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FREQUENCY LOCKING IN COUNTABLE CELLULAR SYSTEMS,
LOCALIZATION OF (ASYMPTOTIC) QUASI-PERIODIC

SOLUTIONS OF AUTONOMOUS DIFFERENTIAL SYSTEMS∗

LAURENT GAUBERT†

Abstract. We address the question of frequency locking in coupled differential systems and of
the existence of some quasi-periodic solutions of a certain kind of differential systems. Those systems
are named “cellular systems” quite generally as they deal with countable numbers of coupled systems
in some general Banach spaces. Moreover, the inner dynamics of each subsystem does not have to
be specified. We reach some general results about how the frequency locking phenomenon is related
to the structure of the coupling map. Those results can be restated in terms of localization of a
certain type of quasi-periodic solution of differential systems that may be seen as cellular systems.
This paper gives some explanations about how and why synchronized behaviors naturally occur in a
wide variety of complex systems.
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1. Introduction. Synchronization is an extremely important and interesting
emergent property of complex systems. The first example found in the literature
goes back to the 17th century with Huygens’ work [11],(see also [2]. This kind of
emergent behavior can be found in artificial systems as well as in natural ones and at
many scales (from individual cells to whole ecological systems). Biology abounds with
periodic and synchronized phenomena, and the work of Prigogine shows that such be-
haviors arise within specific conditions: a dissipative structure generally associated
with a nonlinear dynamics [20]. Biological systems are open, evolve far from ther-
modynamic equilibrium, and are subject to numerous regulating processes, leading
to highly nonlinear dynamics. Therefore periodic behaviors appear (with or without
synchronization) at any scale [21]. More generally, life itself is governed by circadian
rhythms [9]. Those phenomena are as much attractive as they are often spectacular:
from cicada populations that appear spontaneously every ten or thirteen years [10]
or networks of heart cells that beat together [17] to huge swarms in which fireflies,
gathered in the same tree, flash simultaneously [3]. This synchronization phenomenon
occupies a privileged position among emergent collective phenomena because of its
various applications in, e.g., neuroscience, ecology, and earth science, [28, 26, 16],
as well as in the field of coupled dynamical systems, especially through the notion
of chaotic systems’ synchronization [18, 7] and the study of coupled oscillators [13].
This wide source of examples leads the field to be highly interdisciplinary, from pure
theory to concrete applications and experiments.

The classical concept of synchronization is related to the locking of the basic
frequencies and instantaneous phases of regular oscillations. One of the most suc-
cessful attempts to explore this emergent property is due to Kuramoto [14, 15]. As
in Kuramoto’s work, these questions are usually addressed by studying specific kinds
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2 LAURENT GAUBERT

of coupled systems (see, for instance, [5, 22, 8]). Using all the classical methods
available in the field of dynamical systems, researchers study specific trajectories of
those systems in order to get information on possible attracting synchronized states
[29, 13, 22, 19, 8, 12].

The starting point of this work initiated in [6] was the following question: “Why
is synchronization such a widely present phenomenon?” In order to give some math-
ematical answer to this question, the first step is to build a model of coupled systems
that is biologically inspired. This is done in the second section: after describing some
basic material, we define the terms cellular systems and cellular coupler. If one would
summarize the specificities of a cellular system, one could say that each cell (subsys-
tem) of a cellular system receives information from the whole population (the coupled
system) according to some constraints:

• a cell has access to linear transformations of all the others cells’ states;
• the way this information is gathered depends (not linearly) on each cells’ state
itself.

In other words, a cell interprets its own environment via the states of the whole
population and according to its own state.

It’s a bit surprising that, despite this model’s arising very naturally, it gives a good
framework for addressing the main question. Indeed, in the third section we describe
a localization result concerning some periodic and asymptotically periodic trajectories
of cellular systems. It exhibits some links between the coupler’s properties and the
structure of periodic trajectories. This result insures that, in most cases, frequencies
are locked.

The fourth section gives some example of applications to classical systems, as well
as some general results that may be proved using this technique.

Moreover, as synchronization is strongly related to the more abstract field of
dynamical systems, some results go out of the scope of coupled systems. If one thinks
about the presence of attractors in a differential system, one may, for example, classify
those as one of the following:

• point attractor,
• limit cycle,
• limit torus.

Those attractors can be related to coupled systems in an obvious way: roughly
speaking, a point attractor may be seen as a solution of coupled systems for which each
of the subsystems has a constant behavior. Similarly, a limit cycle may be thought of
as the situation in which every subsystem oscillates, all frequencies among the whole
system being locked. A limit torus is a similar situation which differs from the previous
one by the fact that the frequencies are not locked (noncommensurable periods of a
quasi-periodic solution of the whole coupled system). Hence, the three previous cases
may be translated into the coupled dynamical systems context as follows:

• point attractor ↔ constant trajectories;
• limit cycle ↔ periodic trajectories, locked frequencies;
• limit torus ↔ periodic trajectories, unlocked frequencies.

Therefore, we deduce some results about the localization of solutions of the third
type, quasi-periodic solutions, using the point of view of coupled dynamical systems.
The results of this fourth section may help us to understand why the second case
is the most observed in natural systems, which may be seen as coupled dynamical
systems (many levels). Indeed, the section shows how the cellular systems point of
view may be applied to a wide class of differential systems in order to address some
of those questions with algebraic tools (as our results rule out the existence, in most



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FREQUENCY LOCKING IN COUNTABLE CELLULAR SYSTEMS 3

cases, of solutions with noncommensurable periodic coordinates).

