T ] ⊂ R + → R + as z(t) := (x(t; y), V (y)) , η(t) := 1 2 d 2 (z(t), epi V ); (3.15)
observe that z(•) and η(•) are Lipschitz continuous on [0, T ). Now, using a standard chain rule (e.g. [START_REF] Clarke | Optimization and nonsmooth analysis[END_REF]), for fixed t ∈ (0, T ) it holds that

∂ C η(t) = d(z(t), epi V )∂ C d(z(•), epi V )(t).
So, from one hand we get ∂ C η(t) = {θ} whenever z(t) ∈ epi V. On the other hand, when z(t) ∈ epi V we obtain that

∂ C η(t) ⊂ co   (u,µ)∈Π epi V (z(t)), u∈B ρ (y)
x(t; y)u, -Ax(t; y)

  ; (3.16)
the fact that u ∈ B ρ (y) is a consequence of the following inequalities:

uy ≤ x(t; y)u + x(t; y)y ≤ (x(t; y), V (y)) -(u, µ) + x(t; y)y ≤ (x(t; y), V (y)) -(y, V (y)) + x(t; y)y ≤ 2 x(t; y)y < ρ.

Take now ξ ∈ Ax(t; y) and (u, µ)

∈ Π epi V (z(t)) with u ∈ B ρ (y) so that V (y) -µ ≤ 0 and u ∈ Dom V ∩ B ρ( ȳ) ∩ [V > λ] (recall (3.13)).
If V (y)µ < 0, we write (µ -V (y)) -1 (x(t; y)u) ∈ ∂V P (u). Then, by the current assumption (i), select υ ∈ Au such that (µ -V (y)) -1 (x(t; y)u), -υ ≤ 0.

Therefore, invoking the monotonicty of A we get

x(t; y) -u, -ϑ = x(t; y) -u, -υ + x(t; y) -u, υ -ϑ ≤ x(t; y) -u, -υ ≤ 0.
Since ξ ∈ Ax(t; y) is arbitrary and according to (3.16), we deduce that [START_REF] Clarke | Optimization and nonsmooth analysis[END_REF]Theorem 2.4]). Hence, using the current assumption, select ξ ε ∈ Au ε such that ξ, -ξ ε ≤ αε. Hence,

∂ C η(t) ⊂ R -. If V (y) -µ = 0 so that (x(t; y) -u, 0) ∈ N epi V (u, V (u)) and x(t; y) -u = θ. Then, for a fixed ε > 0 such that B ε (u) ⊂ B ρ (y) ∩ Int(Dom (A)) (recall that u ∈ B ρ (y) ∩ Dom V ∩ B ρ( ȳ) ∩ [V > λ] ⊂ Int(Dom (A)) ), take u ε ∈ B ε (u) ∩ Dom V with |V (u) -V (u ε )| ≤ ε, α ∈ (0, ε) and ξ ∈ B ε (x(t; y) -u) such that α -1 ξ ∈ ∂V P (u ε ) (see, e.g.,
x(t; y) -u, -ξ ε ≤ ε ξ ε + ξ, -u * ε ≤ ε ξ ε + αε ≤ ε ξ ε + ε 2 .
By the monotonicity of A this yields

x(t; y) -u, -ϑ ≤ x(t; y) -u ε , -ϑ + ε ϑ ≤ x(t; y) -u ε , -ξ ε + ε ϑ ≤ x(t; y) -u, -ξ ε + u ε -u ξ ε + ε ϑ ≤ 2ε ξ ε + ε ϑ + ε 2 .
Moreover, as (u ε ) ε≤1 is bounded in Int(Dom (A)), the net (ξ ε ) ε is also bounded and passing to the limit as ε goes to 0 we get x(t; y)u, -ϑ ≤ 0.

This gives the desired inclusion

∂ C η(t) ⊂ R -(recall (3. 16 
)) and so establishes the proof of (iii). △

We are now ready to give the main result of this section, which provides a precise improvement of Proposition 2.

Theorem 3.1 Assume that Int (co{Dom A}) = ∅. Let V ∈ F w (H) with inf V > -∞, W ∈ F (H; R + ), and a ∈ R + be given. Fix ȳ ∈ Dom V, λ ∈ (-∞, V (ȳ)
) and let ρ > 0 be such that

Dom V ∩ [V > λ] ∩ B ρ( ȳ) ⊂ Int(Dom A).
Then, the following statements are equivalent:

(i) ∀y ∈ Dom V ∩ B ρ( ȳ) ∩ [V > λ] sup ξ∈∂ P V (y) min υ∈Ay ξ, f (y) -υ + aV (y) + W (y) ≤ 0; (ii) (If V is weakly continuous when restricted to B ρ (ȳ)) ∀y ∈ Dom V ∩ B ρ( ȳ) ∩ [V > λ]
e at V (x(t; y))

+ t 0 W (x(τ ; y))dτ ≤ V (y) for all t ≥ 0.
Consequently, if (i)-(ii) holds on Int(Dom A), the pair (V, W ) is an a -Lyapunov pair for (1.1) with respect to cl(Dom A).

Proof The consequence is immediate once we prove the main conclusion. First, invoking Lemma 3 we may assume w.l.o.g. that W is Lipschitz continuous on every bounded subset of H. In the rest of the proof, we take ŷ in Dom

V ∩ B ρ( ȳ) ∩ [V > λ] (⊂ Int(Dom A)) and, taking into account the lsc of V, choose ρ > 0 such that B 2ρ (ŷ) ⊂ B ρ( ȳ) ∩ [V > λ] ∩ Int(Dom A) and V (z) ≥ V (ŷ) -1 ∀z ∈ B 2ρ (ỹ).
(3.17) Also, by virtue of Lemma 2, we consider a positive constant M such that, for all 0 ≤ t ≤ 1 and all z ∈ B 2ρ (ŷ),

d + x(•; z) dt (t) ≤ M ; (3.18)
hence, x(t; z)z ≤ M t and so, by (3.17),

V (x(t; z)) ≥ V (ŷ) -1 ≥ λ -1 ∀z ∈ B ρ (ŷ) and ∀t ∈ 0, ρ M . (3.19) 
Let us fix γ ≥ 1 and define the set

