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Abstract

Hydrodynamic lubrication problems in piezoviscous regime are usually modeled
by the classical Reynolds equation combined with a suitable law for the pressure
dependence of viscosity. By taking into account the pressure–viscosity depen-
dence in the Stokes equation and to derive the Reynolds equation in the thin
film limit, a new model has been proposed by Rajagopal & Szeri. However,
these authors consider some additional simplifications. In the present work,
avoiding these simplifications and starting from a Stokes equation with pres-
sure dependence of viscosity through Barus law, a new Reynolds model for line
contact lubrication problems is deduced, in which the cavitation phenomenon is
also taken into account. Thus, the new complete model consists of a nonlinear
free boundary problem associated to the proposed new Reynolds equation.

Moreover, the classical model, the one proposed by Rajagopal & Szeri and
the here proposed one are simulated through the development of some numerical
algorithms involving finite elements method, projected relaxation techniques,
duality type numerical strategies and fixed point iteration techniques. Finally,
several numerical tests are performed to carry out a comparative analysis among
the different models.
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guille@dma.uvigo.es (G. Garćıa), carlosv@udc.es (C. Vázquez)

Preprint submitted to Applied Mathematical Modelling October 3, 2012



1. Introduction

In thin film lubrication problems the assumption that the viscosity of the
lubricant remains constant, and therefore independent of pressure, results to be
reasonable in low pressure regimes. However, when the lubricant is subjected
to high pressures a strong dependence of viscosity on pressure arises, thus lead-
ing to the so called piezoviscous lubrication regimes. In the mechanical and
mathematical literature concerning the models for piezoviscous hydrodynamic
thin film lubrication problems, different classical devices have been considered,
such as journal–bearings, rolling–bearings or rolling–ball–bearings (see [18], for
example). In all of these situations, the behavior of the lubricant pressure in
the thin film setting has been classically modeled by the Reynolds equation, in
which the pressure dependence of viscosity is usually introduced a posteriori by
some expression. In this procedure, the thin film limit from Stokes equation to
Reynolds one is obtained regardless of the pressure–viscosity dependence, as in
the case of constant viscosity (isoviscous regime). We note that in the constant
viscosity case, the heuristic statement of incompressible Reynolds equation from
Stokes model is obtained in [16] while the more rigorous one based on asymptotic
developments is proved in [2].

In the piezoviscous case, one of the most classical expressions relating pres-
sure and viscosity is given by the Barus law

µ = µ0 eα p, (1)

where µ, µ0, p and α denote the viscosity, the zero pressure viscosity, the pres-
sure and the piezoviscosity coefficient, respectively. Classically in the lubrica-
tion literature, the expression (1) is plugged into Reynolds equation to model
piezoviscous regimes. The resulting nonlinear Reynolds equation is then used
inside more complex models that additionally consider presence of cavitation
or elastohydrodynamic phenomena. In these more complex settings, this way
of including piezoviscous regimes has given rise to several mathematical anal-
ysis results that state the existence and the uniqueness of solution, as well as
to the design of suitable numerical methods to approximate the correspond-
ing solutions, for which there are no analytical expressions (see, for example,
[19, 11, 12, 4, 13]).

Barus law has been also used to model pressure dependence of viscosity in
the original Stokes equation in [1] arguing also that Reynolds equation is only
valid when the shear stress is much smaller than the reciprocal of the pressure–
viscosity coefficient, while later on in [17] a corrected Reynolds equation is
obtained from Navier–Stokes ones with pressure dependence of viscosity and in
[14] a simpler derivation is obtained.

More recently, by assuming that the viscosity depends on pressure in Stokes
equation according to Barus law, in [15] a more careful derivation of the limit
Reynolds equation is carried out. The authors find additional terms to those
ones appearing in the classical Reynolds equations used for elastohydrodynamic
computations. Furthermore, they evaluate the consequences of these additional
terms in the hydrodynamic regimes leading to high enough pressure values. This
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derivation starts from the assumptions that stress tensor in the incompressible
fluid includes the possibility that constraint forces could influence the work and
is linear in the symmetric part of the velocity gradient tensor. Thus, unlike
the Navier–Stokes equation for incompressible fluids which involves a explicit
relation between both tensors and a constant viscosity, in this departure model
an implicit relation holds and pressure dependence of viscosity is considered.
More precisely, the departure model in the case of a steady two dimensional
plane flow is given by the following equations:

−
∂ p

∂ x
+ µ(p)∆u + 2µ′(p)

∂ u

∂ x

∂ p

∂ x
+ µ′(p)

(

∂ u

∂ y
+

∂ v

∂ x

)

∂ p

∂ y
= ρ

[

u
∂ u

∂ x
+ v

∂ u

∂ y

]

(2)

−
∂ p

∂ y
+ µ(p)∆v + µ′(p)

(

∂ u

∂ y
+

∂ v

∂ x

)

∂ p

∂ x
+ 2µ′(p)

∂ v

∂ y

∂ p

∂ y
= ρ

[

u
∂ v

∂ x
+ v

∂ v

∂ y

]

(3)

∂ u

∂ x
+

∂ v

∂ y
= 0, (4)

where x and y denote the spatial coordinates, (u, v) represents the velocity field
and ρ denotes the fluid density. Note that the viscosity depends on pressure.
After some simplifying assumptions detailed in [15], including that ∂p/∂y = 0,
equations (2)-(3) are reduced to

d p

d x
= µ

∂2 u

∂ y2
+ 2

dµ

d p

∂ u

∂ x

d p

d x
. (5)

Next, by integrating (5) twice across the film and taking into account the bound-
ary conditions for the horizontal velocity we can get an expression for u(x, y).
Finally, by replacing this expression in (4) and integrating again across the
film for a vertical velocity v vanishing at both surfaces, the following modified
Reynolds equation is obtained:

d

d x

[(

h3

µ
− 12α

∫ h

0

y(h− y)
∂ u

∂ x
dy

)

d p

d x

]

= 6 s
d h

d x
, (6)

jointly with the Barus law (1). Here h, (u, v) and (s, 0) denote the gap between
surfaces, the velocity field in the thin film and the given velocity of the lower
sliding surface, assuming that the upper surface is fixed. Furthermore, by using
the simplification

∂u

∂x
≈

duav

dx
, (7)

where uav is an average velocity, the flow rate

Q = h(x)uav(x) (8)

is introduced in [15] to deduce the following modified Reynolds equation

d

d x

[(

h3

µ
+ αQ

dh2

d x

)

d p

d x

]

= 6 s
d h

d x
. (9)
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Next, for the case of the hydrodynamic and elastohydrodynamic lubrication of
a long cylinder rolling on a plane, in [15] the effect of the extra term appearing
in the modified equation with respect to the classical one is numerically investi-
gated. The chosen device parameters imply that high pressures appear, so that
their computed values and those ones of the corresponding viscosities allow to
illustrate the existence of differences between both models, mainly consisting in
higher values for the case of modified equation.

In the present paper, we avoid the use of some simplifications considered
in [15] and propose an original methodology to deduce a family of models that
take into account the pressure dependence of viscosity, by solving the problem
defined by equations (6), (4) and (1). More precisely, a fixed point iteration pro-
duces different models, the complexity of which ones increases with iterations.
The present work focuses on the model produced by the first iteration of the
algorithm, in which additional terms appear with respect to the more classical
piezoviscous model, noting that for particular values of certain parameters both
the isoviscous and the classical piezoviscous models can be recovered. Addi-
tionally, we model the consideration of cavitation phenomenon by means of a
complementarity formulation (also known as Reynolds cavitation model). It is
wellknown that this cavitation model can be formulated in terms of a variational
inequality. Moreover, we propose two different numerical methods to solve the
new model: the first one based on the second order differential equation problem
and the second one on a first order equation. By using these numerical methods,
the hydrodynamic behavior of the lubricant film in the presence of sufficiently
high pressures for the three piezoviscous models can be compared.

The paper is organized as follows. In section 2 the here proposed model is
presented. Section 3 describes the cavitation model here considered and the scal-
ing. The reduction to an initial value problem associated to first order ordinary
differential equation is stated in section 4. In Section 5 the numerical methods
are described. Numerical results are presented in Section 6. Finally, in Section
7 some considerations about conclusions and future work are summarized.

2. An alternative Reynolds equation for piezoviscous lubrication

As indicated in the introduction, in the present work we mainly propose a
more rigorous way to obtain a piezoviscous model avoiding the simplification
(7) that has been considered to state the modified Reynolds equation (9). The
proposed methodology to deduce a new family of models is based on a fixed
point technique to solve the coupled system defined by equations (6), (4) and
(1).

