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Cooperative Translation Control based on Consensus with Reference
Velocity: a Source-seeking Application

Lara Brifién-Arranz!' and Alexandre Seuret?

Abstract— This paper deals with the design of cooperative
control laws for nonlinear multi-agent systems. On the first
hand, the control objectives are to ensure that a group of
agents reaches a time-varying circular formation characterized
by some external references representing the position of the
center of the formation and its derivatives. In order to reduce
the amount of information to be shared, the second part of
the paper considers the situation where only the velocity of
the center of the formation is available to each agent. Then
a distributed consensus algorithm is provided in order to
satisfy the same control objectives. Finally, an application to
the source-seeking problem is proposed to emphasize previous
contribution. These results are supported through computer
simulations.

I. INTRODUCTION

Cooperative control problems and multi-agent systems
have received a large attention in recent years. This field
includes consensus algorithms [13], [19], flocking [12], for-
mation control [5] and distributed estimation in sensor net-
works [8], [11], [22]. Engineering motivations for studying
cooperative control approaches stem from increasing interest
in groups of embedded systems, such as multi-vehicle and
sensor networks.

A particularly relevant area deals with the formation
control and the motion coordination, see [8], [9] and the
references therein. For instance, cooperative control laws
have been provided to make a fleet of agents obtain circular
and parallel formations [8], [20]. Moving a formation of
agents is pertinent to some applications where the agents
should perform collaborative tasks requiring the formation
to displace towards an a priori unknown direction. For
instance, in source seeking applications, the formation is
driven following the source gradient direction [11], [10]. The
target tracking problem also requires consideration of time-
varying formations. In these applications, the agents attempt
encircling the target. Therefore, a circular formation whose
center location is the target, seems very appropriate. Some
cooperative approaches to carry out this challenge using a
fleet of vehicles have been studied in the literature [6], [14].
As shown in [7], a circular formation can be useful to track
the trajectory of a time-varying target.

The source localization of a signal distribution is a prob-
lem considered in recent literature [4], [11]. There are
different approaches to deal with this topic, but the common
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objective is to calculate the position of the source using
measurements of the signal propagation. Several source-
seeking algorithms are based on gradient-descent methods.
If it is available, the gradient of the signal strength can be
used to produce a gradient-descent algorithm for a vehicle
or group of vehicles [1]. A collaborative control law to steer
the center of a circular formation of agents to the source of
a signal distribution using only direct signal measurements
is presented in [10]. An extension of this result is presented
in [3] under a distributed approach. In this paper we apply
a cooperative formation control law based on consensus
algorithms to steer a group of vehicles to the source location
assuming that the gradient corrupted by noise is available for
all vehicles.

The paper is organized as follows. The following section
presents the problem formulation introducing the model of
the agents. In Section III a new translation control law
is proposed. Section IV exposes a cooperative formation
control design based on consensus with reference velocity
algorithms. In Section V the source-seeking problem is
tackled applying previous control laws to a group of agents.
Finally, we will present our conclusions and future directions.

Notation. Let ¥ = (V,E) be an undirected graph and
L its Laplacian matrix. The set of agents is denoted by
V={1,...,N}. Let M ={jeV:(kj)€E} the set of
neighbors of agent k. In the sequel, ® denotes the Kronecker
product and, for simplicity, we define L = L®1I, where Iy €

RNXN 0

is the identity matrix. R% = ( | Bl ) represents a

rotation matrix through an angle 7 counterclockwise around
the origin.

II. PROBLEM FORMULATION

A. Model of Agents

Consider a group of N identical vehicles modeled with
unicycle kinematics subject to a simple non-holonomic con-
straint. The dynamics of agents is defined by:

X =Vvi cos 6 (1a)
Vi =Vy sin 6 (1b)
O =uy (Ic)

where 1y = (xg, yk)T € R? is the position vector of each agent
k=1,...,N, 6 is its heading angle and v, u; are the control
inputs. We consider here that each vehicle knows its absolute
vector position r; with respect to the inertial frame.



