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Integral inequality for time-varying delay systems

Alexandre Seuret1,2 and Frédéric Gouaisbaut1,3

Abstract— This paper considers the stability of time-varying
delay systems. We develop some new integral inequalities which
are proved to encompasses the celebrated Jensen’s inequality.
These technical tools allow to construct simple Lyapunov-
Krasovskii functionals very efficient in practice. Notice that our
procedure is coupled with the use of the reciprocal convexity
result in order to reduce the conservatism induced by the LMIs
optimisation setup. The effectiveness of the proposed results is
illustrated by some classical examples from the literature.

I. INTRODUCTION A REVOIR

The delay phenomenon arises in many practical situations

like in biology, economy or mechanical engineering (see

for instance [8], [22]) and references therein) and therefore,

since several years, it has motivated a huge number of results

devoted to the construction of stability criteria for linear time

delay systems. In the case of a constant delay and nominal

system, some theoretical tools like direct eigenvalues analysis

[22] are now well established and allow to derive efficient

criteria with a relatively low numerical complexity. For

the case of time-varying delay, two different methodologies

have been employed. In the first framework, we aim at

transforming the original system into a closed loop between a

nominal system and a system depending on the delay. This

last element is embedded into an uncertainty and the use

of classical tools like Small Gain Theorem [7], [15], IQCs

[12] or Quadratic Separation [3] allows to conclude on the

stability. Another technique is the extension of Lyapunov

theory to the case of delay systems. In a certain sense, all the

results follow the same methodology [8]. Firstly, the initial

retarded system is transformed into a more suitable equation.

This transformation may not be equivalent with regards to

the stability : the original system may be stable but not the

transformed system [8]. Then, the structure of a Lyapunov-

Krasovskii functional is proposed, of which aim is to prove

the stability of the transformed system and the original one

as well. This choice of this structure a priori often induces

an important conservatism and several attempts has been

proposed to reduce it by choosing extended state based

Lyapunov-Krasovskii functional ([1], [13]), or discretized

Lyapunov functional ([8]). The third step which brings an

important source of conservatism comes from the inequalities

to be used to derive a tractable numerical optimization

problem (see [10], [11], [14], [18], [21], [23]. Generally,

all the papers proceed in two stages: Firstly, all the cross

terms of the derivative of V are bounded using a Jensen’s
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like inequality. Then, in order to get an LMI with respect

to the delay h(t) and the delay derivative ḣ(t), the result is

transformed into a convex optimization problem often with

the help of slack variables [18]. In this paper, unlike many

papers in the literature, we focus on the two last stage of

the procedure, the development of less restrictive inequalities

and the choice of slack variables. First of all, following the

work of [14] or [4], we propose to construct more accurate

inequalities than Jensen’s or Wirtinger’s ones. The resulting

inequalities depend not only on the state x(t) and the delayed

state but also on the integral of the state over a delay interval.

This new signal is then directly integrated into a suitable

classical Lyapunov function, highlighting so the features of

this new inequality. Then, we propose to extend the work of

[18] in order to get tractable optimization scheme but with

a fewer numbers of slack variables to be optimized.

The paper is organized as follows. Section 2 introduces a

new integral inequality which can include the Jensen’s one

as a special case. We also propose a new reciprocally convex

combination inequality in order to get some tractable convex

optimisation problem to deal with. Section 3 is devoted to the

use of classical Lyapunov-Krasovskii functional combined

with inequalities describes in Section 2. Section 4 illustrates

our results with some examples extracted from the literature.

Notations: Throughout the paper R
n denotes the n-

dimensional Euclidean space with vector norm | · |, R
n×m is

the set of all n×m real matrices. For any symmetric matrix

P ∈ R
n×n, the notation P ≻ 0 (or P ≺ 0) means that P

is positive (or negative) definite. The set S
n
+ refers to the

set of symmetric positive definite matrices. The symmetric

matrix

[

A B
∗ C

]

stands for

[

A B
BT C

]

. For any matrices

A, B in R
n×n, the notation diag(A, B) denotes the bloc

diagonal matrix

[

A 0
∗ B

]

. Finally, a set of scalar parameter

α1, . . . , αN , N belongs to the set D, if each parameters is

positive and
∑N

i=1 = 1.

