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In this study we consider the robust control of an inclined cable modelled using partial differential equations and subjected to external disturbances. This paper focuses on the construction of a standard linear infinite dimensional state space system and an H∞ feedback control with full observation of the state.

I. INTRODUCTION

Inclined cables are a critical component in cable stayed bridges, and one way their vibrations can be induced is from deck movements. The increasing span of the bridges makes cable and deck vibrations more sensitive to wind and traffic induced vibrations and this situation has become a major design issue. Since cables are very flexible and lightly damped, cable structure systems usually have a range of dynamic problems. Their modelling is therefore very important in predicting and controlling the response to excitation. A good review about vibration suppression in civil structures and many references on this topic can be found in [START_REF] Song | Vibration control of civil structures using piezoceramic smart materials: A review[END_REF].

In this article, we work on a linearized model of an inclined cable using partial differential equations (pde) and we aim at designing robust control laws for this kind of vibrating system. In order to do so, we will first build the corresponding standard state space model of infinite dimension and describe the H ∞ -control of the system with state feedback. This has to be understood as a first step toward the measurement feedback study of an inclined cable using an active tendon, which is ongoing work.

In civil engineering, the usual study of the vibrations of inclined cables is made through the consideration of a few structural modes. A novel aspect of this current work is to consider, as far as we can, the complete pde model of the system in order to study its robust control. The objective is to construct the standard infinite-dimensional model so that we can apply a robust control strategy based on modern control tools for distributed parameter systems [START_REF] Bensoussan | On the standard problem of H∞optimal control for infinite-dimensional systems[END_REF]. We will then prove the H ∞ -control of the cable, robust with respect to deck movements, by the means of the resolution of a Riccati equation.

It should be noted that in this current derivation we do not consider the non-linearities that arise in modelling the vibrations of an inclined cable. For example [START_REF] Warnitchai | A non-linear dynamic model for cables and its application to a cable structure system[END_REF] (see also [START_REF] Wagg | Nonlinear Vibration with Control: For Flexible and Adaptive Structures[END_REF]), use a detailed non-linear pde model which is decomposed into the first few vibration modes from which the precise non-linear coupling between in-plane and out-of-plane vibrations can be seen. Neither do we consider a finite element modelling approach as in [START_REF] Preumont | Vibration control of active structures[END_REF], where one can find an introduction to active tendon control of cables. The development of active devices for future large bridges is justified by the difficulty of damping the stay cable vibration. Here our approach is to use the case of a feedback controller with full observation of the state, as a preliminary study on the way to partial measurement feedback control through an active tendon where actuator and sensor are collocated at one end of the cable. The novelty of our approach resides in the active control study at the "pde level" of the system. Among the numerous possibilities for modelling the motions of inclined cables with small sag, we adopt the pde modelling presented in [START_REF] Wagg | Nonlinear Vibration with Control: For Flexible and Adaptive Structures[END_REF] using the derivation from [START_REF] Warnitchai | A non-linear dynamic model for cables and its application to a cable structure system[END_REF]. The derivation includes the effects of support motion at both ends of the cable. The cable is supported at end points a and b and the direction of the chord line from a to b, of length ℓ is defined as x, see Figure 1. The cable equilibrium sag position and the chord line both lie in the x -z plane, therefore w represents in-plane motion and v represents outof-plane motion. The angle of inclination of the chord line relative to the horizontal is defined as θ. We set ρ to be the density of the cable, E the Young's modulus and g is gravity. We then define ̺ = ρg cos θ as the distributed weight perpendicular to the cable cord. The notations used here broadly follows the approach of [START_REF] Wagg | Nonlinear Vibration with Control: For Flexible and Adaptive Structures[END_REF] and one can refer to this book for further details about the modelling of the inclined cable movement:

• u = u q (x, t) + u m (x, t) is the dynamic axial displacement (in x-direction) of the cable ;

• v = v q (x, t) + v m (x, t)
is the dynamic out-of-plane transverse displacement (in y-direction) ; • w = w q (x, t) + w m (x, t) is the dynamic in-plane transverse displacement (in z-direction) ; • T s is the static tension of the cable and is assumed to be constant (w.r.t. x and t) ; • T d = T q + T m is the dynamic tension of the cable;