2. Basic material and notation. As our model is inspired by cellular tissues,
some terms clearly come from the vocabulary used to describe those kinds of complex
systems.

2.1. Model of population behavior. Here are the basics of our model.
A population I is a countable set, so we may consider it as a subset I ⊂ N.

Moreover, only the cardinality of I matters, so I may be chosen as an interval of
integers. Elements of I are called cells.

We suppose that the systems we want to study are valued in some Banach spaces.
Thus, for any i ∈ I, (Ei, ‖.‖i) is a Banach space, and the state space of I is the vector
space S =

∏
i∈I Ei.

We will sometimes identify Ei with∏
j<i

{0} × Ei ×
∏
j>i

{0} ⊂ S

and then consider it as a subspace of S.
Moreover, S has the natural structure of a module on RI ; given λ : I → R and

x ∈ S, one may define λ.x as

λ.x = (λ(i).xi)i∈I .

We denote by S∞ the space of uniformly bounded states:

S∞ =

{
x ∈ S, sup

i∈I
‖xi‖i < ∞

}
.

This subspace will sometimes be useful as, embodied with the norm ‖x‖∞ = supi∈I ‖xi‖i,
it’s a Banach space, allowing the classic Picard–Lindelöf theorem to be valid.

Given an interval Ω ⊂ R, a trajectory x of I is an element of C∞ (Ω,S). Such an
x is then described by a family of smooth applications (xi)i∈I such that ∀i ∈ I

xi : Ω −→ Ei,
t 	−→ xi(t).

The space of trajectories on I is denoted by T .
Each cell i is supposed to behave according to an autonomous differential system

given by a vector field Fi : Ei → Ei. Thus, given a family of functions {Fi}i∈I , we
define the vector field FI on S as

FI : S −→ S,
x 	−→ FI(x),

where, for any i ∈ I,

[FI(x)]i = Fi(xi).

A period on I is a map τ : I → R
∗
+. A trajectory x ∈ T is said to be component

τ-periodic (CP(τ)) if, for any i ∈ I, xi is τ(i)-periodic and nonconstant. In that
case, τ(i) is a period of the cell i. The space of such trajectories is written Tτ . If τ
is bounded, a trajectory in Tτ that is not globally periodic is said to be component
τ-quasi-periodic (CQP(τ)).
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Fig. 2.1. Projection of a matrix according to a partition of I.

A trajectory x is said to be asymptotically component τ -periodic (aCP(τ)) if
there exist some y which is CP(τ) and α which vanishes when t → +∞ such that

x = y + α.

In a similar way we define an asymptotically component τ -quasi-periodic trajectory
(aCQP(τ)).

Remark 1. We stress the point that a period of a component periodic trajectory
need not be a minimal period (τ(i) isn’t necessarily a generator of the group of periods
of xi). Nevertheless, the definition of Tτ avoids any trajectory which contains some
constant component (none of the xi can be a constant map), as they may be seen as
degenerate (localized into a “hyperplane” of S).

We recall that a (finite) subset {τ1, . . . , τk} of R is said to be rationally dependent
if there exist some integers l1, . . . , lk not all zero and such that

l1τ1 + · · ·+ lkτk = 0.

Then there exists a unique lowest common multiple (lcm) τ0 for which there exists
n1, . . . , nk such that

n1τ1 = · · · = nkτk = τ0.

An infinite set of real numbers is said to be rationally dependent if any finite subset
is rationally dependent.

Now, any period τ on I defines a equivalence relation on I as

i ∼ j ⇔τ {τ(i), τ(j)} is a dependent set.

Hence we may consider the partition I(τ) of I into equivalence classes (K countable):

I/τ = {Ik}k∈K .

Let M = (mij)(i,j)∈I2 be a matrix indexed on I2; if J = {I1, . . . , IK} is a partition of
I, we define M/J as the projection ofM on the space of matrices with null coefficients
on the I2k (see Figure 2.1):

M/J = [(M/J)ij ](i,j)∈I2
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FREQUENCY LOCKING IN COUNTABLE CELLULAR SYSTEMS 5

with

(M/J)ij =

{
0 if (i, j) ∈ I21 ∪ · · · ∪ I2K ,
mij if not.

If τ is a period on I, we will write M/τ instead of M/(I/τ).
2.2. Cellular coupler and cellular systems. In this section we build what

we call cellular systems by way of a cellular coupler. Most past work in the field of
synchronization deals with a specific way of coupling dynamical systems: one adds
a quantity (that models interactions between subsystems) to the derivative of the
systems. This leads to equations with the following typical shape (here, there are
only two coupled systems):

x′
1(t) = F

(
x1(t)

)
+G1

(
x1(t), x2(t)

)
,(2.1)

x′
2(t) = F

(
x2(t)

)
+G2

(
x1(t), x2(t)

)
.

The functions G1 and G2 are the coupling functions. The problem is then restated
in terms of phase-shift variables, and efforts are made to detect stable states and to
prove their stability.

Our approach is somewhat different. We study exclusively a way of coupling
where the exchanges are made on the current state of the system. This means that
the coupling quantity applies inside the map F , which leads us to the following type
of equation:

x′
1(t) = F

(
x1(t) +H1(x1(t), x2(t))

)
,(2.2)

x′
2(t) = F

(
x2(t) +H2(x1(t), x2(t))

)
.

Remark 2. We stress the point that those two different ways of handling coupled
systems are quite equivalent in most cases. Indeed, starting with (2.1), as soon as G1

and G2 stay in the range of F (which is likely if the coupling functions are small), we
can rewrite them in the second form of (2.2) involving some functions H1 and H2.

