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Abstract The general theory of Lyapunov’s stability of first-order differential inclusions in Hilbert spaces has been

studied by the authors in a previous work [2]. This new contribution focuses on the natural case when the maximally

monotone operator governing the given inclusion has a domain with nonempty interior. This setting permits to have

nonincreasing Lyapunov functions on the whole trajectory of the solution to the given differential inclusion. It also

allows some more explicit criteria for Lyapunov’s pairs. Some consequences to the viability of closed sets are given, as

well as some useful cases relying on the continuity or/and convexity of the involved functions. Our analysis makes use

of standard tools from convex and variational analysis.
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1 Introduction and notations

In various applications modeled by ODE’s, one may be forced to work with systems that have non-differentiable solu-

tions. Also, Lyapunov’s functions, that is positive definite functions whose decay along the trajectories of the system,

which are used to establish a stability property of the system, may be nondifferentiable. The need to extend the classical

differentiable Lyapunov’s stability to the nonsmooth case is unavoidable when studying stability properties of discon-

tinuous systems. In practice, many systems in physics, engineering, biology etc exhibit generally nonsmooth energy

functions, which are usually a typical candidates for Lyapunov functions; thus elements of nonsmooth analysis become

essential [3,16,18,25]. A typical example is given by the case of piecewise linear dynamical systems called Linear Com-

plementarity Systems (LCS) for which the analysis of asymptotic and exponential stability uses a piecewise quadratic

Lyapunov function [18]. Let us remind that LCS are defined as follows:

LCS(A,B,C,D)

{
ẋ(t;x0) = Ax(t) +Bu(t), x(t0) = x0,
0 ≤ u(t) ⊥ Cx+Du ≥ 0,

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
m×n and D ∈ R

m×m are real matrices, x0 is the initial condition, ẋ is the

time derivative of the trajectory x(t) and a ⊥ b means that the two vectors a and b are orthogonal. Linear and nonlinear

complementarity problems belong to the more general mathematical formalism of Differential Variational Inequalities

(DVI), introduced by J.S. Pang and D. Stewart [21]. It is a combination of an ordinary differential equation (ODE) with
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a variational inequality or a complementarity constraint. A DVI consists to find trajectories t 7→ x(t) and t 7→ u(t) such

that

DV I(f, F,K)

{
ẋ(t) = f(t, x(t), u(t)), x(t0) = x0,
〈F (t, x(t), u(t)), v − u(t)〉 ≥ 0, ∀v ∈ K,u(t) ∈ K for a.e. t ≥ t0,

where K is a closed convex subset of a Hilbert space H , f and F are given mappings. When K is a closed convex cone,

then problem DV I(f, F,K) is equivalent to a Differential Complementarity Problem (DCP):

DCP (f, F,K)

{
ẋ(t) = f(t, x(t), u(t)), x(t0) = x0,
K ∋ u(t) ⊥ F (t, x(t), u(t)) ∈ K∗, a.e. t ≥ t0.

Since DVI and DCP formalisms unify several known mathematical problems such that ordinary differential equations

with discontinuous right-hand term, differential algebraic equations, dynamic complementarity problems etc .. (see

[9, 10] for more details), it was proved to be powerful for the treatment of many problems in science and engineering

such that: unilateral contact problems in mechanics, finance, traffic networks, electrical circuits etc . . . . According also to

the fact that LCS formalism has many of applications in various areas including for instance robotics, economics, finance,

non smooth mechanics, etc (see Camlibel, Pang and Shen, [18] and the monograph by Facchinei and Pang, [17]), it has

received recently a great interest from the mathematical programming and control communities from the theoretical and

numerical point of view.

Instead of considering LCSs or DVIs, throughout this contribution we are interested in the general framework of

infinite-dimensional dynamical systems, that is systems of the form:

ẋ(t;x0) ∈ f(x(·;x0))−Ax(·;x0), x0 ∈ cl(Dom A) a.e. t ≥ 0. (1.1)

Here, and thereafter, cl(Dom A) is the closure of the domain of a maximally monotone operator A : H ⇉ H defined

on a real Hilbert space H , possibly nonlinear and multivalued with domain Dom A and f is a Lipschitz continuous

mapping defined on cl(Dom A).
A pair of proper lower semicontinuous (lsc for short) functions V,W : H → R∪{+∞} is said to form a Lyapunov

pair for (1.1) if for all x0 ∈ cl(Dom A) the solution of (1.1), in a sense that will be precised in Section 3, denoted by

x(·; ·, x0) satisfies

V (x(t;x0))− V (x(s;x0)) +

∫ t

s

W (x(τ ;x0))dτ ≤ 0 for all t ≥ s ≥ 0. (1.2)

Observe that when W ≡ 0 one recovers the classical notion of Lyapunov functions; e.g., [27]. More generally, instead

of (1.2), we are going to consider functions V,W satisfying for some a ≥ 0

eatV (x(t;x0))− easV (x(s;x0)) +

∫ t

s

W (x(τ ;x0))dτ for all t ≥ s ≥ 0.

In this case, the (weighted) pair (V,W ) will be refered to as a a-Lyapunov pair. The main motivation in using a-

Lyapunov pairs instead of simply functions is that many stability concepts for the equilibrium sets of (1.1), namely

stability, asymptotic or finite-time stability, can be obtained just by choosing appropriate functions W in (1.2). The

weight eat is useful for instance when exponential stability is concerned. So, even in autonomous systems like those of

(1.1), the function W or the weight eat may be of a certain utility since, in some sense, it emphasizes the decreasing of

the Lyapunov function V .

The method of Lyapunov functions is a corner stone of the study of the controllability and stabilizability of control

systems. Its history is rich and has been described in several places and various seminal contributions has been made to

the subject. We refer to Clarke [14, 15] for an overview of the recent developments of the theory where he pointed out

that for nonlinear systems, Lyapunov’s method turns out to be essential to consider nonsmooth Lyapunov functions, even

if the underlying control dynamics are themselves smooth.

Over the years, among the various contributions, Kocan & Soravia [19], characterized Lyapunov’s pairs in terms of

viscosity solutions of a related partial differential inequality.

Another well-established approach consists of characterizing Lyapunov’s pairs by means of the contingent derivative

of the maximally monotone operator A, see for instance Cârjă & Motreanu [11], for the case of a maximally linear

monotone operator and also when A is a multivalued m-accretive operator on an arbitrary Banach space [12]. In these

approaches the authors used tangency and flow-invariance arguments combined with a priori estimates and approxima-

tion.

The starting point of this contribution is the paper by Adly & Goeleven [1] in which smooth Lyapunov functions

were used in the framework of the second order differential equations, and non-linear mechanical systems with frictional

unilateral constraints.

In this article we provide a different approach that don’t make use of viscosity solutions or contingent derivatives

associated to the operatorA. Our objective is to emphasize our previous contribution [2] to the setting where the involved
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maximally monotone operator has a domain with nonempty interior. This case includes the finite dimensional framework

since in this case the relative interior of the domain of the operator is always nonempty. Moreover, the criteria for

Lyapunov’s pairs are checked only in the interior of the domain (or the relative interior) instead of the closure of the

whole domain as in [1]. In contrary to [1], this setting also ensures obtaining global Lyapunov’s pairs and permits in this

way to control the whole trajectory of the solution to the given differential inclusion.

The summary of the paper is as follows. In Section 2 we introduce the main tools and basic results used in the

paper. In Section 3 we give a new primal and dual criteria for lower semicontinuous Lyapunov pairs. This is achieved

in Proposition 2 and Theorem 3.1. In Section 4, we make a review of some old and recent criteria for Lyapunov pairs.

Section 5 is dedicated to complete the proofs of the main results given in Section 3.

2 Notation and main tools

Throughout the paper, H is a (real) Hilbert space endowed with the inner (or scalar) product 〈·, ·〉 and the associated

norm is denoted by ‖·‖. We identify H∗ (the space of continuous linear functionals defined on H) to H, and we denote

the weak limits (w − lim, for short) by the symbol ⇀ to distinguish it from the usual symbol → used for strong limits.

The zero vector in H is denoted by θ.
We start this section by reviewing some notations used throughout the paper. Given a nonempty set S ⊂ H (or

S ⊂ H × R), by coS, coneS, and aff S, we denote the convex hull, the conic hull, and the affine hull of the set

S, respectively. Moreover, IntS is the topological interior of S, and clS and S are indistinctly used for the closure

of S (with respect to the norm topology on H). We also use clw S or S
w

when we deal with the closure of S with

respect to the weak topology. We note riS the (topological) relative interior of S, i.e., the interior of S in the topology

relative to aff S whatever this set is nonempty (see [23, Chapter 6] for more on this fundamental notion). For x ∈ H
(or x ∈ H × R), ρ ≥ 0, Bρ(x) is the open ball with center x and radius ρ, and Bρ(x) is the closure of Bρ(x), while

B := B1(θ) stands for the unit open ball. For a, b ∈ R := R ∪ {+∞,−∞} we denote [a, b) the interval closed at a and

open at b ([a, b], (a, b), ... are defined similarly); hence R+ := [0,∞). Finally, for α ∈ R, we note α+ for max{0, α}.

Our notation is the standard one used in convex and variational analysis and in monotone operator theory; see,

e.g., [8, 24]. The indicator function of S is the function defined as

IS(x) :=

{
0 if x ∈ S
+∞ otherwise.

The distance function to S is denoted by

d(x,S) := inf{‖x− y‖ | y ∈ S},

and the orthogonal projection on S, πS , is defined as

πS(x) := {y ∈ S | ‖x− y‖ = d(x,S)}.

If S is closed and convex, S∞ ⊂ H (or H × R) denotes its recession cone:

S∞ := {y | x+ λy ∈ S for some x and all λ ≥ 0},

while, S◦ ⊂ H (or H × R) denotes the polar of S given by

S◦ := {y | 〈y, v〉 ≤ 1 for all v ∈ S}.