• w s (x) = ̺A 2T s ℓx -x 2
is the static in-plane displaced shape of the cable and gives the sag displacement relationship (A being the cross sectional area of the cable). Each displacement is the sum of a quasi-static component (subscript q) and a modal component (subscript m). We denote by ∂ z the partial derivative with respect to z. Since we neglect the axial inertial force (∂ tt u = 0) we have the following equation for the dynamic tension:

T d = AE ∂ x u + 1 2 (∂ x v) 2 + 1 2 (∂ x w) 2 + dw s dx ∂ x w .
The equation of motion for the dynamic analysis of this inclined cable, are then given by: ∀(x, t) ∈ (0, ℓ) × (0, ∞),

   ρA∂ tt v = (T s + T d )∂ xx v, ρA∂ tt w = ∂ x (T s + T d )∂ x w + T d dw s dx . (1) 
Outline: In Section II, one will read how we manage to obtain the preliminary equations for the construction of the linear standard model of the inclined cable. Section III describes what we define as H ∞ -control with state feedback in an infinite dimensional setting. Finally, in Section IV, we gather all these parts to build our standard model and apply the results of [START_REF] Bensoussan | On the standard problem of H∞optimal control for infinite-dimensional systems[END_REF] to prove the robust control of the system. In Section V we discuss how this model used to produce some numerical results.

II. MODELLING OF A CONTROLLED INCLINED CABLE

Considering an inclined cable as a structural element of a cable-stayed bridge, we are interested in the modelling of the robust control of the vibrations of the cable subjected to the oscillation of the bridge deck. From equation (1), our aim is to first define a linearized system that could fit in the standard state space model.

A. Partial differential equation model of the inclined cable

In addition to the pde we are going to study, we impose the following boundary conditions corresponding to this support motion (see Figure 1)

   u(0, t) = 0, u(ℓ, t) = u b (t), v(0, t) = 0, v(ℓ, t) = 0, w(0, t) = 0, w(ℓ, t) = w b (t), ∀t ∈ (0, ∞). ( 2 
)
with u b , w b ∈ L ∞ (0, ∞), and some compatible initial conditions in (0, ℓ)

(u, v, w)(0, x) = (u 0 , v 0 , w 0 ), ∂ t (u, v, w)(0, x) = (u 1 , v 1 , w 1 ). (3) 
One can read in [START_REF] Wagg | Nonlinear Vibration with Control: For Flexible and Adaptive Structures[END_REF] the details about the splitting of the equations into quasi-static and modal motions equations and how this influences the analysis of the inclined cable vibrations (taking into account the non-linear dynamics or not). Here, we only give a summary of the results. The first step is to solve the quasi-static equations, that correspond to the motion of the cable subjected to the boundary conditions but without taking into account any dynamic response (initial conditions are not considered and we assume that

T d << T s ) : ∀(x, t) ∈ (0, ℓ) × (0, ∞),    T s ∂ xx v q = 0 T s ∂ xx w q + T q d 2 w s dx 2 = 0 (4) 
with

T q = AE ∂ x u q + dw s dx ∂ x w q .
As one can read in [START_REF] Wagg | Nonlinear Vibration with Control: For Flexible and Adaptive Structures[END_REF], using the boundary conditions ( 2), these equations can be solved and one obtains the values of the quasi-static components, for x ∈ (0, ℓ) and t ∈ (0, ∞):

u q (x, t) = E q E u b (t) x ℓ - ̺Aℓ 2T s w b (t) x ℓ - x ℓ 2 + λ 2 E q 4E u b (t) x ℓ -2 x ℓ 2 + 4 3 x ℓ 3 v q (x, t) = 0 w q (x, t) = w b (t) x ℓ - ̺E q ℓA 2 2T 2 s u b (t) x ℓ - x ℓ 2 T q (t) = AE q ℓ u b (t) (5) 
where

E q = E/(1 + λ 2 /12
) is the equivalent modulus of the cable and λ 2 = E̺ 2 ℓ 2 A 3 /T 3 s is Irvine's parameter. In the second step, we consider the linearized dynamic modal partial differential equations that consist of the following pair of 1-dimensional non-linear wave equations on (0, ℓ) × (0, ∞) :

