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Light tails: Gibbs conditional principle under extreme deviation

Let X 1 , .., X n denote an i.i.d. sample with light tail distribution and S n 1 denote the sum of its terms; let a n be a real sequence going to infinity with n. In a previous paper ([4]) it is proved that as n → ∞, given (S n 1 /n > a n ) all terms X i concentrate around a n with probability going to 1. This paper explores the asymptotic distribution of X 1 under the conditioning events (S n 1 /n = a n ) and (S n 1 /n ≥ a n ) . It is proved that under some regulatity property, the asymptotic conditional distribution of X 1 given (S n 1 /n = a n ) can be approximated in variation norm by the tilted distribution at point a n , extending therefore the classical LDP case developed in ([9]) . Also under (S n 1 /n ≥ a n ) the dominating point property holds. It also considers the case when the X i 's are R d -valued, f is a real valued function defined on R d and the conditioning event writes (U

/n and f (X 1 ) has a light tail distribution. As a byproduct some attention is paid to the estimation of high level sets of functions.

Introduction

Let X 1 , .., X n denote n independent unbounded real valued random variables and S n 1 := X 1 + .. + X n be their sum. The purpose of this paper is to explore the limit distribution of the generic variable X 1 conditioned on extreme deviations (ED) pertaining to S n 1 . By extreme deviation we mean that S n 1 /n is supposed to take values which are going to infinity as n increases. Obviously such events are of infinitesimal probability. Our interest in this question stems from a first result which assesses that under appropriate conditions, when the sequence a n is such that lim n→∞ a n = ∞ 1 then there exists a sequence ε n which satisfies ǫ n /a n → 0 as n tends to infinity such that

lim n→∞ P ( ∩ n i=1 (X i ∈ (a n -ε n , a n + ε n ))| S n 1 /n ≥ a n ) = 1 (1.1)
which is to say that when the empirical mean takes exceedingly large values, then all the summands share the same behaviour; this result is useful when considering aggregate forming in large random media, or in the context of robust estimators in statistics. It requires a number of hypotheses, which we simply quote as of "light tail" type. We refer to [START_REF] Broniatowski | Light tails: All summands are large when the empirical mean is large[END_REF] for this result and the connection with earlier related works, and name it "democratic localization principle" (DLP), as referred to in [START_REF] Sornette | Critical phenomena in natural sciences[END_REF].

The above result is clearly to be put in relation with the so-called Gibbs conditional Principle which we recall briefly in its simplest form.

Let a n satisfy a n = a , a constant with value larger than the expectation of X 1 and consider the behaviour of the summands when (S n 1 /n ≥ a) , under a large deviation (LD) condition about the empirical mean. The asymptotic conditional distribution of X 1 given (S n 1 /n ≥ a) is the well known tilted distribution of P X with parameter t associated to a. Let us introduce some notation. The hypotheses to be stated now together with notation are kept throughout the entire paper.

It will be assumed that P X , which is the distribution of X 1 , has a density p with respect to the Lebesgue measure on R. The fact that X 1 has a light tail is captured in the hypothesis that X 1 has a moment generating function φ(t) := E exp tX 1 which is finite in a non void neighborhood N of 0. This fact is usually referred to as a Cramer type condition.

Defined on N are the following functions. 

m(t) = ∞
then m parametrizes the convex hull cvhull (P X ) of the support of P X and (1.2) is defined in a unique way for all a in cvhull (P X ) . We refer to [START_REF] Barndorff-Nielsen | Information and exponential families in statistical theory[END_REF] for those properties.

We now come to some remark on the Gibbs conditional principle in the standard above setting. A phrasing of this principle is:

As n tends to infinity the conditional distribution of X 1 given (S n 1 /n ≥ a) approaches Π a , the distribution with density π a .