II. SOME RELEVANT INEQUALITIES

In this section, we aim at presenting several integral in-

equalities which will be employed in order to derive stability

conditions for linear systems with time-varying delays. More

specifically, we formulate a new inequality which is proved

to be less conservative compared to Jensen’s inequality.

Furthermore, based on a reciprocally convex combination

lemma provided in [18], we propose some new relaxations

for this lemma which allows to reduce the number of

variables involved in the optimization setup.



A. Improved integral inequality

In the following subsection, we develop a new integral

inequality which introduces less conservatism than the well-

known Jensen’s inequality.

Lemma 2.1: For a given symmetric positive definite ma-

trix R ∈ S
+
n , any differentiable function ω in [a, b] → R

n,

then the following inequality holds:
∫ b

a
ω̇(u)Rω̇(u)du ≥ 1

b−a
(ω(b) − ω(a))T R(ω(b) − ω(a))

+ 12
b−a

ΩT RΩ.
(1)

where Ω = ω(b)+ω(a)
2 − 1

b−a

∫ b

a
ω(u)du.

Proof. For any sufficiently differentiable function ω in

[a, b] → R
n, consider a signal z given, for all u ∈ [a, b]

by

z(u) = ω̇(u) − 1

b − a
(ω(b) − ω(a)) + 6

(b + a − 2u)

(b − a)2
Ω,

where Ω has been defined in the statements of the lemma.

The computation of
∫ b

a
zT (u)Rz(u)du leads to:

∫ b

a
zT (u)Rz(u)du =

∫ b

a
ω̇T (u)Rω̇(u)du

+
∫

b

a
1du

(b−a)2 (ω(b) − ω(a))T R(ω(b) − ω(a))

+36
∫

b

a
(b+a−2u)2du

(b−a)4 ΩT RΩ

− 2
b−a

∫ b

a
ω̇T (u)duR(ω(b) − ω(a))

+ 12
(b−a)2

∫ b

a
(b + a − 2u)ω̇T (u)duRΩ

− 12
(b−a)3

∫ b

a
(b + a − 2u)du(ω(b) − ω(a))T RΩ.

(2)

Simple calculus ensure that
∫ b

a
(b + a − 2u)2du = 1

3 and
∫ b

a
(b + a− 2u)du = 0. Then an integration by parts ensures

that
∫ b

a
(b + a − 2u)ω̇T (u)du = −2(b − a)Ω.

It thus follows that
∫ b

a
zT (u)Rz(u)du =

∫ b

a
ω̇T (u)Rω̇(u)du

+ 1
(b−a) (ω(b) − ω(a))T R(ω(b) − ω(a))

− 2
(b−a) (ω(b) − ω(a))T R(ω(b) − ω(a))

+ 12
(b−a)Ω

T RΩ − 24
(b−a)Ω

T RΩ.

(3)

Since the matrix R is positive definite, the left-hand side of

the previous equation is positive definite. This allows us to

conclude the proof of Lemma 2.1. •
In order to compare with the celebrated Jensen’s Lemma,

let us recall this lemma, often at the root of several important

results on the stability of time delay systems:

Lemma 2.2: (Jensen’s Lemma) For given symmetric pos-

itive definite matrices R > 0 and for any differentiable signal

ω in [a, b] → R
n, the following inequality holds:

∫ b

a
ω̇(u)Rω̇(u)du ≥ 1

b−a
(ω(b) − ω(a))T R(ω(b) − ω(a)).

(4)

Proof. A proof can be found in [8],[16]. However the previ-

ous lemma allows to give an alternative proof by considering

Ω = 0 in the definition of the function z. •
Remark 1: The difference between the two inequalities

are the following: in Lemma 2.1, the first term refers exactly

to the right hand side of the Jensen’s inequality provided in

Lemma 2.2. The second term of (1) is positive definite. Thus

it is clear that this new inequality encompasses the Jensen’s

inequality. It is also worth noting that this improvement is

allowed by using an extra signal
∫ b

a
ω(u)du and not only

the signals ω(b) and ω(a). Therefore, it suggests that in

order to be useful, this inequality should be combined with

a Lyapunov functional where the signal
∫ b

a
ω(u)du appears

explicitly. ◦
Remark 2: A similar integral inequality based on

Wirtinger’s inequality has been recently proposed in [19],

[20]. The difference with respect to this inequality relies

in the coefficient 12 which replaces the previously obtained

coefficient π2 (which is lower than 12). This new approach

results in a less conservative result. ◦
B. Improved reciprocally convex combination inequality

