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Abstract. We expose a framework, inspired by biological observations, dedicated to mod-

eling complex living systems as coupled systems. In particular, we use this framework to

adress a main question in the field of living systems: the synchronization phenomenon.

This kind of model, named tissular coupling, is quite general and, using different methods

from those usually used in this field of research, we reach global results relative to the

frequencies locking problem in both finite and continuous populations.
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1 Introduction

Synchronization is an extremely important and interesting emergent property
of complex systems. The first example found in literature goes back to the
17th century with Christiaan Huygens’ clocks [10, 1]. Although this example
rose from artificial systems, this kind of emergent behavior can be found in
natural systems at any scale (from cell to whole ecological systems). Indeed,
biology abounds with periodic and synchronized phenomena and Ilya Pri-
gogine’s work gave a first general explanation to this matter: such behaviors
arise from a dissipative structure generally associated to a nonlinear dynamics
[19]. Biological systems are open, they evolve far from thermodynamic equi-
librium and are subject to numerous regulating processes, leading to highly
nonlinear dynamics. Therefore, periodic behaviors appear (with or without
synchronization) at any scale [20]. More generally, life itself is governed by
circadian rhythms [8]. Those phenomena are as much attractive as they are
often spectacular: from cicada populations that appear spontaneously every
ten or thirteen years [9] or networks of heart cells that beat together [16] to
huge swarms in which fireflies, gathered in a same tree, flash simultaneously
[2]. This synchronization phenomenon occupies a privileged position among
emergent collective phenomena and more generally in the field of complex
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systems for it has various applications in neuroscience, ecology, earth Sci-
ence, for instance [24, 23, 15], as well as in the field of coupled dynamical
systems, especially through the notion of chaotic systems’ synchronization
[17, 6] and the study of coupled-oscillators [12]. This wide source of exam-
ples leads the field of research to be highly interdisciplinary, from pure theory
to concrete applications and experimentations.

In the second section of our work, and before adressing a specific ques-
tion related to synchronization, we build a modeling framework inspired by
biological systems in order to handle complex systems. This framework, the
tissular coupling, is based on a quite general vision of complex systems: they
are constituted of interacting subsystems, named cells. A tissular coupling
is a quite general object as the number of cell is not necessarily finished, for
the population P (the set of cell) may be a continuous set. Moreover, the
cell may have different behavior, as each of them own a proper dynamical
system (which is not supposed to be an oscillator). Another important char-
acteristic is that those dynamical systems undergo interactions among the
whole population and those interactions are not limited to some simple cases
usualy handled in litterature. Thus, tissular coupling is a very general model
of complex systems that does not focuse solely on isolated dynamics, nor on
interactions between subsystems, but that allows a balance of these two main
characteristic of complex and/or living systems.

Once this framework exposed, in the last part of this section, we start our
way to adress synchronization issues. The classical concept of synchronization
is related to the locking of the basic frequencies and instantaneous phases
of regular oscillations. One of the most successful attempts to explore this
emergent property is due to Kuramoto [13, 14]. As in Kuramoto’s work, those
questions are usually addressed by studying specific kinds of coupled systems
(see for instance [4, 21, 7]). Using all the classical methods available in the
field of dynamical systems, researchers study specific trajectories of those
systems in order to get information on possible attracting synchronized state
[25, 12, 21, 18, 7, 11]. Most of these works always deal with a specific way of
coupling dynamical systems, which we call ”coupling in the final space”: one
adds a quantity that models interactions to the derivatives of the systems.
This leads to equations with the following typical shape (here, there are only
two coupled systems):

x′
1(t) = F

(
x1(t)

)
+ εG1

(
x1(t), x2(t)

)

x′
2(t) = F

(
x2(t)

)
+ εG2

(
x1(t), x2(t)

)

The problem is restated in terms of phase-shift variables and efforts are made
to detect stable states and to prove their stability.