Given a function ϕ : H → R, its (effective) domain and epigraph are defined by

Dom ϕ := {x ∈ H | ϕ(x) < +∞},

epiϕ := {(x,α) ∈ H × R | ϕ(x) ≤ α}.
For λ ∈ R, the open sublevel set of ϕ at λ is

[ϕ > λ] := {x ∈ H | ϕ(x) > λ};

[ϕ ≥ λ], [ϕ ≤ λ], and [ϕ < λ] are defined similarly. We say that ϕ is proper if Dom ϕ 6= ∅ and ϕ(x) > −∞ for all

x ∈ H. We say that ϕ is convex if epiϕ is convex, and (weakly) lower semicontinuous (lsc, for short) if epiϕ is closed

with respect to the (weak topology) norm-topology on H . We denote

F(H) := {ϕ : H → R | ϕ is proper and lsc},

Fw(H) := {ϕ : H → R | ϕ is proper and weakly lsc};
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F(H;R+) and Fw(H;R+) stand for the subsets of nonnegative functions of F(H) and Fw(H), respectively.

As maximally monotone set-valued operators play an important role in this work, it is useful to recall some of basic

definitions and some of their properties. More generally, they have frequently shown themselves to be a key class of

objects in both modern Optimization and Analysis; see, e.g., [4–6, 8, 24, 26].

For an operator A : H ⇉ H, the domain and the graph of A are given respectively by

Dom A := {z ∈ H | Az 6= ∅} and gphA := {(x, y) ∈ H ×H | y ∈ Ax};

for notational simplicity we identify the operator A to its graph. The inverse operator of A, denoted by A−1, is defined

as

(y, x) ∈ A−1 ⇐⇒ (x, y) ∈ A.

We say that an operator A is monotone if

〈y1 − y2, x1 − x2〉 ≥ 0 for all(x1, y1), (x2, y2) ∈ A,

and maximally monotone if A is monotone and has no proper monotone extension (in the sense of graph inclusion). If

A is maximally monotone, it is well known (e.g., [26]) that Dom A is convex, and Ax is convex and closed for every

x ∈ Dom A. Moreover, if Int(Dom A) 6= ∅, then Int(Dom A) is convex, Int(Dom A) = Int(Dom A), and A is

bounded locally on Int(Dom A). Note that the domain or the range of a maximally monotone operator may fail to be

convex, see, e.g., [24, page 555]. In particular, ifA is the subdifferential ∂ϕ of some lower semicontinuous (lsc for short)

convex and proper function ϕ : H → R, then A is a classical example of a maximally monotone operator, as is a linear

operator with a positive symmetric part. We know that

Dom A ⊂ Dom ϕ ⊂ Dom ϕ = Dom A.

For x ∈ Dom A, we shall use the notation (Ax)◦ to denote the principal section of A, i.e., the set of points of minimal

norm in Ax.

Nonsmooth and variational analysis play a central role in this study. Hence, we need to recall briefly some concepts

used through the paper. More details can be found for instance in [7,13,16,20,24]. We assume that ϕ ∈ F(H), and take

x ∈ Dom ϕ.
A vector ξ ∈ H is called a proximal subgradient of ϕ at x, written ξ ∈ ∂Pϕ(x), if there are ρ > 0 and σ ≥ 0 such

that

ϕ(y) ≥ ϕ(x) + 〈ξ, y − x〉 − σ ‖y − x‖2 for all y ∈ Bρ(x);

the domain of ∂Pϕ is then given by

Dom ∂Pϕ := {x ∈ H | ∂Pϕ(x) 6= ∅}.

The set ∂Pϕ(x) is convex, possibly empty and not necessarily closed.

A vector ξ ∈ H is called a Fréchet subgradient of ϕ at x, written ξ ∈ ∂Fϕ(x), if

ϕ(y) ≥ ϕ(x) + 〈ξ, y − x〉+ o(‖y − x‖).

Associated to proximal and Fréchet subdifferentials, limiting objects have been introduced. A vector ξ ∈ H belongs to

the limiting proximal subdifferential of ϕ at x, written ∂Lϕ(x), if there exist sequences (xk)k∈N and (ξk)k∈N such that

xk ⇀
ϕ
x (that is, xk ⇀ x and ϕ(xk) → ϕ(x)), ξk ∈ ∂Pϕ(xk) and ξk ⇀ ξ.

A vector ξ ∈ H is called a horisontal subgradient of ϕ at x, written ξ ∈ ∂∞ϕ(x), if there exist sequences

(αk)k∈N ⊂ R+, (xk)k∈N and (ξk)k∈N such that αk → 0+, xk →
ϕ
x, ξk ∈ ∂Pϕ(xk) and αkξk ⇀ ξ.

The Clarke subdifferential of ϕ at x is defined by the following so-called representation formula; see, e.g., Mor-

dukhovich [20] and Rockafellar [24],

∂Cϕ(x) = cow{∂Lϕ(x) + ∂∞ϕ(x)}.

From a geometrical point of view, if S ⊂ H is closed and x ∈ S, the proximal normal cone to S at x is

NP
S (x) := ∂P IS(x).

We also denote by ÑP
S (x) the subset of NP

S (x) given by

ÑP
S (x) := {ξ ∈ H | 〈ξ, y − x〉 ≤ ‖y − x‖2 for all y ∈ S closed to x}.

It can be proved; e.g., [13], that

NP
S (x) =

{
cone(π−1

S (x)− x), if π−1
S (x) 6= ∅,

{θ} if π−1
S (x) = ∅,
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where π−1
S (x) := {y ∈ H \ S | x ∈ πS(y)}.

Similarly, NL
S(x) := ∂LIS(x) (= ∂∞IS(x)) is the limiting normal cone to S at x, and NC

S (x) := cow{NL
S(x)} is

the Clarke normal cone to S at x.
In that way, the above subdifferentials of ϕ ∈ F(H) can be geometrically described as

∂Pϕ(x) = {ξ ∈ H | (ξ,−1) ∈ NP
epiϕ(x, ϕ(x))},

∂∞ϕ(x) = {ξ ∈ H | (ξ, 0) ∈ NP
epiϕ(x, ϕ(x))}.

We call contingent cone to S at x ∈ S (or the Bouligand tangent cone), written TS(x), the cone given by

TS(x) := {ξ ∈ H | x+ τkξk ∈ S for some ξk → ξ and τk → 0+}.

The Dini directional derivative of the function ϕ (∈ F(H)) at x ∈ Dom ϕ in the direction v ∈ H is given by

ϕ′(x, v) = lim inf
t→0+,w→v

ϕ(x+ tw)− ϕ(x)

t
.

Hence, epiϕ′(x, ·) = Tepiϕ(x, ϕ(x)). The Gâteaux derivative of ϕ at x is a linear continuous form on H, written

ϕ′
G(x), satisfying

lim
t→0+

ϕ(x+ tv)− ϕ(x)

t
= 〈ϕ′

G(x), v〉 for all v ∈ H.

We close this section by giving some properties of the subdifferential sets defined above that will be used later on. First,

it follows easily from the definitions that

∂Pϕ(x) ⊂ ∂Fϕ(x) ⊂ ∂Lϕ(x) ⊂ ∂Cϕ(x).

If ϕ is convex, then

∂Pϕ(x) = ∂Cϕ(x) = ∂ϕ(x),

where ∂ϕ(x) is the usual Moreau-Rockafellar subdifferential of ϕ at x :

∂ϕ(x) := {ξ ∈ H | ϕ(y)− ϕ(x) ≥ 〈ξ, y − x〉 for all y ∈ H}.
If ϕ ∈ F(H) is Gâteaux-differentiable at x ∈ Dom ϕ, we have

∂Pϕ(x) ⊂ {ϕ′
G(x)} ⊂ ∂Cϕ(x).

If ϕ is C1 then

∂Pϕ(x) ⊂ {ϕ′(x)} = ∂Cϕ(x) and ∂∞ϕ(x) = {θ}.
If ϕ is C2 then

∂Pϕ(x) = ∂Cϕ(x) = {ϕ′(x)}.
In particular, if ϕ := d(·, S) with S ⊂ H closed, for x ∈ S we have that

∂Cϕ(x) = NC
S (x) ∩B,

while, for x 6∈ S such that ∂Pϕ(x) 6= ∅, πS(x) is a singleton and (e.g., [16])

∂Pϕ(x) =
x− πS(x)

ϕ(x)
;

hence

∂Lϕ(x) =

{
w − lim

k

xk − πS(xk)

ϕ(x)
; xk ⇀ x

}
.

More generally, we have that

NP
S (x) = R+∂P dS(x) and NC

S (x) = R+∂CdS(x)
w

(with the convention that 0.∅ = {θ}).

Finally, we recall that ϕ ∈ F(R) is nonincreasing if and only if ξ ≤ 0 for every ξ ∈ ∂Pϕ(x) and x ∈ R, (e.g., [16]).

We shall use the following version of the Gronwall Lemma (e.g., [1, Lemma 1]).

Lemma 1 Given t2 > t1 ≥ 0, a 6= 0, and b ≥ 0, we assume that an absolutely continuous function ψ : [t1, t2] → R+

satisfies

ψ′(t) ≤ aψ(t) + b a.e. t ∈ [t1, t2].

Then, for all t ∈ [t1, t2],

ψ(t) ≤ (ψ(t1) +
b

a
)ea(t−t1) − b

a
.
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3 Local characterization of Lyapunov pairs on the interior of the domain of A

In this section we provide the desired explicit criterion for lower semicontinuous (weighted-) Lyapunov pairs associated

to the differential inclusion (1.1):

ẋ(t;x0) ∈ f(x(·;x0))−Ax(·;x0), x0 ∈ cl (Dom A) ,

where A : H ⇉ H is a maximally monotone operator and f : cl (Dom A) ⊂ H → H is a Lipschitz continuous

mapping. Recall that for fixed T > 0 and x0 ∈ cl (Dom A) , a strong solution of (1.1), x(·;x0) : [0, T ] → H, is a

uniquely defined absolute continuous function which satisfies x(0;x0) = x0 together with (see, e.g., [8])

ẋ(t;x0) ∈ L∞
loc((0, T ], H), (3.3)

x(t;x0) ∈ Dom A, for all t > 0, (3.4)

ẋ(t;x0) ∈ f(x(t;x0))−Ax(t;x0), a.e. t ≥ 0. (3.5)

Existence of strong solutions is known to occur if for instance:

– x0 ∈ Dom A, Int (co (Dom A)) 6= ∅;
– dimH <∞;
– or if A ≡ ∂ϕ where ϕ : H → R ∪ {+∞} is a lsc extended-real-valued convex proper function.