       ρA∂ tt v m = T s ∂ xx v m ρA∂ tt w m = ∂ x T s ∂ x (w m + w q ) + T d dw s dx +ρA∂ tt w q (6) subjected to homogeneous Dirichlet boundary conditions v m (0, t) = 0, v m (ℓ, t) = 0, w m (0, t) = 0, w m (ℓ, t) = 0, ∀t ∈ (0, ∞) (7) 
initial conditions (3) and where the linearized dynamic tension satisfies (since it is assumed that the modal axial displacement u m can be neglected)

T d = T q + ̺A 2 E 2T s (ℓ -2x) ∂ x w m .
In order to be able to derive a state space model from this setting, we have to linearize equations ( 6) and use equations ( 5). The linearized system we will work with is derived for (x, t) ∈ (0, ℓ) × (0, ∞) and reads:

               ∂ tt v m = T s ρA ∂ xx v m , ∂ tt w m = ∂ x T s ρA + ̺ 2 A 2 E 4ρT 2 s (ℓ -2x) 2 ∂ x w m - x ℓ w ′′ b + ̺E q ℓA 2 2T 2 s x ℓ - x ℓ 2 u ′′ b . (8) 
We want to define a standard infinite dimensional state space model, of the shape [START_REF] Preumont | Active tendon control of cable-stayed bridges[END_REF], of the robust control of this inclined cable. The goal is to prove that we can construct a feedback law that is robust to several perturbations to be defined later, such as model uncertainties (the non-linearities we are neglecting for instance) or traffic induced vibrations (deck movement).

We will come back later to the legitimate questions of existence and regularity of the solutions to the pde system, but one can observe that after the linearization of ( 6), we obtain a system (8) of two decoupled wave equations, whose solutions are well studied in applied analysis math literature. The existence of a unique solution relies for instance on semi-group theory (see [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]) and one can read in [START_REF] Tucsnak | Observation and Control for Operator Semigroups[END_REF] some details on the w m specific Sturm-Liouville operator equation.

B. Control and perturbations of the cable

We are considering an inclined cable as in Figure 1 connected at its bottom end b with an active tendon aligned with the cable and perturbed by in-plane oscilations (u b , w b ). An active tendon consists of a displacement actuator (e.g. piezoelectric) collocated with a force sensor (see [START_REF] Bossens | Active tendon control of cable-stayed bridges: a large-scale demonstration[END_REF], [START_REF] Preumont | Vibration control of active structures[END_REF], [START_REF] Song | Vibration control of civil structures using piezoceramic smart materials: A review[END_REF]). In this paper, we initiate the study of this device with the standard modelling of a state feedback controller. Nevertheless a tendon (our controller) is principally meant to have an axial movement, corresponding to a control u c which is then an additive displacement term to the perturbation u b in equation [START_REF] Datko | Extending a theorem of A. M. Liapunov to Hilbert space[END_REF]. But as mentioned in [START_REF] Preumont | Vibration control of active structures[END_REF], if we only consider this inertial control, we only interact with the symmetric modes of vibration. And because of the linear framework, we lose the complementary parametric control. To overcome this issue, we will then consider that the control also acts through the in-plane bottom displacement as a term w c which will be added to the perturbation w b and we change (8) accordingly.

It can be noticed in the non-linear model (1) of the inclined cable, that there is a non-linear coupling between v and w through the dynamic tension T d and when we linearized these equations, we completely lost this affect and obtain decoupled equations. As it is explained in [START_REF] Gonzalez-Buelga | Modal stability of inclined cables subjected to vertical support excitation[END_REF] or [START_REF] Warnitchai | A non-linear dynamic model for cables and its application to a cable structure system[END_REF] for instance, out-of-plane dynamic stability of inclined cables subjected to in-plane vertical support excitation is an ongoing subject of investigation that relies on the analysis of the nonlinear model.