For this purpose, we start by considering an initial iteration for the horizontal
velocity, u0(x, y), vanishing at the upper surface, equal to s at the lower one
and satisfying the flux condition

∫ h

0

u0(x, y) dy = Q. (10)
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After some easy computations, we can obtain the following expression

u0(x, y) =

(

s h

2
−Q

)

6

h3
(y2 − y h) + s

(

1−
y

h

)

. (11)

Next, replacing u by u0 in (6) we get

d

d x

[(

h3

µ
− 12α

∫ h

0

y(h− y)
∂ u0

∂ x
dy

)

d p1

d x

]

= 6 s
d h

d x
,

so that, after an easy integration, the following first iteration alternative model
for the pressure can be obtained

d

d x

[(

h3

µ
− 12α

dh

dx

(

s h2

30
−

Qh

10

))

d p1

d x

]

= 6 s
d h

d x
. (12)

Now, if expression (11) for u0(x, y) is introduced in (4) we deduce the fol-
lowing expression for v0:

v0(x, y) =

(

2 s

h3
−

6Q

h4

)

d h

d x
y3 +

(

−
2 s

h2
+

6Q

h3

)

d h

d x
y2. (13)

In order to deduce the model for the next iteration, we start by replacing the
previous expression of v0 in equation (4), and then we use (5) to obtain

u1(x, y) = s
(

1−
y

h

)

+
1

2µ

d p1

d x
(y2 − y h)

+2α
d p1

d x

[

∫ y

0

v0(x, y) dy −
y

h

∫ h

0

v0(x, y) dy

]

, (14)

or equivalently,

u1(x, y) = s
(

1−
y

h

)

+
1

2µ

d p1

d x
(y2 − y h)

+ 2α
d p1

d x

d h

d x

[(

s

2 h3
−

3Q

2 h4

)

y4 +

(

−
2 s

3 h2
+

2Q

h3

)

y3 +

(

s

6
−

Q

2 h

)

y

]

. (15)

Next, in (6) we can consider u = u1 to obtain the second iteration in the
pressure

d

d x

[(

h3

µ
− 12α

∫ h

0

y(h− y)
∂ u1

∂ x
dy

)

d p2

d x

]

= 6 s
d h

d x
, (16)

so that, replacing u1 by expression (15), we get

d

d x

[(

h3

µ
− 12αI2

)

d p2

d x

]

= 6 s
d h

d x
, (17)
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where

I2 =
s h2

12

d h

d x
+

α

µ

(

d p1

d x

)2
h5

60
−

h5

60µ

d2 p1

d x2
−

h4

24µ

dh

dx

d p1

d x

+α

(

d2 p1

d x2

d h

d x
+

d p1

d x

d2 h

dx2

)(

s h4

140
−

3Qh3

140

)

+α
d p1

d x

(

d h

d x

)2(

11 s h3

630
−

13Qh2

420

)

.

Next, v1 can be computed and the continuation of the fixed point iteration
procedure allows to subsequently define u2, p2 and v2, and so on. In this way,
this fixed point technique provides a family of alternative models. However,
it does not seem possible to obtain a generic procedure and the complexity of
the involved expressions is increasing; this being the main reason why we just
consider in this paper the modified Reynolds equation (12) produced by the
first iteration. Thus, the alternative Reynolds equation here proposed to model
piezoviscous regimes is the following one:

d

d x

[(

h3

µ
− 12α

dh

dx

(

s h2

30
−

Qh

10

))

d p

d x

]

= 6 s
d h

d x
, (18)

where p is the unknown pressure and µ denotes the viscosity that depends on
the pressure through Barus law.

Notice that (18) can be understood as a kind of conservation equation for
the flow rate

Q =
s h

2
−

h3

12µ

d p

d x
+ α

dh

dx

(

s h2

30
−

Qh

10

)

d p

d x
. (19)

3. Cavitation model and scaling

As indicated in the review paper [5] and throughout the literature, cavitation
is one of the most relevant features of lubrication problems. This phenomenon
is defined in [10] as the rupture of the continuous fluid film due to the formation
of air bubbles inside. The presence of two different regions, the first with a
complete fluid film and the second with a partial film (partial lubrication in
cavitated area), has been experimentally observed in many lubricated devices
such as journal–bearings, ball–bearings, etc.