We state the Gibbs principle in a form where the conditioning event is a point condition (S n 1 /n = a) . The conditional distribution of X 1 given (S n 1 /n = a) is a well defined distribution and Gibbs conditional principle states that it converges to Π a as n tends to infinity. In both settings, this convergence holds in total variation norm. We refer to [START_REF] Diaconis | Conditional Limit Theorems for Exponential Families and Finite Versions of de Finetti's Theorem[END_REF] for the local form of the conditioning event; we will mostly be interested in the extension of this form.

The present paper is also a continuation of [START_REF] Broniatowski | Long runs under a conditional limit distribution[END_REF] which contains a conditional limit theorem for the approximation of the conditional distribution of X 1 , ..., X kn given S n 1 /n = a n with lim sup n→∞ k n /n ≤ 1 and lim n→∞ n-k n = ∞. There, the sequence a n is bounded, hence covering all cases from the LLN up to the LDP, and the approximation holds in the total variation distance. The resulting approximation, when restricted to the case k n = 1, writes

lim n→∞ |p an (x) -g an (x)| dx) = 0 (1.3)
where

g an (x) := Cp(x)n a n , s 2 n , x . (1.4) 
Hereabove n (a, s n , x) denotes the normal density function at point x with expectation a n , with variance s 2 n , and s 2 n := s 2 (t n )(n -1) and t n such that m(t n ) = a n ; C is a normalizing constant. Obviously developing in display (1.4) yields

g an (x) = π an (x) (1 + o(1))
which proves that (1.3) is a form of Gibbs principle, with some improvement due to the second order term. In the present context the extension from k = 1 (or from fixed k) to the case when k n approaches n requires a large burden of technicalities, mainly Edgeworth expansions of high order in the extreme value range; lacking a motivation for this task, we did not engage on this path.

The paper is organized as follows. Notation and hypotheses are stated in Section 2; a sharp Abelian result pertaining to the moment generating function and a refinement of a local central limit theorem in the context of triangular arrays with non standard moments are presented in Section 3. Section 4 provides a local Gibbs conditional principle under EDP, namely producing the approximation of the conditional density of X 1 conditionally on (S n 1 /n = a n ) for sequences a n which tend to infinity. The first approximation is local. This result is extended to typical paths under the conditional sampling scheme, which in turn provides the approximation in variation norm for the conditional distribution. The method used here follows closely the approach developed in [START_REF] Broniatowski | Long runs under a conditional limit distribution[END_REF]. Extensions to other conditioning events are discussed. The differences between the Gibbs principles in LDP and EDP are also mentioned. Similar results in the case when the conditioning event is (S n 1 /n ≥ a n ) are stated in Section 5, where both EDP and DLP are simultaneously considered. This section also introduces some proposal for a stochastic approximation of high level sets of real valued functions defined on R d .

Notation and hypotheses

The density p of X 1 is uniformly bounded and writes

p(x) = c exp -g(x) -q(x) x ∈ R + , (2.1) 
where c is some positive normalizing constant. Define h(x) := g ′ (x).

We assume that for some positive constant ϑ , for large x, it holds

sup |v-x|<ϑx |q(v)| ≤ 1 xh(x) . (2.2)
The function g is positive and satisfies

lim n→∞ g(x) x = ∞. (2.3) 
Not all positive g's satisfying (2.3) are adapted to our purpose. Regular functions g are defined through the function h as follows. We define firstly a subclass R 0 of the family of slowly varying function. A function l belongs to R 0 if it can be represented as

l(x) = exp x 1 ǫ(u) u du , x ≥ 1, (2.4) 
where ǫ(x) is twice differentiable and ǫ(x) → 0 as x → ∞. We follow the line developed in [START_REF] Juszczak | Local large deviation theorem for sums of i.i.d. random vectors when the Cramer condition holds in the whole space[END_REF] to describe the assumed regularity conditions of h.