Here, because we choose to focus on studying the pde model and its robust control, we need to continue developing a linear standard model. Therefore, we can only consider the non-linearities as a perturbation of the model, that will be denoted by W mod in Section IV. Moreover, it is our choice to let the pde in v m evolve conservatively by itself, without any control and perturbation, and therefore to take it out of the modelling. The study will focus now on the robust control of the in-plane modal motion w m and the final model reads

∂ tt w m = ∂ x T s ρA + ̺ 2 A 2 E 4ρT 2 s (ℓ -2x) 2 ∂ x w m - x ℓ (w ′′ b + w ′′ c ) + ̺E q ℓA 2 2T 2 s x ℓ - x ℓ 2 (u ′′ b + u ′′ c ). (9) 
Nevertheless, we wanted to let the out-of-plane movement v m be detailed in the model, because this study is also a first step toward more intricate situations where the decoupling between w m and v m may not be true any more.

III. H ∞ CONTROL WITH STATE-FEEDBACK

This section is devoted to recall the H ∞ -robust control result proved in [START_REF] Bensoussan | On the standard problem of H∞optimal control for infinite-dimensional systems[END_REF] (and also in [START_REF] Van Keulen | H∞-control with statefeedback: the infinite-dimensional case[END_REF]) that we want to apply to the pde model we have already presented. These results give an equivalence between the H ∞ -robust control with statefeedback of an infinite-dimensional system and the resolution of a Riccati equation. We will explain later how they can be applied to the model we consider, following the presentation and assumptions detailed in [START_REF] Bensoussan | On the standard problem of H∞optimal control for infinite-dimensional systems[END_REF].

The articles [START_REF] Barbu | H∞ boundary control with state feedback: the hyperbolic case[END_REF], [START_REF] Bensoussan | On the standard problem of H∞optimal control for infinite-dimensional systems[END_REF] and [START_REF] Van Keulen | H∞-control with statefeedback: the infinite-dimensional case[END_REF] give a survey of the H ∞ -control theory with state-feedback in the infinitedimensional case. The dynamic measurement-feedback (or partial information case) for the same class of linear infinite-dimensional systems is also addressed in [START_REF] Bensoussan | On the standard problem of H∞optimal control for infinite-dimensional systems[END_REF] and [START_REF] Van Keulen | H∞-control with measurement-feedback for linear infinite-dimensional systems[END_REF] and will be considered for the particular setting of the inclined cable controlled by an active tendon in a future study. The main results in all these articles is a generalization of the finite-dimensional regular H ∞ -control problem (see for instance [START_REF] Doyle | Robust and Optimal Control Robust and Optimal Control Robust and Optimal Control[END_REF] and [START_REF] Tadmor | Worst-case design in the time domain: the maximum principle and the standard H∞ problem[END_REF]) presented in a standard state-space approach. In particular, the solution is given in terms of the solvability of two Riccati equations. Let A be the infinitesimal generator of a C 0 -semigroup T (t) = e At on a real separable Hilbert space X and let be the following linear bounded operators B ∈ L(U, X ), D ∈ L(W, X ) and H ∈ L(X , Z) where U (space of controls), W (space of perturbations), and Z are also real separable Hilbert spaces. We consider the dynamic system governed by the equations, ∀t ≥ 0

   X ′ (t) = AX(t) + BU (t) + DW (t), X(0) = 0, Z(t) = HX(t) + U (t). (10) 
Here, X(t) ∈ X is the state of the system, U (t) ∈ U is the control input, W (t) ∈ W stands for the disturbance input and Z(t) ∈ Z is the "to be controlled output".

Let us begin by recalling the following usual definition (relying on a result of R. Datko [START_REF] Datko | Extending a theorem of A. M. Liapunov to Hilbert space[END_REF]):

Definition 1: The pair A, B is stabilizable (ie ∃F ∈ L(X , U) such that A+BF generates an exponentially stable semigroup) if for any h ∈ X , there exists V ∈ L 2 (0, ∞; U) such that the solution X of X ′ = AX + BV with X(0) = h satisfies X ∈ L 2 (0, ∞; X ). Moreover, we say that the pair A, H is detectable (resp. observable) if the pair A * , H * is stabilizable (resp. controllable).

