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In this paper, the problem of feedback control implementation for nonlinear systems is considered. Some
conditions for holding the same control input until an event occurs are derived. With respect to classical
approaches, where feedback laws are implemented in a periodically fashion, it is suggested new algo-
rithms to use the same control input. By means of these algorithms, some jumps of the control inputs
occur and the nonlinear system becomes hybrid, since it has a mixed discrete/continuous dynamics. Un-
der some assumptions, written in terms of Lyapunov functions, two event-based algorithms are suggested
for nonlinear systems. The first algorithm is directly based on the variation of the Lyapunov functions.
The last event-based algorithm is based on a selection of the input variables to be updated. The results are
particularized to linear control systems and illustrated by numerical simulations of linear and nonlinear
control systems.

Keywords: Lyapunov functions, nonlinear systems, hybrid systems, asymptotic stability.

1. Introduction

Over the years, researches in control of dynamical systems have provided various approaches to design
globally asymptotically stabilizing feedbacks. Traditionally, the controller is implemented in the time
triggered framework where the sampling for the controller is chosen periodic. The analysis of discrete-
time systems has been widely investigated for linear systems (see (Åström and Wittenmark 1997, Chen
and Francis 1995) and the references therein). Attempts to extend these results to nonlinear systems were
carried out, but the difficulty to obtain a nonlinear discrete-time model is an important obstacle. Some
approaches based on an approximation of the system (Nešić and Teel 2004) or a redesign of the control
(Nešić and Grüne 2005) where developed but it still remains complex. For linear systems, several studies
deal with the robustness of sampled-data controllers with respect to uncertainties in the sampling instants
sequence (jitter) and measurement loss (Cervin, Henriksson, Lincoln, Eker and Arzen 2003, Fridman,
Seuret and Richard 2004, Fujioka 2009, Seuret 2012). These methods typically ensure the stability of
a linear sampled-data system if the sampling period is included in a certain interval. These results are
very relevant but they consider the worst situation.

More in the spirit of non regular sampling period, one can find works dealing with the equiva-
lence between controllability and stabilizability of nonlinear systems (Clarke, Ledyaev, Sontag and
Subbotin 1997, Marchand and Alamir 2000). In these works, the feedback stabilizes the system what-
ever a sufficiently fast sampling (for purpose stability) but not too slow (for robustness purposes). The
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sampling (even if non regular) is however not depending upon the state as in the present work.
In recent years, an interesting method so-called Event-Based Control suggests to adapt the sampling

sequence to some events related to the state of the system. The idea arises in the context of Networked
Control Systems (see for example (Hespanha, Naghshtabrizi and Xu 2007, Zampieri 2008)) where sys-
tems contain several distributed plants which are connected through a communication network. In this
situation, the controlled system works in continuous-time whereas the controller provides a discrete-
time input which is hold during a sampling period. It therefore relaxes the periodicity of computations
and as a consequence reduces the processor usage in embedded devices or the network bandwidth needs
in networked systems. Works on event-based PID have shown the efficiency of the approach with
for example reduction of control function calls up to 80% (Durand and Marchand 2009, Årzén 1999).
Event-based control approach were further extended to general nonlinear systems in (Tabuada 2007)
where an update policy based on the existence of a Lipschitz (at the origin) stabilizing control law and
an Input to State Stable Control Lyapunov Function (ISS-CLF) is proposed. Various extensions of the
result were done in (Anta and Tabuada 2008, Anta and Tabuada 2010) to polynomial and homogeneous
systems. Sontag’s general formula for feedback stabilization was extended to event-based stabilization
in (Marchand, Durand and Guerrero-Castellanos 2013) with the sole assumption of the existence of a
smooth CLF. In both cases and as considered in this paper, the update policy is driven by events issu-
ing from the time derivative of the Lyapunov function. However, contrary to the above references, the
notion of Minimal inter-Sampling Interval as detailed in (Marchand et al. 2013) is not required since
the solutions are intended in the Filipov sense. For this, the problem of the design of an event-triggered
algorithm is first rewritten as the stability study of a system with a mixed continuous/discrete dynamics
(also called hybrid system), as considered e.g., in (Goebel, Sanfelice and Teel 2012, Prieur, Goebel and
Teel 2007, Prieur, Tarbouriech and Zaccarian 2010) in a different context. Using this framework and
the Lyapunov theory that is now well known on this kind of nonlinear systems, we compute two new
event-triggered algorithms for the implementation of feedback controllers. The first event-triggered al-
gorithm makes a Lyapunov-like function decrease (see Theorem 3.1 below for a precise statement). This
algorithm applies to nonlinear control systems for which it is known a (nonlinear) stabilizing controller
under weak assumptions, weaker than those required in (Tabuada 2007, Anta and Tabuada 2008, Anta
and Tabuada 2010), and are not restricted to affine systems as in (Marchand et al. 2013). Finally, a
last algorithm suggests a selection of the input variables to be updated when a suitable Lyapunov-based
condition holds.

A preliminary version of this paper has appeared in (Seuret and Prieur 2011) without the proofs and
with less results (in particular only two event-triggered algorithms have been considered in (Seuret and
Prieur 2011)).