The last kind of coupled system is sometimes studied (for instance, in [12]) but
never broadly. (Indeed, if one wants some quantitative results about convergence of
trajectories, one must work with specific equations and dynamical systems.) Even
in a few papers that are quite general (as the very interesting [25]) some strong
assumptions are made. (In [25] authors deal with symmetric periodic solutions). The
kind of coupled systems we handle are a generalization of that described in (2.2.) Its
general shape is

x′
i(t) = Fi

⎛⎝∑
j∈I

cij(xi(t))xj(t)

⎞⎠ .

Each cell i ∈ I owns its own differential system represented by a map Fi. Hence, all
the dynamical systems are not forcibly identical; they don’t even have the same shape.
Moreover, we won’t assume that they are weakly coupled (as in the classical paper
of Winfree [27]). We simply assume that a cell i “interprets” its own environment by
mean of the functions cij .

Now, before giving the exact definition of a cellular coupler, we recall that S may
be seen as a module on the ring

∏
i∈I L(Ei). (L(A,B) is the space of continuous linear

operators from A to B, written L(A) if A = B.) Then, L(S) has to be understood as
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6 LAURENT GAUBERT

the space of continuous linear operators on S with coefficients in the spaces L(Ei, Ej).
Any M ∈ L(S) may then be written as an infinite (if I isn’t finite) matrix:

M = [mij ](i,j)∈I2, mij ∈ L(Ej , Ei).

In this context, the definition of a cellular coupler on I is as follows.
Definition 2.1. A cellular coupling map on I is a map

c : S −→ L(S),
x 	−→ c(x)

such that the matrix [cij ](i,j)∈I2 satisfies the following:
1. ∀(i, j) ∈ I2, ∀x ∈ S, cij(x)

depends only on xi (so that we may consider it as a map cij : Ei → L(Ej , Ei));
2. ∀i ∈ I, ∀xi ∈ Ei,

∑
j∈I ‖cij(xi)‖i < +∞.

Then, c defines a cellular coupler c̃ on I in the following way:

c̃ : S −→ S,
x 	−→ c(x).x.

We will sometimes use the convenient following notation for the components of
c̃(x):

c̃(x)i = ci(xi).x

(as the cij(x) depend only on xi).
In other words (for the sake of simplicity, we consider only examples with a finite

population), for any x ∈ S, the matrix c(x) has the following shape:

c(x) =

⎡⎢⎣ c11(x1) · · · c1k(x1)
...

. . .
...

ck1(xk) · · · ckk(xk)

⎤⎥⎦ =

⎡⎢⎣ c1(x1)
...

ck(xk)

⎤⎥⎦ ∈ L(S).

Then

c̃(x) = c(x).x =

⎡⎢⎣ c11(x1).x1 + · · ·+ c1k(x1).xk

...
ck1(xk).x1 + · · ·+ ckk(xk).xk

⎤⎥⎦ =

⎡⎢⎣ c1(x1).x
...

ck(xk).x

⎤⎥⎦ ∈ S.

Remark 3. The second property in the previous definition insures a bounded
convergence property on the ci in the following sense: let’s choose xi ∈ Ei and
(yk)k∈N a sequence in S∞ that converges to y ∈ S∞; then

lim
k→+∞

ci(xi).y
k = ci(xi).y.

Moreover, we may also deduce that the ci are continuous on Ei in the following way:
if a sequence (xk

i )k∈N in Ei converges to xi ∈ Ei, then for any y ∈ S∞

lim
k→+∞

ci
(
xk
i

)
.y = ci (xi) .y.

Now we can define a cellular system, as follows.
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Definition 2.2. Let FI be a vector field on S given by a family {Fi}i∈I of vector
fields on the Ei. Let c̃ be a cellular coupler on I. (I, FI , c̃) is called a cellular system.
A trajectory of this system is a trajectory x ∈ T that satisfies

x′ = FI ◦ c̃(x) = FI
(
c(x).x

)
;

in other words,

∀i ∈ I, ∀t ∈ Ω, x′
i(t) = Fi

⎛⎝∑
j∈I

cij(xi(t)).xj(t)

⎞⎠
= Fi

(
ci(xi(t)).x(t)

)
.

This equation may be naturally interpreted in biological terms: the cell i behaves
according to a mean of the states of all other cells xj , but only its state defines how
this mean is computed (the cell interprets its own environment), and this link state ↔
interpreting function has no reason to be linear in xi.

In the next section we start by exposing algebraic links between a cellular coupler
and a component periodic trajectory, and then we turn to our localization lemma.

3. Localization lemma. The forthcoming result can be used in many ways
and generalized as, for the sake of simplicity, we did not use the weakest assumptions
under which it holds. (For example, the series convergence in the proof can be insured
in many other contexts.)

Lemma 3.1. Let (I, FI , c̃) be a cellular system and τ a period on I. Let U ⊂ S
on which FI is injective. If x ∈ T τ is a CP( τ) trajectory of the cellular system that
satisfies

1. x(Ω) ⊂ S∞,
2. c̃(x)(Ω) ⊂ U ,

then there exists b ∈ S∞ such that for any t ∈ Ω

x (t)− b ∈ ker [c(x(t))/τ ] .

Remark 4. Note that the first condition on x is useless if I is finite.
The previous result is not very practical as the right-hand side involves the tra-

jectory x itself, which is unknown. As there is no ambiguity, we define the kernel of
pI(τ)(c) as

ker (c/τ) =
⋃
x∈S

ker (c(x)/τ) .

Hence we may give a weaker version of the previous lemma.
Corollary 3.2. Under the conditions of Lemma 3.1 there exists b ∈ S such that

x (Ω)− b ∈ ker (c/τ) .

