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Abstract— In this study we consider the robust control of
an inclined cable modelled using partial differential equations
and subjected to external disturbances. This paper focuses on
the construction of a standard linear infinite dimensional state
space system and an H∞ feedback control with full observation
of the state.

Index Terms— partial differential equations, robust control,
inclined cable, state space model.

I. INTRODUCTION

Inclined cables are a critical component in cable stayed

bridges, and one way their vibrations can be induced is

from deck movements. The increasing span of the bridges

makes cable and deck vibrations more sensitive to wind and

traffic induced vibrations and this situation has become a

major design issue. Since cables are very flexible and lightly

damped, cable structure systems usually have a range of dy-

namic problems. Their modelling is therefore very important

in predicting and controlling the response to excitation. A

good review about vibration suppression in civil structures

and many references on this topic can be found in [11].

In this article, we work on a linearized model of an

inclined cable using partial differential equations (pde) and

we aim at designing robust control laws for this kind of

vibrating system. In order to do so, we will first build

the corresponding standard state space model of infinite

dimension and describe the H∞-control of the system with

state feedback. This has to be understood as a first step

toward the measurement feedback study of an inclined cable

using an active tendon, which is ongoing work.

In civil engineering, the usual study of the vibrations of

inclined cables is made through the consideration of a few

structural modes. A novel aspect of this current work is to

consider, as far as we can, the complete pde model of the

system in order to study its robust control. The objective

is to construct the standard infinite-dimensional model so

that we can apply a robust control strategy based on modern

control tools for distributed parameter systems [2]. We will

then prove the H∞-control of the cable, robust with respect

to deck movements, by the means of the resolution of a

Riccati equation.

It should be noted that in this current derivation we

do not consider the non-linearities that arise in modelling
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the vibrations of an inclined cable. For example [17] (see

also [16]), use a detailed non-linear pde model which

is decomposed into the first few vibration modes from

which the precise non-linear coupling between in-plane

and out-of-plane vibrations can be seen. Neither do we

consider a finite element modelling approach as in [9],

where one can find an introduction to active tendon control

of cables. The development of active devices for future

large bridges is justified by the difficulty of damping the

stay cable vibration. Here our approach is to use the case

of a feedback controller with full observation of the state,

as a preliminary study on the way to partial measurement

feedback control through an active tendon where actuator

and sensor are collocated at one end of the cable. The

novelty of our approach resides in the active control study

at the “pde level” of the system.

Among the numerous possibilities for modelling the mo-

tions of inclined cables with small sag, we adopt the pde

modelling presented in [16] using the derivation from [17].

The derivation includes the effects of support motion at both

ends of the cable. The cable is supported at end points a
and b and the direction of the chord line from a to b, of

length ℓ is defined as x, see Figure 1. The cable equilibrium

sag position and the chord line both lie in the x − z plane,

therefore w represents in-plane motion and v represents out-

of-plane motion. The angle of inclination of the chord line

relative to the horizontal is defined as θ. We set ρ to be

the density of the cable, E the Young’s modulus and g is

gravity. We then define ̺ = ρg cos θ as the distributed weight

perpendicular to the cable cord.
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Fig. 1. Inclined Cable

The notations used here broadly follows the approach of

[16] and one can refer to this book for further details about

the modelling of the inclined cable movement:

• u = uq(x, t) + um(x, t) is the dynamic axial displace-

ment (in x-direction) of the cable ;



• v = vq(x, t) + vm(x, t) is the dynamic out-of-plane

transverse displacement (in y-direction) ;

• w = wq(x, t) + wm(x, t) is the dynamic in-plane

transverse displacement (in z-direction) ;

• Ts is the static tension of the cable and is assumed to

be constant (w.r.t. x and t) ;

• Td = Tq + Tm is the dynamic tension of the cable;

• ws(x) =
̺A

2Ts

(

ℓx − x2
)

is the static in-plane displaced

shape of the cable and gives the sag displacement

relationship (A being the cross sectional area of the

cable).