Our approach is quite innovative as we explore synchronization starting
from another point of view: we focus on the coupler rather than on the
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dynamical systems to be coupled. First, contrary to what precedes, in this
work we study exclusively the ”coupling in the initial space”, which means
that the coupling quantity applies inside the map F , which leads us to the
following type of equation:

x′
1(t) = F

(
x1(t) + εG1(x1(t), x2(t))

)

x′
2(t) = F

(
x2(t) + εG2(x1(t), x2(t))

)

This kind of coupled systems is sometimes studied (for instance in [11]) but
never broadly (indeed, if one wants some quantitative results about conver-
gence of trajectories, one must work with specific equations and dynamical
systems). We show that this latter shape is still very general. Moreover,
under a weak assumption on the dynamical systems to be coupled (named
periodically-injectivity) it allows us to considerably reduce our synchroniza-
tion issues to a structural problem which becomes independant from the own
dynamic of each cell. This new problem depends actually only on the coupler,
the interactions between cells.

Then, at last we go to the heart of the problem and study synchronization
issues. Convinced that this phenomenon is completely natural in a large vari-
ety of coupled dynamical systems, we propose a new approach to the subject:
rather than trying to prove that synchronization actually takes place, we are
able, in this context, to search conditions under which frequencies are locked
as soon as the whole system oscillates. We stress the point that we do not
assume that the dynamical systems owned by cells are oscillators, but only
that each cell has a periodic trajectory (which is completely different, and
is a really much weaker assumption). We give answers to this question in
sections 3 and 4 in which we exhibit some natural conditions under which we
are able to prove the main results of this paper: cases of frequencies locking
in an finite population and in a infinite compact and connected one. In other
words, our results show that the following alternative naturaly raises in many
cases: either the whole population is synchronized, or its cells can’t all have
periodic behaviors.

2 Basic material and notation

As our model is inspired by cellular tissues, several terms clearly come from
the vocabulary used to describe those kinds of complex systems. Never-
theless, its scope is not limited to cells nor cell tissues. Moreover, in this
first work we only deal with smooth mathematical objects, but it’s naturally
possible to extend this work to non continuous trajectories (to handle pulse
oscillators for example). This is actually a piece of work we are achieving.
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2.1 Model of population behavior

Here are the basic compounds of our model (for the sake of concision and in
order to simplify the writing, notations differ from the usual ones used in the
introduction):

• a population P is a measured space with finite measure. Typical pop-
ulations are finite sets with counting measure or measurable subsets of
R

m with Lebesgue measure. Every p ∈ P is called a cell. In most
papers (see for instance [12]) this population is implicitly defined and
has only two cells (sometimes a finite number N), each cell being as-
sociated to an oscillator. Even when the population is a continuum,
trajectories are supposed to be regular along the population, not only
along time (see for instance [4]). We believe that the population of
systems to be coupled is at least as much important as the individual
systems themselves. Moreover it seems obvious that even if the pop-
ulation is continuous, states along cells do not need to be regular (see
our discussion in [5]);

• for the sake of concision, we suppose that the systems we want to study
are R

n-valued. Thus, a state of P is an element of S = Mb (P , Rn),
the space of measurable bounded applications from P to R

n. A state
of P will be denoted by s, s(p) standing for the state of the cell p;

• let I ⊂ R be an interval and r ∈ N. A trajectory of P is an element
of F(I,S). For the sake of concision, any trajectory will be written
s again, and s(t, p) stands for the state of the cell p at time t (which
should be written s(t)(p)). Then, we define the space of trajectories as:

T r =

{
Cr(I,S), ∀J ⋐ I, sup

J×P

‖s(t, p)‖ < ∞

}

Again, we believe that in order to understand complex systems, we must
be able to handle both individual components and global population,
this is why we can’t restrict our study to the cells’ behaviors and we
handle the population’s trajectory as a whole.
A trajectory s is regular only along the time t (except in terms of
measurability), thus we use the following unambiguous notation:

s′(t, p) = ∂1s(t, p)
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• as there is no ambiguity, all norms will be denoted in the same manner:

s ∈ S : ‖s‖ = sup
P

‖s(p)‖

s ∈ T : ‖s‖ = sup
I×P

‖s(p, t)‖

‖s(t, .)‖ = sup
P

‖s(t, p)‖

‖s(., p)‖ = sup
I

‖s(t, p)‖

Equipped with this kind of norm, T 0 becomes obviously a Banach space
(this norm is adapted to smooth problems, when we will deal with non-
regular trajectories we will obviously need other classical norms).