Before laying out the proof, it may be interesting to explain how we’ll use this
result: let’s suppose that a cellular system has a component periodic trajectory; if
this trajectory is not component quasi-periodic, then the partition I/τ is trivial, and
ker (c/τ) is the whole space S. On the other hand, if this trajectory is component
quasi-periodic, then I/τ is not trivial and ker (c/τ) may be smaller than S. In the most
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illustrative case, ker (c/τ) = {0}, so that x = b is a constant trajectory. (Let’s recall
that a CP(τ) has no constant components.) This why we speak of localization. In the
next section, among other things, we will study some simple cases where ker

(
pI(τ)(c)

)
is small enough to insure us that there’s no component quasi-periodic trajectory.

Proof of Lemma 3.1. First, let’s check that c̃(x) is CP(τ). For any i ∈ I, x′
i is

τ(i)-periodic and nonconstant for xi. Letting Ui = U ∩ Ei, Fi has to be injective on
Ui. Hence, as x is a trajectory of the cellular system, Fi (c̃(x)i) must be periodic, and
then c̃(x)i is τ(i)-periodic. Therefore, c̃(x) is CP(τ).

Now, according to the partition I(τ) = {Ik}k∈K defined by τ (see section 2.1),
let k ∈ K and i ∈ Ik. For any M ∈ N we define the following set:

IM
k = Ik ∩ �0,M�.

The set τ
(
IM
k

)
is now a finite dependent set, so that we can consider its lcm τMk .

Now, for any j ∈ IM
k , xj and c̃(x)j are τMj -periodic, so that, for any integer N ,

c̃(x)i(t) =
1

N + 1

N∑
l=0

c̃(x)i
(
t+ lτMk

)
=

1

N + 1

N∑
l=0

ci
(
xi

(
t+ lτMk

))
.x
(
t+ lτMk

)
=

1

N + 1

N∑
l=0

ci
(
xi(t)

)
.x
(
t+ lτMk

)
=

1

N + 1

N∑
l=0

ci
(
xi(t)

)
.

[
1IM

k
.x
(
t+ lτMk

)
+ 1Ik−IM

k
.x
(
t+ lτMk

)
+ 1�IM

k
.x
(
t+ lτMk

)]
= ci

(
xi(t)

)
.

[
1IM

k
.x (t) +

1

N + 1

N∑
l=0

(
1Ik−IM

k
.x
(
t+ lτMk

))

+
1

N + 1

N∑
l=0

(
1�IM

k
.x
(
t+ lτMk

))]

= ci
(
xi(t)

)
.
[
1IM

k
.x (t)

]
ci
(
xi(t)

)
.

[
1Ik−IM

k
.

(
1

N + 1

N∑
l=0

xj

(
t+ lτMk

))]

+ ci
(
xi(t)

)
.

[
1�Ik

.

(
1

N + 1

N∑
l=0

xj

(
t+ lτMk

))]
.

From Remark 3 it’s easy to show that one has the following limits for the two first
lines of the previous equation:

lim
M→+∞

ci
(
xi(t)

)
.
[
1IM

k
.x (t)

]
= ci

(
xi(t)

)
.x (t) ,

lim
M,N→+∞

ci
(
xi(t)

)
.

[
1Ik−IM

k
.

(
1

N + 1

N∑
l=0

xj

(
t+ lτMk

))]
= 0.
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Now, regarding the last line, as for all j ∈ �Ik, τMk and τ(j) are noncommensurable.
If we denote by τ ′j the minimal period of xj (generator of its group of periods), as

τ(j) = njτ
′
j for a certain integer nj, τ

M
k and τ ′j are also noncommensurable. Therefore,

the sequence
(

t+lτM
k

τ ′
j

)
l∈N

is equidistributed mod 1, and we may apply some classic

ergodic theorem (see, for instance, [24, 4]) and write

lim
N→+∞

1

N + 1

N∑
l=0

xj

(
t+ lτMk

)
=

1

τ ′j

∫ τ(j)

0

xj(s)ds =
nj

τ(j)

∫ τ(j)

0

xj(s)ds.

We can now define the state b as

b = [bj ]j∈I , bj =
nj

τ(j)

∫ τ(j)

0

xj(s)ds.

Applying Remark 3 once again, we find that

lim
N→+∞

ci
(
xi(t)

) [
1�Ik

.

(
1

N + 1

N∑
l=0

x
(
t+ lτMk

))]
= ci

(
xi(t)

) [
1�Ik

.b
]
;

hence, we have shown that

c̃(x)i(t) = ci
(
xi(t)

)
.
[
1IM

k
.x (t)

]
+ ci

(
xi(t)

) [
1�Ik

.b
]
.

However, obviously, from the beginning we had

c̃(x)i(t) = ci
(
xi(t)

)
.
[
1IM

k
.x (t)

]
+ ci

(
xi(t)

) [
1�Ik

.x(t)
]
,

so that

ci
(
xi(t)

) [
1�Ik

.x(t)
]
= ci

(
xi(t)

) [
1�Ik

.b
]
.

The previous work can be done for any i which belongs to Ik, and for any k ∈ K;
hence we can conclude using our notation:(

c
(
x(t)

)
/τ
)
(x(t)− b) = 0,

which is exactly what we claimed.
In order to study the synchronization phenomenon, we need to extend the previous

result to trajectories that converge to component (quasi-) periodic trajectories. The
structure of the previous result and the way it’s been proved make this extension quite
easy, as follows.