Each displacement is the sum of a quasi-static component

(subscript q) and a modal component (subscript m). We

denote by ∂z the partial derivative with respect to z. Since

we neglect the axial inertial force (∂ttu = 0) we have the

following equation for the dynamic tension:

Td = AE

[

∂xu +
1

2
(∂xv)2 +

1

2
(∂xw)2 +

dws

dx
∂xw

]

.

The equation of motion for the dynamic analysis of this

inclined cable, are then given by: ∀(x, t) ∈ (0, ℓ) × (0,∞),






ρA∂ttv = (Ts + Td)∂xxv,

ρA∂ttw = ∂x

(

(Ts + Td)∂xw + Td

dws

dx

)

.
(1)

Outline: In Section II, one will read how we manage to

obtain the preliminary equations for the construction of the

linear standard model of the inclined cable. Section III

describes what we define as H∞-control with state feedback

in an infinite dimensional setting. Finally, in Section IV, we

gather all these parts to build our standard model and apply

the results of [2] to prove the robust control of the system. In

Section V we discuss how this model used to produce some

numerical results.

II. MODELLING OF A CONTROLLED INCLINED CABLE

Considering an inclined cable as a structural element of

a cable-stayed bridge, we are interested in the modelling of

the robust control of the vibrations of the cable subjected

to the oscillation of the bridge deck. From equation (1), our

aim is to first define a linearized system that could fit in the

standard state space model.

A. Partial differential equation model of the inclined cable

In addition to the pde we are going to study, we impose the

following boundary conditions corresponding to this support

motion (see Figure 1)






u(0, t) = 0, u(ℓ, t) = ub(t),
v(0, t) = 0, v(ℓ, t) = 0,
w(0, t) = 0, w(ℓ, t) = wb(t),

∀t ∈ (0,∞). (2)

with ub, wb ∈ L∞(0,∞), and some compatible initial

conditions in (0, ℓ)

(u, v, w)(0, x) = (u0, v0, w0),
∂t(u, v, w)(0, x) = (u1, v1, w1).

(3)

One can read in [16] the details about the splitting of

the equations into quasi-static and modal motions equations

and how this influences the analysis of the inclined cable

vibrations (taking into account the non-linear dynamics or

not). Here, we only give a summary of the results.

The first step is to solve the quasi-static equations, that

correspond to the motion of the cable subjected to the

boundary conditions but without taking into account any

dynamic response (initial conditions are not considered and

we assume that Td << Ts) : ∀(x, t) ∈ (0, ℓ) × (0,∞),







Ts∂xxvq = 0

Ts∂xxwq + Tq

d2ws

dx2
= 0

(4)

with Tq = AE

(

∂xuq +
dws

dx
∂xwq

)

.

As one can read in [16], using the boundary conditions (2),

these equations can be solved and one obtains the values of

the quasi-static components, for x ∈ (0, ℓ) and t ∈ (0,∞):

uq(x, t) =
Eq

E
ub(t)

x

ℓ
−

̺Aℓ

2Ts

wb(t)

[

x

ℓ
−

(x

ℓ

)2
]

+
λ2Eq

4E
ub(t)

[

x

ℓ
− 2

(x

ℓ

)2

+
4

3

(x

ℓ

)3
]

vq(x, t) = 0

wq(x, t) = wb(t)
x

ℓ
−

̺EqℓA
2

2T 2
s

ub(t)

[

x

ℓ
−

(x

ℓ

)2
]

Tq(t) =
AEq

ℓ
ub(t)

(5)

where Eq = E/(1+λ2/12) is the equivalent modulus of the

cable and λ2 = E̺2ℓ2A3/T 3
s is Irvine’s parameter.