The paper is organized as follows. In Section 2 some materials on hybrid systems are given, and the
problem under consideration in this paper is introduced. In Section 3, a synchronized event-triggered
algorithm is given for nonlinear control systems. In Section 4, a selected event-triggered algorithm is
presented and it is supported by an example of a nonlinear control system borrowed from the literature.
Then main results are applied to the linear case in Section 5, and illustrated by an example of linear
control system. Section 6 contains some concluding remarks and points out some possible open research
lines.

Notation. Throughout the article, the sets N, R+, Rn, Rn×n and Sn denote respectively the sets
of positive integers, positive scalars, n-dimensional vectors, n× n matrices and symmetric matrices
of Rn×n. The notation | · | stands for the Euclidean norm. Given a compact set A , the notation
|x|A = min{|x− y|, y ∈ A ]} indicates the distance of the vector x to the set A . The superscript ‘T ’
stands for matrix transposition. A function µ is said to be of class K∞ if it is continuous, zero at zero,
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strictly increasing and unbounded. The symbols I and 0 represent the identity and the zero matrices of
appropriate dimensions. For a given strictly positive integer m, define the set Sm = {1, . . . ,m}. For any
j ∈Sm, define the set S j

m of all possible sequences of j distinct elements of Sm.

2. Problem formulation

Consider a continuous-time nonlinear system

ẋ = f (x,u),
x(t0) = φ0,

(2.1)

where x ∈ Rn and u ∈ Rm stand respectively for the state variable and the input vector, φ0 ∈ Rn is the
initial state and f : Rn×Rm→ Rn is a locally Lipschitz function.

Assume that the system (2.1) is globally asymptotically stabilizable, i.e. that there exist a Lyapunov
function V and a state feedback control law u such that the derivative of the Lyapunov function along
the trajectories of the closed-loop system is negative definite. This means that:

ASSUMPTION 1. There exist a continuously differentiable function V : Rn→ R, some functions µ1, µ2
and µ3 in K∞ and a continuous controller u : Rn→ Rm such that u(0) = 0 and, for all x ∈ Rn,

µ1(|x|)6V (x)6 µ2(|x|),

∇V (x). f (x,u(x))6−µ3(|x|).

This assumption suggests that the control law u has been designed in continuous-time so that the
(continuous)-time derivative of a Lyapunov function is negative definite.

In practice, it is not realistic to implement a control law in continuous-time. As the control input is
computed on a digital hardware, only a sampled version of the input is implemented in the actuators.
Generally speaking, the sampling is chosen periodic and with a small period so that the sampled signal
is very close to the continuous one. However the computation of the control values is not done instanta-
neously. It requires a minimum sampling period which guarantees that the controller is able to compute
the correct data on time. Consequently, the use of a small sampling period requires an efficient processor
allowing to compute the control value in short time. An alternative solution is to develop an algorithm
which triggers the sampling period with respect to the state of the system, as shown in Figure 1. The
contribution of this paper is to let the system decide by itself if an update of the control is needed or not.

In order to clarify the notation, a hybrid formulation of the sampled-data system is proposed, using
(Goebel et al. 2012, Prieur et al. 2007, Prieur, Tarbouriech and Zaccarian 2013). More precisely the
sampled-data system is rewritten as ẋ = f (x,s),

ṡ = 0,
ṗ = g(x,s, p),

(x,s, p) ∈F ,

 x+ = x,
s+ ∈ D(x,s)u(x)+D−(x,s)s,
p+ = g0(x,s, p),

(x,s, p) ∈J ,

(2.2)
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FIG. 1. Control scheme with an event-triggered algorithm.

where s ∈ Rm represents the held value of the control input (that is implemented over the sampling
interval), p ∈ Rq contains additional parameters, g : Rn×Rm×Rq→ Rq and g0 : Rn×Rm×Rq→ Rq

are two continuous functions of appropriate dimensions, and F and J are two subsets of Rn×Rm×Rq.
These sets are respectively called flow set and jump set and are degrees of freedom of the event-triggered
algorithm. The function D : Rn×Rn ⇒ Rm×m is a set-valued map, that takes non-empty values when
(x,s, p) ∈J , and that is outer semicontinuous and locally bounded1. Note that, if it is locally bounded,
then it is outer semicontinuous if and only if its graph is closed. Moreover in (2.2), for all (x,s) in
Rn×Rn, D−(x,s) denotes D−(x,s) = {I− d, d ∈ D(x,s)}. The design of such a function is proposed
in the sequel. The objective of the function D is to select the control input component to be updated.
Note that the function D should take values in 2R

m×m
, that is the set of all subsets of Rm×m. The function

D is set-valued because it comes from the regularization of a discontinuous single valued function.
Such a regularization is useful to ensure a robustness issue of the stability that will be derived in this
paper (see e.g., (Goebel et al. 2012, Chapter 4) for an introduction on generalization of solutions to
hybrid systems in connection with perturbations). The robustness with respect to measurement noise
or actuation errors follows from general robustness results of asymptotically stable hybrid systems (see
e.g., (Goebel et al. 2012, Prieur et al. 2007)).