G(ŷ) := [|V | ≤ |V (ŷ)| + γ]. (3.20) 
Claim: there exists T > 0 such that e at V (x(t; y))

+ t 0 W (x(τ ; y))dτ ≤ V (y) ∀y ∈ B ρ (ŷ) ∩ G(ŷ), ∀t ∈ [0, T ]. (3.21) 
Using the (L W -)Lipschitz continuity of W on the (bounded) set {x(t;

y) | 0 ≤ t ≤ 1, y ∈ B 2ρ (ŷ)}, we write, for all y ∈ B 2ρ (ŷ) ∩ G(ŷ) ∩ Dom V and 0 ≤ t ≤ 1, 2 x(t; y) -y + e -at -1 V (y) - t 0 W (x(τ ; y))dτ ≤ 2M t + 1 -e -at (|V (ŷ)| + γ) + (W (ŷ) + L W (M + 2ρ))t.
Therefore, we can choose T > 0 so that for all y ∈ B 2ρ (ŷ) ∩ G(ŷ) we have that

sup t∈[0,T ] 2 x(t; y) -y + e -at -1 V (y) - t 0 W (x(τ ; y))dτ < ρ 2 .
We also observe that for any given y ∈ B ρ (ŷ) ∩ G(ŷ) we have that

B ρ (y) ⊂ B 2ρ (ŷ) ∩ [V > λ]. Therefore, since B ρ (ŷ) ∩ G(ŷ) ⊂ B 2ρ (ŷ) ∩ [V > λ] ⊂ B ρ( ȳ) ∩ [V > λ] ∩ Dom V,
the claim follows from Theorem 2.

To go further in the proof, we fix two parameters ε, δ > 0 and we introduce the set E ε,δ ⊂ R + defined as

E ε,δ :=    λ ∈ R + ∃ρ 1 , ρ 2 ∈ ( ρ 2 , ρ), ρ 1 < ρ 2 , ∃ρ λ ∈ ( ρ 2 , ρ 2 ), ∀y ∈ B ρ λ (ŷ) ∩ G(ŷ), ∀t ≤ λ : e at V δ (x(t; y)) + t 0 W (x(τ ; y))dτ ≤ V (y) + ε(ρ 1 -ρ 2 )(ρ -ρ 2 )    ,
where V δ : H → R is the function given by

V δ (y) := inf z∈H {V (z) + 1 δ y -z 2 }.
V δ is dominated by V and is Lipschitz continuous on the bounded sets of H. Then, we have that [0, T ] ⊂ E ε,δ , that is, E ε,δ = ∅. Next, we shall show that E ε,δ = R + or, equivalentely, that E ε,δ is closed and open with respect to the usual topolgy on R + .

Claim: E ε,δ is closed. Let a sequence (λ n ) n∈N ⊂ E ε,δ be such that λ n → λ and, by the definition of E ε,δ , take

(ρ 1,n ) n∈N , (ρ 2,n ) n∈N , (ρ 3,n ) n∈N ⊂ ( ρ 2 , ρ) be such that ρ 1,n < ρ 2,n , ρ 3,n ∈ ( ρ 2 , ρ 2,n ),
together with the relation

e at V δ (x(t; y)) + t 0 W (x(τ ; y))dτ ≤ V (y) + ε(ρ 1,n - ρ 2 )(ρ -ρ 2,n ) ∀y ∈ B ρ 3,n (ŷ) ∩ G(ŷ),
valid for all t ≤ λ n . Because all the sequences (ρ 1,n ) n∈N , (ρ 2,n ) n∈N , and (ρ 3,n ) n∈N are bounded, on relabeling if necessary, we may suppose that ρ

1,n → ρ 1 ∈ [ ρ 2 , ρ], ρ 2,n → ρ 2 ∈ [ ρ 2 , ρ 2 ], and ρ 3,n → ρ ∈ [ ρ 2 , ρ 2 ].
As well, it is enough to suppose that λ > T and λ > λ n for all n because, otherwise, either λ ≤ λ n for some n or λ ≤ T ; hence in both cases we have λ ∈ E ε,δ .

If y ∈ B ρ( ŷ) ∩ G(ŷ) and t < λ, for all n large enough we get that y ∈ B ρ n (ŷ) ∩ G(ŷ) and t < λ n and, so,

e at V δ (x(t; y)) + t 0 W (x(τ ; y))dτ ≤ V (y) + ε(ρ 1,n - ρ 2 )(ρ -ρ 2,n ).
As n goes to ∞ we obtain that e at V δ (x(t; y))

+ t 0 W (x(τ ; y))dτ ≤ V (y) + ε(ρ 1 - ρ 2 )(ρ -ρ 2 );
this inequality also holds for t = λ in view of the continuity of V δ . It is also useful to notice here that for all y ∈ B ρ 2 (ŷ) ∩ G(ŷ) and t ≤ λ e at V δ (x(t; y))

+ t 0 W (x(τ ; y))dτ ≤ V (y). (3.22)
Now, checking the possible values of ρ 1 , ρ 2 , and ρ we observe that only two cases may occur: the first corresponds to (ρ 1 -ρ

2 )(ρρ 2 ) = 0 and happens when

ρ 1 = ρ 2 , ρ 2 = ρ, or ρ 2 = ρ; this last equality implies that ρ 2 ≤ ρ 1 ≤ ρ 2 ≤ ρ 2
and, so, (ρ 1 -ρ 2 )(ρρ 2 ) = 0. While the second case corresponds to (ρ 1 -ρ 2 )(ρρ 2 ) > 0 and happens when ρ 1 , ρ 2 ∈ ( ρ 2 , ρ). To begin with, we analyze the case (ρ 1 -ρ