Lemma 3.3. Let (I, FI , c̃) be a cellular system and τ a period on I. Let U be a
closed subset of S on which FI is injective. Let x be an aCP( τ) trajectory

x = y + α, y ∈ T τ , lim
t→+∞α(t) = 0

such that
1. x(Ω) ⊂ S∞;
2. c̃(x)(Ω) ⊂ U ;
3. x′ is aCP( τ) (or equivalently: limt→+∞ α′(t) = 0).
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Then there exists b ∈ S∞ such that for any t ∈ Ω

y (t)− b ∈ ker [c(y(t))/τ ]

and also

y (t)− b ∈ ker [c/τ ] .

Proof. First, let’s prove that c̃(x) is aCP(τ). Letting i ∈ I, as x is a solution to
the cellular system, one has

x′
i(t) = y′i(t) + α′

i(t) = Fi (c̃(x(t))i) .

As yi is τ(i)-periodic, y
′
i is τ(i)-periodic; hence, for any l ∈ Z,

y′i(t) + α′
i(t+ lτ(i)) = Fi(c̃(x(t+ lτ(i)))i).

As αi vanishes when t → +∞, we know that the right-hand side (rhs) has a limit
when t → +∞. By hypothesis, Fi is injective on Ui, which is a closed set. This
insures that x(t + lτ(i))i has a limit as t → +∞; we name this limit zi(t). Now, for
any k ∈ Z, one has

y′i(t+ kτ(i)) + α′
i(t+ (l + k)τ(i)) = Fi(c̃(x(t+ kτi + lτ(i)))i),

so that, letting l → +∞, we obtain

y′i(t) = y′i(t+ kτ(i)) = Fi(c̃(zi(t+ kτ(i)))i).

As Fi is injective, this proves that zi(t+kτ(i)) = zi(t); zi is then τ(i)-periodic. Hence,
one may write

c̃(x) = z(t) + β(t),

where z is CP(τ) and limt→+∞ β(t) = 0.
Now, we can write, if i ∈ Ik (for the sake of simplicity, we won’t repeat the

arguments involving some bounded lcm used in the previous proof),

1

N + 1

N∑
l=0

c̃(x)i (t+ lτ(i))

=
1

N + 1

N∑
l=0

ci (xi (t+ lτ(i))) . (x (t+ lτ(i)))

=
1

N + 1

N∑
l=0

ci (xi (t+ lτ(i))) . (yi (t+ lτ(i)) + αi (t+ lτ(i)))

=
1

N + 1

N∑
l=0

ci (xi (t+ lτ(i))) . (yi (t+ lτ(i))) + o(1)

=
1

N + 1

N∑
l=0

ci (yi (t) + αi (t+ lτ(i))) . (1Ik
.yi (t))

+
1

N + 1

N∑
l=0

ci (yi (t) + αi (t+ lτ(i))) .
(
1�Ik

.yi (t)
)
+ o(1).
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Using the last part of Remark 3, as liml→+∞ αi (t+ lτi) = 0 we have

1

N + 1

N∑
l=0

c̃(x)i (t+ lτ(i))

=
1

N + 1

N∑
l=0

ci (yi (t)) . (1Ik
.yi (t))

1

N + 1

N∑
l=0

ci (yi (t+ lτ(i))) .
(
1�Ik

.yi (t)
)
+ o(1)

and

lim
N→+∞

1

N + 1

N∑
l=0

c̃(x)i (t+ lτ(i)) = c̃(y)i (t) .

Using the same kind of arguments as in the previous proof, we find a vector b ∈ S∞
satisfying

c̃(y)i (t) = ci (yi(t)) .
[
1Ik

.y(t) + 1�Ik
.b
]
,

which leads to the conclusion.

This result may have an interesting interpretation: let x be a solution of a cellular
system that converges toward a quasi-periodic solution (i.e., x is aCP(τ) and converges
toward a nonperiodic CP(τ) trajectory y). Let us assume that ker [c/τ ] = {0}. (If
we think of randomly chosen coupler, this is the generic case.) From what precedes
we know that y is, in fact, a constant solution, and the behavior of x illustrates
the oscillation death phenomenon (quenching). For example, in the case of coupled
oscillators, if the natural frequencies of all oscillators mismatch in a way that only
quasi-periodic solutions could occur, the couplers’ properties may force this quenching
phenomenon (ruling out those solutions from existing).

In the next section we give some examples of results based upon those lemmas.

4. Applications.

4.1. Simple examples of applications to classical differential or coupled
systems. In this section, we give two examples of classical differential systems to
which the cellular systems point of view may be applied. We start off with some
Stuart–Landau oscillators.

4.1.1. Stuart–Landau oscillators. As this is the first example, for the sake
of simplicity we consider a specific kind of coupling Stuart–Landau oscillators. Let
us write the equations that drive an array of Stuart–Landau oscillators with nearest
neighbor coupling:

z′j = (G+ iωj)zj −G|zj |2zj + κ(zj − zj+1),

where N is the number of oscillators, j ∈ {1, . . . , N} (j = N +1 means j = 1), zj is a
complex variable describing the state of the jth oscillator, G a parameter of nonlinear
gain, wj the natural frequency, and κ the coupling strength.

First, we want to give this system the shape of a cellular system. This is quite
easily done with I = {1, . . . , N}, Ej = C (equivalently Ej = R2), and the coupler at
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point z = (z1, . . . , zN ):

c(z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(z1) −κ 0 · · · 0 −κ
−κ a(z2) −κ 0

0 −κ
. . .

. . .
...

...
. . . a(zj)

. . . 0

0
. . .

. . . −κ
−κ 0 · · · 0 −κ a(zN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with

a(z) = G
(
1− |z|2

)
+ iωj + κ.