The following is largely inspired from the reciprocally

convex combination lemma provided in [18]. Recall firstly

an useful lemma provided in this article:

Lemma 2.3: [18] Let f1, f2, . . . , fN : R
m → R have

positive values in an open subset D of R
m. The reciprocally

convex combination of fi over D satisfies

min
{αi}i∈D}

∑

i

1

αi

fi(t) =
∑

i

fi(t)+ max
gij(t)

∑

i

∑

j 6=i

gij(t), (5)

subject to
{

gij : R
m → R, gij(t) , gji(t),

[

fi(t) gij(t)
gij(t) fj(t)

]

� 0

}

(6)

An application of this lemma which was already proposed

in the same article is stated as follows.

Lemma 2.4: Let n, m be two integers, R a symmetric

matrices in S
n and two matrices W1 and W2 in R

n×nm.

Consider a scalar α in the interval (0, 1). For all vector ξ
in R

nm, define the function Θ(α,R) as:

Θ(α,R) =
1

α
ξT WT

1 RW1ξ +
1

1 − α
ξT WT

2 RW2ξ.

Then the improved reciprocally convex combination guaran-

tees that if there exists a matrix X in R
n×n such that

[

R X
∗ R

]

≻ 0,

then the following inequality holds

minα∈(0, 1) Θ(α,R) ≥
[

W1ξ
W2ξ

]T [

R X
∗ R

] [

W1ξ
W2ξ

]

.

Proof. The proof is omitted but can be found in [18]. •
In the following, an alternative lemma is proposed in order

to reduce the number of the slack variables by eliminating

the matrix X .

Lemma 2.5: Let n, m be two integers, R a symmetric

matrix in S
n and two matrices W1 and W2 in R

n×nm.

Consider a scalar α in the interval (0, 1). Then the improved

reciprocally convex combination guarantees that

minα∈(0, 1) Θ(α,R) ≥ ξT [W1 − W2]
T

R [W1 − W2] ξ.



Proof. As mentioned in the introduction of the section,

the proof is is based on the main result of [18] but adapted

to our case in order to reduce the number of slack variables.

Following [18], for all ξ in R
nm, the function Θ(α,R) can

be rewritten as

Θ(α,R) = α+(1−α)
α

ξT WT
1 RW1ξ

+α+(1−α)
1−α

ξT WT
2 RW2ξ

= ξT WT
1 RW1ξ + ξT WT

2 RW2ξ
+ 1−α

α
ξT WT

1 RW1ξ + α
1−α

ξT WT
2 RW2ξ.

By noting that 1−α
α

and its inverse are positive, one can

rewrite the last term of the previous equation as follows

Θ(α,R) = ξT WT
1 RW1ξ + ξT WT

2 RW2ξ
−2ξT WT

1 RW2ξ

+
(
√

1−α
α

W1ξ +
√

α
1−α

W2ξ
)T

R

×
(
√

1−α
α

W1ξ +
√

α
1−α

W2ξ
)

.

Since the matrix R is positive definite, the last term of the

previous expression is positive definite. Then it yields

Θ(α,R) ≥ ξT WT
1 RW1ξ + ξT WT

2 RW2ξ
−2ξT WT

1 RW2ξ,

which concludes the proof •
Remark 3: Obviously, our proposed new inequality is

more conservative that the inequality from Lemma 2.4.

Nevertheless, this advantage should be balanced with the

numerical burden generated by the slack variable X as we

will see with the numerical simulations. ◦
In the sequel, these two lemmas will be employed in order

to derive stability conditions for linear systems with time-

varying delay. In particular a comparison on their use and

on their induced conservatism will be discussed.