A review concerning the mathematical and physical analysis of the differ-
ent models is presented in [3]. The common feature of the models lies in the
domain decomposition into two parts: a lubrication region where the appropri-
ate Reynolds equation is verified and a cavitation region where the pressure is
taken to be a constant (the vapor saturation pressure). The difference between
models comes from the condition imposed on the (unknown) free boundary that
separates lubricated and cavitated areas. The two most widely used models are
the so called Reynolds (or Swift–Stieber) and Elrod–Adams ones.
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The Reynolds model for cavitation starts from the consideration that the
pressure in the whole domain is greater than the (known) saturation pressure,
thus giving rise to an important number of mathematical papers that use the
theory of variational inequalities by associating this model to an obstacle prob-
lem. This idea is reinforced by the fact that initially the most popular numerical
method used to cope with cavitation in mechanical engineering rely on this ap-
proach. Furthermore, this is the usual first approach to cavitation when new
Reynolds equations appear. So, in the present paper we propose this model to
take into account cavitation and leave the more complex Elrod–Adams model
for forthcoming studies.

Reynolds model for cavitation is based on the free boundary condition

p =
∂p

∂x
= 0 (20)

at the unknown interface between the cavitation and lubrication region.
Then, the cavitation model for lubrication admits the following complemen-

tarity problem formulation:

d

d x

[(

h3

µ
− 12α

dh

dx

(

s h2

30
−

Qh

10

))

d p

d x

]

≥ 6 s
d h

d x
, (21)

p ≥ 0, (22)
{

d

d x

[(

h3

µ
− 12α

dh

dx

(

s h2

30
−

Qh

10

))

d p

d x

]

− 6 s
d h

d x

}

· p = 0. (23)

In order to compare the results with those ones appearing in [15] for the case
of a rigid long rolling–cylinder, we introduce the angular coordinate, t, defined
by the change of variable

x = R sin(t), t ∈ [−π/2, π/2],

where R represents the radius of the cylinder. Then, we define the film thickness
by

h(t) = −
R

n
(1 + n cos(t)), n = −

R

h0 +R
, h0 = h(0) ,

where h0 is the minimum of the thickness. Moreover, we introduce the following
scaled magnitudes:

h = −
nh

R
, µ =

µ

µ0

, p =
p h0

µ0 s
, α =

αµ0 s

h0

, β = α
h0

R
.

and the scaled flow rate

Q = −
nQ

sR
=

h

2
+

[

h
3
e−αp

12nh0 cos(t)
+

β sin(t)

h0 cos2(t)

(

h
2

30
−

Qh

10

)]

d p

d t
. (24)

Once we consider this scaling in the previously described Reynolds model for
cavitation, then p can be obtained as the solution of the following dimensionless
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complementarity problem posed in the domain Ω = (−π/2, π/2)):

d

d t

(

G(t, p)
d p

d t

)

≥ 6
d h

d t
in Ω, (25)

p ≥ 0 in Ω, (26)
[

d

d t

(

G(t, p)
d p

d t

)

− 6
d h

d t

]

p = 0 in Ω, (27)

jointly with the boundary conditions p(−π/2) = 0 , p(π/2) = 0. The term G
is defined by

G(t, p) =

(

h
3
e−αp −

12 β

cos(t)

d h

d t

(

h
2

30
−

Qh

10

))

1

−nh0 cos(t)
, (28)

where h0 denotes the minimum of the dimensionless gap.
On the other hand, if we introduce the unknown lubrication and cavitation

regions
Ω+ = {t ∈ Ω/ p(t) > 0}, Ω0 = {t ∈ Ω/ p(t) = 0},

then the following equations hold:

d

d t

(

G(t, p)
d p

d t

)

= 6
d h

d t
, p > 0 in Ω+, (29)

p = 0 in Ω0, (30)

p(t2) =
d p

d t
(t2) = 0. (31)

Notice that the so called smooth pasting condition (31) at the free boundary
actually corresponds to the conservation of the scaled flow rate (24) through
the unknown interface, t2, separating the lubrication and cavitation regions.
By using (24) and (31) we can rewrite G in the form

G(t, p) =

(

h
3
e−αp −

12 β

cos(t)

d h

d t

(

h
2

30
−

hh2

20

))

1

−nh0 cos(t)
, (32)

where h2 = h(t2) at the unknown free boundary t2.
It is important to point out that the model (25)-(27), or the equivalent set of

equations (29)-(31), includes the isoviscous case for α = β = 0 and the classical
piezoviscous model for the choice α 6= 0 and β = 0. Furthermore, the Rajagopal
& Szeri model in [15] may be also written in a similar way, although with the
following slightly different expression of G:

G(t, p) =

(

h
3
e−αp +

β h2

2 cos(t)

d h
2

d t

)

1

−nh0 cos(t)
. (33)
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4. An alternative first order model

Following some ideas in [15], another alternative is to restart from the mod-
ified Reynolds equation (18), to integrate it and interpret the result as a kind
of conservation equation for the flow rate Q given by (19).