We recall some basic ingredients on hybrid system theory, and on the notion of solutions to (2.2)
(see (Goebel et al. 2012, Prieur et al. 2007)). Due to mixed discrete/continuous dynamics, a solution
to (2.2) will be defined on a mixed discrete/continuous time domain. Let us define first the notion of
compact hybrid time domain (see (Goebel et al. 2012, Definition 2.3)). A set E is a compact hybrid time
domain if

E =
J−1⋃
j=0

(
[t j, t j+1], j

)
,

for some finite sequence of times 0 = t0 6 t1 . . . 6 tJ . It is a hybrid time domain if for all (T,J) ∈ E,
E ∩ ([0,T ]×{0,1, . . .J}) is a compact hybrid time domain. A solution (x,s, p) to (2.2) consists of
a hybrid time domain dom and functions x : dom→ Rn, s : dom→ Rm, and p : dom→ R such that
(x,s, p)(t, j) is absolutely continuous in t for a fixed j and (t, j) ∈ dom satisfying

1A set-valued mapping D defined on Rn is outer semicontinuous if for each sequence xi ∈Rn converging to a point x ∈Rn and
each sequence yi ∈ D(xi) converging to a point y, it holds that y ∈ D(x). It is locally bounded if, for each compact set K ⊂ Rn

there exists µ > 0 such that ∪x∈KD(x)⊂ B(0,µ), where B(0,µ) is the ball of radius µ centered at 0.
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(S1) for all j ∈ N and almost all t such that (t, j) ∈ dom,

(x(t, j),s(t, j), p(t, j)) ∈F , ẋ(t, j) = f (x(t, j),s(t, j)),
ṡ(t, j) = 0,
ṗ(t, j) = g(x(t, j),s(t, j), p(t, j)),

(S2) for all (t, j) ∈ dom such that (t, j+1) ∈ dom,

(x(t, j),s(t, j), p(t, j)) ∈J , x(t, j+1) = x(t, j),
s(t, j+1) ∈ D(x(t, j),s(t, j))u(x(t, j))

+D−(x(t, j),s(t, j))s(t, j),
p(t, j+1) = g0(x(t, j),s(t, j), p(t, j)).

Then, the solution (x,s, p) is parameterized by (t, j) where t is the ordinary time and j is an inde-
pendent variable that corresponds to the number of jumps of the solution. This parameterization may
be omitted when there is no ambiguity. When the state x(t, j) belongs to the intersection of the flow set
and of the jump set, then the solution can either flow or jump.

A solution (x,s, p) to (2.2) is said to be complete if its domain is unbounded (either in the t-direction
or in the j-direction), Zeno if it is complete but the projection of dom onto R>0 is bounded, and maximal
if there does not exist another solution x̃ to (2.2) such that x is a truncation of x̃ to some proper subset
of its domain. Hereafter, only maximal solutions will be considered. For more details about this hybrid
systems framework, we refer the reader to (Goebel et al. 2012, Prieur et al. 2007). The following
definition describes the requirements to prove the global asymptotic stability of the solutions to (2.2).

DEFINITION 2.1 Given a closed subset A of Rn×Rm×Rq the hybrid system (2.2) is said to be

• stable to A : if for each ε > 0 there exists δ > 0 such that each solution (x,s, p) to (2.2) with
|(x(0,0),s(0,0), p(0,0))|A 6 δ satisfies |(x(t, j),s(t, j), p(t, j))|A 6 ε for all (t, j) ∈ dom;

• attractive to A : if every solution x to (2.2) is complete and satisfies

lim
t+ j→∞

|(x(t, j),s(t, j), p(t, j))|A = 0;

• globally asymptotically stable to A : if it is both stable and attractive to A .

Given an initial condition (φ0,s0, p0) in Rn×Rm×R, and a solution (x,s, p) of (2.2) defined on a
hybrid time domain dom, the set of the sampling time instants, when the control input is updated, (plus
0) is denoted T and is {t j}, where t j is such its domain is written as ∪ j∈J

(
[t j, t j+1]×{ j}

)
. Among

other results, we state in this paper some properties on the set T depending on the choice of the event-
triggered algorithm. In particular, in our hybrid systems framework, T is at most countable.

In this paper, several sets F and J and functions D are defined, and thus several event-triggered
algorithms are considered. Let the particular case where p = τ ∈R, D(·) = I and such that the dynamics
of the system are rewritten, for any T > 0, as ẋ = f (x,s),

ṡ = 0,
τ̇ = 1,

(x,s,τ) ∈FT ,

 x+ = x,
s+ = u(x),
τ+ = 0,

(x,s,τ) ∈JT ,

(2.3)



6 of 18 A. SEURET, C. PRIEUR and N. MARCHAND

where FT and JT are the following subsets of Rn×Rm× [0,T ]:

FT = {(x,s,τ),τ 6 T},

JT = {(x,s,τ),τ > T}.
(2.4)

As shown in (Goebel et al. 2012), the hybrid model expresses the case of periodic sampling. In this
simple algorithm, after each jump, the solution is either at the equilibrium or has to flow. It avoids the
existence of Zeno solutions, and also it reduces the complexity when implementing the event-triggered
algorithm. Of course, in general, the system (2.3) is not globally asymptotically stable since the update
of the control law does not depend on the system position but is done periodically. This motivates us to
consider the following problem:

Problem 2.1 Define appropriate sets F and J and dynamics of the variable p such that, after each
jump of the solutions to (2.2), the solutions have to flow, and such that (2.2) is globally asymptotically
stable.