Let us now precisely explain what is meant by H ∞optimal control (or robust control) with state feedback. The standard description (10) of the system we consider implies that, as in Figure 2, the plant P is to be controlled under the cost function (related to the output Z)

K 0 (U, W ) = ∞ 0 |HX(t)| 2 + |U (t)| 2 dt
and the full observation of its state X. The goal is to construct a state-feedback controller K insuring that the influence of the unknown disturbances W on the "to be controlled output" Z is kept small, i.e. the ratio

ρ(U, W ) = K 0 (U, W ) ∞ 0 |W (t)| 2
dt shall be held below a fixed value by the controller K, regardless of W .

We define M as the class of all applications µ from X to U that are such that

X ′ = AX + Bµ(X) + DW, X(0) = h
has a solution over (0, ∞) for all h ∈ X and for all W ∈ L 2 (0, ∞), and such that the control U = µ(X) generated belongs also to L 2 (0, ∞).

The main result that we will apply to the dynamic control of an inclined cable is the following.

Theorem 1: [Proof to be read in [START_REF] Bensoussan | On the standard problem of H∞optimal control for infinite-dimensional systems[END_REF] or [START_REF] Van Keulen | H∞-control with statefeedback: the infinite-dimensional case[END_REF]] Let γ > 0 and assume that the pair A, B is stabilizable and that A, H is detectable. The following assertions are equivalent:

(i) The γ 2 -robustness property with full observation holds for the system (10) under the cost function K 0 , i.e.:

inf µ∈M sup W ∈L 2 (0,∞) ρ(µ(X), W ) < γ 2 ,
(ii) There exists a nonnegative definite symmetric operator P ∈ L(X) solution of the Riccati equation P A + A * P + P (BB * -γ -2 DD * )P + H * H = 0 [START_REF] Song | Vibration control of civil structures using piezoceramic smart materials: A review[END_REF] and A -(BB * -γ -2 DD * )P generates an exponentially stable semigroup. Moreover, in this case, the state feedback controller given by µ(X) = -B * P X [START_REF] Tadmor | Worst-case design in the time domain: the maximum principle and the standard H∞ problem[END_REF] gives an exponentially stable operator A -BB * P and guarantees that sup W ρ(µ(X), W ) < γ 2 . Finally, if the solutions to the Riccati equation exist, then it is unique.

IV. STATE SPACE MODEL OF AN INCLINED CABLE'S VIBRATIONS

A linear infinite-dimensional model derived from the partial differential equation model presented previously will be used in the sequel. In order to fit in the formalism presented in the previous subsection, the following notations are introduced:

• The state vector X = (w m , ∂ t w m ) where the data were defined in the introduction; • The exogenous disturbance input W = (W mod , u ′′ b , w ′′ b ) which represents the different types of perturbations on the model (uncertainty affecting dynamics of the model, non-linearities) and the perturbation from the deck movement (u b , w b );

• The control input U = (u ′′ c , w ′′ c )
is the acceleration vector of the active tendon actuator, set at the lower end of the cable;

• The controlled output Z is related to the cost functional K 0 and contains the modal vertical movement of the cable and the control amplitude ; We consider the H ∞ -control with state feedback of the inclined cable using a displacement actuator. In other words, we want the control u c of the system of state (w m , ∂ t w m ) to be robust with respect to the perturbations corresponding to the deck movement (u b , w b ) and model uncertainties (W mod ).

Therefore, the operators defining the standard form (10) are built from the linear partial differential equations we derived in Section II-A such that

A = 0 I ∂ x (a(x)∂ x (•)) 0 , B = 0 0 α(x) β(x) , D = 0 0 0 d α(x) β(x) , H = I 0 0 0 where a(x) = T s ρA + ̺ 2 A 2 E 4ρT 2 s (ℓ -2x) 2 ≥ T s ρA > 0, α(x) = ̺E q A 2 ℓ 2T 2 s x ℓ - x ℓ 2 , β(x) = - x ℓ , d ∈ L 2 (0, ℓ).
The appropriate functional Hilbert spaces associated with the infinite-dimensional model are now precisely defined. We consider the state space