III. STABILITY ANALYSIS OF TIME-VARYING DELAY

SYSTEMS

We present in this sub-section a first stability result for

time delay systems, which is based on the use of Jensen’s

inequality. Consider a linear time-delay system of the form:
{

ẋ(t) = Ax(t) + Adx(t − h(t)), ∀t ≥ 0,
x(t) = φ(t), ∀t ∈ [−h, 0],

(7)

where x(t) ∈ R
n is the state vector, φ is the initial condition

and A, Ad, AD ∈ R
n×n are constant matrices. The delay is

assumed to be time-varying. The classical constraints on the

delay function are

h(t) ∈ [0, hM ]

ḣ(t) ∈ (−∞, dM ]
, ∀t ≥ 0, (8)

for some scalars 0 ≤ hM and dM ≤ 1.

Based on the previous inequality and classical results

on Lyapunov-Krasovskii functionals, three stability theorems

are provided. The two first results are based on the use

of the Jensen’s inequality and Lemma 2.4 and 2.5. The

last one explicitly use the new inequality together with the

reciprocally convex combination lemma provided in [18].

A. Stability analysis based on the Jensen’s inequality

The stability analysis of the time-delay system (7) are

established is the following theorems.

Theorem 1: Assume that there exist two scalars hM > 0,

dM > 0 and some matrices P , S, R, Q in S
n
+ and X in

R
n×n such that the following LMIs are satisfied

Θ0 =

[

R X
∗ R

]

≻ 0,

Ψ1(hM , dM ) = Ψ0(dM ) − 1
hM

ΠT
0 Θ0Π0 ≺ 0,

where

Ψ0(dM ) = FT
1 PF0 + FT

0 PF1 + Ŝ

+Q̂(dM ) + hMFT
0 RF0,

(9)

with

Q̂(dM ) = diag(Q,−(1 − dM )Q, 0),

Ŝ = diag(S, 0,−S),

Π0 =

[

F2

F3

]

,

and

F0 =
[

A Ad 0
]

, F1 =
[

I 0 0
]

,
F2 =

[

I −I 0
]

, F3 =
[

0 −I I
]

.
(10)

Then the system (7) is asymptotically stable for the time-

varying delay h satisfying (8).

Notice that the last Theorem 1 does not depend on the

lower bound of ḣ(t).

Remark 4: It has to be noticed that Theorem 1 is similar

to the one provided in [18] without lower bound of the delay

and with dM = 1. ◦
The second theorem is formulated as follows:

Theorem 2: Assume that there exist two scalars hM > 0,

dM > 0 and some matrices P , S, R, Q in S
n
+, such that the

following LMI is satisfied

Ψ2(hM , dM ) = Ψ0(dM ) − 1

hM

ΠT
1 RΠ1 ≺ 0, (11)

where Ψ0(dM ) is defined in (9) and where Π1 = F2 − F3.

Then the system (7) is asymptotically stable for the time-

varying delay h satisfying (8).

Proof. Consider the Lyapunov functional given by

V (h, xt, ẋt) = xT (t)Px(t) +
∫ t

t−hM
xT (s)Sx(s)ds

+
∫ t

t−h(t)
xT (s)Qx(s)ds

+
∫ t

t−hM
(hM − t + s)ẋT (s)Rẋ(s)ds.

(12)

This functional is positive definite since the matrices P ,

S, Q and R are symmetric positive definite. It has to be

noticed that the functional is very simple compared to some

functionals that can be found in the literature. Differentiating

the functional (12) along the trajectories of (7) leads to:

V̇ (h, xt, ẋt) = ξT (t)Φ0(ḣ)ξ(t) −
∫ t

t−hM

ẋT (s)Rẋ(s)ds,

(13)



where ξ(t) =
[

xT (t) xT (t − h(t)) xT (t − hM )
]T

.

This last equation has been obtained by noting that

x(t) = F1ξ(t), ẋ(t) = F0ξ(t).

Splitting the integral into two integrals defined over the

intervals [t − h(t), t] and [t − hM , t − h(t)] and applying

the Jensen’s inequality 2.2, we get that

∫ t

t−hM
ẋT (s)Rẋ(s)ds ≥
1

h(t) [x(t) − x(t − h(t))]
T

R [x(t) − x(t − h(t))]
1

hM−h(t) [x(t − h(t)) − x(t − hM )]
T

R

× [x(t − h(t)) − x(t − hM ))] .