Moreover, we have that ẋ(·;x0) ∈ L∞([0, T ], H) if and only if x0 ∈ Dom A. In this later case, x(·;x0) is derivable

from right at each s ∈ [0, T ) and

d+x(·;x0)
t

(s) = f(x(s;x0))− πAx(s;x0)(f(x(s;x0))).

The strong solution also satisfies the so-called semi-group property,

x(s;x(t;x0)) = x(s+ t;x0) for all s, t ≥ 0, (3.6)

together with the relationship

‖x(t;x0)− x(t; y0)‖ ≤ eLf t ‖x0 − y0‖
whenever t ≥ 0 and x0, y0 ∈ cl(Dom A); hereafter,Lf denotes the Lipschitz constant of the mapping f on cl(Dom A).

In the general case, it is well established that (1.1) admits a unique weak solution x(·;x0) ∈ C(0, T ;H) which

satisfies x(t;x0) ∈ cl(Dom A) for all t ≥ 0. More precisely, there exists a sequence (xn)n∈N ⊂ Dom A converging

to x0 such that the strong solution xk(·; zk) of the equation

ẋk(t; zk) ∈ f(x(t; zk))−Axk(t; zk), xk(0, zk) = zk, (3.7)

converges uniformly to x(·;x0) on [0, T ]. Moreover, we have that

x(s;x(t;x0)) = x(s+ t; x0) for all s, t ≥ 0 (3.8)

(called the semigroup property). If Lf denotes the Lipschitz constant of f on cl(Dom A), then for every t ≥ 0 and

x0, y0 ∈ cl(Dom A) we have that

‖x(t;x0)− x(t; y0)‖ ≤ eLf t ‖x0 − y0‖ .

In the remaining part of the paper, x(·;x0) denotes the weak solution of Equation (1.1) (which is also, a strong one

whenever a strong solution exists.)

From now on, we suppose throughout this section that

�

�

�

�
Int (co (Dom A)) 6= ∅.

Hence, Int (Dom A) is convex, Int (Dom A) = Int (co (Dom A)) = Int (cl (Dom A)) , and A is locally bounded on

Int (Dom A). Therefore, a (unique) strong solution of (1.1) always exists [8]. We have the following technical lemma,

adding more information about the qualitative behavior of this solution.
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Lemma 2 Let ȳ ∈ Dom A and ρ > 0 be such thatBρ(ȳ) ⊂ Int (co (Dom A)) . Then,M := supz∈Bρ(ȳ)
‖(f(z)−Az)◦‖ <

∞ and for all y ∈ Bρ(ȳ) and t ≤ 1 we have that

∥∥∥∥∥
d+x(·; y)

dt
(t)

∥∥∥∥∥ ≤ eLfM.

Proof By virtue of the semi-group property (3.6), the following inequality holds for all y ∈ cl(Dom A) and 0 ≤ t < s
(e.g., [8, Lemma 1.1])

‖x(t+ s; y)− x(t; y)‖ = ‖x(t;x(s; y))− x(t; y)‖ ≤ eLf t ‖x(s; y)− y‖ . (3.9)

In particular, for y ∈ Bρ(ȳ) and t ≤ 1 we get that

∥∥∥∥∥
d+x(·; y)

dt
(t)

∥∥∥∥∥ = lim
s↓0

s−1 ‖x(t+ s; y)− x(t; y)‖ ≤ eLf t lim
s↓0

s−1 ‖x(s; y)− y‖

= eLf t

∥∥∥∥∥
d+x(·; y)

dt
(0)

∥∥∥∥∥

= eLf t
∥∥(f(y)−Ay)◦

∥∥ ≤ eLfM.

The fact that M is finite follows from the maximal monotonicity of A together with the Lipschitz continuity of f.△

Definition 1 Let be given functions V ∈ F(H), W ∈ F(H;R+) and a number a ∈ R+. We say that (V,W ) forms a

a-Lyapunov pair for (1.1) with respect to a set D ⊂ cl(Dom A) if for all y ∈ D we have that

eatV (x(t; y)) +

∫ t

0
W (x(τ ; y))dτ ≤ V (y) for all t ≥ 0. (3.10)

a-Lyapunov pairs with respect to cl(Dom A) are simply called a-Lyapunov pairs (see [2]); in addition, if a = 0 and

W = 0, we recover the classical concept of Lyapunov functions. The case D = Int(Dom A) (when nonmepty), or

D = ri(Dom A) in the finite-dimensional setting, is useful too since it allows recovering the behaviour of V on the

whole set cl(Dom A) when, as in Proposition 1 below, some continuity conditions on V are known. More precisely, our

characterization theorem, Theorem 3.1 below, provides criteria for Lyapunov pairs with respect to small sets, for instance

balls, rather than the whole set Int(Dom A). The lack of regularity properties of a-Lyapunov pairs (V,W ) in Definition

1 is mainly due to the non-smoothness of the function V. Let us remind that inequality (3.10) also holds if instead of

W one considers its Moreau-Yosida regularization, which is Lipschitz continuous on every bounded subset of H . This

follows from the next Lemma 3 (e.g [2]).

Lemma 3 For every W ∈ F(H;R+), there exists a sequence of functions (Wk)k∈N ⊂ F(H,R+) converging to W
(for instance,Wk ↑W ) such that eachWk is Lipschitz continuous on every bounded subset ofH, and satisfies V (y) > 0
if and only if Vk(y) > 0.

Consequently, if V, D ⊂ cl(Dom A), and a ∈ R+ are as in Definition 1 then, with respect to D, (V,W ) forms an

a-Lyapunov pair for (1.1) if and only if each pair (V,Wk) forms an a-Lyapunov pair for (1.1).

Proposition 1 Let be given functions V ∈ F(H), W ∈ F(H;R+) and a number a ∈ R+. If V verifies

lim inf
Dom A∋z→y

V (z) = V (y) for all y ∈ cl(Dom A) ∩Dom V, (3.11)

then it is equivalent to saying that (V,W ) forms an a-Lyapunov pair with respect to either Dom A or cl(Dom A).

Property (3.11) has been already used in [19], and implicitely in [22], among other works. It holds, if for instance, V
(∈ F (H) ) is convex and its effective domain has a nonempty interior such that Int(Dom V ) ⊂ Dom A.

Our starting point is the next result which characterizes a -Lyapunov pairs locally in Int(Dom A). The general

form corresponding to a -Lyapunov pairs in cl(Dom A) was recently established in [2]. For the reader convenience we

include here a sketch of the proof.

Proposition 2 Assume that Int (co{Dom A}) 6= ∅. Let V ∈ Fw(H) satisfy Dom V ⊂ cl(Dom A),W ∈ F (H;R+),
and a ∈ R+. Let ȳ ∈ H, λ̄ ∈ [−∞, V (ȳ)), and ρ̄ ∈ (0,+∞] be such that

Dom V ∩Bρ̄(ȳ) ∩ [V > λ̄] ⊂ Int(Dom A).
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Then, the following statements are equivalent:

(i) ∀y ∈ Dom V ∩Bρ̄(ȳ) ∩ [V > λ̄]

sup
ξ∈∂PV (y)

min
υ∈Ay

〈ξ, f(y)− υ〉+ aV (y) +W (y) ≤ 0;

(ii) ∀y ∈ Dom V ∩Bρ̄(ȳ) ∩ [V > λ̄]

sup
ξ∈∂PV (y)

〈ξ, f(y)− πAy(f(y))〉+ aV (y) +W (y) ≤ 0;

(iii) ∀y ∈ Bρ̄(ȳ) ∩ [V > λ̄] we have that

eatV (x(t; y)) +

∫ t

0
W (x(τ ;y))dτ ≤ V (y) ∀t ∈ [0, ρ(y)] ,

where

ρ(y) := sup





ν > 0

∣∣∣∣∣∣∣

∃ρ > 0 s.t. Bρ(y) ⊂ Bρ̄(ȳ) ∩ [V > λ̄], and for all t ∈ [0, ν]
2 ‖x(t; y)− y‖ < ρ

2 and∣∣∣(e−at − 1)V (y)−
∫ t

0 W (x(τ ; y))dτ
∣∣∣ < ρ

2





. (3.12)

Remark 1 (Before the proof) the constant ρ(y) defined in (3.12) is positive whenever y ∈ cl(Dom A)∩Bρ̄(ȳ)∩[V > λ̄].
Hence, when ρ̄ = −λ̄ = ∞ one can easily show that (iii) is equivalent to (see [2, Proposition 3.2])

eatV (x(t; y)) +

∫ t

0
W (x(τ ;y))dτ ≤ V (y) for all t ≥ 0;

that is, (V,W ) forms a Lyapunov pair with respect to Int(Dom A).

Proof For simplicity, we suppose that W ≡ 0.
(iii) =⇒ (ii) Let us fix y ∈ Bρ̄(ȳ)∩ [V > λ̄] and ξ ∈ ∂PV (y) so that y ∈ Bρ̄(ȳ)∩ [V > λ̄]∩Dom V ⊂ Dom A

and there exist α > 0 and T ∈ (0, ρ(y)) such that

〈ξ, x(t; y)− y〉 ≤ V (x(t; y))− V (y) + α ‖x(t; y)− y‖2 ≤ α ‖x(t; y)− y‖2 for all t ∈ [0, T ).

But y ∈ Dom A and so there exists a constant l ≥ 0 such that

〈ξ, t−1(x(t; y)− y)〉 ≤ l ‖x(t; y)− y‖ for all t ∈ [0, T );

hence, taking the limit as t→ 0+ we obtain that

〈ξ, f(y)− πAy(f(y))〉 ≤ 0;

that is, (ii) follows.