3. Synchronized event-triggered algorithm for nonlinear systems

In this section, the set-valued matrix function D is chosen constant and equal to the (singleton given by
the) identity matrix I. This means that the matrix D− is equal to the null matrix. Coming back to the
definition of the hybrid system (2.2), the dynamics of the system evolving in the jump set becomes ẋ = f (x,s),

ṡ = 0,
ṗ = g(x,s, p),

(x,s, p) ∈F ,

 x+ = x,
s+ = u(x),
p+ = g0(x,s, p),

(x,s, p) ∈J ,

(3.1)

Using this framework, all the components of variable s may have a jump only when the system enters
in the jump set J . We call this algorithm Synchronized event-triggered algorithm since the updates of
all components of s are achieved simultaneously. The objective is to define some flow and jump sets,
based on the decay of the function in continuous-time.

THEOREM 3.1 Under Assumption 1, consider a given function µ of class K∞ such that µ(r) < µ3(r),
for all r > 0. Consider the flow and jump sets given by

F1 = {(x,s), ∇V (x). f (x,s)6−µ(|x|)},

J1 = {(x,s), ∇V (x). f (x,s)>−µ(|x|)},
(3.2)

and the associated event-triggered algorithm. Then the system (3.1) with F = F1 and J = J1 (and
without state p) is globally asymptotically stable to {0}×Rm. Moreover, for each solution to this hybrid
system, at every time when the solution has a jump, either the x-component of the state is the origin or
the solution has to flow.

Proof. The proof of Theorem 3.1 is based on the decreasing property of the function V given by
Assumption 1, along the solutions to (3.1), with F and J given by (3.2). See (Prieur et al. 2010, Prieur
et al. 2013) for analogous ideas for a different problem.
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Given a switching time instant t0 ∈T , denoting (with a slight abuse of notation) x(t+0 ) the state after
the jump (and similarly for the other variables), using Assumption 1, it yields

∇V (x(t+0 )). f (x(t+0 ),s(t+0 )) = ∇V (x). f (x(t+0 ),u(x(t+0 )))
6 −µ3(|x(t+0 )|)
6 −µ(|x(t+0 )|)− ε(|x(t+0 )|),

where ε(|x(t+0 )|) = µ3(|x(t+0 )|)− µ(|x(t+0 )|) is non-negative and equals 0 only if x(t+0 ) is vanishing.
Thus, after a jump, two cases may occur:
1) either the x-component of the state is at the origin (and the same for the other components), and then
the solution remains at the origin;
2) or x(t+0 ) is different to 0. Then (x(t+0 ),s(t+0 )) belongs to F1 \J1 and the solution has to flow.

Consider now (x,s) in F1 \{0}. Then we get

∇V (x). f (x,s) = ∇V (x).( f (x,s)− f (x,u(x)))+∇V (x). f (x,u(x)),

and using Assumption 1, we obtain

∇V (x). f (x,s)6−µ3(|x|)+∇V (x).( f (x,s)− f (x,u(x))).

Then, the solution (x,s) to system (3.1) with F = F1 and J = J1 stays in F1 until a state x = x∗ (if
such a state does exist) defined by

∇V (x∗).( f (x∗,s)− f (x∗,u(x∗))) = µ3(|x∗|)−µ(|x∗|).

Two subcases may occur.
2.a) If there exists such x∗, then the couple (x∗,s) belongs to J1, and by definition of s+, (x∗+,s+)
belongs to F1.
2.b) If there does not exist such x∗, then the solution to the system (3.1) stays in F1.

For both cases, the derivative of V is negative while (x,s) is in F1 and V is constant while (x,s) is
in J1. This implies that the system (3.1) with F = F1 and J = J1 is stable to {0}×Rm (as proven
in the first part of (Goebel et al. 2012, Theorem 3.18)).

To prove the attractivity of the system (3.1) with F = F1 and J = J1, let us apply the LaSalle
invariance property for hybrid systems (see e.g., (Goebel et al. 2012, Theorem 8.2)). Let us consider a
solution to this hybrid system which is included in a level set of the function V . Let us show that this
solution should be equal to 0.

The solution cannot jump, except if it is at the origin (indeed, if the solution is not at the origin, then,
after a jump, the solution has to flow, and thus the value of V has to decrease). Given a solution flowing
for all time, due to Assumption 1, the state x cannot stay at the level set of V . Thus the solution has to
be constant and equal to the origin. Therefore, by (Goebel et al. 2012, Theorem 8.2), the system (3.1)
with F =F1 and J =J1 is globally attractive to {0}×Rm and therefore it is globally asymptotically
stable. This concludes the proof of Theorem 3.1. �

REMARK 3.1 A main improvement of the proposed method compared for example to (Anta and Tabuada
2010), is that no Input-to-State Stability (ISS) assumption for system (2.1) is needed. More precisely
the method that is suggested in (Anta and Tabuada 2010) requires the existence of functions α and γ of
class K∞, such that, for all x in Rn,

∇V (x). f (x,u(x+ ε))6−α(|x|)+ γ(|ε|) .
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Then the event-triggered algorithm is defined by a condition on the error between the current value of
the state x and its memory m - that is the value of the state last time the control was updated. ε = m− x
denotes the measurement error. The control is updated as soon as |ε|6 γ−1(σα(|x|)) ensuring that way
the strict decrease of V for 0 < σ < 1. In the present article, instead of an ISS assumption, only the
global asymptotic stability is needed. As remarked in (Sontag 2007), Assumption 1 is weaker than the
ISS property, and it is sufficient to define the event-triggered algorithm by the value of the derivative of
the Lyapunov function along the trajectories of the system. ◦

REMARK 3.2 Another important issue concerns the possibility that the solution of the system for a given
initial condition, never reaches the set J1. It is the case when that the system is already asymptotically
stable without any control (or with a constant control value) and the control law does not need to be
updated. This situation is not taken into account in the method proposed in (Anta and Tabuada 2010).