Rewriting the previous expression using the vector ξ0(t) and

the matrices F2 and F3 yields to

∫ t

t−h(t)
ẋT (s)Rẋ(s)ds ≥ ξT (t)

F T
2

RF2

h(t) ξ(t).

Applying the same method to the second integral, it yields

to

V̇ (xt, ẋt) ≤ ξT (t)
[

Φ0(ḣ) − F T
2

RF2

h(t) − F T
3

RF3

hM−h(t)

]

ξ(t).

The right hand side of the previous inequality is of the

appropriate form to apply Lemma 2.4 and Lemma 2.5 which

leads to the stability conditions given in Theorems 1 and 2,

respectively. •

B. Stability analysis based on the new integral inequality

In this section, the assumptions on the delay function h
are modified. In the following, the also classical constraints

on the delay function becomes

h(t) ∈ [hm, hM ]

ḣ(t) ∈ [dm, dM ]
, ∀t ≥ 0, (14)

for some scalars 0 ≤ hm ≤ hM and dm ≤ dM ≤ 1.

Based on the previous inequality and classical results on

Lyapunov-Krasovskii functionals, the stability theorem is

provided.

Theorem 3: Assume that there exist matrices P in S
3n
+ ,

S, Q, R in S
n
+,and a matrix X in R

2n×2n. such that the

following LMIs are satisfied for h in {hm, hM} and for ḣ
in {dm, dM}

Θ2 =

[

R̃ X

∗ R̃

]

≻ 0,

Φ(h, ḣ) = Φ0(h, ḣ) − 1
hM

ΓT Θ2Γ ≺ 0,

(15)

where

Ψ0(h, ḣ) = GT
1 (h)PG0(ḣ) + GT

0 (ḣ)PG1(h)

+Ŝ + Q̂(ḣ) + hMGT
0 (ḣ)R̂G0(ḣ),

Q̂(ḣ) = diag(Q,−(1 − ḣ)Q, 03n),

Ŝ = diag(S, 0,−S, 02n),

R̂ = diag(R, 03n),

R̃ = diag(R,R),

and

G0(ḣ) =





A Ad 0 0 0

I −(1 − ḣ)I 0 0 0

0 (1 − ḣ)I −I 0 0



 ,

G1(h) =





I 0 0 0 0
0 0 0 hI 0
0 0 0 0 (hM − h)I



 ,

Γ =
[

GT
2 GT

3 GT
4 GT

5

]T
,

G2 =
[

I −I 0 0 0
]

,

G3 =
√

3
[

I I 0 −2I 0
]

,
G4 =

[

0 −I I 0 0
]

,

G5 =
√

3
[

0 I I 0 −2I
]

.

(16)

Then the system (7) is asymptotically stable for the time-

varying delay h satisfying (14).

Proof. Consider the Lyapunov-Krasovskii functional given

by

V (h, xt, ẋt) = ζT
0 (t)Pζ0(t) +

∫ t

t−h(t)
xT (s)Qx(s)ds

∫ t

t−hM
xT (s)Sx(s)ds

+
∫ t

t−hM
(hM − t + s)ẋT (s)Rẋ(s)ds,

(17)

where

ζ0(t) =







x(t)
∫ t

t−h(t)
x(s)ds

∫ t−h(t)

t−hM
x(s)ds






.

This functional is positive definite since the matrices P , S
and R are symmetric positive definite. This functional is

simple compared to some functionals that can be found in

the literature. The only novelty remains in the introduction

of the signals
∫ t

t−h(t)
x(s)ds and

∫ t−h(t)

t−hM
x(s)ds in the

functional which recall the method originally proposed by

[8]. Differentiating the functional (17) along the trajectories

of (7) leads to:

V̇ (h, xt, ẋt) = ζT (t)Φ0(h)ζ(t) −
∫ t

t−hM

ẋT (s)Rẋ(s)ds,

(18)

where

ζ(t) =















x(t)
x(t − h(t))
x(t − hM )

1
h(t)

∫ t

t−h(t)
x(s)ds

1
hM−h(t)

∫ t−h(t)

t−hM
x(s)ds















.

This equation has been obtained by noting that

ζ0(t) = G1(h)ζ(t), ζ̇(t) = G0(ḣ)ζ(t).