(i) =⇒ (iii) To simplify the proof of this part, we assume that f ≡ 0, W ≡ 0 and a = 0. For this aim we fix

y ∈ Dom V ∩Bρ̄(ȳ) ∩ [V > λ̄] and let ρ > 0 and v > 0 be such that

Bρ(y) ⊂ Bρ̄(ȳ) ∩ [V > λ̄] and (3.13)

sup
t∈[0,ν]

2 ‖x(t; y)− y‖ < ρ; (3.14)

the existence of such scalars ρ and v is a consequence of the lower semicontinuity of V and the Lipschitz continuity of

x(·; ·) (see Lemma 2). Let T < ν be fixed and define the functions z(·) : [0, T ] ⊂ R+ → H × R and η(·) : [0, T ] ⊂
R+ → R+ as

z(t) := (x(t; y), V (y)) , η(t) :=
1

2
d2(z(t), epiV ); (3.15)

observe that z(·) and η(·) are Lipschitz continuous on [0, T ). Now, using a standard chain rule (e.g. [13]), for fixed

t ∈ (0, T ) it holds that

∂Cη(t) = d(z(t), epiV )∂Cd(z(·), epi V )(t).

So, from one hand we get ∂Cη(t) = {θ} whenever z(t) ∈ epiV. On the other hand, when z(t) 6∈ epiV we obtain that

∂Cη(t) ⊂ co




⋃

(u,µ)∈ΠepiV (z(t)), u∈Bρ(y)

〈x(t; y)− u,−Ax(t; y)〉


 ; (3.16)
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the fact that u ∈ Bρ(y) is a consequence of the following inequalities:

‖u− y‖ ≤ ‖x(t; y)− u‖+ ‖x(t; y)− y‖
≤ ‖(x(t; y), V (y))− (u, µ)‖+ ‖x(t; y)− y‖
≤ ‖(x(t; y), V (y))− (y, V (y))‖+ ‖x(t; y)− y‖
≤ 2 ‖x(t; y)− y‖ < ρ.

Take now ξ ∈ Ax(t; y) and (u, µ) ∈ Πepi V (z(t)) with u ∈ Bρ(y) so that V (y)− µ ≤ 0 and u ∈ Dom V ∩Bρ̄(ȳ) ∩
[V > λ̄] (recall (3.13)).

If V (y) − µ < 0, we write (µ − V (y))−1 (x(t; y) − u) ∈ ∂VP (u). Then, by the current assumption (i), select

υ ∈ Au such that 〈
(µ− V (y))−1(x(t; y)− u),−υ

〉
≤ 0.

Therefore, invoking the monotonicty of A we get

〈x(t; y)− u,−ϑ〉 = 〈x(t; y)− u,−υ〉+ 〈x(t; y)− u, υ − ϑ〉 ≤ 〈x(t; y)− u,−υ〉 ≤ 0.

Since ξ ∈ Ax(t; y) is arbitrary and according to (3.16), we deduce that ∂Cη(t) ⊂ R−.

If V (y) − µ = 0 so that (x(t; y) − u, 0) ∈ NepiV (u, V (u)) and x(t; y) − u 6= θ. Then, for a fixed ε > 0 such

that Bε(u) ⊂ Bρ(y) ∩ Int(Dom(A)) (recall that u ∈ Bρ(y) ∩ Dom V ∩Bρ̄(ȳ) ∩ [V > λ̄] ⊂ Int(Dom(A)) ), take

uε ∈ Bε(u) ∩ Dom V with |V (u)− V (uε)| ≤ ε, α ∈ (0, ε) and ξ ∈ Bε(x(t; y) − u) such that α−1ξ ∈ ∂VP (uε)
(see, e.g., [13, Theorem 2.4]). Hence, using the current assumption, select ξε ∈ Auε such that 〈ξ,−ξε〉 ≤ αε. Hence,

〈x(t; y)− u,−ξε〉 ≤ ε ‖ξε‖+
〈
ξ,−u∗ε

〉
≤ ε ‖ξε‖+ αε ≤ ε ‖ξε‖+ ε2.

By the monotonicity of A this yields

〈x(t; y)− u,−ϑ〉 ≤ 〈x(t; y)− uε,−ϑ〉+ ε ‖ϑ‖
≤ 〈x(t; y)− uε,−ξε〉+ ε ‖ϑ‖
≤ 〈x(t; y)− u,−ξε〉+ ‖uε − u‖ ‖ξε‖+ ε ‖ϑ‖
≤ 2ε ‖ξε‖+ ε ‖ϑ‖+ ε2.

Moreover, as (uε)ε≤1 is bounded in Int(Dom(A)), the net (ξε)ε is also bounded and passing to the limit as ε goes to

0 we get

〈x(t; y)− u,−ϑ〉 ≤ 0.

This gives the desired inclusion ∂Cη(t) ⊂ R− (recall (3.16)) and so establishes the proof of (iii). △

We are now ready to give the main result of this section, which provides a precise improvement of Proposition 2.

Theorem 3.1 Assume that Int (co{Dom A}) 6= ∅. Let V ∈ Fw(H) with inf V > −∞, W ∈ F (H;R+), and a ∈ R+

be given. Fix ȳ ∈ Dom V, λ̄ ∈ (−∞, V (ȳ)) and let ρ̄ > 0 be such that

Dom V ∩ [V > λ̄] ∩Bρ̄(ȳ) ⊂ Int(Dom A).

Then, the following statements are equivalent:

(i) ∀y ∈ Dom V ∩Bρ̄(ȳ) ∩ [V > λ̄]

sup
ξ∈∂PV (y)

min
υ∈Ay

〈ξ, f(y)− υ〉+ aV (y) +W (y) ≤ 0;

(ii) (If V is weakly continuous when restricted to Bρ(ȳ)) ∀y ∈ Dom V ∩Bρ̄(ȳ) ∩ [V > λ̄]

eatV (x(t; y)) +

∫ t

0
W (x(τ ; y))dτ ≤ V (y) for all t ≥ 0.

Consequently, if (i)-(ii) holds on Int(Dom A), the pair (V,W ) is an a -Lyapunov pair for (1.1) with respect to cl(Dom A).
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Proof The consequence is immediate once we prove the main conclusion.

First, invoking Lemma 3 we may assume w.l.o.g. that W is Lipschitz continuous on every bounded subset of H. In

the rest of the proof, we take ŷ in Dom V ∩ Bρ̄(ȳ) ∩ [V > λ̄] (⊂ Int(Dom A)) and, taking into account the lsc of V,
choose ρ > 0 such that B2ρ(ŷ) ⊂ Bρ̄(ȳ) ∩ [V > λ̄] ∩ Int(Dom A) and

V (z) ≥ V (ŷ)− 1 ∀z ∈ B2ρ(ỹ). (3.17)

Also, by virtue of Lemma 2, we consider a positive constant M such that, for all 0 ≤ t ≤ 1 and all z ∈ B2ρ(ŷ),

∥∥∥∥∥
d+x(·; z)

dt
(t)

∥∥∥∥∥ ≤M ; (3.18)

hence, ‖x(t; z)− z‖ ≤Mt and so, by (3.17),

V (x(t; z)) ≥ V (ŷ)− 1 ≥ λ̄− 1 ∀z ∈ Bρ(ŷ) and ∀t ∈
[
0,

ρ

M

]
. (3.19)

Let us fix γ ≥ 1 and define the set

G(ŷ) := [|V | ≤ |V (ŷ)|+ γ]. (3.20)

Claim: there exists T > 0 such that

eatV (x(t; y)) +

∫ t

0
W (x(τ ; y))dτ ≤ V (y) ∀y ∈ Bρ(ŷ) ∩G(ŷ), ∀t ∈ [0, T ]. (3.21)

Using the (LW -)Lipschitz continuity of W on the (bounded) set {x(t; y) | 0 ≤ t ≤ 1, y ∈ B2ρ(ŷ)}, we write, for all

y ∈ B2ρ(ŷ) ∩G(ŷ) ∩ Dom V and 0 ≤ t ≤ 1,

2 ‖x(t; y)− y‖+
∣∣∣∣
(
e−at − 1

)
V (y)−

∫ t

0
W (x(τ ; y))dτ

∣∣∣∣

≤ 2Mt+
(
1− e−at

)
(|V (ŷ)|+ γ) + (W (ŷ) + LW (M + 2ρ))t.

Therefore, we can choose T > 0 so that for all y ∈ B2ρ(ŷ) ∩G(ŷ) we have that

sup
t∈[0,T ]

2 ‖x(t; y)− y‖+
∣∣∣∣
(
e−at − 1

)
V (y)−

∫ t

0
W (x(τ ;y))dτ

∣∣∣∣ <
ρ

2
.

We also observe that for any given y ∈ Bρ(ŷ) ∩G(ŷ) we have that Bρ(y) ⊂ B2ρ(ŷ) ∩ [V > λ̄]. Therefore, since

Bρ(ŷ) ∩G(ŷ) ⊂ B2ρ(ŷ) ∩ [V > λ̄] ⊂ Bρ̄(ȳ) ∩ [V > λ̄] ∩Dom V,

the claim follows from Theorem 2.

To go further in the proof, we fix two parameters ε, δ > 0 and we introduce the set Eε,δ ⊂ R+ defined as

Eε,δ :=



λ ∈ R+

∣∣∣∣∣∣

∃ρ1, ρ2 ∈ (ρ2 , ρ), ρ1 < ρ2, ∃ρλ ∈ (ρ2 , ρ2), ∀y ∈ Bρλ(ŷ) ∩G(ŷ), ∀t ≤ λ :

eatVδ(x(t; y)) +
∫ t

0 W (x(τ ;y))dτ ≤ V (y) + ε(ρ1 − ρ
2 )(ρ− ρ2)



 ,

where Vδ : H → R is the function given by

Vδ(y) := inf
z∈H

{V (z) +
1

δ
‖y − z‖2}.

Vδ is dominated by V and is Lipschitz continuous on the bounded sets of H. Then, we have that [0, T ] ⊂ Eε,δ, that is,

Eε,δ 6= ∅. Next, we shall show that Eε,δ = R+ or, equivalentely, that Eε,δ is closed and open with respect to the usual

topolgy on R+.
Claim: Eε,δ is closed.