Moreover note that there may exist some Zeno solutions to the hybrid system (3.1) with F = F1
and J = J1. For such solutions, the attractivity of the origin contained in the conclusion of Theorem
3.1 holds, as the the quantity t+ j goes to infinity, as thus as the discrete time j goes to the infinity (since
for Zeno solutions, the continuous time t is bounded). ◦

REMARK 3.3 On the other side, there is a drawback of the present method. The derivative of the
Lyapunov function V needs to be computed at all time instants to check if the closed-loop system has to
flow or to jump. ◦

Picking µ = 0 in Theorem 3.1 gives a partial result and allows to design an event-triggered algorithm
such that the closed-loop system is globally stable. More precisely we have

PROPOSITION 3.1 Under Assumption 1, consider the flow and jump sets given by

F ′
1 = {(x,s), ∇V (x). f (x,s)6 0},

J ′
1 = {(x,s), ∇V (x). f (x,s)> 0},

and the associated event-triggered algorithm. Then the systems (3.1) with F = F ′
1 and J = J ′

1 is
globally stable to {0}×Rm. Moreover, for each solution to this hybrid systems, at every time when the
solution has a jump, either the x-component of the state is the origin or the solution has to flow.

Proof. The proof follows the lines of Theorem 3.1. More precisely, we may check that by selecting
F = F ′

1 and J = J ′
1, and by using Assumption 1, the derivative of the Lyapunov function V is

negative while the state of the solution (x,s) of (3.1) is in F1 and is constant (x,s) is in J1. This
implies, with the first part of the proof of (Goebel et al. 2012, Theorem 3.18)), that the system (3.1) with
F = F1 and J = J1 is stable to {0}×Rm.

Finally, using Assumption 1 again, we note that, given a solution of (3.1) with F = F ′
1 and J =

J ′
1, after each jump (if such a jump does exist), either the state is the origin or the solution has to flow.

This concludes the proof of Proposition 3.1. �

4. Selected event-triggered algorithm for nonlinear systems

4.1 General nonlinear systems

From now on, the system under consideration is the one defined in (2.2) (without any state p). The
objective of this section is the design of the matrix function D in order to get a stabilizing event-based
algorithm. In comparison with the approach presented in the previous section (where all components of
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the input vector are updated at each jump), the event-triggered algorithm is authorized to update only
one or several components of the input vector s. This problem has already been addressed in (Postoyan,
Tabuada, Nesic and Anta 2011) where the matrix function D is a predefined to schedule the control
input to be updated. Here the main difference with respect to (Postoyan et al. 2011) is that the matrix
D is resulting from an appropriate selection of the control input which depends on the current state of
the system. A solution to this problem is described in the sequel for the case of the continuous-time
decrease of the Lyapunov function as proposed in Section 3. Consequently, we will also use the same
flow and jump sets F1 and J1 defined in (3.2) with the appropriate function µ .

In order to propose a simple formulation to this problem, we adopt the following notations.

∀(i,k) ∈ {Sm}2, κi(k) =
{

1, if k = i,
0, otherwise.

and the matrices

∀i ∈Sm, Di =

 κi(1) . . . 0
. . .

0 . . . κi(m)

 .
With such a matrix Di and given u in Rm, Diu is the vector with all vanishing components, except the
i-th component which is ui. It allows to update the input of system (2.1) using only one component of
u(x). Now given λ 6m a positive integer and σ := {i1, . . . , iλ} in S λ

m (where ik1 assumed to be different
from ik2 for any k1 6= k2), we denote

Dσ =
λ

∑
l=1

Dil =

 ∑
λ
l=1 κil (1) . . . 0

. . .
0 . . . ∑

λ
l=1 κil (m)

 .
When employing this matrix Dσ , for any u in Rm, Dσ u allows to update λ components using u (see

Theorem 4.1 below for more details).
The set-valued map function D : Rn×Rm⇒ Rm is the Krasovkii’s regularization (see e.g., (Goebel

et al. 2012, Definition 4.13) for more details on such a regularization) of a discontinuous function
d : Rn×Rm→ Rm defined as follows:

For a given state (x,s), d(x,s) = Dσ where σ is an element of S λ
m and λ in {1, . . . ,m} are such that

∂Vλ (x,s) := min
σ∈S λ

m

{∇V (x(t)). f (x(t),Dσ u(x(t))+(I−Dσ )s(t))} , ∀λ ′ ∈ {1, . . . ,m}, (4.1a)

∂Vλ (x,s)6−µ(|x|), (4.1b)
∂Vλ ′(x,s)>−µ(|x|), ∀λ ′ < λ . (4.1c)

As for the previous event-triggered algorithms, with this function D, the update of the input vector
is done by using Lyapunov inequalities. More precisely, the condition (4.1a) computes, for a given λ ,
the minimal value, among all the possible choices when updating only λ component(s) of the control
input s, of the time-derivative of the Lyapunov function V .