Following the same procedure as in Theorem 2, the use

of Lemma 2.1 leads to
∫ t

t−hM
ẋT (s)Rẋ(s)ds ≥
1

h(t)ζ
T (t) [x(t) − x(t − h(t))]

T
R [x(t) − x(t − h(t))]

12
h(t)

[

x(t)+x(t−h(t))
2 − 1

h(t)

∫ t

t−h(t)
x(s)ds

]T

R

×
[

x(t)+x(t−h(t))
2 − 1

h(t)

∫ t

t−h(t)
x(s)ds

]

.



Then applying again Lemma 2.1 to the second integral and

rewriting the previous expression using the vector ζ(t) and

the matrices Gi for i = 2, . . . 5 yields to

∫ t

t−hM
ẋT (s)Rẋ(s)ds ≥ ζT (t)

(GT
2

RG2+GT
3

RG3)
h(t) ζ(t)

+ζT (t)
(GT

4
RG4+GT

5
RG5)

hm−h(t) ζ(t).

Applying the same method to the second integral and replac-

ing the integral in (18) by its bounds, it yields

V̇ (xt, ẋt) ≤ ζT (t)

[

Φ0(h, ḣ) − (GT
2

RG2+GT
3

RG3)
h(t)

− (GT
4

RG4+GT
5

RG5)
hm−h(t)

]

ζ(t).

The right hand side of the previous inequality is exactly of

the form described in Lemma 2.5. According to Lemma 2.4,

the derivative of the Lyapunov Krasovskii functional is

negative definite if

Φ(h, ḣ) < 0,∀(h, ḣ(t)) ∈ [0, hM ] × [dm, dM ]. (19)

As the matrix Φ(h, ḣ) is linear with respect to h(t) and ḣ(t),
a sufficient condition is to test the condition on its vertices,

which concludes the proof. the conditions of Theorem 3 are

satisfied. •
Remark 5: The Lyapunov-Krasovskii functionals em-

ployed to derive the stability condition of Theorem 3 is very

simple compared to the one that can be found in the literature

(see for instance [21], [23] among many others). However,

the use of the inequality proposed in Lemma 2.1 leads to

a considerable reduction of the conservatism. This will be

shown in the example section. ◦
Remark 6: Any results based on the new inequality pro-

posed by Lemma 2.1 combined with the reciprocal convexity

result of Lemma 2.5 will be provided in the present paper.

Indeed, the combination of these two lemmas does not give

efficient stability conditions compared to Theorem 3. ◦
IV. EXAMPLES

The purpose of the following section is to show how the

previous theorems can be relevant for the stability analysis

of linear systems with time-varying delays. Especially, we

will show that Theorems 1 and 2 deliver similar results and

that Theorem 3 provides with less conservative results than

existing ones.

A. Example 1

Let consider the following linear time-delay system (7)

with:

A =

[

−2 0
0 −0.9

]

, Ad =

[

−1 0
−1 −1

]

. (20)

This system is a well-known delay dependent stable system,

that is the delay free system is stable and the maximum

allowable delay hmax = 6.1721 can be easily computed

by delay sweeping techniques. To show the effectiveness of

our approach, results are compared to the literature and are

reported in Table I for the constant (dm = dM = 0) and

time-varying delay case.

dM 0 0.1 0.2 0.5 0.8 1

[5], [24] 4.472 3.604 3.033 2.008 1.364 0.999

[6] 1.632 1.632 1.632 1.632 1.632 1.632

[9], [10] 4.472 3.605 3.039 2.043 1.492 1.345

[23] 4.472 3.611 3.047 2.072 1.590 1.529

[8] (N=1) 6.059 -1 −1 −1 −1 −1

[1] 5.120 4.081 3.448 2.528 2.152 1.991

[17] (N=4) −2 4.35 −2 1.62 −2 −2

[20] 5.901 4.525 3.626 2.095 1.524 1.258

[12] 6.117 4.714 3.807 2.280 1.608 1.360

[2] 6.117 4.794 3.995 2.682 1.957 1.602

Th.1 4.472 3.658 3.163 2.337 1.934 1.868

Th.2 4.433 3.657 3.163 2.337 1.934 1.868

Th.3 6.059 4.703 3.834 2.420 2.137 2.128

TABLE I

THE MAXIMAL ALLOWABLE DELAYS hM FOR SYSTEM DESCRIBED IN

EXAMPLE (20).