2 )(ρρ 2 ) > 0. This necessarily implies that ρ 2 > ρ 2 in view of the inequality ρ 2 ≤ ρ 1 ≤ ρ 2 . We may suppose that ρ = ρ 2 because otherwise ρ ∈ ( ρ 2 , ρ 2 ) trivially yields λ ∈ E ε,δ . So, in order to prove that λ ∈ E ε,δ , we only need to find some β > 0 such that ρ 2 +β ∈ ( ρ 2 , ρ 2 ) and for all y ∈ B ρ 2 +β (ŷ)∩G(ŷ) and t ≤ λ,

e at V δ (x(t; y)) + t 0 W (x(τ ; y))dτ ≤ V (y) + ε(ρ 1 - ρ 2 )(ρ -ρ 2 ). (3.23) 
Proceeding by contradiction, we assume that for each k ≥ 1

verifying ρ 2 + 1 k ∈ ( ρ 2 , ρ 2 ), there exist y k ∈ B ρ 2 + 1 k (ŷ) ∩ G(ŷ) and 0 < t k ≤ λ such that e at k V δ (x(t k ; y k )) + t k 0 W (x(τ ; y k ))dτ > V (y k ) + ε(ρ 1 - ρ 2 )(ρ -ρ 2 ). (3.24) 
Because of (3.22) we must have

(y k ) k ⊂ B ρ 2 + 1 k (ŷ) \ B ρ 2 
(ŷ). W.l.o.g. we may suppose that t k → t ≤ λ. For each k, we denote by ỹk ∈ B ρ 2 (ŷ) the orthogonal projection of y k onto B ρ 2 (ŷ). Thus, from one hand, we may also suppose that (ỹ k ) k weakly converges to some ỹ ∈ B ρ 2 (ŷ). Furthermore, from the inequality y kỹk ≤ 1 k we infer that y k also weakly converges to ỹ and, so, by the weak continuity of V on B ρ (ŷ),

V (ỹ) = lim k V (ỹ k ) = lim k V (y k ). (3.25) Hence, |V (ỹ)| = lim k |V (ỹ k )| = lim k |V (y k )| ≤ |V (ŷ)| + 1.
In particular, (w.l.o.g.) this implies that

(ỹ k ) k ∪ {ỹ} ⊂ B ρ 2 (ŷ) ∩ [|V | ≤ |V (ŷ)| + 1] = B ρ 2 (ŷ) ∩ G(ŷ).
On the other hand, the absolute continuity of x(•; ỹk ) yields

x(t k ; ỹk ) -ỹk = t k 0 ẋ(τ ; ỹk )dτ
and, since that ẋ(•; ỹk ) ∈ L ∞ ([0, λ]; H), the following holds:

x(t k ; ỹk ) -ỹk ≤ t k sup τ ∈[0,t k ] ẋ(τ ; ỹk ) ≤ t k sup τ ∈[0,t k ] e L f τ (f (ỹ k ) -Aỹ k ) • ≤ λe L f λ sup z∈B ρ 2 (ŷ) e L f τ (f (z) -Az) • ≤ M λe L f λ.
Hence, w.l.o.g. we may suppose that the bounded sequence (x(t k ; ỹk )) k∈N weakly converges in H. Furthermore, the inequality

x(t k ; y k ) -x(t k ; ỹk ) ≤ e L f t k y k -ỹk ≤ e L f t k ,
infers that the both sequences (x(t k ; y k )) k∈N and (x(t k ; ỹk )) k∈N weakly converge to the same point in H. On another hand, since the sequences (x(t k ; y k )) k∈N and (x(t k ; ỹk )) k∈N are bounded, there exits some l ≥ 0 such that for all t ≤ t

|W (x(t; y k )) -W (x(t; ỹk ))| + |V δ (x(t; y k )) -V δ (x(t; ỹk ))| ≤ l x(t; y k ) -x(t; ỹk ) ≤ le L f t k
and, so, we deduce that (w.l.o.g.) 

lim k V δ (x(t k ; y k )) = lim k V δ (x(t k ; ỹk )) and lim k W (x(t k ; y k )) = lim k W (x(t k ; ỹk ). ( 3 
V δ (x(t k ; ỹk )) + t 0 lim k W (x(τ ; ỹk ))dτ = e a t lim k V δ (x(t k ; y k )) + t 0 lim k W (x(τ ; y k ))dτ = lim k e at k V δ (x(t k ; y k )) + t k 0 W (x(τ ; y k ))dτ .
≥ lim k V (y k ) + ε(ρ 1 - ρ 2 )(ρ -ρ 2 ) = V (ỹ) + ε(ρ 1 - ρ 2 )(ρ -ρ 2 ) = V (lim k ỹk ) + ε(ρ 1 - ρ 2 )(ρ -ρ 2 ) = lim k V (ỹ k ) + ε(ρ 1 - ρ 2 )(ρ -ρ 2 )).
In other words, for k large enough we have

e a tV δ (x(t k ; ỹk )) + t 0 W (x(τ ; ỹk ))dτ ≥ V (ỹ k ) + ε 2 (ρ 1 - ρ 2 )(ρ -ρ 2 ) > V (ỹ k ),
and a contradiction to (3.22) as ỹk ∈ B ρ 2 (ŷ) ∩ G(ŷ), and t ≤ λ. Hence, we conclude that some ρ λ ∈ ( ρ 2 , ρ 2 ) exists so that (3.23) holds for all y ∈ B ρ 2 +β (ŷ) ∩ G(ŷ) and t ≤ λ. This fact shows that λ ∈ E ε,δ . It remains to analyse the other case corresponding to (ρ 1 -ρ 2 )(ρ-ρ 2 ) = 0. If this happens, we choose ρ1 , ρ2 ∈ ( ρ 2 , ρ) such that ρ1 < ρ2 and (ρ 1 -ρ 2 )(ρρ 2 ) > 0. Thus, following the same argument as in the first case, taking into account (3.22) we can find some β > 0, with ρ + β ∈ ( ρ 2 , ρ 2 ), so that (3.23) holds for all y ∈ B ρ 2 +β (ŷ) ∩ G(ŷ). This shows that λ ∈ E ε,δ and, hence, establishes the proof of the closedness of E ε,δ .

