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Abstract

Let X1, ..,Xn denote an i.i.d. sample with light tail distribution and Sn
1 denote

the sum of its terms; let an be a real sequence going to infinity with n. In a previous
paper ([4]) it is proved that as n → ∞, given (Sn

1 /n > an) all terms Xi concen-
trate around an with probability going to 1. This paper explores the asymptotic
distribution of X1 under the conditioning events (Sn

1 /n = an) and (Sn
1 /n ≥ an) . It

is proved that under some regulatity property, the asymptotic conditional distribu-
tion of X1 given (Sn

1 /n = an) can be approximated in variation norm by the tilted
distribution at point an , extending therefore the classical LDP case developed in
([9]) . Also under (Sn

1 /n ≥ an) the dominating point property holds.
It also considers the case when theXi’s are R

d−valued, f is a real valued function
defined on R

d and the conditioning event writes (Un
1 /n = an) or (U

n
1 /n ≥ an) with

Un
1 := (f(X1) + ..+ f(Xn)) /n and f(X1) has a light tail distribution. As a by-

product some attention is paid to the estimation of high level sets of functions.

1 Introduction

Let X1, .., Xn denote n independent unbounded real valued random variables and Sn
1 :=

X1 + ..+Xn be their sum. The purpose of this paper is to explore the limit distribution
of the generic variable X1 conditioned on extreme deviations (ED) pertaining to Sn

1 . By
extreme deviation we mean that Sn

1 /n is supposed to take values which are going to infinity
as n increases. Obviously such events are of infinitesimal probability. Our interest in this
question stems from a first result which assesses that under appropriate conditions, when
the sequence an is such that

lim
n→∞

an = ∞
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then there exists a sequence εn which satisfies ǫn/an → 0 as n tends to infinity such that

lim
n→∞

P (∩n
i=1 (Xi ∈ (an − εn, an + εn))|Sn

1 /n ≥ an) = 1 (1.1)

which is to say that when the empirical mean takes exceedingly large values, then all
the summands share the same behaviour; this result is useful when considering aggregate
forming in large random media, or in the context of robust estimators in statistics. It
requires a number of hypotheses, which we simply quote as of “light tail” type. We refer to
[4] for this result and the connection with earlier related works, and name it ”democratic
localization principle” (DLP), as referred to in [11].

The above result is clearly to be put in relation with the so-called Gibbs conditional
Principle which we recall briefly in its simplest form.

Let an satisfy an = a , a constant with value larger than the expectation of X1 and
consider the behaviour of the summands when (Sn

1 /n ≥ a) , under a large deviation (LD)
condition about the empirical mean. The asymptotic conditional distribution of X1 given
(Sn

1 /n ≥ a) is the well known tilted distribution of PX with parameter t associated to a.
Let us introduce some notation. The hypotheses to be stated now together with notation
are kept throughout the entire paper.

It will be assumed that PX , which is the distribution of X1, has a density p with
respect to the Lebesgue measure on R. The fact that X1 has a light tail is captured in
the hypothesis that X1 has a moment generating function

φ(t) := E exp tX1

which is finite in a non void neighborhood N of 0. This fact is usually referred to as a
Cramer type condition.

Defined on N are the following functions. The functions

t→ m(t) :=
d

dt
logφ(t)

t→ s2(t) :=
d2

dt2
logφ(t)

and

t→ µ3(t) :=
d3

dt3
logφ(t)

are the expectation, the variance and kurtosis of the r.v. Xt with density

πa(x) :=
exp tx

φ(t)
p(x)

which is defined on R and which is the tilted density with parameter t in N defined
through

m(t) = a. (1.2)
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. When φ is steep, meaning that

lim
t→∂N

m(t) = ∞

then m parametrizes the convex hull cvhull (PX) of the support of PX and (1.2) is defined
in a unique way for all a in cvhull (PX) . We refer to [1] for those properties.

We now come to some remark on the Gibbs conditional principle in the standard above
setting. A phrasing of this principle is:

As n tends to infinity the conditional distribution of X1 given (Sn
1 /n ≥ a) approaches

Πa, the distribution with density πa.
We state the Gibbs principle in a form where the conditioning event is a point con-

dition (Sn
1 /n = a) . The conditional distribution of X1 given (Sn

1 /n = a) is a well defined
distribution and Gibbs conditional principle states that it converges to Πa as n tends to
infinity. In both settings, this convergence holds in total variation norm. We refer to [9]
for the local form of the conditioning event; we will mostly be interested in the extension
of this form.

The present paper is also a continuation of [6] which contains a conditional limit
theorem for the approximation of the conditional distribution of X1, ..., Xkn given Sn

1 /n =
an with lim supn→∞ kn/n ≤ 1 and limn→∞ n−kn = ∞. There, the sequence an is bounded,
hence covering all cases from the LLN up to the LDP, and the approximation holds in the
total variation distance. The resulting approximation, when restricted to the case kn = 1,
writes

lim
n→∞

∫
|pan(x)− gan(x)| dx) = 0 (1.3)

where

gan(x) := Cp(x)n
(
an, s

2
n, x
)
. (1.4)

Hereabove n (a, sn, x) denotes the normal density function at point x with expectation an,
with variance s2n, and s

2
n := s2(tn)(n− 1) and tn such that m(tn) = an; C is a normalizing

constant. Obviously developing in display (1.4) yields

gan(x) = πan(x) (1 + o(1))

which proves that (1.3) is a form of Gibbs principle, with some improvement due to the
second order term. In the present context the extension from k = 1 (or from fixed k) to
the case when kn approaches n requires a large burden of technicalities, mainly Edgeworth
expansions of high order in the extreme value range; lacking a motivation for this task,
we did not engage on this path.