The Class R β : x → h(x) belongs to R β , if, with β > 0 and x large enough, h(x) can be represented as

h(x) = x β l(x),
where l(x) ∈ R 0 and in (2.4) ǫ(x) satisfies lim sup

x→∞ x|ǫ ′ (x)| < ∞, lim sup x→∞ x 2 |ǫ ′′ (x)| < ∞. (2.5)
The Class R ∞ :

x → l(x) belongs to R 0 , if, in (2.4), l(x) → ∞ as x → ∞ and lim x→∞ xǫ ′ (x) ǫ(x) = 0, lim x→∞ x 2 ǫ ′′ (x) ǫ(x) = 0, (2.6) 
and, for some η ∈ (0, 1/4) lim inf

x→∞ x η ǫ(x) > 0. (2.7)
We say that h belongs to R ∞ if h is increasing and strictly monotone and its inverse function ψ defined through

ψ(u) := h ← (u) := inf {x : h(x) ≥ u} (2.8) belongs to R 0 . Denote R : = R β ∪R ∞ .
The class R covers a large collection of functions, although, R β and R ∞ are only subsets of the classes of Regularly varying and Rapidly varying functions, respectively.

Example 2.1. Weibull Density. Let p be a Weibull density with shape parameter k > 1 and scale parameter 1, namely

p(x) = kx k-1 exp(-x k ), x ≥ 0 = k exp -x k -(k -1) log x . Take g(x) = x k -(k -1) log x and q(x) = 0. Then it holds h(x) = kx k-1 - k -1 x = x k-1 k - k -1 x k . Set l(x) = k -(k -1)/x k , x ≥ 1, then (2.4) holds, namely, l(x) = exp x 1 ǫ(u) u du , x ≥ 1, with ǫ(x) = k(k -1) kx k -(k -1)
.

The function ǫ is twice differentiable and goes to 0 as x → ∞. Additionally, ǫ satisfies condition (2.5). Hence we have shown that h ∈ R k-1 .

Example 2.2. A rapidly varying density. Define p through p(x) = c exp(-e x-1 ), x ≥ 0.

Then g(x) = h(x) = e x and q(x) = 0 for all non negative x. We show that h ∈ R ∞ . It holds ψ(x) = log x + 1. Since h(x) is increasing and monotone, it remains to show that ψ(x) ∈ R 0 . When x ≥ 1, ψ(x) admits the representation of (2.4) with ǫ(x) = log x + 1. Also conditions (2.6) and (2.7) are satisfied. Thus h ∈ R ∞ .

Throughout the paper we use the following notation. When a r.v. X has density p we write p(X = x) instead of p(x). For example π a (X = x) is the density at point x for the variable X generated under π a , while p(X = x) states for X generated under p.

For all α (depending on n or not) P α designates the conditional distribution of the vector X 1 , .., X n given (S n 1 = nα) . This distribution is degenerate on R n ; however its margins are a.c. w.r.t. the Lebesgue measure on R. The function p α denotes the density of a margin.

An Abelian Theorem and an Edgeworth expansion

In this short section we mention two Theorems to be used in the derivation of our main result. They deserve interest by themselves; see [START_REF] Broniatowski | A conditional limit theorem for random walks under extreme deviation[END_REF] for their proof.

An Abelian type result

We inherit of the definition of the tilted density π a defined in Section 1, and of the corresponding definitions of the functions m, s 2 and µ 3 . Because of (2.1) and on the various conditions on g those functions are defined as t → ∞. The proof of Corollary 3.1 is postponed to the Appendix. Theorem 3.1. Let p(x) be defined as in (2.1) and h(x) ∈ R. Denote by

m(t) = d dt log φ(t), s 2 (t) = d dt m(t), µ 3 (t) = d 3 dt 3 log Φ(t), then with ψ defined as in (2.8) it holds as t → ∞ m(t) ∼ ψ(t), s 2 (t) ∼ ψ ′ (t), µ 3 (t) ∼ M 6 -3 2 ψ ′′ (t),
where M 6 is the sixth order moment of standard normal distribution.

Corollary 3.1. Let p(x) be defined as in (2.1) and h(x) ∈ R. Then it holds as t → ∞

µ 3 (t) s 3 (t) -→ 0. (3.1)
For clearness we write m and s 2 for m(t) and s 2 (t).