In the second step, we consider the linearized dynamic

modal partial differential equations that consist of the fol-

lowing pair of 1-dimensional non-linear wave equations on

(0, ℓ) × (0,∞) :















ρA∂ttvm = Ts∂xxvm

ρA∂ttwm = ∂x

(

Ts∂x(wm + wq) + Td

dws

dx

)

+ρA∂ttwq

(6)

subjected to homogeneous Dirichlet boundary conditions

{

vm(0, t) = 0, vm(ℓ, t) = 0,
wm(0, t) = 0, wm(ℓ, t) = 0,

∀t ∈ (0,∞) (7)

initial conditions (3) and where the linearized dynamic

tension satisfies (since it is assumed that the modal axial

displacement um can be neglected)

Td = Tq +
̺A2E

2Ts

(ℓ − 2x) ∂xwm.

In order to be able to derive a state space model from this

setting, we have to linearize equations (6) and use equations

(5). The linearized system we will work with is derived for



(x, t) ∈ (0, ℓ) × (0,∞) and reads:






























∂ttvm =
Ts

ρA
∂xxvm,

∂ttwm = ∂x

([

Ts

ρA
+

̺2A2E

4ρT 2
s

(ℓ − 2x)
2

]

∂xwm

)

−
x

ℓ
w′′

b +
̺EqℓA

2

2T 2
s

[

x

ℓ
−

(x

ℓ

)2
]

u′′
b .

(8)

We want to define a standard infinite dimensional state

space model, of the shape (10), of the robust control of this

inclined cable. The goal is to prove that we can construct

a feedback law that is robust to several perturbations to be

defined later, such as model uncertainties (the non-linearities

we are neglecting for instance) or traffic induced vibrations

(deck movement).

We will come back later to the legitimate questions of

existence and regularity of the solutions to the pde system,

but one can observe that after the linearization of (6), we

obtain a system (8) of two decoupled wave equations, whose

solutions are well studied in applied analysis math literature.

The existence of a unique solution relies for instance on

semi-group theory (see [8]) and one can read in [13] some

details on the wm specific Sturm-Liouville operator equation.

B. Control and perturbations of the cable

We are considering an inclined cable as in Figure 1

connected at its bottom end b with an active tendon aligned

with the cable and perturbed by in-plane oscilations (ub, wb).
An active tendon consists of a displacement actuator (e.g.

piezoelectric) collocated with a force sensor (see [3], [9],

[11]). In this paper, we initiate the study of this device

with the standard modelling of a state feedback controller.

Nevertheless a tendon (our controller) is principally meant to

have an axial movement, corresponding to a control uc which

is then an additive displacement term to the perturbation ub

in equation (5). But as mentioned in [9], if we only consider

this inertial control, we only interact with the symmetric

modes of vibration. And because of the linear framework, we

lose the complementary parametric control. To overcome this

issue, we will then consider that the control also acts through

the in-plane bottom displacement as a term wc which will be

added to the perturbation wb and we change (8) accordingly.

It can be noticed in the non-linear model (1) of the inclined

cable, that there is a non-linear coupling between v and w
through the dynamic tension Td and when we linearized

these equations, we completely lost this affect and obtain

decoupled equations. As it is explained in [7] or [17] for

instance, out-of-plane dynamic stability of inclined cables

subjected to in-plane vertical support excitation is an ongoing

subject of investigation that relies on the analysis of the non-

linear model.

Here, because we choose to focus on studying the pde

model and its robust control, we need to continue developing

a linear standard model. Therefore, we can only consider the

non-linearities as a perturbation of the model, that will be

denoted by Wmod in Section IV. Moreover, it is our choice to

let the pde in vm evolve conservatively by itself, without any

control and perturbation, and therefore to take it out of the

modelling. The study will focus now on the robust control

of the in-plane modal motion wm and the final model reads

∂ttwm = ∂x

([

Ts

ρA
+

̺2A2E

4ρT 2
s

(ℓ − 2x)
2

]

∂xwm

)

−
x

ℓ
(w′′

b + w′′
c ) +

̺EqℓA
2

2T 2
s

[

x

ℓ
−

(x

ℓ

)2
]

(u′′
b + u′′

c ). (9)

Nevertheless, we wanted to let the out-of-plane movement

vm be detailed in the model, because this study is also a first

step toward more intricate situations where the decoupling

between wm and vm may not be true any more.