The paper is organized as follows. Notation and hypotheses are stated in Section 2; a
sharp Abelian result pertaining to the moment generating function and a refinement of a
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local central limit theorem in the context of triangular arrays with non standard moments
are presented in Section 3. Section 4 provides a local Gibbs conditional principle under
EDP, namely producing the approximation of the conditional density of X1 conditionally
on (Sn

1 /n = an) for sequences an which tend to infinity. The first approximation is local.
This result is extended to typical paths under the conditional sampling scheme, which
in turn provides the approximation in variation norm for the conditional distribution.
The method used here follows closely the approach developed in [6]. Extensions to other
conditioning events are discussed. The differences between the Gibbs principles in LDP
and EDP are also mentioned. Similar results in the case when the conditioning event
is (Sn

1 /n ≥ an) are stated in Section 5, where both EDP and DLP are simultaneously
considered. This section also introduces some proposal for a stochastic approximation of
high level sets of real valued functions defined on R

d.

2 Notation and hypotheses

The density p of X1 is uniformly bounded and writes

p(x) = c exp
(
−
(
g(x)− q(x)

))
x ∈ R+, (2.1)

where c is some positive normalizing constant. Define

h(x) := g′(x).

We assume that for some positive constant ϑ , for large x, it holds

sup
|v−x|<ϑx

|q(v)| ≤ 1√
xh(x)

. (2.2)

The function g is positive and satisfies

lim
n→∞

g(x)

x
= ∞. (2.3)

Not all positive g’s satisfying (2.3) are adapted to our purpose. Regular functions g
are defined through the function h as follows. We define firstly a subclass R0 of the family
of slowly varying function. A function l belongs to R0 if it can be represented as

l(x) = exp
(∫ x

1

ǫ(u)

u
du
)
, x ≥ 1, (2.4)

where ǫ(x) is twice differentiable and ǫ(x) → 0 as x→ ∞.
We follow the line developed in [13] to describe the assumed regularity conditions of

h.
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The Class Rβ : x→ h(x) belongs to Rβ , if, with β > 0 and x large enough, h(x) can
be represented as

h(x) = xβl(x),

where l(x) ∈ R0 and in (2.4) ǫ(x) satisfies

lim sup
x→∞

x|ǫ′(x)| <∞, lim sup
x→∞

x2|ǫ′′(x)| <∞. (2.5)

The Class R∞ : x→ l(x) belongs to R̃0, if, in (2.4), l(x) → ∞ as x→ ∞ and

lim
x→∞

xǫ′(x)

ǫ(x)
= 0, lim

x→∞
x2ǫ

′′

(x)

ǫ(x)
= 0, (2.6)

and, for some η ∈ (0, 1/4)
lim inf
x→∞

xηǫ(x) > 0. (2.7)

We say that h belongs to R∞ if h is increasing and strictly monotone and its inverse
function ψ defined through

ψ(u) := h←(u) := inf {x : h(x) ≥ u} (2.8)

belongs to R̃0.
DenoteR : = Rβ∪R∞. The class R covers a large collection of functions, although, Rβ

and R∞ are only subsets of the classes of Regularly varying and Rapidly varying functions,
respectively.

Example 2.1. Weibull Density. Let p be a Weibull density with shape parameter
k > 1 and scale parameter 1, namely

p(x) = kxk−1 exp(−xk), x ≥ 0

= k exp
(
−
(
xk − (k − 1) log x

))
.

Take g(x) = xk − (k − 1) log x and q(x) = 0. Then it holds

h(x) = kxk−1 − k − 1

x
= xk−1

(
k − k − 1

xk
)
.

Set l(x) = k − (k − 1)/xk, x ≥ 1, then (2.4) holds, namely,

l(x) = exp
(∫ x

1

ǫ(u)

u
du
)
, x ≥ 1,

with

ǫ(x) =
k(k − 1)

kxk − (k − 1)
.

The function ǫ is twice differentiable and goes to 0 as x → ∞. Additionally, ǫ satisfies
condition (2.5). Hence we have shown that h ∈ Rk−1.
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Example 2.2. A rapidly varying density. Define p through

p(x) = c exp(−ex−1), x ≥ 0.

Then g(x) = h(x) = ex and q(x) = 0 for all non negative x. We show that h ∈ R∞. It
holds ψ(x) = log x + 1. Since h(x) is increasing and monotone, it remains to show that

ψ(x) ∈ R̃0. When x ≥ 1, ψ(x) admits the representation of (2.4) with ǫ(x) = log x + 1.
Also conditions (2.6) and (2.7) are satisfied. Thus h ∈ R∞.

Throughout the paper we use the following notation. When a r.v. X has density p we
write p(X = x) instead of p(x). For example πa(X = x) is the density at point x for the
variable X generated under πa, while p(X = x) states for X generated under p.

For all α (depending on n or not) Pα designates the conditional distribution of the
vector X1, .., Xn given (Sn

1 = nα) . This distribution is degenerate on R
n; however its

margins are a.c. w.r.t. the Lebesgue measure on R. The function pα denotes the density
of a margin.

3 An Abelian Theorem and an Edgeworth expansion

In this short section we mention two Theorems to be used in the derivation of our main
result. They deserve interest by themselves; see [5] for their proof.

3.1 An Abelian type result

We inherit of the definition of the tilted density πa defined in Section 1, and of the
corresponding definitions of the functions m, s2 and µ3. Because of (2.1) and on the
various conditions on g those functions are defined as t→ ∞. The proof of Corollary 3.1
is postponed to the Appendix.