Now, let us assume that for a period τ on I, z is CQP(τ). (Thus, each component of z
is periodic, but the set of all periods is not dependent.) We know from the localization
lemma that there exists a constant state b ∈ S such that

z(t)− b ∈ ker [c(z(t))/τ ] .

Two different cases may occur:
• I/τ = {1, . . . , N} (none of the frequencies are commensurable). In that case
one has

c(z)/τ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −κ 0 · · · 0 −κ
−κ 0 −κ 0

0 −κ
. . .

. . .
...

...
. . . 0

. . . 0

0
. . .

. . . −κ
−κ 0 · · · 0 −κ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

so that, for instance, z1 = b1 + b2 − z2. This leads to a contradiction, as z1
and z2 would have the same period.

• I/τ �= {1, . . . , N}. In that case, at least two cells belong to the same class
of the partition I/τ . In that case, it is easily seen that at least one line of
c(z)/τ contains only one nonzero element (−κ). Thus, there exists k ∈ I that
satisfies

zk = −d;

again, this contradicts our assumptions about periodic motion (they must be
nonconstant).

This quick analysis tells us that if every oscillator has a periodic behavior, all of
them have a common frequency. There are many ways of coupling such an array of
oscillators (see, for instance, [23]), but this example gives a sketch of what may be
done in other cases: the discussion would depend only on the coupling matrix and
the algebraic properties of all the different matrices c/τ .

The next example shows why dealing with different Banach spaces Ei may be
useful: given an index i, if x′

i depends nonlinearly on xj , i and j must belong to the
same cell. This is why, in a general case, one may expect to handle very different
spaces Ei. (In the worst case, there’s only one big cell, and the system does not
benefit from being written as a cellular system.) We enlighten this discussion with a
really simple example.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FREQUENCY LOCKING IN COUNTABLE CELLULAR SYSTEMS 13

4.1.2. Coupled pendulum. If E is a Banach space and F a vector field on E,
we want to see how this differential system may be written as a cellular system. For
instance, one could consider a simple conservative system on E = R4 with a Hamilton
equation given by (see [1])

x′
1 = y1,

y′1 = αx1 − βx3
1 + εx2,

x′
2 = y2,

y′2 = −γx2 + εx1.

The first step is to identify the different cells of I. We must factorize each term in
the equations according to the different variables. For example, the second equation
may be seen as

y′1 = (α− βx2
1)x1 + εx2,

so that the term (α−βx2
1) has to be a part of the coupler we are building. Moreover,

as it’s the equation giving y′1, and as the way a cell computes how it interprets the
population’s state depends only on its own state, x1 and y1 have to belong to the
same cell. In this simple example, the variables x1 and x2 are the only ones that must
be gathered in the same cell. (The x3

1 factor in the equation driving y′1 is not linear
in x1.) In the end, this leads to the following structure of a cellular system:

I = {1, 2, 3}

with the Banach spaces

E1 = R
2, E2 = E3 = R.

As should often be the case, the associated vector fields are just identity maps on Ei,
and the coupler is then

c =

⎡⎣ c11 c12 c13
c21 c22 c23
c31 c32 c33

⎤⎦
with

c11 : E1 −→ L(E1),

(x1, y1) 	−→
[

0 1
α− βx2

1 0

]
,

c12 : E2 −→ L(E2, E1),

x2 	−→
[

0
ε

]
,

c13 : E3 −→ L(E3, E1),

y2 	−→
[

0
0

]
,

c21 : E1 −→ L(E1, E2),
(x1, y1) 	−→

[
0 0

]
,
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c22 : E2 −→ L(E2),
x2 	−→

[
0
]
,

c23 : E3 −→ L(E3, E2),
y2 	−→

[
1
]
,

c31 : E1 −→ L(E1, E3),
(x1, y1) 	−→

[
ε 0

]
,

c32 : E2 −→ L(E2, E3),
x2 	−→

[
−γ

]
,

c33 : E3 −→ L(E3),
y2 	−→

[
0
]
.

Now, before applying some of the previous techniques, we may compute the different
decomposition of c upon different nontrivial partitions of I. Those partitions are

P1 =
{
{1}, {2}, {3

}
}, P2 =

{
{1, 2}, {3}

}
,

P3 =
{
{1, 3}, {2}

}
, P4 =

{
{1}, {2, 3}

}
,

which gives (in order to avoid any confusion, we write as 0ij the i× j null matrix)

c/P1 =

⎡⎣ 022 c12 c13
c21 0 c23
c31 c32 0

⎤⎦ , c/P2 =

⎡⎣ 022 021 c13
012 0 c23
c31 c32 0

⎤⎦ ,

c/P3 =

⎡⎣ 022 c12 021
c21 0 c23
012 c32 0

⎤⎦ , c/P4 =

⎡⎣ 022 c12 c13
c21 0 0
c31 0 0

⎤⎦ .

Now, in order to simplify, we replace the cij ’s that are identically zero by 0, obtaining
the following different matrices:

c/P1 =

⎡⎣ 022 c12 021
012 0 c23
c31 c32 0

⎤⎦ , c/P2 =

⎡⎣ 022 021 021
012 0 c23
c31 c32 0

⎤⎦ ,

c/P3 =

⎡⎣ 0 c12 021
012 0 c23
012 c32 0

⎤⎦ , c/P4 =

⎡⎣ 022 c12 021
012 0 0
c31 0 0

⎤⎦ .