Example 3.1. The Weibull case: 1) , which tends to 0 for k > 2.

When g(x) = x k and k > 1 then m(t) ∼ Ct 1/(k-1) and s 2 (t) ∼ C ′ t (2-k)/(k-
Example 3.2. A rapidly varying density. Define p through p(x) = c exp(-e x-1 ), x ≥ 0.

Since ψ(x) = log x + 1 it follows that m(t) ∼ log t and s 2 (t) ∼ 1/t → 0.

Edgeworth expansion under extreme normalizing factors

With π an defined through

π an (x) = e tx p(x) φ(t) ,
and t determined by a n = m(t), define the normalized density of π an by πan (x) = sπ an (sx + a n ), and denote the n-convolution of πan (x) by πan n (x). Denote by ρ n the normalized density of n-convolution πan n (x),

ρ n (x) := √ nπ an n ( √ nx).
The following result extends the local Edgeworth expansion of the distribution of normalized sums of i.i.d. r.v's to the present context, where the summands are generated under the density πan . Therefore the setting is that of a triangular array of row wise independent summands; the fact that a n → ∞ makes the situation unusual. The proof of this result follows Feller's one (Chapiter 16, Theorem 2 [START_REF] Feller | An introduction to probability theory and its applications[END_REF]). With m(t) = a n and s 2 := s 2 (t), the following Edgeworth expansion holds.

Theorem 3.2. With the above notation, uniformly upon x it holds

ρ n (x) = φ(x) 1 + µ 3 6 √ ns 3 x 3 -3x + o 1 √ n . (3.2)
where φ(x) is standard normal density.

Gibbs' conditional principles under extreme events

We now explore Gibbs conditional principles under extreme events. For Y 1 , .., Y n a random vector generated according to the conditional distribution of the X i 's given (S n 1 = na n ) and with the density p an defined as its marginal density we first provide a density g an on R such that

p an (Y 1 ) = g an (Y 1 ) (1 + R n )
where R n is a function of the vector (Y 1 , .., Y n ) which goes to 0 as n tends to infinity. The above statement may also be written as

p an (y 1 ) = g an (y 1 ) 1 + o Pa n (1) (4.1)
where P an is the joint probability measure of the vector (Y 1 , .., Y n ) under the condition (S n 1 = na n ) ; note that we designate p an the marginal density of P an , which is well defined although P an is restricted on the plane y 1 + .. + y n = a n . This statement amounts to provide the approximation on typical realizations under the conditional sampling scheme. We will deduce from (4.1) that the L 1 distance between p an and g an goes to 0 as n tends to infinity. We first derive a local marginal Gibbs result, from which (4.1) is easily obtained. nψ ′ (t) = 0, (

A local result in R

which amounts to state a growth condition on the sequence a n . Define z 1 through

z 1 = na n -y 1 s √ n -1 . (4.4) 
Lemma 4.1. Assume that p(x) satisfies (2.1) and h(x) ∈ R. Let t be defined in (4.2).

Assume that a n → ∞ as n → ∞ and that (4.3) holds. Then

lim n→∞ z 1 = 0. Proof: When n → ∞, it holds z 1 ∼ m(t)/(s(t) √ n).
From Theorem 3.1, it holds m(t) ∼ ψ(t) and s(t) ∼ ψ ′ (t). Hence we have

z 1 ∼ ψ(t) nψ ′ (t) .
Hence 

z 2 1 ∼ ψ(t) 2 nψ ′ (t) = ψ(t) 2 √ nψ ′ (t) 1 √ n = o 1 √ n .
p an (y 1 ) = p(X 1 = y 1 |S n 1 = na n ) = g m (y 1 ) 1 + o(1) .
with g m (y 1 ) = π m (X 1 = y 1 ).