Let a sequence (λn)n∈N ⊂ Eε,δ be such that λn → λ̃ and, by the definition of Eε,δ, take (ρ1,n)n∈N, (ρ2,n)n∈N,
(ρ3,n)n∈N ⊂ (ρ2 , ρ) be such that

ρ1,n < ρ2,n, ρ3,n ∈ (
ρ

2
, ρ2,n),

together with the relation

eatVδ(x(t; y)) +

∫ t

0
W (x(τ ;y))dτ ≤ V (y) + ε(ρ1,n − ρ

2
)(ρ− ρ2,n) ∀y ∈ Bρ3,n(ŷ) ∩G(ŷ),
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valid for all t ≤ λn. Because all the sequences (ρ1,n)n∈N, (ρ2,n)n∈N, and (ρ3,n)n∈N are bounded, on relabeling if

necessary, we may suppose that ρ1,n → ρ1 ∈ [ρ2 , ρ], ρ2,n → ρ2 ∈ [ρ2 , ρ2], and ρ3,n → ρ̂ ∈ [ρ2 , ρ2]. As well, it is

enough to suppose that λ̃ > T and λ̃ > λn for all n because, otherwise, either λ̃ ≤ λn for some n or λ̃ ≤ T ; hence in

both cases we have λ̃ ∈ Eε,δ.

If y ∈ Bρ̂(ŷ) ∩G(ŷ) and t < λ̃, for all n large enough we get that y ∈ Bρn(ŷ) ∩G(ŷ) and t < λn and, so,

eatVδ(x(t; y)) +

∫ t

0
W (x(τ ;y))dτ ≤ V (y) + ε(ρ1,n − ρ

2
)(ρ− ρ2,n).

As n goes to ∞ we obtain that

eatVδ(x(t; y)) +

∫ t

0
W (x(τ ; y))dτ ≤ V (y) + ε(ρ1 − ρ

2
)(ρ− ρ2);

this inequality also holds for t = λ̃ in view of the continuity of Vδ. It is also useful to notice here that for all y ∈
B ρ

2
(ŷ) ∩G(ŷ) and t ≤ λ̃

eatVδ(x(t; y)) +

∫ t

0
W (x(τ ;y))dτ ≤ V (y). (3.22)

Now, checking the possible values of ρ1, ρ2, and ρ̂ we observe that only two cases may occur: the first corresponds to

(ρ1 − ρ
2 )(ρ− ρ2) = 0 and happens when ρ1 = ρ

2 , ρ2 = ρ, or ρ2 = ρ; this last equality implies that ρ
2 ≤ ρ1 ≤ ρ2 ≤ ρ

2
and, so, (ρ1 − ρ

2 )(ρ − ρ2) = 0. While the second case corresponds to (ρ1 − ρ
2 )(ρ − ρ2) > 0 and happens when

ρ1, ρ2 ∈ (ρ2 , ρ).
To begin with, we analyze the case (ρ1 − ρ

2 )(ρ − ρ2) > 0. This necessarily implies that ρ2 >
ρ
2 in view of the

inequality ρ
2 ≤ ρ1 ≤ ρ2. We may suppose that ρ̂ = ρ

2 because otherwise ρ̂ ∈ (ρ2 , ρ2) trivially yields λ̃ ∈ Eε,δ. So, in

order to prove that λ̃ ∈ Eε,δ,we only need to find some β > 0 such that ρ
2+β ∈ (ρ2 , ρ2) and for all y ∈ B ρ

2
+β(ŷ)∩G(ŷ)

and t ≤ λ̃,

eatVδ(x(t; y)) +

∫ t

0
W (x(τ ; y))dτ ≤ V (y) + ε(ρ1 − ρ

2
)(ρ− ρ2). (3.23)

Proceeding by contradiction, we assume that for each k ≥ 1 verifying ρ
2 + 1

k
∈ (ρ2 , ρ2), there exist yk ∈ B ρ

2
+ 1

k
(ŷ) ∩

G(ŷ) and 0 < tk ≤ λ̃ such that

eatkVδ(x(tk; yk)) +

∫ tk

0
W (x(τ ; yk))dτ > V (yk) + ε(ρ1 − ρ

2
)(ρ− ρ2). (3.24)

Because of (3.22) we must have (yk)k ⊂ B ρ

2
+ 1

k
(ŷ) \ B ρ

2
(ŷ). W.l.o.g. we may suppose that tk → t̃ ≤ λ̃. For each k,

we denote by ỹk ∈ B ρ

2
(ŷ) the orthogonal projection of yk onto B ρ

2
(ŷ). Thus, from one hand, we may also suppose that

(ỹk)k weakly converges to some ỹ ∈ B ρ

2
(ŷ). Furthermore, from the inequality ‖yk − ỹk‖ ≤ 1

k
we infer that yk also

weakly converges to ỹ and, so, by the weak continuity of V on Bρ(ŷ),

V (ỹ) = lim
k
V (ỹk) = lim

k
V (yk). (3.25)

Hence,

|V (ỹ)| = lim
k

|V (ỹk)| = lim
k

|V (yk)| ≤ |V (ŷ)|+ 1.

In particular, (w.l.o.g.) this implies that

(ỹk)k ∪ {ỹ} ⊂ B ρ

2
(ŷ) ∩ [|V | ≤ |V (ŷ)|+ 1] = B ρ

2
(ŷ) ∩G(ŷ).

On the other hand, the absolute continuity of x(·; ỹk) yields

x(tk; ỹk)− ỹk =

∫ tk

0
ẋ(τ ; ỹk)dτ

and, since that ẋ(·; ỹk) ∈ L∞([0, λ̃];H), the following holds:

‖x(tk; ỹk)− ỹk‖ ≤ tk sup
τ∈[0,tk ]

‖ẋ(τ ; ỹk)‖ ≤ tk sup
τ∈[0,tk ]

eLfτ
∥∥(f(ỹk)−Aỹk)

◦∥∥

≤ λ̃eLf λ̃ sup
z∈B ρ

2
(ŷ)

eLfτ
∥∥(f(z)−Az)◦

∥∥ ≤Mλ̃eLf λ̃.
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Hence, w.l.o.g. we may suppose that the bounded sequence (x(tk; ỹk))k∈N weakly converges in H. Furthermore, the

inequality

‖x(tk; yk)− x(tk; ỹk)‖ ≤ eLf tk ‖yk − ỹk‖ ≤ eLf t̃

k
,

infers that the both sequences (x(tk; yk))k∈N and (x(tk; ỹk))k∈N weakly converge to the same point in H.
On another hand, since the sequences (x(tk; yk))k∈N and (x(tk; ỹk))k∈N are bounded, there exits some l ≥ 0 such

that for all t ≤ t̃

|W (x(t; yk))−W (x(t; ỹk))|+ |Vδ(x(t; yk))− Vδ(x(t; ỹk))| ≤ l ‖x(t; yk)− x(t; ỹk)‖

≤ leLf t̃

k

and, so, we deduce that (w.l.o.g.)

lim
k
Vδ(x(tk; yk)) = lim

k
Vδ(x(tk; ỹk)) and lim

k
W (x(tk; yk)) = lim

k
W (x(tk; ỹk). (3.26)

Using Lebesgue’s Theorem, this infers

lim
k

[
eat̃Vδ(x(tk; ỹk)) +

∫ t̃

0
W (x(τ ; ỹk))dτ

]

= eat̃ lim
k
Vδ(x(tk; ỹk)) +

∫ t̃

0
lim
k
W (x(τ ; ỹk))dτ

= eat̃ lim
k
Vδ(x(tk; yk)) +

∫ t̃

0
lim
k
W (x(τ ; yk))dτ

= lim
k

[
eatkVδ(x(tk; yk)) +

∫ tk

0
W (x(τ ;yk))dτ

]
.

Consequently, taking limits in (3.24), and using (3.25) we obtain

lim
k

[
eat̃Vδ(x(tk; ỹk)) +

∫ t̃

0
W (x(τ ; ỹk))dτ

]
(3.27)

≥ lim
k
V (yk) + ε(ρ1 − ρ

2
)(ρ− ρ2)

= V (ỹ) + ε(ρ1 − ρ

2
)(ρ− ρ2)

= V (lim
k
ỹk) + ε(ρ1 − ρ

2
)(ρ− ρ2)

= lim
k
V (ỹk) + ε(ρ1 − ρ

2
)(ρ− ρ2)).

In other words, for k large enough we have

eat̃Vδ(x(tk; ỹk)) +

∫ t̃

0
W (x(τ ; ỹk))dτ ≥ V (ỹk) +

ε

2
(ρ1 − ρ

2
)(ρ− ρ2) > V (ỹk),

and a contradiction to (3.22) as ỹk ∈ B ρ

2
(ŷ) ∩G(ŷ), and t̃ ≤ λ̃. Hence, we conclude that some ρλ̃ ∈ (ρ2 , ρ2) exists so

that (3.23) holds for all y ∈ B ρ

2
+β(ŷ) ∩G(ŷ) and t ≤ λ̃. This fact shows that λ̃ ∈ Eε,δ.

It remains to analyse the other case corresponding to (ρ1−ρ
2 )(ρ−ρ2) = 0. If this happens, we choose ρ̃1, ρ̃2 ∈ (ρ2 , ρ)

such that ρ̃1 < ρ̃2 and (ρ1− ρ
2 )(ρ−ρ2) > 0. Thus, following the same argument as in the first case, taking into account

(3.22) we can find some β > 0, with ρ̂ + β ∈ (ρ2 , ρ2), so that (3.23) holds for all y ∈ B ρ

2
+β(ŷ) ∩ G(ŷ). This shows

that λ̃ ∈ Eε,δ and, hence, establishes the proof of the closedness of Eε,δ .
Claim: Eε,δ is open.

Fix λ ∈ Eε,δ (it is sufficient to take λ ≥ ν > 0), and let ρ1, ρ2 ∈ (ρ2 , ρ) and ρ̂ ∈ (ρ2 , ρ2) be such that ρ1 < ρ2 and, for

all y ∈ Bρ̂(ŷ) ∩G(ŷ) and t ≤ λ,

eatVδ(x(t; y)) +

∫ t

0
W (x(τ ; y))dτ ≤ V (y) + ε(ρ1 − ρ

2
)(ρ− ρ2). (3.28)

We let ν̂ > 0 verify

ν̂ ≤ min{ν, λ}, ρ
2
< ρ̂−Mν̂ < ρ2, and

ρ

2
< eaν̂ρ1 < ρ2.
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So, from one hand, for all 0 ≤ α ≤ ν̂ and y ∈ Bρ̂−Mν̂(ŷ) ∩G(ŷ) it holds, by Lemma 2,

‖x(α; y)− ŷ‖ ≤Mα+ ‖y − ŷ‖ < Mα+ ρ̂−Mν̂ ≤ ρ̂, (3.29)

where M ≥ 0 is defined in (3.18). Hence, by the choice of ν (ν ≤ λ), from (3.28) we infer that

V (x(α; y)) ≤ V (y) ≤ |V (ŷ)|+ 1.