III. H∞ CONTROL WITH STATE-FEEDBACK

This section is devoted to recall the H∞-robust control

result proved in [2] (and also in [15]) that we want to apply to

the pde model we have already presented. These results give

an equivalence between the H∞-robust control with state-

feedback of an infinite-dimensional system and the resolution

of a Riccati equation. We will explain later how they can be

applied to the model we consider, following the presentation

and assumptions detailed in [2].

The articles [1], [2] and [15] give a survey of the

H∞-control theory with state-feedback in the infinite-

dimensional case. The dynamic measurement-feedback

(or partial information case) for the same class of linear

infinite-dimensional systems is also addressed in [2] and

[14] and will be considered for the particular setting of

the inclined cable controlled by an active tendon in a

future study. The main results in all these articles is a

generalization of the finite-dimensional regular H∞-control

problem (see for instance [6] and [12]) presented in a

standard state-space approach. In particular, the solution is

given in terms of the solvability of two Riccati equations.

w z

u y

K

P

Fig. 2. Closed-loop system. State feedback: Y= X.

Let A be the infinitesimal generator of a C0-semigroup

T (t) = eAt on a real separable Hilbert space X and let be

the following linear bounded operators B ∈ L(U ,X ), D ∈
L(W,X ) and H ∈ L(X ,Z) where U (space of controls),

W (space of perturbations), and Z are also real separable

Hilbert spaces. We consider the dynamic system governed

by the equations, ∀t ≥ 0






X ′(t) = AX(t) + BU(t) + DW (t),
X(0) = 0,
Z(t) = HX(t) + U(t).

(10)



Here, X(t) ∈ X is the state of the system, U(t) ∈ U is the

control input, W (t) ∈ W stands for the disturbance input

and Z(t) ∈ Z is the “to be controlled output”.

Let us begin by recalling the following usual definition

(relying on a result of R. Datko [5]):

Definition 1: The pair A, B is stabilizable (ie ∃F ∈
L(X ,U) such that A+BF generates an exponentially stable

semigroup) if for any h ∈ X , there exists V ∈ L2(0,∞;U)
such that the solution X of X ′ = AX +BV with X(0) = h
satisfies X ∈ L2(0,∞;X ).
Moreover, we say that the pair A, H is detectable (resp.

observable) if the pair A∗, H∗ is stabilizable (resp.

controllable).

Let us now precisely explain what is meant by H∞-

optimal control (or robust control) with state feedback. The

standard description (10) of the system we consider implies

that, as in Figure 2, the plant P is to be controlled under the

cost function (related to the output Z)

K0(U, W ) =

∫ ∞

0

(

|HX(t)|2 + |U(t)|2
)

dt

and the full observation of its state X . The goal is to

construct a state-feedback controller K insuring that the

influence of the unknown disturbances W on the “to be

controlled output” Z is kept small, i.e. the ratio

ρ(U, W ) =
K0(U, W )

∫ ∞

0
|W (t)|2dt

shall be held below a fixed value by the controller K,

regardless of W .

We define M as the class of all applications µ from X to

U that are such that

X ′ = AX + Bµ(X) + DW, X(0) = h

has a solution over (0,∞) for all h ∈ X and for all

W ∈ L2(0,∞), and such that the control U = µ(X)
generated belongs also to L2(0,∞).

The main result that we will apply to the dynamic control

of an inclined cable is the following.

Theorem 1: [Proof to be read in [2] or [15]]

Let γ > 0 and assume that the pair A, B is stabilizable

and that A, H is detectable. The following assertions are

equivalent:

(i) The γ2-robustness property with full obser-

vation holds for the system (10) under the cost

function K0, i.e.:

inf
µ∈M

sup
W∈L2(0,∞)

ρ(µ(X), W ) < γ2,

(ii) There exists a nonnegative definite symmetric

operator P ∈ L(X) solution of the Riccati equa-

tion

PA + A∗P + P (BB∗ − γ−2DD∗)P + H∗H = 0 (11)

and A− (BB∗ − γ−2DD∗)P generates an expo-

nentially stable semigroup.