The second condition (4.1b) and the last one (4.1c) computes the minimal number of necessary
updates that are needed to ensure the good sign of the Lyapunov function. With this function D, we are
in position to prove the following:
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THEOREM 4.1 Under Assumption 1, consider a given function µ of class K∞ such that µ(r) < µ3(r),
for all r > 0. Consider the flow and jump sets given by F1 and J1 respectively, defined in (3.2) and
the associated event-triggered algorithm and the set-valued map function D defined by (4.1). Then the
system (2.2) with F = F1 and J = J1 (and without state p) is globally asymptotically stable to
{0}×Rm.

The proof is inspired from Theorem 3.1 and is based on the fact that, after each jump, either the
solution to (2.2) with F = F1 and J = J1 is at the origin, or the solution has to flow. Therefore the
proof of Theorem 4.1 is omitted.

4.2 Affine nonlinear systems

Algorithm 4.1 requires the computation of ∇V (x(t)). f (x(t),Dσ u(x(t)) + (I −Dσ )s(t)) for all λ in
{1, . . . ,m}, that is the effect of any combination between the updated control u(x(t)) and its previ-
ous value s(t) on the decrease of the Lyapunov function. It asks for 2m evaluations of this derivative
(that is as many parts in {1, . . . ,m}). This may be costly and can highly be simplified in the case of
systems that are affine in the control, that is of the following form:{

ẋ = f1(x)+ f2(x)s,
ṡ = 0, (x,s) ∈F ,

{
x+ = x,
s+ = u(x), (x,s) ∈J .

(4.2)

In that case, ∂Vλ (x,s) is composed of two terms, the drift being independent from the control value.
Hence:

∂Vλ (x,s) = ∇V (x(t)) f1(x(t))+ min
σ∈S λ

m

{
ϑ1(x)T

ϑ2(x,σ)
}
, (4.3)

where
ϑ1(x) := [∇V (x(t)) f2(x(t))] ϑ2(x,σ) := Dσ u(x(t))+(I−Dσ )s(t).

The second term to minimize is the scalar product between the two vectors ϑ1(x) and ϑ2(x,σ), and
the effects of all components of σ on this scalar product are independent. Therefore, the minimum of
ϑ1(x)T ϑ2(x,σ) over σ in S λ

m can be expressed componentwise as follows:

min
σ∈S λ

m

{< ϑ1(x),ϑ2(x,σ)>}=
m

∑
i=1

min
di=0,1

{(diui +(1−di)si)ϑ1i(x)} (4.4)

where ui, si, ϑ1i and ϑ2i denote the ith term of respectively u, s, ϑ1 and ϑ2. Now, recalling that Dσ in
ϑ2i(x,σ) is a diagonal matrix composed of zeros and ones, it follows:

min
di=0,1

{(diui +(1−di)si)ϑ1i(x)}= min{ϑ1i(x)ui(x(t)),ϑ1i(x)si(t)} (4.5)

The selection algorithm (4.1) becomes therefore much more simple. It can be computed as follows:

1. For i ∈Sm, compute the smallest term between ϑ1i(x)ui(x(t)) and ϑ1i(x)si(t) and keep the index
only when ϑ1i(x)ui(x(t))< ϑ1i(x)si(t). The indexes denote the control component that are would
improve the decrease of the Lyapunov function if updated. The set of indexes is a subset of Sm.
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1

2

34

V

time

x

FIG. 2. Effect of the control update on the decrease of the Lyapunov function. In Case 1, the control is not updated. Cases 2 to
4 corresponds to different update strategies. The dashed-dotted red line is of slope −µ(|x|) that imposes the minimal decrease of
the Lyapunov function

2. Sort this set in order to obtain an index set I defined as follows

I := {i1, i2, . . . , iη}, η ∈Sm, (4.6a)
such that: ϑ1i1

(x)ui1(x(t))6 ϑ1i2
(x)ui2(x(t))6 · · ·6 ϑ1iη

(x)uiη (x(t)) (4.6b)

3. Compute the minimal number η of indexes such that:

η

∑
j=1

ϑ1i j
(x)ui j(x(t))6−µ(|x|)−∇V (x(t)) f1(x(t))− ∑

j∈Sm
j/∈J

ϑ1 j(x)s j(x(t)) (4.7)

4. Update the control component ui1(x(t)) to uiη (x(t)).

Following this algorithm (or more precisely its Krasovkii’s regularization), as for Theorem 4.1, it
is obtained that, after each jump, either the x-component of the solution to (2.2) with F = F1 and
J = J1 is at the origin, or the solution has to flow. Therefore we get:

THEOREM 4.2 Under Assumption 1, consider a given function µ of class K∞ such that µ(r) < µ3(r),
for all r > 0. Consider the flow and jump sets given by F1 and J1 respectively, defined in (3.2) and the
associated event-triggered algorithm defined by (4.6)-(4.7). Then the system (4.2) with F = F1 and
J = J1 (and without state p) is globally asymptotically stable to {0}×Rm.