Thus, taking into account (3.19) we obtain that

x(α; y) ∈ Bρ̂(ŷ) ∩G(ŷ).

Now fix y ∈ Bρ̂−Mν̂(ŷ) ∩G(ŷ) and t ∈ [0, λ]. From above we have that

x(ν̂, y) ∈ Bρ̂(ŷ) ∩G(ŷ) (3.30)

and, so, applying (3.28) we get that

eatVδ(x(t;x(ν̂, y))) +

∫ t

0
W (x(τ ;x(ν̂, y)))dτ ≤ V (x(ν̂, y)) + ε(ρ1 − ρ

2
)(ρ− ρ2).

Thus, using the semi-group property together with (3.28) and (3.30), we infer that

ea(ν̂+t)Vδ(x(ν̂ + t, y)) +

∫ ν̂+t

0
W (x(τ ; y))dτ

= eaν̂eatVδ(x(t;x(ν̂, y))) +

∫ t

0
W (x(τ ;x(ν̂, y)))dτ +

∫ ν̂

0
W (x(τ ; y))dτ

≤ eaν̂
[
eatVδ(x(t;x(ν̂, y))) +

∫ t

0
W (x(τ ;x(ν̂, y)))dτ

]
+

∫ ν̂

0
W (x(τ ;y))dτ

≤ eaν̂V (x(ν̂, y)) +

∫ ν̂

0
W (x(τ, y))dτ + εeaν̂(ρ1 − ρ

2
)(ρ− ρ2).

At this step, for the choice that we made on ν̂ (ν̂ ≤ ν), the last inequality above reads, for all y ∈ Bρ̂−Mν̂(ŷ) and

t ∈ [0, ν̂ + λ],

ea(ν̂+t)Vδ(x(ν̂ + t, y)) +

∫ ν̂+t

0
W (x(τ ;y))dτ ≤ V (y) + εeaν̂(ρ1 − ρ

2
)(ρ− ρ2)

≤ V (y) + ε(eaν̂ρ1 − ρ

2
)(ρ− ρ2).

Consequently, since that ρ̂−Mν̂ ∈ (ρ2 , ρ2) and eaν̂ρ1 ∈ (ρ2 , ρ2) it follows that [0, λ+ ν̂] ⊂ Eε,δ and, so, the openness

of Eε,δ follows.

In order to conclude the proof, let y ∈ B ρ

2
(ŷ) ∩G(ŷ) be given. Then, for every t ≥ 0 we have that t ∈ ∩ε>0Eε,δ;

that is for all ε > 0 it holds

eatVδ(x(t; y)) +

∫ t

0
W (x(τ ; y))dτ ≤ V (y) + ε(ρ− ρ

2
)(ρ− ρ

2
) = V (y) + ε

ρ2

4
.

Hence, letting ε→ 0 it follows that

eatVδ(x(t; y)) +

∫ t

0
W (x(τ ;y))dτ ≤ V (y),

which as δ → 0 yields (using the fact that limδ→0 Vδ(x(t; y)) = V (x(t; y))

eatV (x(t; y)) +

∫ t

0
W (x(τ ; y))dτ ≤ V (y).

Now, if z̄ ∈ Bρ(ŷ) ∩ Dom V, then similarly as above, we can find ρz̄ > 0 such that for every z ∈ B ρz̄
2
(z̄) ∩ G(z̄)

(where G(z̄) is defined as in (3.20)) we have that

eatV (x(t; z)) +

∫ t

0
W (x(τ ; z))dτ ≤ V (z) for all t ≥ 0.

Thus, the main conclusion of the current theorem follows since that the last inequality obviously holds when z̄ /∈ Dom V.
△
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Remark 2 The conclusion of Theorem 3.1 also holds if, instead of V being weak continuous on Bρ(ȳ), we assume that

either H is finite-dimensional or V is convex.

Proof The only difference with the proof of Theorem 3.1 arises in showing (3.23).

(a) Assume that H is finite-dimensional. Let us show that (3.23) holds. Assuming the contrary, we find bounded

sequencse yk ∈ B ρ

2
+ 1

k
(ȳ) ∩ G(ȳ) and 0 < tk ≤ λ̃ such that (3.24) holds. W.l.o.g. we may suppose that tk → t̃ ≤ λ̃

and yk ⇀ ỹ ∈ B ρ

2
(ȳ). Furthermore, we have that

V (ỹ) ≤ lim inf
k

V (yk) ≤ |V (ȳ)|+ 1,

while (3.19) guarantees that V (ỹ) ≥ V (ȳ)− 1. Hence, we also have that ỹ ∈ [|V | ≤ |V (ȳ)|+ 1]. Now, recalling that

x(tk; yk) converges to x(t̃, ỹ) in this case, it follows that

eat̃Vδ(x(t̃, ỹ)) +

∫ t̃

0
W (x(τ ; ỹ))dτ

= eat̃Vδ(lim
k
x(tk, yk)) +

∫ t̃

0
W (lim

k
x(τ ; yk))dτ

= lim
k

[
eat̃Vδ(x(tk; yk)) +

∫ t̃

0
W (x(τ ;yk))dτ

]

≥ lim inf
k

V (yk) + ε(ρ1 − ρ

2
)(ρ− ρ2)

≥ V (ỹ) + ε(ρ1 − ρ

2
)(ρ− ρ2) > V (ỹ),

which contradicts (3.22).

(b) Assume that V is convex. We consider again the sequences of the proof of Theorem 3.1, (yk)k∈N ⊂ B ρ

2
+ 1

k
(ȳ)∩

G(ȳ) \ B ρ

2
(ȳ) and (ỹk)k∈N ⊂ B ρ

2
(ȳ), which both converge to ỹ ∈ B ρ

2
(ȳ) ∩G(z̄). Since that each ỹk ∈ [yk, ȳ], with

k ≥ 1, we find βk ∈ [0, 1] such that ỹk := βkyk + (1− βk)ȳ, this yields

V (ỹk) ≤ βkV (yk) + (1− βk)V (ȳ).

We notice that 1 ≥ βk ≥ kρ
kρ+2 since by construction, ỹk is on the boundary of B ρ

2
(ȳ) and yk ∈ B ρ

2
+ 1

k
(ȳ). Thus, we

may suppose that βk → 1. Consequently, taking limits in the inequality above,

lim inf
k

V (ỹk) ≤ lim
k
βk lim inf

k
V (yk) = lim inf

k
V (yk).

Hence, as in (3.27), using (3.26) we obtain that

lim
k

[
eat̃Vδ(x(tk; ỹk)) +

∫ t̃

0
W (x(τ ; ỹk))dτ

]

= eat̃ lim
k
Vδ(x(tk; ỹk)) +

∫ t̃

0
lim
k
W (x(τ ; ỹk))dτ

= eat̃ lim
k
Vδ(x(tk; yk)) +

∫ t̃

0
lim
k
W (x(τ ; yk))dτ

= lim
k

[
eatkVδ(x(tk; yk)) +

∫ tk

0
W (x(τ ;yk))dτ

]

≥ lim inf
k

V (yk) + ε(ρ1 − ρ

2
)(ρ− ρ2)

≥ lim inf
k

V (ỹk) + ε(ρ1 − ρ

2
)(ρ− ρ2),

which contradicts (3.22). △

Corollary 1 Assume that Int (co{Dom A}) 6= ∅. Let V ∈ F(H) be convex, and let W ∈ F(H;R+) and a ∈ R+ be

given. Fix ȳ ∈ Int(Dom A)∩Dom V, and let ρ > 0 be such thatB2ρ(ȳ) ⊂ Int(Dom A). For all y ∈ B2ρ(ȳ)∩Dom V
we assume that

sup
ξ∈∂PV (y)

inf
υ∈Ay

〈ξ, f(y)− υ〉+ aV (y) +W (y) ≤ 0.

Then, for all y ∈ Bρ(ȳ) we have that

eatV (x(t; y)) +

∫ t

0
W (x(τ ; y))dτ ≤ V (y) for all t ≥ 0.
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Proof According to Theorem 3.1 and Remark 2, it suffices to show that the current assumption implies that, for every

given y ∈ B2ρ(ȳ) ∩Dom V and ξ ∈ ∂∞V (y) = NDom V (y) (if any), there exists υ ∈ Ay such that

〈ξ, f(y)− υ〉 ≤ 0. (3.31)

To prove this fact, by the lsc of V we let ε > 0 be such that

B√
ε(y) ⊂ Int(cl(Dom A)), V (B√

ε(y)) ≥ V (y)− 1.

Pick yε ∈ ∂εV (y); this last set is not empty since that V ∈ F(H) is a convex function. Then, from the relationship

NDom V (y) = (∂εV (y))∞ (e.g. ), for every k ∈ N we have that

yε + kξ ∈ ∂εV (y).

According to the Brøndsted-Rockafellar Theorem, there are yk ∈ B√
ε(y) and uk ∈ B√

ε(θ) such that

yε + kξ ∈ ∂εV (yk) + uk;

that is, in particular, yk ∈ Dom V. Consequently, by the current assumption we get that

k〈ξ, f(y)− πAyk
(f(yk))〉 ≤ 〈uk − yε, f(yk)− πAyk

(f(yk))〉 − aV (yk)−W (yk)

≤ 〈uk − yε, f(yk)− πAyk
(f(yk))〉 − aV (y) + a

+ k〈ξ, f(y)− f(yk)〉
≤ 〈uk − yε, f(yk)− πAyk

(f(yk))〉 − aV (y) + a+ kLf

√
ε ‖ξ‖ .

Since that 〈uk − yε, f(yk)− πAyk
(f(yk))〉 is bounded independently of k, for kε ≥ 1 big enough we get that

〈ξ, f(y)− πAykε
(f(ykε

))〉 ≤
√
ε+ Lf

√
ε ‖ξ‖ .