Moreover, in this case, the state feedback controller given by

µ(X) = −B∗PX (12)

gives an exponentially stable operator A − BB∗P and

guarantees that supW ρ(µ(X), W ) < γ2. Finally, if the

solutions to the Riccati equation exist, then it is unique.

IV. STATE SPACE MODEL OF AN INCLINED CABLE’S

VIBRATIONS

A linear infinite-dimensional model derived from the par-

tial differential equation model presented previously will

be used in the sequel. In order to fit in the formalism

presented in the previous subsection, the following notations

are introduced:

• The state vector X = (wm, ∂twm) where the data were

defined in the introduction;

• The exogenous disturbance input W = (Wmod, u
′′
b , w′′

b )
which represents the different types of perturbations

on the model (uncertainty affecting dynamics of the

model, non-linearities) and the perturbation from the

deck movement (ub, wb);
• The control input U = (u′′

c , w′′
c ) is the acceleration

vector of the active tendon actuator, set at the lower

end of the cable;

• The controlled output Z is related to the cost functional

K0 and contains the modal vertical movement of the

cable and the control amplitude ;

We consider the H∞-control with state feedback of the

inclined cable using a displacement actuator. In other words,

we want the control uc of the system of state (wm, ∂twm) to

be robust with respect to the perturbations corresponding to

the deck movement (ub, wb) and model uncertainties (Wmod).
Therefore, the operators defining the standard form (10)

are built from the linear partial differential equations we

derived in Section II-A such that

A =

(

0 I
∂x (a(x)∂x(·)) 0

)

, B =

(

0 0
α(x) β(x)

)

,

D =

(

0 0 0
d α(x) β(x)

)

, H =

(

I 0
0 0

)

where

a(x) =
Ts

ρA
+

̺2A2E

4ρT 2
s

(ℓ − 2x)
2
≥

Ts

ρA
> 0,

α(x) =
̺EqA

2ℓ

2T 2
s

[

x

ℓ
−

(x

ℓ

)2
]

, β(x) = −
x

ℓ
,

d ∈ L2(0, ℓ).

The appropriate functional Hilbert spaces associated with

the infinite-dimensional model are now precisely defined. We

consider the state space

X = H1
0 (0, ℓ) × L2(0, ℓ)



and the output and input Hilbert spaces W = R
3, U = R

2,

Z = (L2(0, ℓ))2.

In order to prove that A is the infinitesimal generator

of a C0-semigroup on the real separable Hilbert space X ,

one can use the classical theory of semi-groups as in [8] or

refer to the book [13] or the article [12]. Since the partial

differential equation we have to deal with is a damped wave

equation, we do not give detail of the proof here. Indeed,

equation (9) can either be seen as a non-homogeneous

wave equation with space dependent potential or as a

Sturm-Liouville operator based equation (see [13], using

that a(x) ≥ Ts/ρA > 0). Either way, one can prove

existence, uniqueness and regularity of the solution when

w0 ∈ H1
0 (0, ℓ), w1 ∈ L2(0, ℓ) and ub, wb ∈ W 2,∞(0,∞):

then w ∈ C([0,∞), H1
0 (0, ℓ)) ∩ C1([0,∞), L2(0, ℓ)).

In addition, B, D and H are bounded operators well

defined in the appropriate spaces allowing us to apply

Theorem 1 if we can confirm that (A, B) is stabilizable and

(A, H) is detectable.