2.2 Periodic motions and properties of periods on P

Now, we define the notion of periodic trajectories on a population and some
mathematical tools related to their study. On the contrary of what most
studies on synchronization issues state, we do not suppose that the cells are
oscillators, we will only assume they exhibit periodic behaviors (the first as-
sumption implies the second, but the opposite is clearly false). Thus, we
need to define periodic trajectories of a whole population:

Definition 2.1. A period on P is a map τ from P to R
∗
+. A trajectory

s ∈ T r is said to be τ-periodic if for any p ∈ P, s(., p) is τ(p)-periodic. τ(p)
is then called the period of p. The space of such trajectories is written T r

τ .

If s ∈ T 1
τ , for any p the map s(., p) equals its Fourier’s serie. We write:

ek
τ (t, p) = exp

(
2iπkt

τ(p)

)

so that we have:
s(t, p) =

∑

k∈Z

ŝ(k, p)ek
τ (t, p)

with normal convergence, and obviously:

ŝ(k, p) =
1

τ(p)

∫ τ(p)

0

s(t, p)ek
τ (t, p)dt

Note that these quantities are R
n-valued.

Here follows a corollary of the ergodic theorem [5] (and for references to
ergodic theory see for instance [22, 3]):
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Proposition 2.1 (Ergodic alternative). Let f be a smooth real-valued map,
τ-periodic an τ ′ > 0. We define the τ ′-average of f :

aτ ′(f)(t) = lim
N→+∞

1

N + 1

N∑

k=0

f(t + kτ ′)

Then the following alternative holds:

• τ and τ ′ are Z-free (non commensurable), then aτ ′(f) is constant and

equals τ f̂(0);

• there’s an irreducible fraction a
b

such that bτ = aτ ′, then aτ ′(f) is τ ′

b
-

periodic.

In order to prove synchronization, the first step consists in showing that
periods are commensurable. We need the following notion: a (finite) subset
{τ1, . . . , τk} of R is said to be dependent (over Z) if there exists some
integers l1, . . . , lk not all null and such that:

l1τ1 + . . . + lkτk = 0

A way to handle some properties of a period τ is to consider some partitions
of P . Let p ∈ P and a ∈ R

∗, we define the following application:

τa(p) = aτ(p)

and for any subset A ⊂ R:

PA
p =

⋃

a∈A

τ−1
a (τ(p))

In other words:

PA
p = {q ∈ P : ∃a ∈ A, aτ(q) = τ(p)}

As soon as 1 ∈ A, the set of all distinct PA
p is a partition of P , we write PA

this partition (with non-empty sets). Main examples are:

• if all the periods constitute a dependent set, then PQ = {P} ;

• if all the periods are identical (P is synchronized), then P1 = {P}.

Let’s consider differential systems on P now to complete our description
of their coupling.
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2.3 Differential systems on P

As we want to reach the most general result, each cell p is supposed to behave
according to an autonomous differential system given by an application Fp.
Non-autonomous differential systems could be assimilated to the case of syn-
chronization with the help of an external force. Moreover, as we work with
any kind of population, this external force could be assimilated to new cells
and integrated in the population. For the sake of concision, we will assume
that Fp is smooth. Then, we have a family of applications {Fp}p∈P and we
define the extension FP of this family to S:

FP : S −→ S
s 7−→ FP (s)

with

FP(s)(p) = Fp(s(p))

FP is said to be Cr if every Fp is Cr and if for any bounded subset B of R
n

we have:

sup
x∈B×p∈P

‖dFp(x)‖ < ∞

It is important to notice that we won’t have to specify the latter maps, not
even to suppose that they are oscillators. In order to prove our results we
will only need to assume that they are periodic-injective, which is a weak
assumption (see section 2.5).

Coupler on P Now, we consider how to couple the differential systems
given by FP . Usually [18], the coupling is made by adding to s′(t, p) a
quantity that depends on s(t, .):

s′(t, p) = Fp(s(t, p)) + c(s(t, .))(p) (1)

where c(s(t, .)), an element of S, is a function of the global state of P . This
is what we naturally name a coupling in the final space. Another way of
coupling is in the initial space:

s′(t, p) = FP

(
c
(
s(t, .)