B. Control Objectives

The main objective of this paper is to develop a coopera-
tive control law to stabilize a group of vehicles to a circular
formation which tracks a time-varying center.

In a first step, we consider that the center ¢(z) of the de-
sired formation is a given external reference known for all the
agents. In order to relax this assumption, the following step
is to develop a distributed algorithm to reach an agreement
on the center trajectory when the only information received
by the agents is the velocity reference of the desired center
of the formation. Based on a consensus algorithm with group
reference velocity presented in [17], we design a cooperative
translation control law that makes all agents converge to the
same circular formation which tracks the given reference
velocity.

Finally, we will present an application in the context of
source localization. In this case, the group reference velocity
is the gradient of the scalar field of interest. Applying the
previous translation control law, a fleet of vehicles is able to
reach an agreement on the trajectory of the formation center.
Moreover, the formation tracks the given gradient direction
of the scalar field. Thanks to this gradient information, the
trajectory of the center steers the fleet to the source location.

III. TRANSLATION OF A CIRCULAR MOTION

The results presented in this paper establish a connection
between our previous work dealing with translation control
of a circular formation [2] and the source-seeking problem.
First, we provide a new control law to make a group of agents
converge to a circular motion which tracks the time-varying
center ¢(¢). The main difference with respect to [2] and thus
a contribution of this paper is the new control strategy pro-
posed. Using the convergence properties of an autonomous
exosystem and a tracking control design, the new translation
control law ensures robustness to uncertainties in the states’
initial conditions ry(0),6;(0). The trajectory of the center
c(t) € R?, is considered a given external reference. The radius
of the circle R, and the rotation velocity @y, are constant
given parameters.

In order to exploit previous results dealing with circular
motions from [15], [20], we introduce an exosystem repre-
sented by the following multi-agent dynamics:

K =R| | cos v (2a)
S =R| @] sin (2b)
Y =g (2¢)

where y; represents the angular orientation of the velocity
vector ty = (£, 9)” and i = f (¥, Wi) is the control input of
this autonomous exosystem. The following control law from
[15] enforces the exosystem (2) to converge to a circular
motion centered at the origin and with radius R:

iy = an(1+ ki1 i) (3)

where k¥ > 0 is a control parameter.
Our idea is to transform the exosystem circular trajectories
via a translation by vector c¢(¢). The resulting transformed

trajectories will be considered as a reference to the multi-
agent states. The differences between the reference and the
multi-agent state are defined by the following tracking error:

Ek:l'kf(f'k#*C), Vk=1,...,.N 4)

In other words, our problem is to design control laws vy, uy
for the multi-agent system (1) such that the error &, converges
to zero.

In order to stabilize a fleet of agents to a time-varying
circular motion, we propose a new control strategy. This new
strategy follows three phases:

o Transformation: the desired formation is expressed as
result of a translation applied to the unit circle and
defined by a few number of parameters.

« Exosystem: we define a global stable exosystem (2)
which converges, for instance, to a circular motion with
fixed center, thanks to the beacon control law from [15].

« Tracking control design: we design the control inputs
(vi,ux) of the multi-agent system (1) in order to track
the reference defined by the transformed circular trajec-
tories of the exosystem, i.e., enforcing the error defined
by (4) to converge to zero.

The following theorem presents the first contribution of
this paper.

Theorem 1 Consider a twice differentiable function c(t) :
R — R2, with bounded first and second time-derivatives. Let
w #0, k>0, a>0 B >0 be four control parameters,
R > 0 be the radius of the desired circular motion and the
following condition is satisfied:

w>0 Vk=1,....N (5)

Then, for all initial conditions r(0),0(0), the control law

T
J . .
Vk:_ﬁvk‘i‘vi{“AkRg'A'k‘i‘é‘i‘B(fk‘i'é)+a(i‘k+c_rk)] (6)
k
~.Ts  FIRL
Upr, r kT Z %
wp =k T2 et BR+é) + ol e — )] (6b)
Vk Vk

where i and Gy are respectively defined by (2) and (3),
makes all the agents defined by (1) converge to a circular
motion of radius R, and whose center tracks the time-varying
reference ¢(t). The direction of rotation is determined by the

sign of wy.