Claim: E ε,δ is open. Fix λ ∈ E ε,δ (it is sufficient to take λ ≥ ν > 0), and let ρ 1 , ρ 2 ∈ ( ρ 2 , ρ) and ρ ∈ ( ρ 2 , ρ 2 ) be such that ρ 1 < ρ 2 and, for all y ∈ B ρ( ŷ) ∩ G(ŷ) and t ≤ λ, e at V δ (x(t; y))

+ t 0 W (x(τ ; y))dτ ≤ V (y) + ε(ρ 1 - ρ 2 )(ρ -ρ 2 ). (3.28) We let ν > 0 verify ν ≤ min{ν, λ}, ρ 2 < ρ -M ν < ρ 2 , and ρ 2 < e aν ρ 1 < ρ 2 .
So, from one hand, for all 0 ≤ α ≤ ν and y ∈ B ρ-M ν (ŷ) ∩ G(ŷ) it holds, by Lemma 2,

x(α; y) -ŷ ≤ M α + y -ŷ < M α + ρ -M ν ≤ ρ, (3.29)
where M ≥ 0 is defined in (3.18). Hence, by the choice of ν (ν ≤ λ), from (3.28) we infer that

V (x(α; y)) ≤ V (y) ≤ |V (ŷ)| + 1.
Thus, taking into account (3.19) we obtain that

x(α; y) ∈ B ρ( ŷ) ∩ G(ŷ). Now fix y ∈ B ρ-M ν (ŷ) ∩ G(ŷ) and t ∈ [0, λ].
From above we have that

x(ν, y) ∈ B ρ( ŷ) ∩ G(ŷ) (3.30)
and, so, applying (3.28) we get that

e at V δ (x(t; x(ν, y))) + t 0 W (x(τ ; x(ν, y)))dτ ≤ V (x(ν, y)) + ε(ρ 1 - ρ 2 )(ρ -ρ 2 ).
Thus, using the semi-group property together with (3.28) and (3.30), we infer that e a(ν+t) V δ (x(ν + t, y))

+ ν+t 0 W (x(τ ; y))dτ = e aν e at V δ (x(t; x(ν, y))) + t 0 W (x(τ ; x(ν, y)))dτ + ν 0 W (x(τ ; y))dτ ≤ e aν e at V δ (x(t; x(ν, y))) + t 0 W (x(τ ; x(ν, y)))dτ + ν 0 W (x(τ ; y))dτ ≤ e aν V (x(ν, y)) + ν 0 W (x(τ, y))dτ + εe aν (ρ 1 - ρ 2 )(ρ -ρ 2 ).
At this step, for the choice that we made on ν (ν ≤ ν), the last inequality above reads, for all y ∈ B ρ-M ν (ŷ) and t ∈ [0, ν + λ],

e a(ν+t) V δ (x(ν + t, y))

+ ν+t 0 W (x(τ ; y))dτ ≤ V (y) + εe aν (ρ 1 - ρ 2 )(ρ -ρ 2 ) ≤ V (y) + ε(e aν ρ 1 - ρ 2 )(ρ -ρ 2 ).
Consequently, since that ρ -M ν ∈ ( ρ 2 , ρ 2 ) and e aν ρ 1 ∈ ( ρ 2 , ρ 2 ) it follows that [0, λ + ν] ⊂ E ε,δ and, so, the openness of E ε,δ follows.

In order to conclude the proof, let y ∈ B ρ 2 (ŷ) ∩ G(ŷ) be given. Then, for every t ≥ 0 we have that t ∈ ∩ ε>0 E ε,δ ; that is for all ε > 0 it holds

e at V δ (x(t; y)) + t 0 W (x(τ ; y))dτ ≤ V (y) + ε(ρ - ρ 2 )(ρ - ρ 2 ) = V (y) + ε ρ 2 4 .
Hence, letting ε → 0 it follows that

e at V δ (x(t; y)) + t 0 W (x(τ ; y))dτ ≤ V (y),
which as δ → 0 yields (using the fact that lim δ→0 V δ (x(t; y)) = V (x(t; y)) e at V (x(t; y))

+ t 0 W (x(τ ; y))dτ ≤ V (y).
Now, if z ∈ B ρ (ŷ) ∩ Dom V, then similarly as above, we can find ρ z > 0 such that for every z ∈ B ρ z 2 (z) ∩ G(z) (where G(z) is defined as in (3.20)) we have that

e at V (x(t; z)) + t 0 W (x(τ ; z))dτ ≤ V (z) for all t ≥ 0.
Thus, the main conclusion of the current theorem follows since that the last inequality obviously holds when z / ∈ Dom V. △ Remark 2 The conclusion of Theorem 3.1 also holds if, instead of V being weak continuous on B ρ (ȳ), we assume that either H is finite-dimensional or V is convex.

Proof The only difference with the proof of Theorem 3.1 arises in showing (3.23).

(a) Assume that H is finite-dimensional. Let us show that (3.23) holds. Assuming the contrary, we find bounded sequencse y k ∈ B ρ 2 + 1 k (ȳ) ∩ G(ȳ) and 0 < t k ≤ λ such that (3.24) holds. W.l.o.g. we may suppose that t k → t ≤ λ and y k ⇀ ỹ ∈ B ρ 2 (ȳ). Furthermore, we have that

V (ỹ) ≤ lim inf k V (y k ) ≤ |V (ȳ)| + 1, while (3.19) guarantees that V (ỹ) ≥ V (ȳ) -1. Hence, we also have that ỹ ∈ [|V | ≤ |V (ȳ)| + 1]
. Now, recalling that x(t k ; y k ) converges to x( t, ỹ) in this case, it follows that e a tV δ (x( t, ỹ))

+ t 0 W (x(τ ; ỹ))dτ = e a tV δ (lim k x(t k , y k )) + t 0 W (lim k x(τ ; y k ))dτ = lim k e a tV δ (x(t k ; y k )) + t 0 W (x(τ ; y k ))dτ ≥ lim inf k V (y k ) + ε(ρ 1 - ρ 2 )(ρ -ρ 2 ) ≥ V (ỹ) + ε(ρ 1 - ρ 2 )(ρ -ρ 2 ) > V (ỹ), which contradicts (3.22). 
(b) Assume that V is convex. We consider again the sequences of the proof of Theorem 3.1,