))
(p)

Coupling in the final space or in the initial space may have different interpre-
tations. The first coupling method could be seen as physical exchanges and
the second one as an instantaneous exchanges (for instance an high speed
information exchange which could be modeled as instantaneous with regards
to the system time scale). But, in most situations, those two couplings are
equivalent. Indeed, the right-hand-side term of the equation (1) has the
following shape:

F (x) + ε
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so that, as soon as this r.h.s. stays in the range of the map F , one can find
a vector y:

F (x) + ε = F (y)

writing δ = y − x we have:

F (x) + ε = F (x + δ)

In fact, this case is quite general as ε is usually small, and even if it is not,
we will study only periodical trajectories occurring essentially around limit
cycles surrounded by the range of F . For these reasons, we will concentrate
on the last kind of coupling. Now we give technical details about our method
of coupling, by the way of a coupler:

C : S −→ S
s 7−→ C(s)

This coupler is said to be linear if there is an application c satisfying:

c : R
n × P −→ L (S, Rn)
(x, p) 7−→ c(x, p)

such that for all p ∈ P :

C(s)(p) = c (s(p), p) .s

In other words, depending on the cell p (e.g. its spatial position) and on
its state s(p), the coupling compute linearly (as a mean) the pseudo-state
c (s(p), p) .s dictating the evolution of this cell, instead of the state s(p) which
is used if the cell is isolated (without coupling).
Sometimes the following point of view, the operator one, is be useful:

Lc : S −→ L(S,S)
s 7−→ Lc(s)

where:
[Lc(s).s](p) = c (s(p), p) .s

If Lc is constant, the coupler is said to be uniformly linear and is naturally
associated to an element of L(S,S). The case of uniformly linear coupler
is the simpler one: the way a cell is influenced by its environment does not
depends on its proper state. It is an approximation of what happens in real
systems, but this simplification allows us to reach very global results.

To get familiar with the notion of coupler, let’s write out how it transforms
a trajectory of P . If s ∈ T , the effect of a coupler on this trajectory is:

C(s)(t, p) = c(s(t, p), p).s(t, .)
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2.4 Tissular coupling

We are now able to define a tissular coupler. Given a population P , a coupler
C is said to be a tissular coupler if the associated application c satisfies:

c(x, p).s =

∫

P

cd(x, p, q).s(q)dq + ca(x, p).s(p)

where cd and ca are continuous and are respectively called diffuse part and
atomic part of c (and of C). The diffuse part represents the influence of the
environment (the whole population) on the behavior of the cell p. The atomic
part models the self-influence of p. We could have merged this into a unique
linear operator, containing a Dirac impulse, but for both comprehension and
manipulation purposes we think that this shape is better and less theoretical.

Finally, we can define a tissular coupling by specifying the equation that
any solution should satisfy. Given a population P , a family of applications
{Fp}P and a tissular coupler C, the tissular coupling (P , FP , C) is defined
by the equation:

s′ = FP ◦ C(s) (2)

in other words, any solution s satisfies for all (t, p) ∈ I × P :

s′(t, p) = Fp

(∫

P

cd(s(t, p), p, q).s(t, q)dq + ca(s(t, p), p).s(t, p)

)

We naturally end this introduction of the tissular coupling with a result
on the existence of solutions, which is proved in a classical way [5]:

Theorem 2.1. Suppose FP is C1 and cd and ca are locally lipschtizian in
their first variable. Given any initial condition (t0, s0) in I × S, the tissular
coupling given by equation (2) admits a unique maximal solution.

We can then go further and begin to work on the heart of our matter.

2.5 Last step: Problem Reduction

Our first step in reducing the problem was to handle coupling at the source.
Now, with some natural assumption made on FP we will reduce the problem
to a structural one.

Proposition 2.2. Let (P , C, FP ) be a tissular coupling and τ a period on P.
Let’s assume that there exists a family {Up}p∈P

of open subsets of R
n such

that for all p ∈ P Fp is injective on Up. If s is a τ-periodic solution of the
coupling such that for all p ∈ P, s(I, p) ⊂ Up, then s belongs to the following
set:

A(τ, C) = T ∞ ∪ C−1(T ∞)
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Thus, we have drastically reduced the problem: under the assumptions
of the proposition 2.2 we can get rid of FP and only work with the coupler
C and the space of periodic solutions.
The thrid section exhibits the main results of our work on finite populations,
as the fourth one will concern continuous population.