X = H 1 0 (0, ℓ) × L 2 (0, ℓ)
and the output and input Hilbert spaces

W = R 3 , U = R 2 , Z = (L 2 (0, ℓ)) 2 .
In order to prove that A is the infinitesimal generator of a C 0 -semigroup on the real separable Hilbert space X , one can use the classical theory of semi-groups as in [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] or refer to the book [START_REF] Tucsnak | Observation and Control for Operator Semigroups[END_REF] or the article [START_REF] Tadmor | Worst-case design in the time domain: the maximum principle and the standard H∞ problem[END_REF]. Since the partial differential equation we have to deal with is a damped wave equation, we do not give detail of the proof here. Indeed, equation ( 9) can either be seen as a non-homogeneous wave equation with space dependent potential or as a Sturm-Liouville operator based equation (see [START_REF] Tucsnak | Observation and Control for Operator Semigroups[END_REF], using that a(x) ≥ T s /ρA > 0). Either way, one can prove existence, uniqueness and regularity of the solution when

w 0 ∈ H 1 0 (0, ℓ), w 1 ∈ L 2 (0, ℓ) and u b , w b ∈ W 2,∞ (0, ∞): then w ∈ C([0, ∞), H 1 0 (0, ℓ)) ∩ C 1 ([0, ∞), L 2 (0, ℓ)).
In addition, B, D and H are bounded operators well defined in the appropriate spaces allowing us to apply Theorem 1 if we can confirm that (A, B) is stabilizable and (A, H) is detectable.

The two main difficulties to prove that (A, B) is controllable in a time T large enough (implying stabilizability) come from the Sturm-Liouville operator and the fact that the control input has a prescribed shape in space (see B, where α(x) is such that we can't control the symmetric modes using only u ′′ c as a control, e.g. [START_REF] Preumont | Vibration control of active structures[END_REF]). One can refer to [START_REF] Tucsnak | Observation and Control for Operator Semigroups[END_REF] where the Sturm-Liouville operator is considered in several chapters and one manages to obtain the desired proof that we do not wish to detail here. The fact that we have two controls u ′′ c and w ′′ c is in itself strong information. Therefore, (A, B) is stabilizable after a time T large enough. Finally, since HX contains w m on the whole domain, one knows it implies observability and we obtain that (A, H) is detectable. This closes the verification of the assumptions of Theorem 1.

Therefore, considering that we now have a well-posed robust control problem in infinite dimension, we would like to perform some numerical experiments to illustrate the results we can obtain. Of course, we first need to define an appropriate finite-dimensional model.

V. A TRUNCATED MODEL FOR NUMERICAL DESIGN

A. Truncation

The goal of this section is to give the first step toward numerical experiments that will be presented in the final part of the article. The truncation of the pde system can be seen as a way of coming back to the structural vibrations of the system. The corresponding finite dimensional model of [START_REF] Preumont | Active tendon control of cable-stayed bridges[END_REF] can be presented as :

   X ′ N (t) = A N X N (t) + B N U (t) + D N W (t), X N (0) = 0 Z N (t) = H N X N (t) + U (t), (13) 
where the operators of system [START_REF] Preumont | Active tendon control of cable-stayed bridges[END_REF] are replaced by realvalued matrices computed on a truncated basis of the N first eigenfunctions precisely defined below. X N ∈ R 2N is the state vector, W ∈ R 3 is the exogenous perturbation vector, U ∈ R 2 is the control vector and Z N ∈ R 2 is the controlled output vector. The matrices

A N ∈ M 2N ×2N , B N ∈ M 2N ×2 , D N ∈ M 2N ×3 , H N ∈ M 2×2N are of appropriate dimensions.
In order to compute these objects, we choose to use everywhere the Hermitian basis of L 2 (0, ℓ) given by the eigenfunctions of the (compact self-adjoint) operator Ts ρA ∂ xx . The basis (φ n ) n∈N * is defined by:

φ n (x) = 2 ℓ sin nπ x ℓ , ω n = nπ ℓ T s ρA
and satisfies for all x ∈ (0, ℓ) and n ∈ N * ,

T s ρA ∂ xx φ n (x) = -ω 2 n φ n (x).
This approach meets the Galerkin method used in [START_REF] Wagg | Nonlinear Vibration with Control: For Flexible and Adaptive Structures[END_REF] (chapter 7) and the point is that