Proof: The first step is to ensure the convergence of the
exosystem defined by (2) to a fixed circular motion. Consider
following notation # = (#7,...,#5)7 and w = (y1,..., wn)7,
and the following Lyapunov function:

. 1, P
SEw) =3 ¥ |[f— ooRgie]| 20 @)
k=1

At the equilibrium points of previous Lyapunov function,
i.e., S(t,y) =0, the dynamics of the exosystem (2) satisfies
t — a)oR% t; = 0. Thus, the position vector and its velocity
vector are perpendicular, i.e., f‘,{f’k = 0. This condition leads
to the kinematic relation for the rotation of the rigid body,



i.e., the vectors f; are turning around the frame origin at
the equilibrium. Evaluating the derivative of S(&,y) along
the solutions of the resulting closed-loop system (2) and
considering the proposed control law (3) leads to:

N

X N\T /.
sew) = X (aRgic— ovRgix) (B ovRgi)
N . N -
= Y woff fe(w — i) = —k ) (o0f{ F)> <0
k=1 k=1

In conclusion, S(f,y) is a suitable Lyapunov function for
exosystem (2), and by the LaSalle Invariance Principle, the
solutions converge to the largest invariant set A, for which
S =0 and consequently, the dynamics of the exosystem
satisfy £, = a)oR% t; which corresponds to a circular motion.

The second step corresponds to the tracking control de-
sign. In order to achieve the objective ry — £y + ¢, the
tracking error is defined by (4). With a view to make the
error converge to zero, we wish to impose the error dynamics

& = —Bék— aE;

where a > 0, 8 > 0. Thus, the error converges exponentially

to zero. The dynamics of the error equation determines the

control law for the original system (1) since:

ék:'l"k—.f.‘k—é: Vlfk+ukR£fk—ﬁkR%fk—é

Vi 2

According to the error dynamics and multiplying this last

equation by i1 and by f'R% both following expressions
2

hold:

ViVi :—Bv,%—i-l",{ [ﬁkR%f'k-i-é-i-ﬁ(f'k-i-é) —a(rk—f‘k—c)]
ukv,% Zﬁkl"];rf‘k + I‘ZRE [C+B(f’k +é) - a(rk — - C)]

By definition, this control law enforces exponential con-
vergence of the tracking error dynamics away from the
singularity v = 0. If condition (5) is satisfied then, the
control inputs of (6) are respectively obtained.

Thanks to previous definition of the error both following
equations hold when t — oo, 1y = # +c¢ and Iy =ty + ¢. Tak-
ing into account the circular control law (3), the exosystem
converges to T = woR%f'k, hence, the agents converge to a
time-varying circular motion since, for all k=1,...,N:

I"k:a)()R%(l'k*C)+ \(i_/
W translation

]

Note that Theorem 1 presents a dynamic control law in which

the control inputs are (Vg,u;). As mentioned above, this

control law is robust to uncertainties in the initial conditions

of the agents’ states which was not the case in [2].

Remark 1 Note that we can also consider a cooperative
control law for the exosystem in order to distribute uniformly
the agents along the formation. Therefore, previous control
law (6) where i is defined by (2) with

ﬁk:wﬂ(1+’<’k‘]];ik)*57‘%{

U(‘I/) = %ZLN/ZJ . BrnLBm

m=1 2m2

(©))
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where B, = (cosmyy,sinmyy,...,cosmyy,sinmyy)’,
makes all the agents defined by (1) converge to a time-
varying circular formation of radius R and center c(t).
Moreover, for K > 0, the agents are distributed uniformly
along the circular formation, see [20].