Figure 2 illustrates the different algorithms. At some points, it may be necessary to update several
components so that V̇ is lower that the quantity −µ(|x|). With the algorithm suggested by Theorem 4.2,
it is updated the minimal number of inputs so that V̇ is lower that the value −µ(|x|) (Case 3 for this
figure), even if by updating more components (as for Case 4 of Figure 2), a lower value for V̇ may be
obtained.
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FIG. 3. From the left to right: time-evolution of the states, of the control values and of the τ-variables for the synchronized and
the selected algorithms, given respectively by Theorem 3.1 (top), and by Theorem 4.1 (down)

4.3 Nonlinear example

Consider the following nonlinear system borrowed from (Anta and Tabuada 2010, Byrnes and Isidori
1989):

ẋ1 = u1, ẋ2 = u2, ẋ3 = x1x2, (4.8)

where (x1,x2,x3) and (u1,u2) stand respectively for the state and for the control. A stabilizing controller
is computed in (Byrnes and Isidori 1989). It is given by, for all (x1,x2,x3) in R3,{

u1(x1,x2) =−x1x2−2x2x3− x1− x3,
u2(x1,x2) = 2x1x2x3 +3x2

3− x2.
(4.9)

A Lyapunov function for this system is computed in the same reference. It is defined by, for all
(x1,x2,x3) in R3,

V (x) = (x1 + x3)
2/2+(x2− x2

3)
2/2+ x2

3.

Thus Assumption 1 holds.
The simulation results for the synchronous and selected algorithms are shown in Figure 3 where

two different numerical simulations are done: 1) the event-triggered algorithm which are considered in
Theorem 3.1, 2) the event-triggered algorithm provided in Theorem 4.1. The figure contains the state,
the input and the variable τ defined in (2.3) and the variables τi representing the sampling of each control
input. The following parameters have been selected µ(x) = 10−3|x|2 + 10−3|x|4, λ = 0.2. The initial
conditions are x1(0) =−10, x2(0) =−5 and x3(0) = 5.

In Figure 3, it can be seen that for a simulation of 40s, the synchronized event-triggered algorithm
requires 2× 18 = 36 updates of control inputs, while the selected event-triggered algorithm requires



STABILITY OF NONLINEAR SYSTEMS BY MEANS OF EVENT-TRIGGERED SAMPLING ALGORITHMS 13 of 18

only 27. This shows that the number of updates of the control inputs can be significantly reduced by the
use of an adequate selection policy of the control inputs.

It is important to stress that the selection of updating the first or the second control inputs are not
defined in advanced as in (Postoyan et al. 2011).

5. Application to linear systems

Consider now a linear system of the form

ẋ = Ax+Bu, (5.1)

where x ∈ Rn and u ∈ Rm stand for the state variable and the input vector. The matrices A and B are
constant and known and of appropriate dimensions. Let us assume that the pair (A,B) is controllable.
Then the proposed control law for this system is u = Kx where K in Rm×n is such that the matrix A+BK
is Hurwitz. There also exist a positive scalar α and a symmetric positive definite matrix P so that

P(A+BK)+(A+BK)T P <−2αP. (5.2)

Thus Assumption 1 holds with V (x) = xT Px and u(x) = Kx for all x ∈ Rn. Rewriting the closed-loop
system in a hybrid framework, we get:{

ẋ = Ax+Bs,
ṡ = 0, (x,s) ∈F ,

{
x+ = x,
s+ = Kx, (x,s) ∈J .

(5.3)

By noting that

∇V (x) f (x,s) =
[

x
s

]
Π1

[
x
s

]
where Π1 =

[
PA+AT P+2ᾱP PB

BT P 0

]
, ᾱ ∈ (0, α), the following result follows readily from Theo-

rem 3.1:

PROPOSITION 5.1 Assume there exist a symmetric positive definite matrix P in Rn×n, a matrix K in
Rn×m and a positive scalar α satisfying (5.2). Consider ᾱ ∈ (0, α) and the flow and jump sets defined
by

F1L =

{
(x,s),

[
x
s

]T

Π1

[
x
s

]
6 0

}
,

J1L =

{
(x,s),

[
x
s

]T

Π1

[
x
s

]
> 0

}
.

Then the system (5.3) with the event-triggered algorithm derived from F = F1L and J = J1L is
globally asymptotically stable to {0}×Rm. Moreover, for each solution to this hybrid system, at all
time when the solution has a jump, either the state is the origin or the solution has to flow.
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REMARK 5.1 In (Fiter, Hetel, Perruquetti and Richard 2011), an LMI based mapping approach is
proposed in addition to Proposition 5.1. The authors introduce the notion of maps. The idea is to divide
the state space into appropriate sectors. Then off-line calculations allows to attribute a sampling period
to each sector. By this mean, it is possible to create a map composed of sectors such that, when the
system enters in the jump set, the controller only has to find in which sector the state of the system
belongs to choose the appropriate sampling period. The interest of this method is that this mapping
approach avoid the computation of the test function embedded in the controller. ◦

 ẋ = Ax+Bs,
ṡ = 0,
τ̇ = 1,

(x,s,v,τ) ∈F ,

 x+ = x,
s+ = Kx,
τ+ = 0,

(x,s,v,τ) ∈J .