Therefore, from (19) we can pose the following first order ordinary differential
equation:

d p

d x
=

s h

2
−Q

h3

12µ
− α

dh

dx

(

s h2

30
−

Qh

10

) . (34)

So, by introducing the change of variable x = R sin(t), rescaling as before
and taking into account the expression (24) and the condition (31), the next
dimensionless initial value ode problem is obtained:

d p

d t
=

6 (−n)h0 cos2(t)
[

h− h2

]

h
3
e−αp cos(t) +

6

5
β n sin(t)h

[

h

3
−

h2

2

]
(35)

p(−π/2) = 0 . (36)

It is important to notice that the solution of (35)-(36) satisfying p(t2) = 0 is the
solution of (29)-(31).

Analogously, the corresponding first order ODE version for isoviscous, clas-
sical piezoviscous and Rajagopal & Szeri models can be obtained.

5. Numerical methods

Two different formulations have been posed for the alternative piezoviscous
model which can also be applied to the other piezoviscous and isoviscous models.
In this section, several numerical schemes are proposed to obtain the numerical
solutions of these problems involving first order ODE solvers, finite elements
method, projected relaxation algorithms and duality type method.

5.1. Numerical solution of the alternative Reynolds equation

The numerical solutions for the problem (25)-(27) may be obtained by the
combination of finite element techniques with a classical projection method [9] or
a more complex duality type algorithm proposed in [6]. The application of these
techniques to classical piezoviscous formulations can be found in [12, 4, 13, 7],
for example. The departure point is the formulation of the complementarity
problem in terms of an equivalent variational inequality formulation. More
precisely, the solution of problem (25)-(27) jointly with the boundary conditions
satisfies that p ∈ K and

∫ π/2

−π/2

G(t, p) p′ (ϕ− p)′ dt ≥ −6

∫ π/2

−π/2

h
′

(ϕ− p)dt, ∀ϕ ∈ K, (37)
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where
K = {ϕ ∈ H1

0 (Ω)/ϕ ≥ 0}

and H1
0 (Ω) denotes the classical Sobolev space.

Starting from p0, solution of the isoviscous case, we apply a fixed point
algorithm for the nonlinearity related to piezoviscosity. At (n+ 1)-th iteration,
for a given pn, we obtain pn+1 ∈ K, such that

∫ π/2

−π/2

G(t, pn) (pn+1)′ (ϕ− pn+1)′ dt ≥ −6

∫ π/2

−π/2

h
′

(ϕ− pn+1)dt, ∀ϕ ∈ K,

with G(t, p) given by expression (32) for the alternative model here proposed
and by (33) for the Rajagopal & Szeri one.

For the spatial discretization we consider a classical piecewise linear Lagrange
finite element space, so that the discretized problem consists of finding pn+1

h ∈
Kh, such that

∫ π/2

−π/2

G(t, pnh) (p
n+1

h )′ (ϕh − pn+1

h )′ dt ≥ −6

∫ π/2

−π/2

h
′

(ϕh − pn+1

h )dt, ∀ϕh ∈ Kh,

(38)
where Vh denotes the finite element space (see [8], for example):

Vh = {ϕh ∈ C0(Ω) /ϕh|E ∈ P1, ∀E ∈ τh},

E being a standard element of the finite element mesh, the subspace V0h is given
by

V0h = {ϕh ∈ Vh /ϕh(−π/2) = 0, ϕh(π/2) = 0},

and the convex set Kh is defined by

Kh = {ϕ∈V0h /ϕh(xi) ≥ 0, ∀i node of τh}.

For simplicity, hereafter we omit the natural dependence h in the unknown p
and the functions in the finite element space, h being the stepsize of the uniform
finite element mesh.

At this point we propose two alternatives to solve the discretized problem
(38): a relaxation algorithm with projection on the convex set Kh first described
in [9] and the duality type algorithm proposed in [6] for the numerical solution
partial differential equations involving maximal monotone operators. As the
first one is classical we describe the application of the second one.