IV. COOPERATIVE TRANSLATION CONTROL DESIGN

The final application aims to solve the source-seeking
problem taking into account communication constraints. In
this context, the agents must be able to collaborate in order
to decide the trajectory of the formation center. Therefore,
the idea now is to implement a cooperative algorithm to
make the fleet of vehicles converge to the same circular
formation considering that the reference of the center ¢(z) is
unknown. The approach presented in this section considers
that each agent only knows the first and second derivatives of
the center which defines the time-varying circular formation.
In this situation, a consensus protocol is designed to reach
the same center trajectory c¢(¢) for all the agents. The given
reference is thus, the desired velocity of the center formation.
The objective is for the agents to reach the same circular
formation, i.e., to reach a consensus on the center of the
circle.

Consensus problems with a reference velocity are already
studied in [16], [17], [21] for double-integrator dynamics.
In the context of a moving circle, the velocity of the center
is a given reference denoted by v?f € R? known to all the
vehicles. Besides, the acceleration represented by azef € R2
is also known to all the vehicles. Nevertheless, the trajectory
of the center is not defined. This is coherent with a source-
seeking situation in which the gradient of the scalar field of
interest is the desired velocity of the formation center. This
information could be a given reference for the agents, but the
center of the circular formation is not a known parameter.
In this situation, each agent computes its own estimated
position of the center of the circular formation represented
by p. € R?, its own estimated velocity of the center denoted
by v € R? and its own estimated acceleration of the center
represented by a,, € R2.

In order to keep the formation, the position of the center
calculated for all the vehicles must be the same. Summa-
rizing, the proposed control strategy, which is explained
schematically in Fig. 1, is composed by the following steps:

1) Each agent computes its own estimated position of the

center and its derivatives.



2) A distributed algorithm is implemented to reach con-
sensus on the position of the formation center using
the external references v/, a’*/ .

3) The inputs of the translation control law for each agent
are obtained from the consensus algorithm.

A. Consensus with reference velocity

In order to fulfill the previous items, a new dynamic vari-
able representing the center of the circle computed by each
agent is introduced and satisfies the following dynamics:
(10a)
(10b)

pck =Vck

Ve =ack

Consensus is reached for (10) if for all p.(0) and v(0),
then py () = p.;(t) and v (t) — v (1) asymptotically
as t — oco. Based on [17], [18], we propose the following
consensus algorithm with a group reference velocity:

ag = —yva—v) = ¥ bu—py) (D
jeM

where 7 is a positive gain. In [17] it is shown that this consen-
sus algorithm converges when the directed communication
graph has a spanning tree. This is a generalization of the
results presented in [16] for directed graphs. In this paper,
the communication between the vehicles is considered undi-
rected, such that the Laplacian matrix of the communication
graph is always symmetric and all its eigenvalues are real
and nonnegative. In consequence, the result from [17] can
be rewritten for undirected graphs as follows:

Theorem 2 (Ren 2008 [17]) Consider the consensus algo-
rithm (11), if the undirected communication graph between
the agents is connected and 'y > 0 then p 4 (t) — p.;(t) and

va(t) — vf»ef(t) asymptotically as t — o for all k, j.

Proof: The details of the proof can be found in [17] for
the general case of a directed graph. Rewriting the consensus
algorithm with a group reference velocity in a vector form,
previous equation (11) becomes:

a,=1®a" —y(v.—12v*) - Lp, (12)

where p. = (pl,...,ply)7 represents the vector of all the
local positions of the center computed by each agent (analog-
ically the vectors v. and a.) and 1= (1,...,1)T € RV is the
vector of ones. Considering that pzef represents the reference
trajectory associated to the given v.”/, a new variable y =
(X1, w)T s introduced to express the following error
equation x = p, — 1@ p/*/. By definition, the vector of ones
1 is always a right eigenvector of the Laplacian matrix L
corresponding to the eigenvalue 0. Using this property, the
previous compact form of the consensus algorithm (12) can
be rewritten as § = —7yx — Ly which refers to a double-
integrator consensus algorithm. In conclusion, if the com-
munication graph ¢ is connected, for all x(0) and x4 (0),
then y(r) — x;(r) and Ji(r) — O asymptotically as r — oo,
Therefore, for all p.(0) and v(0), pe(t) — pe;(f) and
Ve (1) = vl (1) asymptotically as 1 — oo, ]