The two main difficulties to prove that (A, B) is con-

trollable in a time T large enough (implying stabilizability)

come from the Sturm-Liouville operator and the fact that the

control input has a prescribed shape in space (see B, where

α(x) is such that we can’t control the symmetric modes using

only u′′
c as a control, e.g. [9]). One can refer to [13] where

the Sturm-Liouville operator is considered in several chapters

and one manages to obtain the desired proof that we do not

wish to detail here. The fact that we have two controls u′′
c

and w′′
c is in itself strong information. Therefore, (A, B) is

stabilizable after a time T large enough. Finally, since HX
contains wm on the whole domain, one knows it implies

observability and we obtain that (A, H) is detectable. This

closes the verification of the assumptions of Theorem 1.

Therefore, considering that we now have a well-posed

robust control problem in infinite dimension, we would like

to perform some numerical experiments to illustrate the

results we can obtain. Of course, we first need to define

an appropriate finite-dimensional model.

V. A TRUNCATED MODEL FOR NUMERICAL DESIGN

A. Truncation

The goal of this section is to give the first step toward

numerical experiments that will be presented in the final part

of the article. The truncation of the pde system can be seen

as a way of coming back to the structural vibrations of the

system. The corresponding finite dimensional model of (10)

can be presented as :






X ′
N (t) = ANXN (t) + BNU(t) + DNW (t),

XN (0) = 0
ZN (t) = HNXN (t) + U(t),

(13)

where the operators of system (10) are replaced by real-

valued matrices computed on a truncated basis of the N
first eigenfunctions precisely defined below. XN ∈ R

2N

is the state vector, W ∈ R
3 is the exogenous perturbation

vector, U ∈ R
2 is the control vector and ZN ∈ R

2 is the

controlled output vector. The matrices AN ∈ M2N×2N ,

BN ∈ M2N×2, DN ∈ M2N×3, HN ∈ M2×2N are of

appropriate dimensions.

In order to compute these objects, we choose to use

everywhere the Hermitian basis of L2(0, ℓ) given by the

eigenfunctions of the (compact self-adjoint) operator Ts

ρA
∂xx.

The basis (φn)n∈N∗
is defined by:

φn(x) =

√

2

ℓ
sin

(

nπ
x

ℓ

)

, ωn =
nπ

ℓ

√

Ts

ρA

and satisfies for all x ∈ (0, ℓ) and n ∈ N
∗,

Ts

ρA
∂xxφn(x) = −ω2

nφn(x).

This approach meets the Galerkin method used in [16]

(chapter 7) and the point is that

∀y ∈ L2(0, ℓ), y(x) =
∑

n≥1

ynφn(x),

(yn)n∈N∗ being a sequence of real numbers satisfying

yn = 〈y, φn〉L2 :=

∫ ℓ

0

y(x)φn(x) dx and
∑

n≥1

y2
n < ∞.

Given N ∈ N, we compute AN , BN , DN and HN , using

the truncated basis {φ1, . . . , φN}. We make the assumption

that the tuning parameter d = (dn) is a vector of real

numbers and recall that it is a weighting function of the

disturbance signal Wmod that corresponds for instance to the

“forgotten” non-linearities. We obtain:

AN = blockn,m

([

0 δnm

anm 0

])

,

where δnm is the Kronecker delta symbol

and anm = 〈∂x (a(x)∂xφm) , φn〉L2 ;

BN = vectn

([

0 0
αn βn

])

and

DN = vectn

([

0 0 0
dn αn βn

])

where αn = 〈α(x), φn〉L2 and βn = 〈β(x), φn〉L2 and
finally

HN =

„

vectn

„»

1 0

0 0

–««⊤

.

When computing all the terms anm, αn and βn, one will

observe that we get terms different from zero in the non

diagonal blocks of the matrices AN , BN and DN . This is

due to the choice of the eigenfunctions of the operator Ts

ρA
∂xx

which is different from the Sturm-Liouville operator φ 7→
∂x (a(x)∂xφ). Reference [13] explains how to construct an

Hermitian base of eigenfunctions of this operator, but we

choose here an easier way to make the calculations, even if

the price to pay are non diagonal terms.