(y k ) k∈N ⊂ B ρ 2 + 1 k (ȳ) ∩ G(ȳ) \ B ρ 2 (ȳ) and (ỹ k ) k∈N ⊂ B ρ 2 (ȳ), which both converge to ỹ ∈ B ρ 2 (ȳ) ∩ G(z). Since that each ỹk ∈ [y k , ȳ], with k ≥ 1, we find β k ∈ [0, 1] such that ỹk := β k y k + (1 -β k )ȳ, this yields V (ỹ k ) ≤ β k V (y k ) + (1 -β k )V (ȳ).
We notice that 1 ≥ β k ≥ kρ kρ+2 since by construction, ỹk is on the boundary of B ρ 2 (ȳ) and y k ∈ B ρ 2 + 1 k (ȳ). Thus, we may suppose that β k → 1. Consequently, taking limits in the inequality above,

lim inf k V (ỹ k ) ≤ lim k β k lim inf k V (y k ) = lim inf k V (y k ).
Hence, as in (3.27), using (3.26) we obtain that

lim k e a tV δ (x(t k ; ỹk )) + t 0 W (x(τ ; ỹk ))dτ = e a t lim k V δ (x(t k ; ỹk )) + t 0 lim k W (x(τ ; ỹk ))dτ = e a t lim k V δ (x(t k ; y k )) + t 0 lim k W (x(τ ; y k ))dτ = lim k e at k V δ (x(t k ; y k )) + t k 0 W (x(τ ; y k ))dτ ≥ lim inf k V (y k ) + ε(ρ 1 - ρ 2 )(ρ -ρ 2 ) ≥ lim inf k V (ỹ k ) + ε(ρ 1 - ρ 2 )(ρ -ρ 2 ),
which contradicts (3.22). △

Corollary 1 Assume that Int (co{Dom A}) = ∅. Let V ∈ F (H) be convex, and let W ∈ F (H; R + ) and a ∈ R + be given. Fix ȳ ∈ Int(Dom A)∩Dom V, and let ρ > 0 be such that B 2ρ (ȳ) ⊂ Int(Dom A). For all y ∈ B 2ρ (ȳ)∩Dom V we assume that sup

ξ∈∂ P V (y) inf υ∈Ay ξ, f (y) -υ + aV (y) + W (y) ≤ 0.
Then, for all y ∈ B ρ (ȳ) we have that

e at V (x(t; y)) + t 0 W (x(τ ; y))dτ ≤ V (y) for all t ≥ 0.
Proof According to Theorem 3.1 and Remark 2, it suffices to show that the current assumption implies that, for every given

y ∈ B 2ρ (ȳ) ∩ Dom V and ξ ∈ ∂ ∞ V (y) = N Dom V (y) (if any), there exists υ ∈ Ay such that ξ, f (y) -υ ≤ 0. (3.31) 
To prove this fact, by the lsc of V we let ε > 0 be such that

B √ ε (y) ⊂ Int(cl(Dom A)), V (B √ ε (y)) ≥ V (y) -1.
Pick y ε ∈ ∂ ε V (y); this last set is not empty since that V ∈ F (H) is a convex function. Then, from the relationship N Dom V (y) = (∂ ε V (y)) ∞ (e.g. ), for every k ∈ N we have that

y ε + kξ ∈ ∂ ε V (y).
According to the Brøndsted-Rockafellar Theorem, there are

y k ∈ B √ ε (y) and u k ∈ B √ ε (θ) such that y ε + kξ ∈ ∂ ε V (y k ) + u k ;
that is, in particular, y k ∈ Dom V. Consequently, by the current assumption we get that

k ξ, f (y) -π Ay k (f (y k )) ≤ u k -y ε , f (y k ) -π Ay k (f (y k )) -aV (y k ) -W (y k ) ≤ u k -y ε , f (y k ) -π Ay k (f (y k )) -aV (y) + a + k ξ, f (y) -f (y k ) ≤ u k -y ε , f (y k ) -π Ay k (f (y k )) -aV (y) + a + kL f √ ε ξ . Since that u k -y ε , f (y k ) -π Ay k (f (y k )) is bounded independently of k, for k ε ≥ 1 big enough we get that ξ, f (y) -π Ay kε (f (y k ε )) ≤ √ ε + L f √ ε ξ .
Moreover, as y k ε ∈ B √ ε (y) and ζ ε := π Ay kε (f (y k ε )) (∈ Ay k ε ) is bounded independently of k ε , we may suppose as ε → 0 that (ζ ε ) weakly converges to some υ ∈ Ay. Thus, taking limits in the last inequality above we get that ξ, f (y)υ ≤ 0; that is (3.31) follows. △ Then, for all y ∈ B ρ (ȳ) we have that e at V (x(t; y))

Corollary 2 Assume that dim H < ∞. Let V ∈ F (H), W ∈ F (H; R + ),
+ t 0 W (x(τ ; y))dτ ≤ V (y) for all t ≥ 0.
Proof As in the proof of Corollary 1, given y ∈ B 2ρ (ȳ) ∩ Dom V and ξ ∈ ∂ ∞ V (y) (if any), we only to find some υ ∈ Ay such that ξ, f (y)υ ≤ 0.

Fix ε > 0. By definition, we let ξ k ∈ ∂ P V (y k ) and α k ↓ 0 such that y k → y, V (y k ) → V (y), and α k ξ k ⇀ ξ. Then, by the current assumption, for each k there exists y * k ∈ Ay k such that

ξ k , f (y k ) -y * k + aV (y k ) + W (y k ) ≤ ε.
Because dim H < ∞ and y k , y * k are bounded, we may suppose that y * k converges to some υ ∈ Ay. Thus, multiplying the equation above by α k and next passing to the limit as ε → 0 and finally invoking the lsc of V and the Lipschitz continuity of f , we obtain that

ξ, f (y) -υ ≤ lim k α k ξ k , f (y k ) -y * k + a lim inf k α k V (y k ) ≤ lim k α k ε = 0.
The conclusion follows. △ Then, (V, W ) is a Lyapunov pair for (1.1) if and only if the function I epi V ∩cl(Dom A) is a Lyapunov function for this new differential inclusion (3.32).

Characterizations of finite-dimensional nonsmooth Lyapunov pairs

This section is devoted to the finite-dimensional setting. Assuming that dim H < ∞, we give multiple primal and dual characterizations for nonsmooth a-Lyapunov pairs for the differential inclusion (1.1), with respect to the set rint(cl(Dom A)).