In order to apply the duality method in [6], we introduce the indicatrix
function of the convex Kh denoted by IKh

, so that the variational inequality
of first kind (38) can be transformed in the equivalent variational inequality of
second kind that consists of finding pn+1 ∈ V0h, such that

∫ π/2

−π/2

G(t, pn) (pn+1)′ (ϕ− pn+1)′ dt+ IKh
(ϕ)− IKh

(pn+1) ≥

−6

∫ π/2

−π/2

h
′

(ϕ− pn+1)dt, ∀ϕ ∈ V0h.
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Moreover, we use the notation

(An pn+1, ϕ) =

∫ π/2

−π/2

G(t, pn) (pn+1)′ (ϕ− pn+1)′ dt,

(fn, ϕ) = −6

∫ π/2

−π/2

h
′

(ϕ− pn+1) dt.

Then, using the tools of subdifferential calculus, we obtain that

γn+1 = −(An pn+1 − fn) ∈ ∂ IK(pn+1), (39)

where ∂ IKh
denotes the subdifferential of the indicatrix function. Therefore,

the variational inequality problem defined by (39) is equivalent to the problem:
Find pn+1 ∈ V0h, such that

∫ π/2

−π/2

G(t, pn) (pn+1)′ ϕ′ dt+

∫ π/2

−π/2

γn+1 ϕdt =

−6

∫ π/2

−π/2

h
′

ϕdt, ∀ϕ ∈ V0h, (40)

γn+1 ∈ ∂ IK(pn+1). (41)

As the multivalued operator ∂ IKh
is the subdiferencial of indicatrix function

IKh
then it is a maximal monotone. In order to apply the results in [6], for a

given parameter ω > 0, we introduce the new variable

βn+1 ∈ ∂ IKh
(pn+1)− ω pn+1. (42)

In terms of this new variable βn+1, the equivalent formulation to (40)-(41)
can be written in the form:

Find pn+1 ∈ V0h, such that

∫ π/2

−π/2

G(t, pn) (pn+1)′ ϕ′ dt+

∫ π/2

−π/2

(βn+1 + ω pn+1)ϕdx =

−6 s

∫ π/2

−π/2

h
′

ϕdt, ∀ϕ ∈ V0h, (43)

βn+1 ∈ ∂ IK(pn+1)− ω pn+1, (44)

with ω > 0.

Then by using a lemma appearing in [6], we have that (44) is equivalent to

βn+1 = Kω
λ (p

n+1 + λβn+1), (45)
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where Kω
λ denotes the Yosida approximation of the operator ∂ IKh

− ω I with
parameter λ > 0, we drop the dependence on h for the operator Kω

λ .

Next, we summarize the steps of duality algorithm to solve (43)-(44) as
follows:

• Initialize βn+1

0 .

• At step j+1, for a given βn+1

j , obtain pn+1

j+1 as the solution of the following
linear problem:

∫ π/2

−π/2

G(t, pn) (pn+1

j+1 )
′ ϕ′ dt+ ω

∫ π/2

−π/2

pn+1

j+1 ϕdx =

−

∫ π/2

−π/2

βn+1

j ϕdx− 6

∫ π/2

−π/2

h
′

ϕdt, ∀ϕ ∈ V0h, (46)

• Update the value of βn+1

j+1 with

βn+1

j+1
= Kω

λ (p
n+1

j + λβn+1

j ), (47)

• Repeat the previous two steps until satisfying of the convergence test in
sequence {pn+1

j } in index j.

We note that the analytical expression of Kω
λ allows to update in (47) with

βn+1

j+1 =
(pn+1

j + λβn+1

j )− PKh
(pn+1

j + λβn+1

j )

λ(1− λω)
− ω (pn+1

j + λβn+1

j ), (48)

where PKh
denotes the projection operator onto the convex Kh. Some conver-

gence results have been proved in [6] under the constraint λω ≤ 1/2, so that
here we take λω = 1/2 in all tests.

5.2. Numerical solution of the first order ODE problem

In the numerical solution of the first order ODE problem we have to compute
the pressure p that satisfies the initial value problem (35)-(36) and the point t2
such that p(t2) = 0 and p′(t2) = 0.

For this purpose, the proposed iterative numerical scheme combines a regula

falsi algorithm that builds a sequence {tk2} in the interval (0, π/2), designed to
converge to t2, with the use of the ode15s integrator of MATLAB to solve the
initial value problem in [−π/2, tk2 ], for each value of tk2 . So, the sketch of the
algorithm is as follows:

• Start regula falsi with the interval [t02, t
1
2] = [0, π/2].