Theorem 3.1. Let p(x) be defined as in (2.1) and h(x) ∈ R. Denote by

m(t) =
d

dt
logφ(t), s2(t) =

d

dt
m(t), µ3(t) =

d3

dt3
log Φ(t),

then with ψ defined as in (2.8) it holds as t→ ∞

m(t) ∼ ψ(t), s2(t) ∼ ψ′(t), µ3(t) ∼
M6 − 3

2
ψ

′′

(t),

where M6 is the sixth order moment of standard normal distribution.

Corollary 3.1. Let p(x) be defined as in (2.1) and h(x) ∈ R. Then it holds as t→ ∞
µ3(t)

s3(t)
−→ 0. (3.1)
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For clearness we write m and s2 for m(t) and s2(t).

Example 3.1. The Weibull case: When g(x) = xkand k > 1 then m(t) ∼ Ct1/(k−1)

and s2(t) ∼ C ′t(2−k)/(k−1) , which tends to 0 for k > 2.

Example 3.2. A rapidly varying density. Define p through

p(x) = c exp(−ex−1), x ≥ 0.

Since ψ(x) = log x+ 1 it follows that m(t) ∼ log t and s2(t) ∼ 1/t→ 0.

3.2 Edgeworth expansion under extreme normalizing factors

With πan defined through

πan(x) =
etxp(x)

φ(t)
,

and t determined by an = m(t), define the normalized density of πan by

π̄an(x) = sπan(sx+ an),

and denote the n-convolution of π̄an(x) by π̄an
n (x). Denote by ρn the normalized density

of n-convolution π̄an
n (x),

ρn(x) :=
√
nπ̄an

n (
√
nx).

The following result extends the local Edgeworth expansion of the distribution of nor-
malized sums of i.i.d. r.v’s to the present context, where the summands are generated
under the density π̄an . Therefore the setting is that of a triangular array of row wise
independent summands; the fact that an → ∞ makes the situation unusual. The proof
of this result follows Feller’s one (Chapiter 16, Theorem 2 [10]). With m(t) = an and
s2 := s2(t), the following Edgeworth expansion holds.

Theorem 3.2. With the above notation, uniformly upon x it holds

ρn(x) = φ(x)
(
1 +

µ3

6
√
ns3
(
x3 − 3x

))
+ o
( 1√

n

)
. (3.2)

where φ(x) is standard normal density.

4 Gibbs’ conditional principles under extreme events

We now explore Gibbs conditional principles under extreme events. For Y1, .., Yn a random
vector generated according to the conditional distribution of the Xi’s given (Sn

1 = nan)
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and with the density pan defined as its marginal density we first provide a density gan on
R such that

pan (Y1) = gan (Y1) (1 +Rn)

where Rn is a function of the vector (Y1, .., Yn) which goes to 0 as n tends to infinity. The
above statement may also be written as

pan (y1) = gan (y1)
(
1 + oPan

(1)
)

(4.1)

where Pan is the joint probability measure of the vector (Y1, .., Yn) under the condition
(Sn

1 = nan) ; note that we designate pan the marginal density of Pan , which is well defined
although Pan is restricted on the plane y1 + .. + yn = an. This statement amounts to
provide the approximation on typical realizations under the conditional sampling scheme.
We will deduce from (4.1) that the L1 distance between pan and gan goes to 0 as n tends to
infinity. We first derive a local marginal Gibbs result, from which (4.1) is easily obtained.

4.1 A local result in R

Fix y1 in R and define t through
m(t) := an. (4.2)

Define s2 := s2(t).
Consider the following condition

lim
t→∞

ψ(t)2√
nψ′(t)

= 0, (4.3)

which amounts to state a growth condition on the sequence an.
Define z1 through

z1 =
nan − y1

s
√
n− 1

. (4.4)

Lemma 4.1. Assume that p(x) satisfies (2.1) and h(x) ∈ R. Let t be defined in (4.2).
Assume that an → ∞ as n→ ∞ and that (4.3) holds. Then

lim
n→∞

z1 = 0.

Proof: When n→ ∞, it holds

z1 ∼ m(t)/(s(t)
√
n).

From Theorem 3.1, it holds m(t) ∼ ψ(t) and s(t) ∼
√
ψ′(t). Hence we have

z1 ∼
ψ(t)√
nψ′(t)

.
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Hence

z21 ∼ ψ(t)2

nψ′(t)
=

ψ(t)2√
nψ′(t)

1√
n
= o
( 1√

n

)
.

Theorem 4.1. With the above notation and hypotheses denoting m := m(t), assuming
(4.3), it holds

pan(y1) = p(X1 = y1|Sn
1 = nan) = gm(y1)

(
1 + o(1)

)
.

with
gm(y1) = πm(X1 = y1).

Proof:
But for limit arguments which are specific to the extreme deviation context, the proof

of this local result is classical; see the LDP case in [9].
We make use of the following invariance property:
For all y1 and all α in the range of X1

p(X1 = y1|Sn
1 = nan) = πα(X1 = y1|Sn

1 = nan)

where on the LHS, the r.v’s Xi ’s are sampled i.i.d. under p and on the RHS, sampled
i.i.d. under πα.