Naturally, these conditions turn out to be sufficient for nonsmooth a-Lyapunov functions with respect to every given set D ⊂ cl(Dom A) verifying condition (3.11). Further, in this setting, the dual characterization does not depend on the choice of the subdifferential operator which can be either the proximal, the Fréchet, the Limiting (which coincides with the viscosity subdifferential (see Borwein [START_REF] Borwein | Techniques of variational analysis[END_REF]), or, more generally, every subdifferential operator ∂V : H ⇉ H satisfying where π H 0 denotes the orthogonal projection onto H 0 . According to the Minty Theorem, it follows that A 0 is also a maximally monotone operator. Further, for every y ∈ Dom A we have Ay + N cl(Dom A) (y) = Ay, and therefore Ay + H ⊥ 0 = Ay. Hence,

∂ P V ⊂ ∂V ⊂ ∂ L V, ( 4 
Ay = (Ay ∩ H 0 ) + H ⊥ 0 = A 0 y + H ⊥ 0 . (4.36)
From this inequality we deduce that Dom A 0 = Dom A and, so,

rint(cl(Dom A)) = Int(cl(Dom A 0 )) = Int(Dom A 0 );
for the last equality see, e.g., [8, Remark 2.1-Page 33]. Further, since for y ∈ cl(Dom A) we have that

f 0 (y) -A 0 y ⊂ f (y) -A 0 y + H ⊥ 0 = f (y) -Ay,
from which it follows that x•; y) is the unique solution of the the differential inclusion ẋ(t; y) ∈ f 0 (x(t; y)) -A 0 x(t; y), x(0, y) = y.

Next, we are going to show the assumption of Corollary 2 (which is the same as Conditions (i) of Theorem 3.1) holds with respect to the pair (A 0 , f 0 ). Fix y ∈ Dom A ∩ Dom V ∩ B ρ (ȳ) and ξ ∈ ∂V (y) (if any). For fixed ε > 0, by assumption take υ ∈ Ay in such a way that

ξ, f (y) -υ + aV (y) + W (y) ≤ ε. Since f (y) ∈ f 0 (y) + H ⊥ 0 and υ + H ⊥ 0 ∈ Ay + H ⊥ 0 = A 0 y, we have inf υ∈A 0 y ξ, f 0 (y) -υ ≤ inf υ∈Ay ξ, f (y) -υ ≤ ε -aV (y) -W (y), (4.37) 
and the assumption of Corollary 2 follows as ε → 0.

(i) =⇒ (iv): Fix y ∈ Dom A ∩ Dom V ∩ B ρ (ȳ). Then, as shown in the paragraph above, the solution x(t; y) of (1.1) is also the unique strong solution of the equation ẋ(t; y) ∈ f 0 (x(t; y)) -A 0 x(t; y), x(0; y) = y ∈ cl (Dom A) , where A 0 and f 0 are defined in (4.34) and (4.35), respectively. Let (t n ) n∈N ⊂ (0, T ) be such that t n → 0 + and set

w n := x(t n ; y) -y t n .
Because x(•; y) is derivable from the right at 0 (y ∈ Dom A) and

d + x(•; y) dt (0) = (f (y) -Ay) • = f (y) -π Ay (f (y)),
we infer that w n → f (y)π Ay (f (y)).

Therefore, using the current assumption (i),

V (y + t n w n ) -V (y) t n = V (x(t n , y)) -V (y) t n ≤ e -at n (1 -e at n ) t n V (y) - e -at n t n t n 0 W (x(s; y))ds,
and taking limits yields

V ′ (y; f (y) -π Ay (f (y))) ≤ lim inf n e -at n (1 -e at n ) t n V (y) - e -at n t n t n 0 W (x(s; y))ds = -aV (y) -W (y); this proves (iv). (iv) =⇒ (v) is trivial. (v) =⇒ (iii). Use ∂ ≡ ∂ L .): Take y ∈ Dom A ∩ Dom V ∩ B ρ (ȳ). For fixed ε > 0, by (v) we let υ ∈ Ay be such that V ′ (y; f (y) -υ) ≤ ε -aV (y) -W (y); that is (f (y) -υ, ε -aV (y) -W (y)) ∈ epi V ′ (y, •) = T epi V (y, V (y)) ⊂ N p epi V (y, V (y)) 
• .

If ξ ∈ ∂ P V (y), since that (ξ, -1) ∈ N p epi V (y, V (y)) the last above inequality leads us to

ξ, f (y) -υ ≤ (ξ, -1), (f (y) -υ, ε -aV (y) -W (y)) + ε -aV (y) -W (y) ≤ ε -aV (y) -W (y)
so that (ii) follows when ε → 0.

If ξ ∈ ∂ L V (y), then there are sequences y n → y, ξ n → ξ such that V (ξ n ) → V (ξ) and ξ n ∈ V (y n ) for every integer n sufficiently large. As just shown above, given an ε > 0, for each n there exists y * n ∈ Ay n such that

ξ n , f (y n ) -y * n ≤ ε -aV (y n ) -W (y n ). Because (y n ) n ⊂ B ρ (ȳ) ⊂ Int(Dom A 0 ) ⊂ H 0 (the ball B ρ (ȳ)
is with respect to H 0 ), then we may suppose that y * n → υ ∈ Ay. Thus, passing to the limit in the above inequality, and taking into account the lsc of V and the continuity of W, ξ, f (y)υ ≤ ε -aV (y) -W (y).

showing that (iii) holds with ∂ ≡ ∂ L .

At this point we have proved that (i)⇐⇒(iii with ∂ ≡ ∂ L )⇐⇒(iv)⇐⇒(v). To see that (ii) is also equivalent to the other statements we observe that, from one hand, (ii) =⇒ (iii) holds obviously. On the other hand, the implication (iv) =⇒ (ii) follows in a similar way as in the proof of the statement (v) =⇒ (iii). This finishes the proof of the equivalences of (i) through (v).