B. Cooperative Translation Control Design

This previous consensus algorithm allows the agents to
reach an agreement on the trajectory of the center of the
circular formation from a given reference velocity known to
all the agents. The center trajectory and its first and second
derivatives computed for each agent will be the inputs of the
translation control law presented in previous section. In this
situation, the error is now defined by

g=r,— (tx+py) YVk=1,..,N

where the dynamics of the exosystem t; are defined by (2)
and the closed-loop dynamics are imposed by the control
law (3). Therefore, the previous control law (6) developed
to move the center of a circular formation following a given
reference becomes:

T
r A A A
Ve =—PBvi+ i [ﬁkRgl‘k +ack + (R + Vo) + ot(F+ Pk *I’k)]
(13a)
s+ Ta  FIRE
wr Ty k% A N
u = v’; + v22 [k + B (x4 Ver) + 0 (Br + Doy — 1)
k k
(13b)

where the position of the center computed for agent k and its
velocity and acceleration are p, V¢ and a. respectively, ob-
tained from the consensus algorithm (11). To formalize this
new collaborative approach the following corollary holds.

Corollary 1 Let v'e/ and a’®! be the velocity and accelera-
tion references of the desired center formation. Let R be the
desired radius of the circular formation, wy #0, ¥ >0, >
0, a >0 and y > 0 be five control parameters and condition
(5) is satisfied. Then the control law (13) makes each agent
defined by (1) converge to a circular motion with radius
R and time-varying center p.. Thanks to the consensus
algorithm (11) applied to the center dynamics (10), if the
undirected communication graph is connected then all the
centers reach a consensus asymptotically and their velocities
follow the reference velocity v'*/. The direction of rotation
is determined by the sign of .

Proof: As it is shown in Fig. 1, the whole system
consists of two uncoupled systems. The first one is composed
of the dynamics of the multi-agent system (1) and the
translation control law (13). Thanks to Theorem 1, this
control law (13) makes each agent converge to a circular
motion whose center is the time-varying reference p,;.

The second system represents a consensus algorithm
which is implemented to reach an agreement on the center
of the formation for all the agents. Thanks to Theorem 2,
the collaborative algorithm (11) makes system (10) reach
consensus and therefore, asymptotically, all the computed
centers satisfy py = p.; = ¢o Vk,j. Consequently, all the
vehicles describe a circular motion following the time-
varying center cg. [ ]

C. Consensus with reference velocity corrupted by noise

Previous collaborative algorithm can be improved by
considering that each agent receives the external reference



Fig. 2. Simulation of five agents governed by the control law (13) where
the center computed by each agent results from the consensus algorithm
(11). The black lines represent the centers’ trajectories.

velocity corrupted by noise. It is assumed that the external
reference received for each agent k is then si(r) = Vzef + Wk,
where w,; € R? is a vector whose components are Gaussian
Zero-mean noise.

Intuitively, if the noise is bounded then, the previous
algorithm reaches consensus in a closed ball centered at
the consensus final value, as will be shown in simulation.
However, the mathematical details of the proof of this
proposition will be analyzed formally in future works.

D. Simulation results

The consensus algorithm (11) is implemented to generate
the reference of the center circular formation in order to
apply the translation control law (13). The group reference
velocity is given by vl = (0.2,0.24c0s0.08¢)" and the
initial conditions of the position of the center are different
for each agent.

Fig. 2 shows a simulation of five agents governed by the
translation control law (13) with the consensus algorithm
(11) to provide the reference of the center of the circular
formation. The control parameters are R=2, @y =K =0 =
B =1 and y=0.1. The communication graph is a ring
(circulant graph), therefore is connected. The figure shows
three snapshots, the initial conditions, and two states for
t =45s and t = 116s. The red circles represent the circular
motion corresponding to each agent at each instant. The
black lines represent the trajectories of each estimated center.
This simulation shows that the center of each agent achieve
consensus, then the common center tracks the given reference
velocity and the circular formation is maintained.

Fig. 3 displays the evolution of the centers’ trajectories p,
and the centers’ velocities v computed by each agent k for
the same simulation of five agents. Starting from any initial
condition, the collaborative algorithm (11) makes the agents
reach consensus on the center position and all the centers’
velocities converge asymptotically to the external reference.