It thus holds

p(X1 = y1|Sn
1 = nan − y1) = πm(X1 = y1|Sn

1 = nan)

= πm1(X1 = y1)
πm1(Sn

2 = nan − y1)

πm(Sn
1 = nan)

=

√
n√

n− 1
πm1(X1 = y1)

π̃n−1(
m−y1
s
√
n−1)

π̃n(0)

=

√
n√

n− 1
πm1(X1 = y1)

π̃n−1(z1)

π̃n(0)
,

where π̃n−1 is the normalized density of Sn
2 under i.i.d. sampling under πm;correspondingly,

π̃n is the normalized density of Sn
1 under the same sampling. Note that a r.v. with density

πm has expectation m = an and variance s2.
Perform a third-order Edgeworth expansion of π̃n−1(z1), using Theorem 3.2. It follows

π̃n−1(z1) = φ(z1)
(
1 +

µ3

6s3
√
n− 1

(z31 − 3z1)
)
+ o
( 1√

n

)
,

The approximation of π̃n(0) is obtained from (3.2) through

π̃(0) = φ(0)
(
1 + o

( 1√
n

))
.
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It follows that

p(X1 = y1|Sn
1 = nan)

=

√
n√

n− 1
πm(X1 = yi)

φ(z1)

φ(0)

[
1 +

µ3

6s3
√
n− 1

(z31 − 3z1) + o
( 1√

n

)]

=

√
2πn√
n− 1

πm(X1 = y1)φ(z1)
(
1 +Rn + o(1/

√
n)
)
,

where
Rn =

µ3

6s3
√
n− 1

(z31 − 3z1).

Under condition (4.3), using Lemma 4.1, it holds z1 → 0 as an → ∞, and under
Corollary (3.1), µ3/s

3 → 0. This yields

Rn = o
(
1/
√
n
)
,

which gives

p(X1 = y1|Sn
1 = nan) =

√
2πn√
n− 1

πm(X1 = y1)φ(z1)
(
1 + o(1/

√
n)
)

=

√
n√

n− 1
πm(X1 = y1)

(
1− z21/2 + o(z21)

)(
1 + o(1/

√
n)
)
,

where we used a Taylor expansion in the second equality. Using once more Lemma 4.1,
under conditions (4.3), we have as an → ∞

z21 = o(1/
√
n),

whence we get

p(X1 = y1|Sn
1 = nan) =

( √
n√

n− 1
πm(X1 = y1)

(
1 + o(1/

√
n)
))

=
(
1 + o

( 1√
n

))
πm(X1 = y1),

which completes the proof.

4.2 Gibbs conditional principle in variation norm

4.2.1 Strengthening the local approximation

We now turn to a stronger approximation of pan . Consider Y1, .., Yn with distribution Pan

and Y1 with density pan and the resulting random variable pan (Y1) .We prove the following
result
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Theorem 4.2. With all the above notation and hypotheses it holds

pan (Y1) = gan (Y1) (1 +Rn)

where
gan = πan

the tilted density at point an , and where Rn is a function of Y1 , .., Yn such that Pan (|Rn| > δ
√
n) →

0 as n→ ∞ for any positive δ.

This result is of greater relevance than the previous one. Indeed under Pan the r.v.
Y1 may take large values as n tends to infinity. At the contrary the approximation of pan
by gan on any y1 in R+ only provides some knowledge on pan on sets with smaller and
smaller probability under pan as n increases . Also it will be proved that as a consequence
of the above result, the L1 norm between pan and gan goes to 0 as n→ ∞, a result out of
reach through the aforementioned result.

In order to adapt the proof of Theorem 4.1 to the present setting it is necessary to get
some insight on the plausible values of Y1 under Pan . It holds

Lemma 4.2. Under Pan it holds

Y1 = OPan
(an) .

Proof: Without loss of generality we can assume Y1 > 0. By Markov Inequality:

P (Y1 > u|Sn
1 = nan) ≤

E (Y1|Sn
1 = nan)

u
=
an
u

which goes to 0 for all u = un such that limn→∞un/an = ∞.

We now turn back to the proof of Theorem 4.2. Define

Z1 :=
nan − Y1

s
√
n− 1

(4.5)

the natural counterpart of z1 as defined in (4.4).
It holds

Z1 = Opan

(
1/
√
n
)
.

P (X1 = Y1|Sn
1 = nan) = P (X1 = Y1)

P (Sn
2 = nan − Y1)

P (Sn
1 = nan)

in which the tilting substitution of measures is performed, with tilting density πan , fol-
lowed by normalization. Now following verbatim the proof of Theorem 4.1 if the growth
condition (4.3) holds, it follows that

P (X1 = Y1|Sn
1 = nan) = πan (Y1) (1 +Rn)
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as claimed where the order of magnitude of Rn is oPan
(1/

√
n). We have proved Theorem

4.2.
Denote the conditional probabilities by Pan and Gan on R

n , which correspond to the
marginal density functions pan and gan on R, respectively.

4.2.2 From approximation in probability to approximation in variation norm

We now consider the approximation of the margin of Pan by Gan in variation norm.
The main ingredient is the fact that in the present setting approximation of pan by

gan in probability plus some rate implies approximation of the corresponding measures in
variation norm. This approach has been developed in [6]; we state a first lemma which
states that whether two densities are equivalent in probability with small relative error
when measured according to the first one, then the same holds under the sampling of the
second.

Let Rn and Sn denote two p.m’s on R
n with respective densities rn and sn.

Lemma 4.3. Suppose that for some sequence εn which tends to 0 as n tends to infinity

rn (Y
n
1 ) = sn (Y

n
1 ) (1 + oRn

(εn)) (4.6)

as n tends to ∞. Then
sn (Y

n
1 ) = rn (Y

n
1 ) (1 + oSn

(εn)) . (4.7)

Proof. Denote

An,εn := {yn1 : (1− εn)sn (y
n
1 ) ≤ rn (y

n
1 ) ≤ sn (y

n
1 ) (1 + εn)} .

It holds for all positive δ
lim
n→∞

Rn (An,δεn) = 1.

Write

Rn (An,δεn) =

∫
1An,δεn

(yn1 )
rn (y

n
1 )

sn(yn1 )
sn(y

n
1 )dy

n
1 .