In the end, writing the coupler as an application from S to L(S), one finds these
four different 4 × 4 matrices (the 1 in the dimensions comes from the fact that the
dimension of the first cell P1 is 2):⎡⎢⎢⎣

0 0 0 0
0 0 ε 0
0 0 0 1
ε 0 −γ 0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 1
ε 0 −γ 0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0 0 0 0
0 0 ε 0
0 0 0 1
0 0 −γ 0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0 0 0 0
0 0 ε 0
0 0 0 0
ε 0 0 0

⎤⎥⎥⎦ .
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At this point, we just have to check that the coupler has some good injectivity
properties:

ker (c/P1) ∩E2 = ker (c/P4) ∩ E2 = {0},

ker (c/P2) ∩E3 = ker (c/P3) ∩ E3 = {0}.

So, we may apply Lemma 3.1 and, without any analytic calculus, state that this
differential system may not admit any component quasi-periodic solution (unless one
of the components would be a constant function). In other words, in case there exists
a component periodic trajectory, it must be (globally) periodic.

Remark 5. As we focus mainly on the frequency locking phenomenon, the ex-
istence of a quasi-periodic solution is not the main topic here. That’s why we must
stress the point that this technique does not completely solve the problem of the ex-
istence of quasi-periodic solutions. Indeed, one must check (by other techniques) that
there’s no quasi-periodic solution which isn’t component periodic. More precisely, one
often wants to predict chaotic motions when coupling oscillators (see, for instance,
[1]). What precedes could be of a certain help in an elimination procedure: once one
knows that there is no CQP motion, ruling out, with other techniques, the existence
of other kinds of solutions (such as the periodic solutions), one could predict chaos
arising under certain conditions.

Before presenting some more general results, it seems interesting to show that our
conclusions may hold in a more general case where the cij are less simple.

Proposition 4.1 (generalized coupled pendulum). Let’s consider a differential
system which is driven by the following equations (we don’t rename the functions, e.g.,
γ, that come from the previous model):

x′
1 = a1(x1, y1)x1 + a2(x1, y1)y1 + a3(x1, y1)x2 + a4(x1, y1)y2,

y′1 = a5(x1, y1)x1 + a6(x1, y1)y1,

x′
2 = a7(x2)x2 + u(x2)y2,

y′2 = ε(y2)x1 + a8(y2)y1 − γ(y2)x2 + a9(y2)y2.

If the maps u and ε never vanish, then the system has no component quasi-periodic
solution.

This result does not have to be deep in itself, neither does it have to be the most
general one we could have deduced from the previous discussion. It’s just a sketch
of how one can handle some structural properties of a differential system, applying
Lemma 3.1, without going into deep and specific calculus.

The next section deals with less specific but more theoretical examples.

4.2. Some general examples of applications. The next example shows how
some topological properties of a coupler (how it connects cells together) may influence
the frequency locking phenomenon.

4.2.1. Chained cellular system. In this section, for the sake of simplicity, all
the vector spaces Ei have finite dimension.

We first study the case of differential systems for which the spaces Ei have the
same dimension and are coupled with k-nearest neighbors. (The finite dimension
condition isn’t necessary, but it makes the presentation simpler.) This case is formally
described by a cellular system (I, FI , c̃), where I is countable, all dim(Ei) = n, and
c̃ satisfies

∀i, j ∈ I, |j − i| > k ⇒ cij = 0.
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This is what we call a chained cellular system. Adding the following condition on the
coupler, we may reach a general result.

Definition 4.2. A cellular coupler c̃ is said to have full rank if for any i, j ∈ I
and x ∈ S the map cij(x) has full rank.

Proposition 4.3. Let (I, FI , c̃) be a chained cellular system coupled with k-
nearest neighbors (all Ei having the same finite dimension). Let FI be injective on
U ⊂ S and x a CP( τ) trajectory that stays in U (or aCP( τ) if U is closed). If c̃ has
maximal rank and if there exists I ∈ I/τ which contains 2k consecutive cells, i.e.,
there exists i ∈ I such that

�i, i+ 2k − 1� ⊂ I,

then I/τ = {I} (equivalently, τ(I) is a dependent set).
Proof. Suppose that I �= I. There must exist �i, i + 2k� ⊂ I such that i − 1 /∈

I. Then, line i + k − 1 of the matrix c(x(t))/τ contains only one nonzero element
ci+k−1,i−1. As this linear map is injective for any t ∈ Ω, we know that

ker (c(x(t))/τ)
⋂

Ei−1 = {0}.

Applying Lemma 3.1, we know that there exists bi−1 ∈ Ei−1 such that for any t ∈ Ω

xi−1(t)− bi−1 ∈ ker (c(x(t))/τ)
⋂

Ei−1;

i.e., xi−1(t) = bi−1 is a constant map, which contradicts the definition of a component
periodic trajectory. So we can conclude that I = I.

If we assume that τ is bounded, this result may be restated as: “as soon as
k consecutive cells are synchronized (locked frequencies), then all the population is
synchronized.”

Moreover, we may drop some assumptions made on the common dimension of the
Ei and reach an interesting connecting result concerning the case k = 1 (analogous
to the the example of Stuart–Landau oscillators).

Proposition 4.4. Let (I, FI , c̃) be a chained cellular system coupled with 1
nearest neighbor. Let FI be injective on U ⊂ S, and x a CP( τ) trajectory that stays
in U (or aCP( τ) if U is closed). If c̃ has maximal rank and if there exist two sets I1
and I2 in I/τ such that for i ∈ I

�i, i+ 1� ⊂ I1, �i+ 2, i+ 3� ⊂ I2,

then I1 = I2.
Proof. Suppose that the cells of I1 have periods noncommensurable with those of

I2 (i.e., I1 �= I2). Following the previous proof, we know that the lines i+1 and i+2
of the matrix c(x(t))/τ contains only one nonzero element, respectively ci+1,i+2 and
ci+2,i+1. But, we recall that for any t ∈ Ω

ci+1,i+2(xi+1(t)) : Ei+2 → Ei+1

and

ci+2,i+1(xi+2(t)) : Ei+1 → Ei+2.