Proof: But for limit arguments which are specific to the extreme deviation context, the proof of this local result is classical; see the LDP case in [START_REF] Diaconis | Conditional Limit Theorems for Exponential Families and Finite Versions of de Finetti's Theorem[END_REF].

We make use of the following invariance property: For all y 1 and all α in the range of

X 1 p(X 1 = y 1 |S n 1 = na n ) = π α (X 1 = y 1 |S n 1 = na n )
where on the LHS, the r.v's X i 's are sampled i.i.d. under p and on the RHS, sampled i.i.d. under π α .

It thus holds

p(X 1 = y 1 |S n 1 = na n -y 1 ) = π m (X 1 = y 1 |S n 1 = na n ) = π m 1 (X 1 = y 1 ) π m 1 (S n 2 = na n -y 1 ) π m (S n 1 = na n ) = √ n √ n -1 π m 1 (X 1 = y 1 ) π n-1 ( m-y 1 s √ n-1 ) π n (0) = √ n √ n -1 π m 1 (X 1 = y 1 ) π n-1 (z 1 ) π n (0) ,
where π n-1 is the normalized density of S n 2 under i.i.d. sampling under π m ;correspondingly, π n is the normalized density of S n 1 under the same sampling. Note that a r.v. with density π m has expectation m = a n and variance s 2 .

Perform a third-order Edgeworth expansion of π n-1 (z 1 ), using Theorem 3.2. It follows

π n-1 (z 1 ) = φ(z 1 ) 1 + µ 3 6s 3 √ n -1 (z 3 1 -3z 1 ) + o 1 √ n ,
The approximation of π n (0) is obtained from (3.2) through

π(0) = φ(0) 1 + o 1 √ n . It follows that p(X 1 = y 1 |S n 1 = na n ) = √ n √ n -1 π m (X 1 = y i ) φ(z 1 ) φ(0) 1 + µ 3 6s 3 √ n -1 (z 3 1 -3z 1 ) + o 1 √ n = √ 2πn √ n -1 π m (X 1 = y 1 )φ(z 1 ) 1 + R n + o(1/ √ n) ,
where

R n = µ 3 6s 3 √ n -1 (z 3 1 -3z 1 ).
Under condition (4.3), using Lemma 4.1, it holds z 1 → 0 as a n → ∞, and under Corollary (3.1), µ 3 /s 3 → 0. This yields

R n = o 1/ √ n , which gives p(X 1 = y 1 |S n 1 = na n ) = √ 2πn √ n -1 π m (X 1 = y 1 )φ(z 1 ) 1 + o(1/ √ n) = √ n √ n -1 π m (X 1 = y 1 ) 1 -z 2 1 /2 + o(z 2 1 ) 1 + o(1/ √ n) ,
where we used a Taylor expansion in the second equality. Using once more Lemma 4.1, under conditions (4.3), we have as a n → ∞

z 2 1 = o(1/ √ n),
whence we get

p(X 1 = y 1 |S n 1 = na n ) = √ n √ n -1 π m (X 1 = y 1 ) 1 + o(1/ √ n) = 1 + o 1 √ n π m (X 1 = y 1 ),
which completes the proof.

Gibbs conditional principle in variation norm

Strengthening the local approximation

We now turn to a stronger approximation of p an . Consider Y 1 , .., Y n with distribution P an and Y 1 with density p an and the resulting random variable p an (Y 1 ) . We prove the following result This result is of greater relevance than the previous one. Indeed under P an the r.v. Y 1 may take large values as n tends to infinity. At the contrary the approximation of p an by g an on any y 1 in R + only provides some knowledge on p an on sets with smaller and smaller probability under p an as n increases . Also it will be proved that as a consequence of the above result, the L 1 norm between p an and g an goes to 0 as n → ∞, a result out of reach through the aforementioned result.