Since
Rn (An,δεn) ≤ (1 + δεn)Sn (An,δεn)

it follows that
lim
n→∞

Sn (An,δεn) = 1,

which proves the claim.

Applying this Lemma to the present setting yields

gan (Y1) = pan (Y1)
(
1 + oGan

(
1/
√
n
))

as n→ ∞.
This fact entails, as in [6]
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Theorem 4.3. Under all the notation and hypotheses above the total variation norm
between the marginal distribution of Pan and Gan goes to 0 as n→ ∞.

The proof goes as follows
For all δ > 0, let

Eδ :=

{
y ∈ R :

∣∣∣∣
pan (y)− gan (y)

gan (y)

∣∣∣∣ < δ

}

which, turning to the marginal distribution of Pan writes

lim
n→∞

Pan (Eδ) = lim
n→∞

Gan (Eδ) = 1. (4.8)

It holds

sup
C∈B(R)

|Pan (C ∩ Eδ)−Gan (C ∩ Eδ)| ≤ δ sup
C∈B(R)

∫

C∩Eδ

gan (y) dy ≤ δ.

By the above result (4.8)

sup
C∈B(R)

|Pan (C ∩ Eδ)− Pan (C)| < ηn

and
sup

C∈B(R)
|Gan (C ∩ Eδ)−Gan (C)| < ηn

for some sequence ηn → 0 ; hence

sup
C∈B(R)

|Pan (C)−Gan (C)| < δ + 2ηn

for all positive δ, which proves the claim.
As a consequence, applying Scheffé’s Lemma we have proved

∫
|pan − gan | dx→ 0 as n→ ∞

as sought.

Remark 4.1. This result is to be paralleled with Theorem 1.6 in Diaconis and Freedman
[9] and Theorem 2.15 in Dembo and Zeitouni [8] which provide a rate for this convergence
in the LDP range.
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4.3 The asymptotic location of X under the conditioned distri-

bution

This section intends to provide some insight on the behaviour of X1 under the condition
(Sn

1 = nan) . It will be seen that conditionally on (Sn
1 = nan) the marginal distribution of

the sample concentrates around an. Let Xt be a r.v. with density πan where m(t) = an
and an satisfies (4.3). Recall that EXt = an and V arXt = s2. We evaluate the moment
generating function of the normalized variable (Xt − an) /s. It holds

logE exp λ (Xt − an) /s = −λan/s+ logφ

(
t+

λ

s

)
− log φ (t) .

A second order Taylor expansion in the above display yields

logE exp λ (Xt − an) /s =
λ2

2

s2
(
t+ θλ

s

)

s2

where θ = θ(t, λ) ∈ (0, 1) . The following Lemma, which is proved in the Appendix, states
that the function t→ s(t) is self neglecting. Namely

Lemma 4.4. Under the above hypotheses and notation, for any compact set K

lim
n→∞

sup
u∈K

s2
(
t+ u

s

)

s2
= 1.

Applying the above Lemma it follows that the normalized r.v’s (Xt − an) /s converge
to a standard normal variable N(0, 1) in distribution, as n→ ∞. This amount to say that

Xt = an + sN(0, 1) + oΠan (1). (4.9)

In the above formula (4.9) the remainder term oΠan (1) is of smaller order than sN(0, 1)
since the variance of a r.v. with distribution Πan is s2. When limt→∞ s(t) = 0 then
Xt concentrates around an with rate s(t). Due to Theorem 4.3 the same holds for X1

under (Sn
1 = nan) .This is indeed the case when g is a regularly varying function with

index γ larger than 2, plus some extra regularity conditions captured in the fact that h
belongs to Rγ−1. The gausssian tail corresponds to γ = 2 and the variance of the tilted
distribution Πan has a non degenerate variance for all an (in the standard gaussian case,
Πan = N (an, 1)), as does the conditional distribution of X1 given (Sn

1 = nan) .

14



4.4 Extension to other conditioning events

Let X1, .., Xn be n i.i.d. r.v’s with common density p defined on R
d and let f denote a

measurable function from R
d onto R such that f(X1) has a density pf .We assume that pf

enjoys all properties stated in Section 2 , i.e. pf (x) = exp− (g(x)− q(x)) and we denote
accordingly φf(t) its moment generating function, and mf (t) and s

2
f(t) the corresponding

first and second derivatives of logφf(t). The following extension of Theorem 4.2 holds.
Denote Σn

1 := f(X1) + ..+ f(Xn).
Denote for all a in the range of f

πa
f (x) :=

exp tf(x)

φf(t)
p(x) (4.10)

where t is the unique solution of m(t) := (d/dt) log φf(t) = a and Πa
f the correspond-

ing probability measure. Denote Pf,an the conditional distribution of (X1, .., Xn) given
(Σn

1 = nan) . The sequence an is assume to satisfy (4.3) where ψ is defined with respect
to pf .

Theorem 4.4. Under the current hypotheses of this section the variation distance between
the margin of Pf,an and Πan

f goes to 0 as n tends to infinity.

Proof: It holds , for Y1 a r.v. with density p,

p (X1 = Y1|Σn
1 = nan) = p (X1 = Y1)

p (Σn
2 = nan − f(Y1))

p (Σn
1 = nan)

=
p (X1 = Y1)

p (f(X1) = f(Y1))
p (f(X1) = f(Y1))

p (Σn
2 = nan − f(Y1))

p (Σn
1 = nan)

=
p (X1 = Y1)

p (f(X1) = f(Y1))
πm
f (f(X1) = f(Y1))

πm
f (Σn

2 = nan − f(Y1))

πm
f (Σn

1 = nan)

= p (X1 = Y1)
etf(Y1)

φf(t)

πm
f (Σn

2 = nan − f(Y1))

πm
f (Σn

1 = nan)

where m := (d/dt) logφf(t) = an.The proof then follows verbatim that of Theorem 4.2
with Xi substituted by f(Xi).