Finally, if V is nonnegative, (vi) is nothing else but (i) with a and W replaced by θ and aV + W, respectively. Thus, (vi) is equivalent to (iii). △

The following Theorem, which is an immediate consequence of Proposition Consequently, if V satisfies (3.11) for a given set D ⊂ cl(Dom A), then any of the conditions (i)-(iv) above implies that (V, W ) is an a-Lyapunov pair for (1.1) with respect to D.

(i) for all y ∈ rint(cl(Dom A)) ∩ Dom V sup ξ∈∂ P V (y) ξ, f ( 
In contrast to the (analytic) Definition 1, Lyapunov stability can also be approached from a geometrical point of view using the concept of invariance: Definition 2 Let be given a set D ⊂ cl(Dom A). A non-empty closed set S ⊂ H is said invariant for (1.1) with respect to D if for all y ∈ S ∩ D one has that x(t; y) ∈ S for all t ≥ 0.

This fact, which was already mentioned in the infinite-dimensional setting in Corollary 1, is explicitly characterized here in the finite-dimensional setting. This characterization is also valid in the infinite-dimensional setting provided that S ∩ cl(Dom A) is a convex set, according to Remark 2 and Corollary 1. the current assertions (iii) and (iv) follow from statements (iii) and (iv) of Proposition 3, respectively. This shows that (i)⇐⇒(ii)⇐⇒(iii)⇐⇒(iv). It remains to show that (v) is equivalent to the other statements. We obviously have that (iv) =⇒ (v) and so (i) =⇒ (v). To prove the reverse implication it suffices to show that (v) =⇒ (ii). Indeed, fix y ∈ S ∩ Dom A and ξ ∈ N P S∩cl(Dom A) . Then, by (v) there exists υ ∈ Ay such that f (y)υ ∈ co T S∩cl(Dom A) (y) ⊂ N P S∩cl(Dom A) • .

Therefore, ξ, f (y)υ ≤ 0; that is (ii) follows. △

The following corollary follows from Theorem 4.2.

Corollary 4 Assume that dim H < ∞. Let V ∈ F (H), W ∈ F (H, R + ), and a ∈ R + be given, and let ∂ be as in (4.33). Then, the following statements are equivalent provided that V is continuous relative to cl(Dom A): (i) (V, W ) is an a-Lyapunov pair for (1. In order to fix ideas, let us discuss the simple case when A ≡ 0 so that our inclusion (1.1) becomes an ordinary differential equation which reads: for every y ∈ H there exists a unique x•; y) ∈ C 1 (0, ∞; H) such that x(0, y) = y and ẋ(t; y) = f (x(t; y)) for all t ≥ 0. 

  is the open ball with center x and radius ρ, and B ρ (x) is the closure of B ρ (x), while B := B 1 (θ) stands for the unit open ball. For a, b ∈ R := R ∪ {+∞, -∞} we denote [a, b) the interval closed at a and open at b ([a, b], (a, b), ... are defined similarly); hence R + := [0, ∞).

F

  (H) := {ϕ : H → R | ϕ is proper and lsc}, F w (H) := {ϕ : H → R | ϕ is proper and weakly lsc};

Consequently, taking limits in ( 3 . 0 W

 30 [START_REF] Rockafellar | Variational analysis, volume 317 of Grundlehren der Mathematischen Wissenschaften[END_REF], and using (3.25) we obtain lim k e a tV δ (x(t k ; ỹk )) + t (x(τ ; ỹk ))dτ(3.27) 

  and a ∈ R + be given. Fix ȳ ∈ Int(Dom A), and let ρ > 0 be such that B 2ρ (ȳ) ⊂ Int(Dom A). For all y ∈ B 2ρ (ȳ) ∩ Dom V we assume that sup ξ∈∂ P V (y) inf υ∈Ay ξ, f (y)υ + aV (y) + W (y) ≤ 0.

Remark 3

 3 Let V ∈ F (H), and let W ∈ F (H; R + ) be Lipschitz continuous on cl(Dom A). Define the the mapping f : H × R 2 →H × R 2 and the operator A : H × R 2 ⇉H × R 2 respectively as f (y, α, γ) := denote V : H × R →R and V : H × R 2 →R the functions given respectively as V (y, α) := V (y) + α and V (y, α, γ) := I epi V ∩cl(Dom A) (y, α, γ).Consider the differential inclusionż(t; (y, α, γ)) ∈ f(z(t; (y, α, γ))) -Az(t; (y, α, γ)), z(0, (y, α, γ)) = (y, α, γ), (3.32)the solution of which is the function z(t; (y, α, γ)) : [0, ∞) → H × R 2 given by z(t; (y, α, γ)) =

Proposition 3 0 W 0 V 0 W

 3000 .33) where V ∈ F (H) is the first part of Lyapunov's condidate pairs. Assume that dim H < ∞. Let V ∈ F (H), W ∈ F (H; R + ), and a ∈ R + be given, and let ∂ be as in(4.33). Fix ȳ ∈ rint(cl(Dom A)) and let ρ > 0 be such that B 2ρ (ȳ) ∩ aff(cl(Dom A)) ⊂ Dom A. Then, the following assertions (i)-(v) are equivalent:(i) for every y ∈ Dom A ∩ Dom V ∩ B ρ (ȳ) e at V (x(t; y)) + t (x(τ ; y))dτ ≤ V (y) for all t ≥ 0; (ii) for every y ∈ Dom A ∩ Dom V ∩ B ρ (ȳ) sup ξ∈∂ P V (y) ξ, f (y)π Ay (f (y)) + aV (y) + W (y) ≤ 0; (iii) for every y ∈ Dom A ∩ Dom V ∩ B ρ (ȳ) sup ξ∈∂V (y) inf υ∈Ay ξ, f (y)y * + aV (y) + W (y) ≤ 0; (iv) for every y ∈ Dom A ∩ Dom V ∩ B ρ (ȳ) V ′ (y; f (y)π Ay (f (y))) + aV (y) + W (y) ≤ 0; (v) for every y ∈ Dom A ∩ Dom V ∩ B ρ (ȳ) inf υ∈Ay V ′ (y; f (y)υ) + aV (y) + W (y) ≤ 0. If V is nonnegative, each one of the statements above is equivalent to (vi) for every y ∈ Dom A ∩ Dom V ∩ B ρ (ȳ)V (x(t; y)) + a t (x(τ ; y))dτ + t (x(τ ; y))dτ ≤ V (y) for all t ≥ 0.Proof (iii with ∂ ≡ ∂ P ) =⇒ (i): Let H 0 := lin(cl(Dom A)) denote the linear hull of Dom A; we may suppose that θ ∈ Dom A. Let A 0 : H 0 ⇉ H 0 be the operator given by A 0 y = Ay ∩ H 0 , (4.34) and define the Lipschitz continuous mapping f 0 : H 0 → H 0 as f 0 (y) = π H 0 (f (y)),(4.35) 