In order to adapt the proof of Theorem 4.1 to the present setting it is necessary to get some insight on the plausible values of Y 1 under P an . It holds Lemma 4.2. Under P an it holds

Y 1 = O Pa n (a n ) .
Proof: Without loss of generality we can assume Y 1 > 0. By Markov Inequality:

P ( Y 1 > u| S n 1 = na n ) ≤ E ( Y 1 | S n 1 = na n ) u =
a n u which goes to 0 for all u = u n such that lim n→∞ u n /a n = ∞.

We now turn back to the proof of Theorem 4.2. Define

Z 1 := na n -Y 1 s √ n -1 (4.5)
the natural counterpart of z 1 as defined in (4.4). It holds

Z 1 = O pa n 1/ √ n . P ( X 1 = Y 1 | S n 1 = na n ) = P (X 1 = Y 1 ) P (S n 2 = na n -Y 1 ) P (S n 1 = na n ) in
which the tilting substitution of measures is performed, with tilting density π an , followed by normalization. Now following verbatim the proof of Theorem 4.1 if the growth condition (4.3) holds, it follows that

P ( X 1 = Y 1 | S n 1 = na n ) = π an (Y 1 ) (1 + R n )
as claimed where the order of magnitude of R n is o Pa n (1/ √ n). We have proved Theorem 4.2.

Denote the conditional probabilities by P an and G an on R n , which correspond to the marginal density functions p an and g an on R, respectively.

From approximation in probability to approximation in variation norm

We now consider the approximation of the margin of P an by G an in variation norm.

The main ingredient is the fact that in the present setting approximation of p an by g an in probability plus some rate implies approximation of the corresponding measures in variation norm. This approach has been developed in [START_REF] Broniatowski | Long runs under a conditional limit distribution[END_REF]; we state a first lemma which states that whether two densities are equivalent in probability with small relative error when measured according to the first one, then the same holds under the sampling of the second.

Let R n and S n denote two p.m's on R n with respective densities r n and s n .

Lemma 4.3. Suppose that for some sequence ε n which tends to 0 as n tends to infinity

r n (Y n 1 ) = s n (Y n 1 ) (1 + o Rn (ε n )) (4.6)
as n tends to ∞. Then

s n (Y n 1 ) = r n (Y n 1 ) (1 + o Sn (ε n )) . (4.7) Proof. Denote A n,εn := {y n 1 : (1 -ε n )s n (y n 1 ) ≤ r n (y n 1 ) ≤ s n (y n 1 ) (1 + ε n )} . It holds for all positive δ lim n→∞ R n (A n,δεn ) = 1. Write R n (A n,δεn ) = 1 A n,δεn (y n 1 )
r n (y n 1 ) s n (y n 1 )

s n (y n 1 )dy n 1 . Since R n (A n,δεn ) ≤ (1 + δε n )S n (A n,δεn ) it follows that lim n→∞ S n (A n,δεn ) = 1,
which proves the claim.

Applying this Lemma to the present setting yields

g an (Y 1 ) = p an (Y 1 ) 1 + o Ga n 1/ √ n as n → ∞.
This fact entails, as in [START_REF] Broniatowski | Long runs under a conditional limit distribution[END_REF] Theorem 4.3. Under all the notation and hypotheses above the total variation norm between the marginal distribution of P an and G an goes to 0 as n → ∞.

The proof goes as follows For all δ > 0, let

E δ := y ∈ R : p an (y) -g an (y) g an (y) < δ
which, turning to the marginal distribution of P an writes

lim n→∞ P an (E δ ) = lim n→∞ G an (E δ ) = 1. (4.8) It holds sup C∈B(R) |P an (C ∩ E δ ) -G an (C ∩ E δ )| ≤ δ sup C∈B(R) C∩E δ g an (y) dy ≤ δ.
By the above result (4. Remark 4.1. This result is to be paralleled with Theorem 1.6 in Diaconis and Freedman [START_REF] Diaconis | Conditional Limit Theorems for Exponential Families and Finite Versions of de Finetti's Theorem[END_REF] and Theorem 2.15 in Dembo and Zeitouni [START_REF] Dembo | Refinements of the Gibbs conditioning principle[END_REF] which provide a rate for this convergence in the LDP range.