The conditions of Theorems 1 and 2 delivers similar

results when the upper bound of ḣ(t) is greater than 0.2. It

is no more the case, when the delay function varies slowly :

the conditions issued from Theorem 1 give an upper bound

for ḣ(t) slightly greater than those given using Theorem 2.

Hence, on this example, it seems that the use of

Lemma 2.5 is more interesting for fast varying delays, since

it also reduces the number of variables and of LMIs to be

solved in the stability conditions.

Consider now the stability conditions provided by The-

orem 3. All papers except [12], [1], [2] provide more

conservative results than the ones from Theorem 3. However

when the bound on the derivative of the delay is greater

than 0.8, the condition from Theorem 3 becomes more

efficient. Notice that the results [12], [1], [2] are based on

a robust analysis setup. In that case, the original system is

modeled by an extended closed loop system and classical

tools like Small Gain Theorem, IQCs are used to give

LMIs conditions. It involves generally a bigger number of

variables to be optimized compared to our simple Lyapunov-

Krasovskii functional.

B. Example 2

Theorem 3 addresses also the stability of systems with

interval delays, which may be unstable for small delays (or

without delays) as it is illustrated with the second example.

A =

[

0 1
−2 0.1

]

, Ad =

[

0 0
1 0

]

. (21)

As Re(eig(A + Ad)) = 0.05 > 0, the delay free system

is unstable and in this case, the results to assess stability

of this system are much more scarce. For the constant

delay case, a frequency approach shows that the solutions

of this system are stable if the delay belongs to the interval

]0.10017, 1.7178[. It is worth noting that classical Lyapunov-

Krasovskii approaches based on Jensen’s inequality cannot



Theorems hmin hmax

[10] ∅ ∅

[3] 0.102 1.424
[8] (N=1) 0.1006 1.4272

Th.3 0.1006 1.55

TABLE II

RESULTS FOR EXAMPLE (21) FOR CONSTANT AND KNOWN DELAY

h ∈ [hmin, hmax].

dM 0.0 0.1 0.2 0.5 0.8 1.0
δ 0.552 0.528 0.493 0.278 0.189 0.161

TABLE III

RELATION BETWEEN δ AND dM PROVIDE BY THEOREM 3 FOR

EXAMPLE (21) WITH A TIME-VARYING DELAY h ∈ [0.9 − δ, 0.9 + δ]

AND dm = −dM .

assess stability of such systems. This is the case when apply-

ing the LMI conditions from theorems 2 and 1. However the

stability condition of Theorem 3 have solutions thanks to the

use of the new integral inequality provided in Lemma 2.1.

1) Constant and known delay: The results obtained by

solving the conditions from Theorem 3 are resumed in the

following tables. Tables II shows the results when the delay

function is constant and known, i.e. hm = hM and dm =
dM = 0. Note that only few methods from the literature are

able to provide relevant results for this systems. The table

shows that Theorem 3 provides stability conditions which

are more tight than the one given in the literature.

2) Time-varying delay: Table III shows the results pro-

vided by Theorem 3 in the case of time-varying delay. In

order to show the results in an efficient way, the delay

function is rewritten as

h(t) = hav + ∆h(t)

where

hav = 0.9 ≃ (0.10017 + 1.7178)/2,

and

‖∆h(t)‖ ≤ δ.

Using such delay representation, the parameter 2δ represents

the length of the interval to which h(t) belongs. It is worth

noting that the Sum of Square method provided in [17] is

also able to characterize stability of such system. However

we were not able to show their results in the present paper.

V. CONCLUSIONS

This article presents a new integral inequality which has

been proved to be suitable for the stability analysis of time-

delay systems. Combining it with the reciprocal convexity

lemma leads to less conservative stability conditions than

the usual ones which consider the Lyapunov-Krasovskii

approach. It is also shown that for fast-varying delays, the

proposed method is less conservative than the ones which

are based on IQC’s. Furthers research aims at reducing the

conservatism with respect to the IQC approach for slow-

varying delays.
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