3 Synchronization of finite population

Here we focus on a coupler in the case of a finite population P :

P = {p1, . . . , pk}

If C is a tissular coupling, the diffuse part is sufficient to define it, thus we
can also write it for x ∈ R

n as:

cd(x, pi, pj) = cij(x) ∈ L (Rn)

Lc adopts naturally a matrix shape:

Lc(x) =




c11(x) . . . c1k(x)

...
. . .

...
ck1(x) . . . ckk(x)





We point out that each cij(x) is a linear application, an element of L (Rn, Rn)
(to be precise and to anticipate on some theoretical generalizations of the
tissular coupling, we note that Lc(x) is the matrix of a linear application on
(Rn)k seen as a module on the ring L (Rn, Rn)).
The image of the motion s(., pi) is thus given by:

C(s)(t, pi) =

k∑

j=1

cij(s(t, pi))s(t, pj)

The kind of assumptions we are about to make on C involve linear properties.
Especially we work with the rank of Lc and of sub-matrices. Thus, if J ⊂
{1, · · · , k} contains l elements, we write Ic = {1, · · · , k}−J . If M = (mij) is
an k× k matrix, we define M I as the l× (l− k) matrix which coefficients are
the mi,j for (i, j) ∈ I × Ic. For s ∈ S or T we write sI the vector [s(pi)]i∈I

or [s(., pi)]i∈I (see figure 1).
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Figure 1: Matrix and vectors associated to a subset J of {1, · · · , k}.

Let C a coupler on P . C is said to be reducible if there exists x ∈ R
n

and a non trivial part J of {1, · · · , n} such that LJ
c (x) has non-invertible

coefficients (as elements of L (Rn, Rn)). C is non-reducible if it’s not re-
ducible.

The next step consists in ”cleaning” the space of periodic solutions in
order to exclude some degenerated and/or trivial cases. First the trivial
periodic solutions: Any s in A(τ, C) is said to be non trivial if for all p ∈ P ,
neither s(., p) and c(e)(., p) are constant maps.

Now we consider some trajectories that are degenerated in a stronger
sense than the one of trivial trajectories: our aim is to avoid periodic trajec-
tories which oscillating behaviors are the only consequences of the coupler’s
dynamic (we focus on the synchronization of interacting oscillating systems,
not on some systems oscillating due to an external force, and we have already
mentioned that this kind of external force can be included in the population
itself). Such trajectories are those for which there exists a state b satisfying:

Lc

(
s(t, .)

)(
s(t, .) − b

)
= 0

In terms of matrices, we then have for the cell pi:

k∑

j=1

cij

(
s(t, pi)

)(
s(t, pj) − b(pj)

)
= 0

In other words, the preceding equality shows that the vector [s(., p1), · · · , s(., pk)]
is not linearly free, according to the compounds of Lc

(
e(t, .)

)
. These obser-

vations lead us to the following definition: Let P be a finite population, C a
tissular coupler on P and τ a period on P . A non-trivial element s ∈ A (τ, C)
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is said to be C-free if for any b ∈ S and for any non-trivial J ⊂ {1, · · · , k}
we have:

Lc

(
s(t, .)

)J
.
(
s(t, .) − b

)Jc

6= 0

In fact, we can prove that, when C is non-reducible, a non C-free element
is degenerated because it comes from a solution of a system on a population
which cardinal is strictly lower than k.

Here is the first step to frequencies locking as it deals with dependency
of periods [5]:

Theorem 3.1. If C is non-reducible and if A (τ, C) contains a non-trivial
and C-free element, then τ (P) is a dependent set.

Finally we extend this result to a more powerful conclusion. In order
to prove synchronization, we must add a last condition on C. This is done
introducing the following definition: Let C be a uniformly linear coupler on
P . C is said to be strongly non-reducible if it is non-reducible and if for all
x ∈ R

n and all non trivial subset J ⊂ {1, . . . , k} with more than k
2 elements,

LJ
c (x) is injective. Remark Because of its dimensions, LJ

c (x) can’t be in-
jective if J contains less than k

2 elements.