12



• At the step k, for a given tk2 , solve the initial value problem

d pk

d t
=

−6n cos(t)(h− h
k

2)h0

h
3
e−αp +

6

5
β n tan(t)h

[

h

3
−

h
k

2

2

] in (−π/2, tk2 ]

pk(−π
2
) = 0

where h
k

2 = h(tk2)

• if pk(tk2) 6= 0, update tk+1

2 using regula falsi

After convergence, the final solution is extended to the interval [−π/2, π/2] by
pk(t) = 0 in (tk2 , π/2].

6. Numerical tests

In order to assess the relevance of the extra terms of both new more rigorous
models for the piezoviscous case when compared with the classical piezovis-
cous formulation, several numerical tests have been carried out. The idea is to
make a comparative analysis of the different models, formulations and numeri-
cal schemes presented in the previous sections, mainly taking as a reference the
data set of the numerical examples in [15]. Although in the presence of high
pressures the cylinder will deformed, in the present paper to illustrate the differ-
ences we restrict ourselves to the case of a rigid cylinder. In a future work, the
elastohydrodynamic case will be treated. So, these data are α = 9.293× 10−3

and β = α/ratio, with ratio = 104. In addition, the value ratio = 103, is intro-
duced here to analyze a less extreme case. We recall again that to reproduce
the classical piezoviscous model β = 0 can be chosen and for the isoviscous case
α = β = 0 can be considered.

For the solution of the variational inequality model with the projected re-
laxation numerical scheme, labeled by [VI-Rel-R] in the forthcoming tables and
figures, in all tests a uniform finite element mesh with 80000 nodes on the inter-
val [−π/2, π/2] has been chosen and a relaxation parameter equal to 1.99 has
been considered. Moreover, for the inner relaxation algorithm and for the outer
fixed point iteration method, the tolerances for the stopping tests have been
taken equal to 10−12 and 5× 10−6, respectively.

For the solution of the variational inequality model with the duality method,
labeled by [VI-BM-R], the same discretization is taken on the interval [−π/2, π/2].
In addition, for ratio = 103 the chosen parameters are ω = 0.9 and a tolerance
of 10−6 in the duality algorithm stopping test, while for ratio = 104 this pa-
rameters are ω = 0.07 and a tolerance of 5 × 10−7. For both cases a tolerance
of 10−3 for the fixed point stopping test is chosen.

In the numerical scheme implemented for the first order ODE formulation,
labeled by [ODE-R], a 40000 nodes discretization of each interval [−π

2
, tk2 ] is

13



taken, thus leading to a similar stepsize to the one used in the meshes for the
previous methods. Furthermore, the MATLAB ode15s integration function,
with RelTol= 10−6 and AbsTol= 10−5, is combined with a regula falsi algo-
rithm with a stopping test of 5× 10−5.

Table 1 shows the computed maximum of the dimensionless pressure with the
different models, formulations and numerical schemes for the less extreme case
with ratio = 103 and Table 2 shows the corresponding computed free boundary
point t2. For the isoviscous case, the exact results provided by an analytical
solution are included as a reference.

Table 1: Maximum values of p for the different models, formulations and nu-
merical schemes with ratio = 103

ODE-R VI-BM-R VI-Rel-R Analytical

Isoviscous 33.9235 33.9098 33.9129 33.9229
Piezo classical 40.7514 40.7324 40.7340
Piezo Szeri 40.7562 40.7370 40.7387 —
Piezo Alternative 40.7508 40.7332 40.7347

Table 2: Values of t2 for the different models, formulations and numerical
schemes with ratio = 103

ODE-R VI-BM-R VI-Rel-R Analytical

Isoviscous 0.021230 0.019792 0.021237 0.021230
Piezo classical 0.021230 0.019792 0.021237
Piezo Szeri 0.021230 0.019792 0.021237 —
Piezo Alternative 0.021230 0.019792 0.021237

Figures 1 and 2 show the dimensionless pressure profile obtained with the
diferent numerical schemes for one of the piezoviscous models for the case
ratio = 103; for the other models the behaviour is analogous. So, in this
case, the three numerical schemes reach similar solutions and have a similar
performance.

Figure 3 shows the maximum values of the dimensionless pressure obtained
with the [ODE-R] numerical scheme for all the models in the case with ratio =
103 and Figure 4 shows the corresponding results for the dimensionless viscosity;
for the other numerical schemes the profiles are analogous. In this case, there
is almost no difference between the three piezoviscous models.