V. SOURCE-SEEKING VIA A CIRCULAR FORMATION

This section presents the application of previous formation
control law based on consensus with reference velocity to
the source-seeking problem. The objective now is to steer
a circular formation of unicycle-like modeled vehicles to
the source location of a signal. In mathematical terms, the
signal distribution emitted by the source is a spacial function

60
t(s)

[ s 00 1 % 0 40

60 60
t(s) t(s)

Fig. 3. Evolution of the centers’ positions and velocities p ., = (pcxk7pcyk)T;
Ve = (chk-,chk)T corresponding to the previous simulation of five agents
shown in Fig. 2.

representing the scalar field with a maximum in the position
where the source is located. For instance, the source could
be a point of chemical contamination and the signal would
be that chemical’s concentration in the environment. We
consider here that the signal is emitted by a single source
such that the source is the only maximum of the scalar field.
The signal distribution is assumed to decay away from the
position of the source. The scalar field with elliptical level
curves is given by
o(x,y) = 10~ /10%+y%/200)

whose maximum is located at (0,0).

Using a gradient-descent algorithm the group of agents
can be driven to the source of the the signal distribution, see
[1], [10]. In this paper we consider that the gradient of the
signal distribution is kwnon for all the agents. Our approach
considers this gradient information as a reference velocity
for the group of vehicles. Let Vo(p) denote the gradient
of function o at position p € R?. We assume that the ASV
estimates the gradient at the center of mass of the vehicles,
such that Vo (p,,,). Therefore, the reference velocity for the
circular formation becomes vi/ = Vo (p,,,)T. Each agent k
receives this reference corrupted by a Gaussian white noise
Wy The aim to the formation is to track this reference.
Applying the consensus algorithm (11), the agents reach an
agreement on the center trajectory and thanks to control law
(13) the circular formation is driven to the source location.

Fig. 4 shows a simulation of six agents governed by the
control law (13) where the center of the formation computed
by each agent results from the consensus algorithm (11)
and the velocity reference is the gradient of the scalar
field corrupted by noise, as explained before. The control
parameters are R=2, o=k = =0 =1 and y=0.1. The
communication graph is a ring, therefore is connected. The
figure shows three snapshots: the void agents corresponds
to the initial conditions and the red ones to two different
states at = 255 and at 1 = 250s. The blue lines represent the
trajectories of each computed center p,, which are described
by the red stars. The fleet of agents reaches a consensus on



Fig. 4. Cooperative gradient-descent with a fleet of six AUVs

0 5 100 150 200 250 300 350 0 50 100 150 200 250 300 350
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Fig. 5. Evolution of the centers’ positions p, components corresponding
to the previous simulation of six agents shown in Fig. 4.

the center of the formation and thanks to the gradient-descent
strategy the formation is steered to the source location.

Fig. 5 displays the evolution of the trajectories of centers
p.« computed by each agent k for the same simulation of
six agents. As expected, the agents reach a consensus on the
centers and the common center reaches exactly the source
location. Note that if the gradient information is corrupted
by noise, the formation is driven to neighborhood of the
source position.

VI. CONCLUSION AND FUTURE WORKS

This paper provides a new cooperative control design
to stabilize a fleet of agents to a time-varying circular
formation. First, the translation control law presented here
makes the agents converge to a circular motion whose center
tracks a given time-varying reference. In order to relax this
assumption, a cooperative control law based on consensus
algorithms with a group reference velocity is proposed to
reach an agreement on the center formation while tracking a
reference velocity. This approach is applied in the context
of source localization. In this case, we consider that the
gradient of the scalar field is known for all the agents.
The communication constraints between the vehicles and the
problem of noise are taken into account.

Future works will be focused on improving previous re-
sults dealing with a reference velocity corrupted by noise. A
future direction is the extension of this work to decentralized
algorithms using the signal measurements of the agents to
estimate the gradient direction of the scalar field following
our previous result from [3].
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