Moreover, as ykε
∈ B√

ε(y) and ζε := πAykε
(f(ykε

)) (∈ Aykε
) is bounded independently of kε, we may suppose

as ε → 0 that (ζε) weakly converges to some υ ∈ Ay. Thus, taking limits in the last inequality above we get that

〈ξ, f(y)− υ〉 ≤ 0; that is (3.31) follows. △

Corollary 2 Assume that dimH <∞. Let V ∈ F(H),W ∈ F(H;R+), and a ∈ R+ be given. Fix ȳ ∈ Int(Dom A),
and let ρ > 0 be such that B2ρ(ȳ) ⊂ Int(Dom A). For all y ∈ B2ρ(ȳ) ∩Dom V we assume that

sup
ξ∈∂PV (y)

inf
υ∈Ay

〈ξ, f(y)− υ〉+ aV (y) +W (y) ≤ 0.

Then, for all y ∈ Bρ(ȳ) we have that

eatV (x(t; y)) +

∫ t

0
W (x(τ ; y))dτ ≤ V (y) for all t ≥ 0.

Proof As in the proof of Corollary 1, given y ∈ B2ρ(ȳ) ∩ Dom V and ξ ∈ ∂∞V (y) (if any), we only to find some

υ ∈ Ay such that

〈ξ, f(y)− υ〉 ≤ 0.

Fix ε > 0. By definition, we let ξk ∈ ∂PV (yk) and αk ↓ 0 such that yk → y, V (yk) → V (y), and αkξk ⇀ ξ. Then,

by the current assumption, for each k there exists y∗k ∈ Ayk such that

〈
ξk, f(yk)− y∗k

〉
+ aV (yk) +W (yk) ≤ ε.

Because dimH < ∞ and yk, y
∗
k are bounded, we may suppose that y∗k converges to some υ ∈ Ay. Thus, multiplying

the equation above by αk and next passing to the limit as ε → 0 and finally invoking the lsc of V and the Lipschitz

continuity of f , we obtain that

〈ξ, f(y)− υ〉 ≤ lim
k

〈
αkξk, f(yk)− y∗k

〉
+ a lim inf

k
αkV (yk) ≤ lim

k
αkε = 0.

The conclusion follows. △
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Remark 3 Let V ∈ F(H), and let W ∈ F(H;R+) be Lipschitz continuous on cl(Dom A). Define the the mapping

f̃ : H × R
2→H × R

2 and the operator Ã : H × R
2
⇉H × R

2 respectively as

f̃(y, α, γ) :=



f(y)
W (y)
0


 and Ã(y, α, γ) :=



Ay
0
0


 ,

and denote Ṽ : H × R →R and V̂ : H × R
2→R the functions given respectively as

Ṽ (y, α) := V (y) + α and V̂ (y, α, γ) := I
epi Ṽ∩cl(Dom Ã)

(y, α, γ).

Consider the differential inclusion

ż(t; (y, α, γ)) ∈ f̃(z(t; (y, α, γ)))− Ãz(t; (y, α, γ)), z(0, (y, α, γ)) = (y, α, γ), (3.32)

the solution of which is the function z(t; (y, α, γ)) : [0,∞) → H × R
2 given by

z(t; (y, α, γ)) =




x(t; y)∫ t

0 W (x(τ ;y))dτ + α
γ


 .

Then, (V,W ) is a Lyapunov pair for (1.1) if and only if the function I
epi Ṽ∩cl(Dom Ã)

is a Lyapunov function for this

new differential inclusion (3.32).

4 Characterizations of finite-dimensional nonsmooth Lyapunov pairs

This section is devoted to the finite-dimensional setting. Assuming that dimH < ∞, we give multiple primal and dual

characterizations for nonsmooth a-Lyapunov pairs for the differential inclusion (1.1), with respect to the set rint(cl(Dom A)).
Naturally, these conditions turn out to be sufficient for nonsmooth a-Lyapunov functions with respect to every given set

D ⊂ cl(Dom A) verifying condition (3.11).

Further, in this setting, the dual characterization does not depend on the choice of the subdifferential operator which

can be either the proximal, the Fréchet, the Limiting (which coincides with the viscosity subdifferential (see Borwein [7]),

or, more generally, every subdifferential operator ∂V : H ⇉ H satisfying

∂PV ⊂ ∂V ⊂ ∂LV, (4.33)

where V ∈ F(H) is the first part of Lyapunov’s condidate pairs.

Proposition 3 Assume that dimH < ∞. Let V ∈ F(H), W ∈ F(H;R+), and a ∈ R+ be given, and let ∂ be as in

(4.33). Fix ȳ ∈ rint(cl(Dom A)) and let ρ > 0 be such thatB2ρ(ȳ)∩aff(cl(Dom A)) ⊂ Dom A. Then, the following

assertions (i)–(v) are equivalent:

(i) for every y ∈ Dom A ∩Dom V ∩Bρ(ȳ)

eatV (x(t; y)) +

∫ t

0
W (x(τ ; y))dτ ≤ V (y) for all t ≥ 0;

(ii) for every y ∈ Dom A ∩Dom V ∩Bρ(ȳ)

sup
ξ∈∂PV (y)

〈ξ, f(y)− πAy(f(y))〉+ aV (y) +W (y) ≤ 0;

(iii) for every y ∈ Dom A ∩Dom V ∩Bρ(ȳ)

sup
ξ∈∂V (y)

inf
υ∈Ay

〈
ξ, f(y)− y∗

〉
+ aV (y) +W (y) ≤ 0;

(iv) for every y ∈ Dom A ∩Dom V ∩Bρ(ȳ)

V ′(y; f(y)− πAy(f(y))) + aV (y) +W (y) ≤ 0;

(v) for every y ∈ Dom A ∩Dom V ∩Bρ(ȳ)

inf
υ∈Ay

V ′(y; f(y)− υ) + aV (y) +W (y) ≤ 0.

If V is nonnegative, each one of the statements above is equivalent to

(vi) for every y ∈ Dom A ∩Dom V ∩Bρ(ȳ)

V (x(t; y)) + a

∫ t

0
V (x(τ ; y))dτ +

∫ t

0
W (x(τ ;y))dτ ≤ V (y) for all t ≥ 0.
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Proof (iii with ∂ ≡ ∂P ) =⇒ (i): Let H0 := lin(cl(Dom A)) denote the linear hull of Dom A; we may suppose that

θ ∈ Dom A. Let A0 : H0 ⇉ H0 be the operator given by

A0y = Ay ∩H0, (4.34)

and define the Lipschitz continuous mapping f0 : H0 → H0 as

f0(y) = πH0
(f(y)), (4.35)

where πH0
denotes the orthogonal projection onto H0. According to the Minty Theorem, it follows that A0 is also a

maximally monotone operator. Further, for every y ∈ Dom A we have Ay + Ncl(Dom A)(y) = Ay, and therefore

Ay +H⊥
0 = Ay. Hence,

Ay = (Ay ∩H0) +H⊥
0 = A0y +H⊥

0 . (4.36)

From this inequality we deduce that Dom A0 = Dom A and, so,

rint(cl(Dom A)) = Int(cl(Dom A0)) = Int(Dom A0);

for the last equality see, e.g., [8, Remark 2.1- Page 33]. Further, since for y ∈ cl(Dom A) we have that

f0(y)−A0y ⊂ f(y)−A0y +H⊥
0 = f(y)−Ay,

from which it follows that x·; y) is the unique solution of the the differential inclusion

ẋ(t; y) ∈ f0(x(t; y))−A0x(t; y), x(0, y) = y.

Next, we are going to show the assumption of Corollary 2 (which is the same as Conditions (i) of Theorem 3.1) holds

with respect to the pair (A0, f0). Fix y ∈ Dom A ∩ Dom V ∩ Bρ(ȳ) and ξ ∈ ∂V (y) (if any). For fixed ε > 0, by

assumption take υ ∈ Ay in such a way that

〈ξ, f(y)− υ〉+ aV (y) +W (y) ≤ ε.

Since f(y) ∈ f0(y) +H⊥
0 and υ +H⊥

0 ∈ Ay +H⊥
0 = A0y, we have

inf
υ∈A0y

〈ξ, f0(y)− υ〉 ≤ inf
υ∈Ay

〈ξ, f(y)− υ〉 ≤ ε− aV (y)−W (y), (4.37)

and the assumption of Corollary 2 follows as ε→ 0.
(i) =⇒ (iv): Fix y ∈ Dom A ∩ Dom V ∩ Bρ(ȳ). Then, as shown in the paragraph above, the solution x(t; y) of

(1.1) is also the unique strong solution of the equation

ẋ(t; y) ∈ f0(x(t; y))−A0x(t; y), x(0; y) = y ∈ cl (Dom A) ,

where A0 and f0 are defined in (4.34) and (4.35), respectively. Let (tn)n∈N ⊂ (0, T ) be such that tn → 0+ and set

wn :=
x(tn; y)− y

tn
.

Because x(·; y) is derivable from the right at 0 (y ∈ Dom A) and

d+x(·; y)
dt

(0) = (f(y)−Ay)◦ = f(y)− πAy(f(y)),

we infer that

wn → f(y)− πAy(f(y)).

Therefore, using the current assumption (i),

V (y + tnwn)− V (y)

tn

=
V (x(tn, y))− V (y)

tn

≤ e−atn(1− eatn)

tn
V (y)− e−atn

tn

∫ tn

0
W (x(s; y))ds,
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and taking limits yields

V ′(y; f(y)− πAy(f(y))) ≤ lim inf
n

e−atn(1− eatn)

tn
V (y)− e−atn

tn

∫ tn

0
W (x(s; y))ds

= −aV (y)−W (y);

this proves (iv).

(iv) =⇒ (v) is trivial.

(v) =⇒ (iii). Use ∂ ≡ ∂L.): Take y ∈ Dom A ∩Dom V ∩Bρ(ȳ). For fixed ε > 0, by (v) we let υ ∈ Ay be such

that

V ′(y; f(y)− υ) ≤ ε− aV (y)−W (y);

that is

(f(y)− υ, ε− aV (y)−W (y)) ∈ epiV ′(y, ·) = TepiV (y, V (y)) ⊂
[
Np

epi V (y, V (y))
]◦
.