(5.4)

5.1 Comments on the linear case

The event-triggered algorithms which are exposed above do not provide any information of the duration
while a control law is held. In the sequel, a complementary analysis is provided for the case of linear
systems to give an upper-bound and a lower bound of the holding times. Consider now the hybrid
representation of system (5.1)  ẋ = Ax+Bs,

ṡ = 0,
τ̇ = 1,

(x,s,v,τ) ∈F ,

 x+ = x,
s+ = Kx,
τ+ = 0,

(x,s,v,τ) ∈J .

(5.5)

This hybrid system is essentially the same as system (5.3), except that a timer τ has been added to
the dynamics of the system. Let χ ∈Rn be the value of x-component in the system (5.5) with the event-
triggered algorithm derived from F = F1L and J = J1L, at an instant when the system is jumping,
i.e. χ = x(t j) for some t j ∈ T . In the case of linear sampled-data systems, the relations between χ , x
and s are given by

x(tk + τ) = Γ (τ)χ, s(tk + τ) = Kχ,

where Γ (τ) = eAτ +
∫

τ

0 eA(θ−τ)dθBK. For the sake of simplicity, we will denote

X(χ,τ) = (Γ (τ)χ, Kχ),

for any given χ ∈ Rn and τ ∈ R+. Based on these linking relations, bounds on the inter sampling times
can be provided. This is stated in the sequel.

PROPOSITION 5.2 Consider the linear system (5.5) with the event-triggered algorithm derived from
F =F1L and J =J1L. Then, the difference between two successive sampling instants is included in
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the interval [Tm, TM] defined as follows

Tmax = maxρ∈Rn,|ρ|=1
{

maxX(ρ,τ)∈F1L τ
}
,

Tmin = minρ∈Rn,|ρ|=1
{

maxX(ρ,τ)∈F1L τ
}
.

Proof. Consider any state χ in Rn for a solution to system (5.3) with the event-triggered algorithm
derived from F = F1L and J = J1L when a jump is occurring. By simple computations, it is clear
that if, for any τ > 0, X(χ,τ) belongs to F1L then X(χ/|χ|,τ) also belongs to F1L. Then, from the
definition of Tmin and Tmax, the next update will happen between these two bounds. �

5.2 Linear example

Consider the linear system (5.1) and the control u = Kx studied in (Naghshtabrizi, Hespanha and Teel
2008, Zhang, Branicky and Phillips 2001) with

A =
[

0 1
0 −0.1

]
, B =

[
0
−0.1

]
, K =

[
3.75
11.5

]T
. (5.6)

Several robust stability conditions dedicated to the previous example of sampled-data systems can
be found in (Fridman 2010, Fujioka 2009, Oishi and Fujioka 2009, Seuret 2009). In these articles,
the main idea is to provided the largest upper-bound T so that the closed-loop system is stable for any
asynchronous samplings whose period is lying in [0,T ]. It was shown in (Seuret 2009) that the system
remains stable with the upper-bound T = 1.729.

To provide an efficient event-triggered algorithm, the Lyapunov matrix is taken from (Seuret 2009)
with T = 0.2 and

P =

[
21.213 10.843
10.843 20.666

]
, α = 0.17.

Figure 4 shows the simulations results of the closed system using the continuous-time controller, and the
event-driven control algorithm provided in Proposition 5.1 with ᾱ = 10−3 and λ = 0.15. The control
algorithm requires 12 sampling instants over a simulation time of 20sec.

Using Proposition 5.2, the algorithm leads to the following bounds on difference between two suc-
cessive sampling instants Tmin = 0.978 and Tmax = 6.96. The event-triggered algorithm allows solutions
for which the length between two successive sampling instants is greater than the upper-bound obtained
using robust approaches from (Fridman 2010, Fujioka 2009, Oishi and Fujioka 2009, Seuret 2009,
Seuret 2012). This shows the main interest of the proposed method.

6. Conclusions

In this paper, using a Lyapunov-like function, three event-triggered algorithms are designed. It is as-
sumed that a stabilizing controller for the continuous control system is given, and these algorithms
suggest an implementation method, alternative to the classical periodic implementation method. The
event-triggered algorithms require to study a closed-loop system with a mixed discrete/continuous dy-
namics (namely this is a hybrid system). Some numerical simulations illustrate the stability properties
for nonlinear and linear control systems.

In a forecoming work, the performance issue should be analyzed. It is remarked that the event-
triggered algorithms have a different performance. The first one seems to ensure a good speed of con-
vergence on numerical simulations, whereas the second event-triggered algorithm allows less jumps
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FIG. 4. From the top to down: time-evolution of the states, of the V -function, of the τ-variables and of the control values (when
closing the loop with the continuous control, or with the algorithm of Proposition 5.1, or with the algorithm of Proposition 5.2,
from left to right)

and thus needs to compute less often the control variables. The advantages and disadvantages of each
algorithm will be studied more precisely in a forecoming work, for a theoretical point of view (e.g. by
estimating a priori the number of switches), or on applications (to understand which algorithm is better
depending on the application).
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