We can now state our main result [5]:

Theorem 3.2. Let P be a finite population of cardinal k, C a tissular cou-
pler, uniformly linear and strongly non-reducible and τ a period on P. Sup-
pose s ∈ A (τ, C) isn’t trivial and is non-reducible. If more than k

2 cells have
the same period then all cells have the same period.

4 Synchronization in the case of an infinite

population

4.1 Measures associated to an uniformly linear coupling

In the case of an infinite population we need new tools, especially in order to
measure the sets related to a period introduced in section 2.2. But this cannot
be done independently from the coupler itself. This is why we introduce the
following family of measures on P , one for each cell p:

λp(B) =

∫

B

‖cd(p, q)‖ dq

We recall that the support of a measure is defined to be the largest closed
subset of P for which every open neighborhood of every cell of the set has pos-
itive measure. Let Sp stand for the support of cd(p, .), this support indicates
where the measure λp lives and then which cells influence p in its evolution.
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In virtue of cd’s continuity, we know that for any measurable subset B of P ,
the following equivalence holds (with λ the Lebesgue measure):

λp(B) > 0 ⇔ λ(B ∩ Sp) > 0

Moreover, in the case of a diffuse coupler, this family of measures is uniformly
absolutely continuous with respect to λ:

Lemma 4.1. If C is a uniformly linear and diffuse coupler, then there exists
a constant mC > 0 such that for any measurable subset B of P we have:

λp(B) ≤ mCλ(B), ∀p ∈ P

4.2 Useful subsets of A(τ, C)

The kind of systems we want to handle comes from differential equations
studied near limit cycles, so, as in the finite population case, we need to
avoid some degenerated trajectories. In order to do so, if s ∈ T τ , we define
the set of all cells on which the variations of s are not negligible. Precisely,
if ε > 0, we define the following set:

V ε(s) =

{
p ∈ P

∣∣∣∣ inf
c∈Rn

‖s(., p) − c‖ > ε

}

We call ε-pseudokernel of C the set:

Kerε(C) = {s ∈ T τ , V ε(C(s)) 6= P}

An element in the ε-kernel of C contains, for at least one cell p, an appli-
cation s(., p) which image under C is almost constant. Those solutions are
out of interest here because they can be seen as solutions of a system on a
sub-population of C. Indeed, for such a p, s′(., p) is negligible and s(., p) is
nearly constant. In other words, we only consider trajectories whose dynam-
ics in each cell is“truly” periodic.

Given a period τ on P , any element s of A (ω, C) and δ > 0, the following
set gathers cells whiose period are “not isolated”, it will be naturally linked
to V ε(s):

Rδ
C(τ) =

{
p ∈ P

∣∣ λp

(
PQ

p

)
> δ

}

If p ∈ Rδ
C(τ), there is a set, which measure is at least δ, consisting of cells

with periods commensurable with τ(p). Moreover, those cells are situated in
the neighborhood of p defined by Sp.
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4.3 Ergodic alternative

As in the finite case, we will use this alternative within the following form [5]:

Proposition 4.1. Let τ be a period on P and C a tissular diffuse coupler,
then for all s in A (τ, C) we have:

C(s)(t, p) =

∫

P
Q
p

cd(s(t, p), p, q)s(t, q)dq

+

∫

P−P
Q
p

cd(s(t, p), p, q)τ(q)ŝ(0, q)dq

This results clearly shows that the ergodic theorem acts like a filter on
periodic solutions, separating commensurable periods from the others. It is
a key element of our proofs.

4.4 Synchronization with uniformly linear diffuse tissu-

lar coupler

As it is suggested in the title, in this section the kind of coupler we handle
has the following shape:

C(s) =

∫

P

cd(., q)s(q)dq = LC .s

Here is the first result explaining the link between the sets V and R. It will
be generalized in the next result:

Proposition 4.2. Let τ be a period on P, for any s in A (τ, C) the following
inclusion holds:

V 0 (C(s)) ⊂ R0
C(τ)

Noticing that the elements of A (τ, C) are uniformly bounded on I, we can
then consider ‖s‖ = supI×P ‖s(t, p)‖ and use it to acquire the generalization:

Proposition 4.3. Let τ be a period on P, for any s in A (τ, C) we have:

V ε(C(s)) ⊂ R
ε

‖s‖

C (τ)

In particular, as P is a compact set, we can state:

Corollary 4.1. Let τ be a period on P and suppose there exists ε > 0 and
e ∈ A (τ, C) − Kerε(C), then there exists a finite number of cells p1, . . . , pj

such that:

P =

j⋃

i=1

PQ
pi
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The latter result leads us to this somewhat different result:

Corollary 4.2. Let τ be a period on P and suppose there exists ε > 0 and
e ∈ A (τ, C) − Kerε(C), then there exists a sequence {pi}i∈N such that:

PQ
pi

=
⋃

i

P1
pi

These results indicate a great reduction of the problem as they show that
the periods cannot be arbitrary scattered. We are now able to prove the main
result of this section. In order to handle only true cases of synchronization,
we add an assumption on τ so that we won’t have to deal with sub-period
stuff:

Definition 4.1. τ is said to be simple if 2 Conv(τ(P)) ∩ Conv(τ(P)) = ∅.

Under this hypothesis, we have the following global synchronization re-
sult:

Theorem 4.1. Suppose τ is a simple period on P, if there exists ε > 0 and
s in A (τ, C) − Kerε(C), then τ is a constant map on P.

Remark: To prove this result, we used the continuity of τ , deduced from
the one of cd. Nevertheless, leaving this assumption aside, we can get to an
interesting result which could lead to generalization. We only need corollary
4.2 (we point that its validity does not directly depends on cd’s continuity
but on the uniform absolute continuity of the family λp and on the fact that
‖cd(., .)‖ is uniformly bounded on P2).

Definition 4.2. The set of point with isolated period, written P0, is defined
as:

P0 =
{
p ∈ P , λp

(
P1

p

)
= 0

}

The following proposition shows that under minimal assumptions, there
are almost no points with isolated period:

Theorem 4.2. Suppose there exists a partition as in the corollary 4.2 and
that

P ⊂
⋃

p∈P

Sp

then λ(P0) = 0.

The latter result gives a global information that is verified in a general
case: almost no cell has an isolated period. Those two results are really dif-
ferent, the first one is less theoretical but refers to stronger hypotheses than
the second one, which comes under the field of measure theory.
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4.5 Synchronization with uniformly linear tissular cou-

pler

Now, we consider the general case, leaving aside the assumption that C

is diffuse. Thus, in this last and short section, we consider a uniformly
linear tissular coupler on P (ca needs no more to be zero). Like in the
finite population case, the first step consists in detecting and eliminating
degenerated solutions:

Definition 4.3. Let s ∈ T (I, Eb) and ε ≥ 0, s is said to be an ε-eigenvector
(for C) if:

C(s) − ca ∈ Kerε(C)

An ε-eigenvector is therefore a s which contains a map e(., p) uniformly
near a hypothetic eigenvector of C for the eigenvalue ca(p).

Finally, here is the generalization of theorem 4.1:

Theorem 4.3. Let τ be a simple period on P and ε > 0. If there exists
s ∈ A (τ, C) which is not an ε-eigenvector, then τ is a constant map.

5 Conclusion

In this work we have built a general framework, the tissular coupling, to han-
dle a wide variety of coupled systems, and therefore a wide class of complex
systems. We focused on an emergent property of those dynamical systems:
synchronization, and precisely frequencies locking. We used the notion of
tissular coupling to show that the synchronization issue may be addressed
differently. Usually one observes solutions of particular coupled systems and
shows that within suitable conditions synchronization must occur. Those
results are often qualitatively dependent of the studied systems and do not
stand in the general case. We tried to change our point of view and to bring
completing results. These are less precise than usual ones as we don’t prove
that synchronization ultimately happens. Instead, we consider the problem
at its end: if one supposes that coupled systems oscillate, then they must
be synchronized. The loss in time evolution informations is compensated
by very general results, almost independent from the individual differential
systems to be coupled. We believe that this complementary approach of fre-
quencies locking will lead to future developments as it brings about many
unused mathematical tools. Other examples of the use of tissular coupling
can be found in [5] on emergence of spatial patterns. All those work and
results are seem to prove that tissular coupling will be a prolific framework,
completing what already exists.
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