  y)π Ay (f (y)) + aV (y) + W (y) ≤ 0;(ii) for all y ∈ rint(cl(Dom A)) ∩ Dom V sup ξ∈∂V (y) inf υ∈Ay ξ, f (y)y * + aV (y) + W (y) ≤ 0; (iii) for all y ∈ rint(cl(Dom A)) ∩ Dom V V ′ (y; f (y)π Ay (f (y))) + aV (y) + W (y) ≤ 0;(iv) for all y ∈ rint(cl(Dom A)) ∩ Dom V inf υ∈Ay V ′ (y; f (y)υ) + aV (y) + W (y) ≤ 0.

Corollary 3

 3 Assume that dim H < ∞. A closed set ∅ = S ⊂ H is invariant for(1.1), with respect to rint(cl(Dom A)), if and only if one of the following assertions are satisfied:(i) for all y ∈ rint(cl(Dom A)) ∩ S sup ξ∈N P S∩cl(Dom A) (y) ξ, f (y)π Ay (f (y)) ≤ 0; (ii) for all y ∈ rint(cl(Dom A)) ∩ S sup ξ∈N P S∩cl(Dom A) (y) inf υ∈Ay ξ, f (y)υ ≤ 0; (iii) for all y ∈ rint(cl(Dom A)) ∩ S f(y)π Ay (f (y)) ∈ T S∩cl(Dom A) (y); (iv) for all y ∈ rint(cl(Dom A)) ∩ S [f (y) -Ay] ∩ T S∩cl(Dom A) (y) = ∅; (v) for all y ∈ rint(cl(Dom A)) ∩ S [f (y) -Ay] ∩ co T S∩cl(Dom A) (y) = ∅. Consequently, S is invariant for (1.1) with respect to a given set D ⊂ cl(Dom A) if S ∩ D ⊂ cl(S ∩ rint(cl(Dom A))). Proof It is an immediate fact that, with respect to rint(cl(Dom A)), S is invariant if and only if I S∩cl(Dom A) is a Lyapunov function. Then, the current assertions (i) and (ii) come from statements (i) and (ii) of Proposition 3, respectively. Similarly, always with respect to rint(cl(Dom A)), S is invariant if and only d(•, S ∩ cl(Dom A)) is a Lyapunov function. Thus, by virtue of the relationship T S∩cl(Dom A) (y) = {w ∈ H | d ′ (•, S ∩ cl(Dom A)(w) = 0},
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 15 with respect to cl(Dom A); (ii) (V, W ) is an a-Lyapunov pair for (1.1) with respect to rint(cl(Dom A)); (iii) for every y ∈ rint(cl(Dom A)) ∩ Dom V sup ξ∈∂V (y)ξ, f (y)π Ay (f (y)) + aV (y) + W (y) ≤ 0;(iv) for all y ∈ rint(cl(Dom A)) ∩ Dom V inf υ∈Ay V ′ (y; f (y)υ) + aV (y) + W (y) ≤ 0.The characterization of Gâteaux differentiable Lyapunov functions is a special case of the following corollary. Assume that dim H < ∞. Let V ∈ F (H), W ∈ F (H, R + ), and a ∈ R + be given. If V is Gâteaux differentiable, then the following statements are equivalent:(i) (V, W ) isan a-Lyapunov pair for (1.1) with respect to cl(Dom A); (ii) (V, W ) is an a-Lyapunov pair for (1.1) with respect to rint(cl(Dom A)); (iii) for every y ∈ rint(cl(Dom A)) ∩ Dom V V ′ G (y)(f (y)π Ay (f (y))) + aV (y) + W (y) ≤ 0; (iv) for all y ∈ rint(cl(Dom A)) ∩ Dom V inf υ∈Ay V ′ G (y)(f (y)υ) + aV (y) + W (y) ≤ 0.

Corollary 6

 6 this case, Theorem 2 gives in a simplified form the characterization of the associated a-Lyapunov pairs. Assume that dim H < ∞. Let be given V ∈ F (H), W ∈ F (H; R + ), and a ∈ R + . The following stataments are equivalent:(i) (V, W ) is an a-Lyapunov pair for (4.38) (with respect to H);(ii) for every y ∈ Dom V V ′ (y; f (y)) + aV (y) + W (y) ≤ 0; (iii) for all y ∈ Dom V sup ξ∈∂V (y) ξ, f (y) + aV (y) + W (y) ≤ 0,where ∂V stands for any subdifferential operator verifying∂ P V ⊂ ∂V ⊂ ∂ C V.Proof By Theorem 4.2 the conclusion holds for all the subdifferentials ∂V such that∂ P V ⊂ ∂V ⊂ ∂ L V. To show that (iii) is also a characterization when ∂ ≡ ∂ C it suffices, in view of the relationship ∂ L ⊂ ∂ C , to show that (iii with ∂ ≡ ∂ L ) implies (iii with ∂ ≡ ∂ C ). Indeed, fix y ∈ Dom V so that sup ξ∈∂ ∞ V (y)ξ, f (y) ≤ 0.So, according to[START_REF] Rockafellar | Variational analysis, volume 317 of Grundlehren der Mathematischen Wissenschaften[END_REF], (iii with ∂ ≡ ∂ C ) follows since thatsup ξ∈∂ C V (y)ξ, f (y) + aV (y) + W (y) = sup ξ∈co{∂ L V (y)+∂ ∞ V (y)} ξ, f (y) + aV (y) + W (y) ≤ 0.△
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