If ξ ∈ ∂PV (y), since that (ξ,−1) ∈ Np
epi V (y, V (y)) the last above inequality leads us to

〈ξ, f(y)− υ〉 ≤ 〈(ξ,−1), (f(y)− υ, ε− aV (y)−W (y))〉+ ε− aV (y)−W (y)

≤ ε− aV (y)−W (y)

so that (ii) follows when ε→ 0.
If ξ ∈ ∂LV (y), then there are sequences yn → y, ξn → ξ such that V (ξn) → V (ξ) and ξn ∈ V (yn) for every

integer n sufficiently large. As just shown above, given an ε > 0, for each n there exists y∗n ∈ Ayn such that

〈
ξn, f(yn)− y∗n

〉
≤ ε− aV (yn)−W (yn).

Because (yn)n ⊂ Bρ(ȳ) ⊂ Int(Dom A0) ⊂ H0 (the ball Bρ(ȳ) is with respect to H0), then we may suppose that

y∗n → υ ∈ Ay. Thus, passing to the limit in the above inequality, and taking into account the lsc of V and the continuity

of W,
〈ξ, f(y)− υ〉 ≤ ε− aV (y)−W (y).

showing that (iii) holds with ∂ ≡ ∂L.
At this point we have proved that (i)⇐⇒(iii with ∂ ≡ ∂L)⇐⇒(iv)⇐⇒(v). To see that (ii) is also equivalent to

the other statements we observe that, from one hand, (ii) =⇒ (iii) holds obviously. On the other hand, the implication

(iv) =⇒ (ii) follows in a similar way as in the proof of the statement (v) =⇒ (iii). This finishes the proof of the

equivalences of (i) through (v).

Finally, if V is nonnegative, (vi) is nothing else but (i) with a and W replaced by θ and aV +W, respectively. Thus,

(vi) is equivalent to (iii). △

The following Theorem, which is an immediate consequence of Proposition 4.33, establishes primal and dual charac-

terizations of Lyapunov pairs for (1.1) with respect to rint(cl(Dom A)). Sufficient conditions for Lyapunov pairs with

respect to other sets are then deduced under (3.11).

Theorem 4.2 Assume that dimH < ∞. Let V ∈ F(H),W ∈ F(H;R+), and a ∈ R+ be given, and let ∂ be as

in (4.33). Then, (V,W ) forms an a-Lyapunov pair for (1.1), with respect to rint(cl(Dom A)), if and only if one of the

following assertions holds:

(i) for all y ∈ rint(cl(Dom A)) ∩Dom V

sup
ξ∈∂PV (y)

〈ξ, f(y)− πAy(f(y))〉+ aV (y) +W (y) ≤ 0;

(ii) for all y ∈ rint(cl(Dom A)) ∩Dom V

sup
ξ∈∂V (y)

inf
υ∈Ay

〈
ξ, f(y)− y∗

〉
+ aV (y) +W (y) ≤ 0;

(iii) for all y ∈ rint(cl(Dom A)) ∩Dom V

V ′(y; f(y)− πAy(f(y))) + aV (y) +W (y) ≤ 0;
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(iv) for all y ∈ rint(cl(Dom A)) ∩Dom V

inf
υ∈Ay

V ′(y; f(y)− υ) + aV (y) +W (y) ≤ 0.

Consequently, if V satisfies (3.11) for a given setD ⊂ cl(Dom A), then any of the conditions (i)-(iv) above implies that

(V,W ) is an a-Lyapunov pair for (1.1) with respect to D.

In contrast to the (analytic) Definition 1, Lyapunov stability can also be approached from a geometrical point of view

using the concept of invariance:

Definition 2 Let be given a setD ⊂ cl(Dom A). A non-empty closed set S ⊂ H is said invariant for (1.1) with respect

to D if for all y ∈ S ∩D one has that

x(t; y) ∈ S for all t ≥ 0.

This fact, which was already mentioned in the infinite-dimensional setting in Corollary 1, is explicitly characterized

here in the finite-dimensional setting. This characterization is also valid in the infinite-dimensional setting provided that

S ∩ cl(Dom A) is a convex set, according to Remark 2 and Corollary 1.

Corollary 3 Assume that dimH <∞. A closed set ∅ 6= S ⊂ H is invariant for (1.1), with respect to rint(cl(Dom A)),
if and only if one of the following assertions are satisfied:

(i) for all y ∈ rint(cl(Dom A)) ∩ S

sup
ξ∈NP

S∩cl(Dom A)
(y)

〈ξ, f(y)− πAy(f(y))〉 ≤ 0;

(ii) for all y ∈ rint(cl(Dom A)) ∩ S

sup
ξ∈NP

S∩cl(Dom A)
(y)

inf
υ∈Ay

〈ξ, f(y)− υ〉 ≤ 0;

(iii) for all y ∈ rint(cl(Dom A)) ∩ S

f(y)− πAy(f(y)) ∈ TS∩cl(Dom A)(y);

(iv) for all y ∈ rint(cl(Dom A)) ∩ S

[f(y)−Ay] ∩ TS∩cl(Dom A)(y) 6= ∅;

(v) for all y ∈ rint(cl(Dom A)) ∩ S

[f(y)−Ay] ∩ co
[
TS∩cl(Dom A)(y)

]
6= ∅.

Consequently, S is invariant for (1.1) with respect to a given set D ⊂ cl(Dom A) if

S ∩D ⊂ cl(S ∩ rint(cl(Dom A))).

Proof It is an immediate fact that, with respect to rint(cl(Dom A)), S is invariant if and only if IS∩cl(Dom A) is a

Lyapunov function. Then, the current assertions (i) and (ii) come from statements (i) and (ii) of Proposition 3, respec-

tively. Similarly, always with respect to rint(cl(Dom A)), S is invariant if and only d(·, S∩ cl(Dom A)) is a Lyapunov

function. Thus, by virtue of the relationship

TS∩cl(Dom A)(y) = {w ∈ H | d′(·, S ∩ cl(Dom A)(w) = 0},

the current assertions (iii) and (iv) follow from statements (iii) and (iv) of Proposition 3, respectively. This shows that

(i)⇐⇒(ii)⇐⇒(iii)⇐⇒(iv).

It remains to show that (v) is equivalent to the other statements. We obviously have that (iv) =⇒ (v) and so (i) =⇒
(v). To prove the reverse implication it suffices to show that (v) =⇒ (ii). Indeed, fix y ∈ S ∩ Dom A and ξ ∈
NP

S∩cl(Dom A). Then, by (v) there exists υ ∈ Ay such that

f(y)− υ ∈ co
[
TS∩cl(Dom A)(y)

]
⊂

[
NP

S∩cl(Dom A)

]◦
.

Therefore, 〈ξ, f(y)− υ〉 ≤ 0; that is (ii) follows. △

The following corollary follows from Theorem 4.2.
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Corollary 4 Assume that dimH < ∞. Let V ∈ F(H), W ∈ F(H,R+), and a ∈ R+ be given, and let ∂ be as in

(4.33). Then, the following statements are equivalent provided that V is continuous relative to cl(Dom A):
(i) (V,W ) is an a-Lyapunov pair for (1.1) with respect to cl(Dom A);
(ii) (V,W ) is an a-Lyapunov pair for (1.1) with respect to rint(cl(Dom A));
(iii) for every y ∈ rint(cl(Dom A)) ∩Dom V

sup
ξ∈∂V (y)

〈ξ, f(y)− πAy(f(y))〉+ aV (y) +W (y) ≤ 0;

(iv) for all y ∈ rint(cl(Dom A)) ∩Dom V

inf
υ∈Ay

V ′(y; f(y)− υ) + aV (y) +W (y) ≤ 0.

The characterization of Gâteaux differentiable Lyapunov functions is a special case of the following corollary.

Corollary 5 Assume that dimH < ∞. Let V ∈ F(H), W ∈ F(H,R+), and a ∈ R+ be given. If V is Gâteaux

differentiable, then the following statements are equivalent:

(i) (V,W ) is an a-Lyapunov pair for (1.1) with respect to cl(Dom A);
(ii) (V,W ) is an a-Lyapunov pair for (1.1) with respect to rint(cl(Dom A));
(iii) for every y ∈ rint(cl(Dom A)) ∩Dom V

V ′
G(y)(f(y)− πAy(f(y))) + aV (y) +W (y) ≤ 0;

(iv) for all y ∈ rint(cl(Dom A)) ∩Dom V

inf
υ∈Ay

V ′
G(y)(f(y)− υ) + aV (y) +W (y) ≤ 0.

In order to fix ideas, let us discuss the simple case when A ≡ 0 so that our inclusion (1.1) becomes an ordinary

differential equation which reads: for every y ∈ H there exists a unique x·; y) ∈ C1(0,∞;H) such that x(0, y) = y
and

ẋ(t; y) = f(x(t; y)) for all t ≥ 0. (4.38)

In this case, Theorem 2 gives in a simplified form the characterization of the associated a-Lyapunov pairs.

Corollary 6 Assume that dimH < ∞. Let be given V ∈ F(H), W ∈ F(H;R+), and a ∈ R+. The following

stataments are equivalent:

(i) (V,W ) is an a-Lyapunov pair for (4.38) (with respect to H);
(ii) for every y ∈ Dom V

V ′(y; f(y)) + aV (y) +W (y) ≤ 0;

(iii) for all y ∈ Dom V

sup
ξ∈∂V (y)

〈ξ, f(y)〉+ aV (y) +W (y) ≤ 0,

where ∂V stands for any subdifferential operator verifying ∂PV ⊂ ∂V ⊂ ∂CV.

Proof By Theorem 4.2 the conclusion holds for all the subdifferentials ∂V such that ∂PV ⊂ ∂V ⊂ ∂LV. To show

that (iii) is also a characterization when ∂ ≡ ∂C it suffices, in view of the relationship ∂L ⊂ ∂C , to show that (iii with

∂ ≡ ∂L) implies (iii with ∂ ≡ ∂C ). Indeed, fix y ∈ Dom V so that

sup
ξ∈∂∞V (y)

〈ξ, f(y)〉 ≤ 0.

So, according to [24], (iii with ∂ ≡ ∂C) follows since that

sup
ξ∈∂CV (y)

〈ξ, f(y)〉+ aV (y) +W (y) = sup
ξ∈co{∂LV (y)+∂∞V (y)}

〈ξ, f(y)〉+ aV (y) +W (y) ≤ 0.

△
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