∀y ∈ L 2 (0, ℓ), y(x) = n≥1 y n φ n (x),
(y n ) n∈N * being a sequence of real numbers satisfying

y n = y, φ n L 2 := ℓ 0 y(x)φ n (x) dx and n≥1 y 2 n < ∞.
Given N ∈ N, we compute A N , B N , D N and H N , using the truncated basis {φ 1 , . . . , φ N }. We make the assumption that the tuning parameter d = (d n ) is a vector of real numbers and recall that it is a weighting function of the disturbance signal W mod that corresponds for instance to the "forgotten" non-linearities. We obtain:

A N = block n,m 0 δ nm a nm 0 ,
where δ nm is the Kronecker delta symbol and a nm = ∂ x (a(x)∂ x φ m ) , φ n L 2 ;

B N = vect n 0 0 α n β n and D N = vect n 0 0 0 d n α n β n where α n = α(x), φ n L 2 and β n = β(x), φ n L 2 and finally HN = " vectn "» 1 0 0 0 -«« ⊤ .
When computing all the terms a nm , α n and β n , one will observe that we get terms different from zero in the non diagonal blocks of the matrices A N , B N and D N . This is due to the choice of the eigenfunctions of the operator Ts ρA ∂ xx which is different from the Sturm-Liouville operator φ → ∂ x (a(x)∂ x φ). Reference [START_REF] Tucsnak | Observation and Control for Operator Semigroups[END_REF] explains how to construct an Hermitian base of eigenfunctions of this operator, but we choose here an easier way to make the calculations, even if the price to pay are non diagonal terms.

The numerical simulations will be presented using the parameter values given in Table I that were chosen in [START_REF] Gonzalez-Buelga | Modal stability of inclined cables subjected to vertical support excitation[END_REF] to approximately match a typical full-scale bridge cable inclined at θ = 20 • to the horizontal, of length 400m, mass per unit length 130kg.m -1 and tension 8000kN: These values correspond to an inclined steel cable experiment that could be used in a next step to implement our controllers.

We can illustrate the results of the closed loop control based on this truncated state model of the PDE modelling in several ways. Through the singular values of the frequency response, Figure 3 presents the attenuation of the first modes of vibrations for the case N = 5, with respect to the uncontrolled open loop. The H ∞ optimal controller is computed using the hinfsyn Matlab function. 

VI. DISCUSSION AND CONCLUSION

The goal of this article was to present an infinitedimensional state space model of an inclined cable in order to study the robust control of the corresponding system. After dealing with several modelling issues, we were able to ensure the H ∞ -control of the infinite dimensional system under the condition of solvability of a Riccati equation, thanks to the result of [START_REF] Bensoussan | On the standard problem of H∞optimal control for infinite-dimensional systems[END_REF] and [START_REF] Van Keulen | H∞-control with statefeedback: the infinite-dimensional case[END_REF]. This allowed us to perform some numerical computations on the truncated model in order to illustrate the action of the robust controller. We examined the possibility of connecting the inclined cable to an active tendon in order to bring active damping into cable structure and as far as we know, there exists no such study of the robust control of an inclined cable when the partial differential model is used.

We can mention several new directions to follow that we intend to pursue as future extensions of this study. To begin with, when linearizing the model, we lost the coupling between v m and w m . A first objective is to find a way, maybe using the dynamic tension, to recover a link between them in the system we construct. Then, one could be interested in studying the feedback control with partial observation, using now the active tendon as a sensor (in addition to it's actuator function). We hope to obtain good results when considering measurement feedback control with an active tendon since the collocation of actuator and sensor has proved great effectiveness in active damping of cables [START_REF] Bossens | Active tendon control of cable-stayed bridges: a large-scale demonstration[END_REF], [START_REF] Song | Vibration control of civil structures using piezoceramic smart materials: A review[END_REF]. Moreover, a next step of this preliminary study would be to compare the control result we manage to obtain here applied to the non-linear model of 2 or more modes that one can read in [START_REF] Wagg | Nonlinear Vibration with Control: For Flexible and Adaptive Structures[END_REF]. This will be covered in future studies of this system.
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 1 Fig. 1. Inclined Cable
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 2 Fig. 2. Closed-loop system. State feedback: Y= X.
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 3 Fig. 3. Singular values of the frequency response of the truncated model in open and closed loop.
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