4.5 Differences between Gibbs principle under LDP and under

extreme deviation

It is of interest to confront the present results with the general form of the Gibbs principle
under linear constraints in the LDP range.
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Consider the application of the above result to r.v’s Y1, .., Yn with Yi := (Xi)
2 where

the Xi’s are i.i.d. and are such that the density of the i.i.d. r.v’s Yi’s satisfy (2.1) with
all the hypotheses stated in this paper, assuming that Y has a Weibull distribution with
parameter larger than 2 . By the Gibbs conditional principle under a point conditioning
(see e.g. [9]), for fixed a, conditionally on (

∑n
i=1 Yi = na) the generic r.v. Y1 has a non

degenerate limit distribution

p∗Y (y) :=
exp ty

E exp tY1
pY (y)

and the limit density of X1 under (
∑n

i=1X
2
i = na) is

p∗X(x) :=
exp tx2

E exp tX2
1

pX(x)

a non degenerate distribution, with mY (t) = a . As a consequence of the above result,
when an → ∞ the distribution of X1 under the condition (

∑n
i=1X

2
i = nan) concentrates

sharply at −√
an and +

√
an.

5 EDP under exceedances

5.1 DLP and EDP

This section extends the previous Theorem 4.2 when the conditioning event has non null
measure and writes An = (Sn

1 ≥ nan) . It also provides a bridge between the ”democratic
localization principle (DLP)” (1.1) and the conditional Gibbs principle. We denote the
density of X1 given An by pAn

to differentiate it from pan .
In the LDP case, when an = a > EX1 then the distribution of X1 given (Sn

1 ≥ na)
or given (Sn

1 = na) coincide asymptotically, both converging to the tilted distribution
at point a, the dominating point of [a,∞) . This result follows from the local approach
derived in [9], which uses limit results for sums of i.i.d. r.v’s, and from Sanov Theorem
which amounts to identify the Kullback-Leibler projection of the p.m. P on the set of
all p.m’s with expectation larger or equal a. When a is allowed to tend to infinity with n
no Sanov-type result is available presently, and the first approach, although cumbersome,
has to be used. The ”dominating point property” still holds.

Most applications of extreme deviation principles deal with phenomenons driven by
multiplicative cascade processes with power laws; see e.g. [11] for fragmentation models
and turbulence. For sake of simplicity we restrict to this case, assuming therefore that h
belongs to Rk−1 for some k > 1. All conditions and notation of Section 2 are assumed to
hold. Furthermore, since we consider the asymptotics of the marginal distribution of the
sample under An, it is natural to assume that an is such that the democratic localization
principle holds together with the local Gibbs conditional principle.

Specialized to the present setting it holds (see Theorem 6 in [4])
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Theorem 5.1. Assume that for some δ > 0

lim inf
n→∞

log g(an)

log n
> δ (5.1)

and define a sequence ǫn such that

lim
n→∞

n log an
ak−2n ǫ2n

= 0. (5.2)

Then

lim
n→∞

P

(
n⋂

i=1

(an − ǫn < Xi < an + ǫn)

∣∣∣∣∣S
n
1 /n ≥ an

)
= 1. (5.3)

Furthermore, when 1 < k ≤ 2 then ǫn can be chosen to satisfy ǫn/an → 0, and when
k > 2, ǫn can be chosen to satisfy ǫn → 0.

We assume that both conditions (5.1) and (4.3) hold. Therefore we assume that the
range of an makes both the DLP and EDP hold. This is the case for example when

an = nα

together with

α <
2

2 + k
.

We state the following extension of Theorems 5.1 and 4.3.

Theorem 5.2. Assume (5.1) and (5.2). Then for any family of Borel sets Bn such that

lim inf
n→∞

PAn
(Bn) > 0

it holds
PAn

(Bn) = (1 + o(1))Gan (Bn)

as n→ ∞.

Remark 5.1. This Theorem is of the same kind as those related to conditioning on thin
sets, in the range of the LDP; see [7].

Proof of Theorem 5.2:
For the purpose of the proof, we need the following lemma, based on Theorem 6.2.1 of

Jensen [12], in order to provide the asymptotic estimation of the tail probability P (Sn
1 ≥

nan). Its proof is differed to the Appendix.
Define

I(x) := xm−1(x)− log Φ
(
m−1(x)

)
. (5.4)

and let tn be defined through
m(tn) = an.
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Lemma 5.1. Let X1, ..., Xn be i.i.d. random variables with density p defined in (2.1) and
h ∈ R. Suppose that when n→ ∞, it holds

ψ(tn)
2

√
nψ′(tn)

−→ 0.

Then it holds

P (Sn
1 ≥ nan) =

exp(−nI(an))√
2π

√
ntns(tn)

(
1 + o

( 1√
n

))
. (5.5)

Denote ∆n := (an − ǫn, an + ǫn) and ∆+
n := (an, an + ǫn). It holds

P (Sn
1 /n ∈ ∆n|Sn

1 /n ≥ an) ≥ P

(
n⋂

i=1

(Xi ∈ ∆n)

∣∣∣∣∣S
n
1 /n ≥ an

)

hence by Theorem 5.1

P
(
Sn
1 /n ∈ ∆+

n

∣∣Sn
1 /n ≥ an

)
= P (Sn

1 /n ∈ ∆n|Sn
1 /n ≥ an) → 1

which yields
P (Sn

1 /n ∈ ∆+
n )

P (Sn
1 /n > an)

→ 1.