As the coupler has maximal rank, one of the previous maps must be injective ∀t ∈ Ω.
Using the same argument as in the previous proof, we may conclude that either xi+1

or xi+2 is a constant map, both cases leading to a contradiction.
For the next example, we add some regularity conditions on the cellular system,

which lead to an interesting description of S.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FREQUENCY LOCKING IN COUNTABLE CELLULAR SYSTEMS 17

4.2.2. Localization results with bounded states. As (S∞, ‖.‖∞) is a Banach
space, the classic Picard–Lindelöf theorem is valid, and we can give a version adapted
to cellular systems.

Proposition 4.5. If FI : S∞ → S∞ and c̃ are locally Lipschitz, which is the
case if for any x ∈ S∞ there are a neighborhood V =

∏
i∈I Vi, a positive number k,

and a sequence (kj)j∈I of positive numbers such that
1. ∀y, z ∈ V , ∀i ∈ I, ‖Fi(yi)− Fi(zi)‖i ≤ k‖yi − zi‖i;
2. ∀y, z ∈ V , ∀i ∈ I, ‖cij(yi)− cij(zi)‖(Ej ,Ei) ≤ kj‖yi − zi‖i;
3.

∑
j∈I kj < +∞,

then, given any initial condition (t0, x0) in R × S∞, the cellular coupling admits a
unique maximal solution x that satisfies x(t0) = x0.

Before stating our localization result, we need to define the sets that any compo-
nent quasi-periodic trajectory of the cellular system must avoid.

Definition 4.6. Let c̃ be a cellular coupler on I. The set of regular points for
c̃ is defined as

R(c̃) = {x ∈ S, ∀J nontrivial partition of I, c(x)/J is injective} .

We say that c̃ is regular if R(c̃) = S.
Proposition 4.7. Under the conditions of Lemma 3.1 and Proposition 4.5, if

there exists an infinite compact subset V ⊂ Ω such that

∀t ∈ V, x(t) ∈ R(c̃),

then τ(I) is a dependent set.
One can rewrite this result in terms of differential systems, as follows.
Proposition 4.8. Under the conditions of Lemma 3.1 and Proposition 4.5, and

if τ is bounded, a CQP( τ) trajectory must “avoid” R(c̃). (It can’t cross this set on
an infinite compact subset of Ω.)

Proof of Proposition 4.7. Let suppose that I/τ is not trivial. Applying Lemma 3.1,
we know that

c
(
x(t)

)
/τ. (x(t) − b) = 0.

The assumptions made on c̃ ensure that

∀t ∈ V, x(t) = b.

As V has an accumulation point, we may conclude that there exists t0 ∈ V such that

x′(t0) = 0.

Proposition 4.5 may be applied; hence we know that t 	→ x(t) is a constant map,
which contradicts the definition of a component periodic trajectory.

5. Conclusion. In this work we have built a general framework of cellular sys-
tems in order to handle a wide variety of coupled systems, and therefore a wide class
of complex systems. We focused on an emergent property of those dynamical systems:
the frequency locking phenomenon. Usually one observes solutions of particular cou-
pled systems and shows that within suitable conditions synchronization must occur.
Those results are qualitatively dependent on the systems of interest and do not stand
in the general cases. We tried to change our point of view and to bring out completing
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results. We don’t prove that synchronization ultimately happens, but instead we con-
sider the problem at its end: if one supposes that some coupled systems converge to
some oscillating behaviors, then they must be synchronized (frequencies are locked),
regardless of the individual dynamical systems (as soon as the maps which define each
of them are injective near the trajectories). In most papers (see, for instance, [13]) the
population of coupled systems is implicitly defined and has only two cells (sometimes
a finite number N , and more rarely an infinity). Moreover, in contrast to what most
studies about synchronization issues state, we do not assume anything concerning
the cell dynamics. (In particular, we don’t assume that they are oscillators.) We
assume only that they (asymptotically) exhibit periodic behaviors under the coupling
effects. (The first assumption implies the second, but the opposite is clearly false.) In
that sense, this technique could be used before any specific analysis, to rule out the
existence of certain behaviors.

We believe that this way of reaching general results about cellular systems gives
some explanations about why the frequency locking phenomenon emerges naturally
in a large variety of coupled dynamical systems. Our results show that the following
alternative is natural in many cases: either the whole population is synchronized, or
its cells can’t all have periodic behaviors.

Another interesting perspective is to apply this strategy to differential systems, as
we outlined in the beginning of the fourth section. For example, in contrast to what
happens in the general case of Hamiltonian systems, where limit tori are generally filled
with quasi-periodic trajectories (especially after perturbations), our results suggest
that concerning cellular systems, limit tori are mainly filled with periodic trajectories.

Moreover, we have achieved some similar work on a natural generalization of
this strategy to noncountable population. (In order to model natural systems, it’s
often necessary to handle continuous populations.) We truly think that all these
results are only a part of what can be done using cellular systems and that this
work enlarges the possibilities for studying synchronization issues in some biologically
inspired systems. But the scope of those kinds of cellular systems may be beyond
synchronization questions, as it’s quite general and allows some theoretical studies.
Our approach could be a promising theoretical tool to model complex systems.
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