The numerical simulations will be presented using the

parameter values given in Table I that were chosen in [7]

to approximately match a typical full-scale bridge cable



Cable length ℓ 1.98 m

Density ρ 1.34 × 10
6 kg.m−3

Cross sectional area A 0.5 × 10
−6 m3

Static tension Ts 205 N

Steel Young’s modulus E 200 × 10
9 N.m−2

TABLE I

CABLE CHARACTERISTICS

inclined at θ = 20◦ to the horizontal, of length 400m, mass

per unit length 130kg.m−1 and tension 8000kN:

These values correspond to an inclined steel cable experiment

that could be used in a next step to implement our controllers.

We can illustrate the results of the closed loop control

based on this truncated state model of the PDE modelling in

several ways. Through the singular values of the frequency

response, Figure 3 presents the attenuation of the first modes

of vibrations for the case N = 5, with respect to the uncon-

trolled open loop. The H∞ optimal controller is computed

using the hinfsyn Matlab function.
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Fig. 3. Singular values of the frequency response of the truncated model
in open and closed loop.

VI. DISCUSSION AND CONCLUSION

The goal of this article was to present an infinite-

dimensional state space model of an inclined cable in order

to study the robust control of the corresponding system. After

dealing with several modelling issues, we were able to ensure

the H∞-control of the infinite dimensional system under the

condition of solvability of a Riccati equation, thanks to the

result of [2] and [15]. This allowed us to perform some

numerical computations on the truncated model in order to

illustrate the action of the robust controller. We examined

the possibility of connecting the inclined cable to an active

tendon in order to bring active damping into cable structure

and as far as we know, there exists no such study of the robust

control of an inclined cable when the partial differential

model is used.

We can mention several new directions to follow that

we intend to pursue as future extensions of this study. To

begin with, when linearizing the model, we lost the coupling

between vm and wm. A first objective is to find a way, maybe

using the dynamic tension, to recover a link between them

in the system we construct. Then, one could be interested in

studying the feedback control with partial observation, using

now the active tendon as a sensor (in addition to it’s actuator

function). We hope to obtain good results when considering

measurement feedback control with an active tendon since

the collocation of actuator and sensor has proved great

effectiveness in active damping of cables [3], [11]. Moreover,

a next step of this preliminary study would be to compare

the control result we manage to obtain here applied to the

non-linear model of 2 or more modes that one can read in

[16]. This will be covered in future studies of this system.

REFERENCES

[1] V. Barbu. H∞ boundary control with state feedback: the hyperbolic
case. SIAM J. Control Optim., 33(3):684–701, 1995.

[2] A. Bensoussan and P. Bernhard. On the standard problem of H∞-
optimal control for infinite-dimensional systems. In Identification and

control in systems governed by partial differential equations (South

Hadley, MA, 1992), pages 117–140. SIAM, Philadelphia, PA, 1993.
[3] F Bossens and A Preumont. Active tendon control of cable-stayed

bridges: a large-scale demonstration. Earthquake Engineering &

Structural Dynamics, 30(7):961–979, JUL 2001.
[4] J.-M. Coron. Control and nonlinearity, volume 136 of Mathematical

Surveys and Monographs. American Mathematical Society, Provi-
dence, RI, 2007.

[5] Richard Datko. Extending a theorem of A. M. Liapunov to Hilbert
space. J. Math. Anal. Appl., 32:610–616, 1970.

[6] J. C. Doyle, K. Zhou, and K. Glover. Robust and Optimal Control

Robust and Optimal Control Robust and Optimal Control. Prentice
Hall, 1996.

[7] A. Gonzalez-Buelga, S.A. Neild, D.J. Wagg, and J.H.G. Macdonald.
Modal stability of inclined cables subjected to vertical support exci-
tation. Journal of Sound and Vibration, 318(3):565 – 579, 2008.

[8] A. Pazy. Semigroups of linear operators and applications to partial

differential equations, volume 44 of Applied Mathematical Sciences.
Springer-Verlag, New York, 1983.
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