Since (Sn
1 /n ∈ ∆+

n ) ⊂ (Sn
1 /n > an) it follows that for any Borel set B (depending on n or

not)
P (X1 ∈ B|Sn

1 /n > an) = (1 + o(1))P
(
X1 ∈ B|Sn

1 /n ∈ ∆+
n

)
+ Cn

where

0 < Cn <
P (Sn

1 /n ≥ an + ǫn)

P (Sn
1 /n ≥ an)

.

Using Lemma 5.1 both in the numerator and the denominator, with some control using
(5.1) and (5.2) proving that (5.5) holds with an substituted by an + ǫn, we get Cn → 0.

By Theorem 5.1, with B = ∆n

P (X1 ∈ ∆n|Sn
1 /n ≥ an) → 1

which in turn implies that

P
(
X1 ∈ ∆n|Sn

1 /n ∈ ∆+
n

)
→ 1

which proves that the conditional distribution of X1 given S
n
1 /n ≥ an concentrates on ∆n

, as does its distribution given Sn
1 /n ∈ ∆+

n . Furthermore both distributions are asymp-
totically equivalent in the sense that

P (X1 ∈ Bn|Sn
1 /n ∈ ∆+

n )

P (X1 ∈ Bn|Sn
1 /n ≥ an)

→ 1
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for all sequence of Borel sets Bn such that

lim inf
n→∞

P (X1 ∈ Bn|Sn
1 /n ≥ an) > 0.

.

We now prove Theorem 5.2.
For a Borel set B = Bn it holds

PAn
(B) =

∫ ∞

an

Pv(B)p (Sn
1 /n = v|Sn

1 /n > an) dv

=
1

P (Sn
1 /n > an)

∫ ∞

an

Pv(B)p (Sn
1 /n = v) dv

= (1 + o(1))
1

P (Sn
1 /n ∈ ∆+

n )

∫ ∞

an

Pv(B)p (Sn
1 /n = v) dv

= (1 + o(1))
1

P (Sn
1 /n ∈ ∆+

n )

∫ an+ǫn

an

Pv(B)p (Sn
1 /n = v) dv

+ (1 + o(1))
1

P (Sn
1 /n ∈ ∆+

n )

∫ ∞

an+ǫn

Pv(B)p (Sn
1 /n = v) dv

= (1 + o(1))

∫ an+ǫn

an

Pv(B)p
(
Sn
1 /n = v|Sn

1 /n ∈ ∆+
n

)
dv

+ (1 + o(1))
1

P (Sn
1 /n ∈ ∆+

n )

∫ ∞

an+ǫn

Pv(B)p (Sn
1 /n = v) dv

= (1 + o(1))Pan+θnǫn(B)

+ (1 + o(1))
1

P (Sn
1 /n ∈ ∆+

n )

∫ ∞

an+ǫn

Pv(B)p (Sn
1 /n = v) dv

= (1 + o(1))Pan+θnǫn(B) + Cn

for some θn in (0, 1) . The term Cn is less than P (Sn
1 /n > an + ǫn)/P (S

n
1 /n > an) which

tends to 0 as n tends to infinity, under (5.1) and (5.2), using Lemma 5.1.
Hence when Bn is such that lim infn→∞ Pan+θnǫn(Bn) > 0 using Theorem 4.3 it holds,

since a′n := an + θnǫn satisfies (4.3)

PAn
(Bn) = (1 + o(1))Gan+θnǫn(Bn). (5.6)

It remains to prove that

Gan+θnǫn(Bn) = (1 + o(1))Gan(Bn). (5.7)

Make use of (4.9) to prove the claim. Define t through m(t) = an and t′ through
m(t′) = a′n. It is enough to obtain

s(t) = (1 + o(1)) s(t′) (5.8)
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as n → ∞. In the present case when h belongs to Rk−1, making use of Theorem 3.1 it
holds

s2(t) = C (1 + o(1))m(t)2−k

for some constant C; a similar formula holds for s2(t′) which together yield (5.8), whatever
k > 1.

This proves (5.7) and concludes the proof of Theorem 5.2.

Remark 5.2. By (4.9) and Theorem 5.2 the r.v. X1 conditioned upon (Sn
1 /n ≥ an) has

a standard deviation of order Ca2−kn , much smaller than ǫn which by (5.2) is larger than√
n log an/a

(k−2)/2
n ;this proves that (5.3) might be improved. However the qualitative bound

k = 2 appears both in the DLP and in the EDP.

5.2 High level sets of functions

We explore the consequences of Theorem 5.2 in connection with (1.1) in the context when
the conditioning event writes

An :=
1

n

n∑

i=1

f(Xi) ≥ an

where the i.i.d. r.v’s X1, .., Xn belong to R
d, and f is a real valued function such that

the density pf of f(X1) satisfies all the hypotheses of Section 2. We denote PAn
the

distribution of (X1, .., Xn) given An. We assume that pf satisfies (2.1) with h in Rk−1,
k > 1.

Using the DLP stated in Section 5.1 it holds

PAn

(
n⋂

i=1

(f (Xi) ∈ (an − ǫn, an + ǫn))

)
→ 1

which implies that
PAn

(f (X1) ∈ (an − ǫn, an + ǫn)) → 1.

In turn, using Theorem 5.2

Gan (f (X1) ∈ (an − ǫn, an + ǫn)) → 1

where Gan has density gan defined through

gan(y) :=
ety

φf(t)
pf (y)

with φf (t) := Eetf(X)and mf (t) = an. Note that following (4.9), Gan is nearly gaussian
with expectation an and standard deviation sf(t) := (d/dt)mf (t).