Table 3 shows the maximum of the dimensionless pressure obtained with
the different models, formulations and numerical schemes for the more extreme
case with ratio = 104 and Table 4 shows the free boundary point t2. For the
isoviscous case, the analytical solution values are again included as a reference.
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Figure 1: Dimensionless pressure for the three numerical schemes with ratio =
103 and the proposed alternative piezoviscous model
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Figure 2: Zoom of the dimensionless pressure maximum for the three numerical
schemes with ratio = 103 and the proposed alternative piezoviscous model

It seems that the results obtained with the numerical schemes here implemented
for the Rajagopal & Szeri model are very similar to the solution presented in
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Figure 3: Zoom of the dimensionless pressure maximum for the three piezovis-
cous models and the isoviscous one with ratio = 103 and the [ODE-R] numerical
scheme
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Figure 4: Zoom of the dimensionless viscosity maximum for the three piezovis-
cous models with ratio = 103 and the [ODE-R] numerical scheme

[15]. All of them may be used to make a comparison with the solutions of the
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other models, but the [ODE-R] scheme seems to provide the closest solutions.

Table 3: Maximum values of p for the different models, formulations and nu-
merical schemes with ratio = 104

ODE-R VI-BM-R VI-Rel-R Analytical

Isoviscous 107.520 107.582 107.518 107.520
Piezo–Classical 765.787 764.846 759.558
Piezo–Szeri 824.881 816.125 812.327 —
Piezo–Alternative 771.111 763.493 754.963

Table 4: Values of t2 for the different models, formulations and numerical
schemes with ratio = 104

ODE-R VI-BM-R VI-Rel-R Analytical

Isoviscous 6.7188×10−3 6.2831×10−3 6.7151×10−3 6.7187×10−3

Piezo classical 6.7189×10−3 6.2204×10−3 6.7151×10−3

Piezo Szeri 6.7190×10−3 6.2204×10−3 6.7151×10−3 —
Piezo Altern. 6.7188×10−3 6.2204×10−3 6.7151×10−3

Figure 5 shows the dimensionless pressure profile obtained with the different
numerical schemes for the here proposed piezoviscous model in the case with
ratio = 104. A slight difference can be observed between the maximum of
pressure obtained with the three numerical schemes but all of them have a
similar performance.

Figure 6 shows the maximum values of the dimensionless pressure obtained
with the [ODE-R] numerical scheme for all the models in the case with ratio =
104. Figure 7 shows the corresponding dimensionless viscosity for these models.
In this case, there is a slight difference between the maximum of pressure ob-
tained with the classical piezoviscous model and the here proposed one, while
the other model reaches a higher value. For the viscosity, the difference between
the maximum value for the Rajagopal & Szeri model and the other two models
is greater.

7. Conclusions

In this paper, a rigorous methodology to include piezoviscosity previously
to the limit procedures to obtain a Reynolds model has been developed, over-
coming a simplification hypothesis considered in [15]. Additionally, by means
of a suitable complementarity formulation, the possible presence of cavitation
is included.
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Figure 5: Dimensionless pressure for the three numerical schemes with ratio =
104 and the proposed alternative piezoviscous model
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Figure 6: Zoom of the dimensionless pressure maximum for the three numerical
schemes with ratio = 104 and the proposed alternative piezoviscous model

In order to compare the different piezoviscous lubrication models, appropri-
ate numerical techniques are proposed for the variational inequality formulation
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Figure 7: Zoom of the dimensionless viscosity maximum for the three piezovis-
cous models with ratio = 104 and the [ODE-R] numerical scheme

for the alternative Reynolds cavitation model and for the first order equation
in the lubricated region.

Concerning the numerical results, a first general conclusion is that for crit-
ical values of the parameters the pressure exhibits a large gradient near the
maximum pressure region, so that it results difficult to capture the almost spike

qualitative behavior of the solution in all models. Furthermore, in the extreme
regime that we have considered, it seems that the numerical results obtained
for this new model result to be closer to the ones of the classical model mainly
used in mechanical and mathematical literature.

Now, the authors are trying to extend the alternative model when Elrod–
Adams model for cavitation is used, as it results more realistic when cavita-
tion regions appear in the convergent region (starvation phenomenon). Other
forthcoming studies are devoted to the consideration of the elastohydrodynamic
lubrication regime.
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