Turning back to Theorem 4.4 it then holds
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Theorem 5.1. When the above hypotheses hold let an satisfies

lim inf
n→∞

log g(an)

logn
> δ

with h in Rk−1, k > 1 and

gan(x) :=
etf(x)

φf(t)
p(x)

where mf(t) = an . Then there exists a sequence ǫn satisfying limn→∞ ǫn/n = 0 such
that a r.v. X in R

d with density gan is a solution of the inequation

an − ǫn < f(x) < an + ǫn

with probability 1 as n→ ∞. The sequence ǫn satisfies

lim
n→∞

n log an
ak−2n ǫ2n

= 0.

6 Appendix

6.1 Proof of Lemma 4.4

Case 1: if h ∈ Rβ. By Theorem 3.1, it holds s2 ∼ ψ′(t) with ψ(t) ∼ t1/βl1(t), where l1 is
some slowly varying function. It also holds ψ′(t) = 1/h

′
(
ψ(t)

)
; therefore

1

s2
∼ h

′
(
ψ(t)

)
= ψ(t)β−1l0

(
ψ(t)

)(
β + ǫ

(
ψ(t)

))

∼ βt1−1/βl1(t)
β−1l0

(
ψ(t)

)
= o(t),

which implies that for any u ∈ K
u

s
= o(t).

It follows that

s2 (t+ u/s)

s2
∼ ψ′(t + u/s)

ψ′(t)
=

ψ(t)β−1l0
(
ψ(t)

)(
β + ǫ

(
ψ(t)

))
(
ψ(t+ u/s)

)β−1
l0
(
ψ(t + u/s)

)(
β + ǫ

(
ψ(t+ u/s)

))

∼ ψ(t)β−1

ψ(t + u/s)β−1
∼ t1−1/βl1(t)

β−1

(t+ u/s)1−1/βl1(t+ u/s)β−1
−→ 1.
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Case 2: if h ∈ R∞. Then we have ψ(t) ∈ R̃0; hence it holds

1

st
∼ 1

t
√
ψ′(t)

=

√
1

tψ(t)ǫ(t)
−→ 0.

Hence for any u ∈ K, we get as n→ ∞
u

s
= o(t),

thus using the slowly varying propriety of ψ(t) we have

s2 (t + u/s)

s2
∼ ψ′(t+ u/s)

ψ′(t)
=
ψ(t+ u/s)ǫ(t+ u/s)

t + u/s

t

ψ(t)ǫ(t)

∼ ǫ(t+ u/s)

ǫ(t)
=
ǫ(t) +O

(
ǫ′(t)u/s

)

ǫ(t)
−→ 1,

where we used a Taylor expansion in the second line. This completes the proof.

6.2 Proof of Lemma 5.1

For the density p defined in (2.1), we show that g is convex when x is large. If h ∈ Rβ, it
holds for x large

g
′′

(x) = h
′

(x) =
h(x)

x

(
β + ǫ(x)

)
> 0.

If h ∈ R∞, its reciprocal function ψ(x) belongs to R̃0. Set x := ψ(u); for x large

g
′′

(x) = h
′

(x) =
1

ψ′(u)
=

u

ψ(u)ǫ(u)
> 0,

where the inequality holds since ǫ(u) > 0 under condition (2.7), for large u. Therefore g
is convex for large x .

Therefore, the density p with h ∈ R satisfies the conditions of Jensen’s Theorem 6.2.1
([12]). A third order Edgeworth expansion in formula (2.2.6) of ([12]) yields

P (Sn
1 ≥ nan) =

Φ(tn)
n exp(−ntnan)√
ntns(tn)

(
B0(λn) +O

( µ3(tn)

6
√
ns3(tn)

B3(λn)
))
, (6.1)

where λn =
√
ntns(tn), and B0(λn) and B3(λn) are defined by

B0(λn) =
1√
2π

(
1− 1

λ2n
+ o(

1

λ2n
)
)
, B3(λn) ∼ − 3√

2πλn
.
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We show that, as an → ∞,
1

λ2n
= o

(
1

n

)
. (6.2)

Since n/λ2n = 1/(t2ns
2(tn)), (6.2) is equivalent to show that

t2ns
2(tn) −→ ∞. (6.3)

By Theorem 3.1, m(tn) ∼ ψ(tn) and s
2(tn) ∼ ψ′(tn); this entails that tn ∼ h(an).

If h ∈ Rβ, notice that

ψ′(tn) =
1

h′(ψ(tn))
=

ψ(tn)

h
(
ψ(tn)

)(
β + ǫ(ψ(tn))

) ∼ an

h(an)
(
β + ǫ(ψ(tn))

) .

holds. Hence we have

t2ns
2(tn) ∼ h(an)

2 an

h(an)
(
β + ǫ(ψ(tn))

) =
anh(an)

β + ǫ(ψ(tn))
−→ ∞.

If h ∈ R∞, then ψ(tn) ∈ R̃0, it follows that

t2ns
2(tn) ∼ t2n

ψ(tn)ǫ(tn)

tn
= tnψ(tn)ǫ(tn) −→ ∞,

where the last step holds from condition (2.7). We have shown (6.2). Therefore

B0(λn) =
1√
2π

(
1 + o

(
1

n

))
.

By (6.3), λn goes to ∞ as an → ∞, which implies further that B3(λn) → 0. On the
other hand, by Theorem 3.1 , µ3/s

3 → 0. Hence we obtain from (6.1)

P (Sn
1 ≥ nan) =

Φ(tn)
n exp(−ntnan)√
2πntns(tn)

(
1 + o

(
1√
n

))
,

which together with (5.4) proves the claim.
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