The asymptotic location of X under the conditioned distribution

This section intends to provide some insight on the behaviour of X 1 under the condition (S n 1 = na n ) . It will be seen that conditionally on (S n 1 = na n ) the marginal distribution of the sample concentrates around a n . Let X t be a r.v. with density π an where m(t) = a n and a n satisfies (4.3). Recall that EX t = a n and V arX t = s 2 . We evaluate the moment generating function of the normalized variable

(X t -a n ) /s. It holds log E exp λ (X t -a n ) /s = -λa n /s + log φ t + λ s -log φ (t) .
A second order Taylor expansion in the above display yields

log E exp λ (X t -a n ) /s = λ 2 2 
s 2 t + θλ s s 2
where θ = θ(t, λ) ∈ (0, 1) . The following Lemma, which is proved in the Appendix, states that the function t → s(t) is self neglecting. Namely Applying the above Lemma it follows that the normalized r.v's (X ta n ) /s converge to a standard normal variable N(0, 1) in distribution, as n → ∞. This amount to say that

X t = a n + sN(0, 1) + o Π an (1). (4.9) 
In the above formula (4.9) the remainder term o Π an (1) is of smaller order than sN(0, 1) since the variance of a r.v. with distribution Π an is s 2 . When lim t→∞ s(t) = 0 then X t concentrates around a n with rate s(t). Due to Theorem 4.3 the same holds for X 1 under (S n 1 = na n ) .This is indeed the case when g is a regularly varying function with index γ larger than 2, plus some extra regularity conditions captured in the fact that h belongs to R γ-1 . The gausssian tail corresponds to γ = 2 and the variance of the tilted distribution Π an has a non degenerate variance for all a n (in the standard gaussian case, Π an = N (a n , 1)), as does the conditional distribution of X 1 given (S n 1 = na n ) .

Extension to other conditioning events

Let X 1 , .., X n be n i.i.d. r.v's with common density p defined on R d and let f denote a measurable function from R d onto R such that f (X 1 ) has a density p f .We assume that p f enjoys all properties stated in Section 2 , i.e. p f (x) = exp -(g(x)q(x)) and we denote accordingly φ f (t) its moment generating function, and m f (t) and s 2 f (t) the corresponding first and second derivatives of log φ f (t). The following extension of Theorem 4.2 holds. Denote Σ n

1 := f (X 1 ) + .. + f (X n ). Denote for all a in the range of f π a f (x) := exp tf (x) φ f (t) p(x) (4. 10 
)
where t is the unique solution of m(t) := (d/dt) log φ f (t) = a and Π a f the corresponding probability measure. Denote P f,an the conditional distribution of (X 1 , .., X n ) given (Σ n 1 = na n ) . The sequence a n is assume to satisfy (4.3) where ψ is defined with respect to p f . Theorem 4.4. Under the current hypotheses of this section the variation distance between the margin of P f,an and Π an f goes to 0 as n tends to infinity.

Proof: It holds , for Y 1 a r.v. with density p,

p (X 1 = Y 1 | Σ n 1 = na n ) = p (X 1 = Y 1 ) p (Σ n 2 = na n -f (Y 1 )) p (Σ n 1 = na n ) = p (X 1 = Y 1 ) p (f (X 1 ) = f (Y 1 )) p (f (X 1 ) = f (Y 1 )) p (Σ n 2 = na n -f (Y 1 )) p (Σ n 1 = na n ) = p (X 1 = Y 1 ) p (f (X 1 ) = f (Y 1 )) π m f (f (X 1 ) = f (Y 1 )) π m f (Σ n 2 = na n -f (Y 1 )) π m f (Σ n 1 = na n ) = p (X 1 = Y 1 ) e tf (Y 1 ) φ f (t) π m f (Σ n 2 = na n -f (Y 1 )) π m f (Σ n 1 = na n )
where m := (d/dt) log φ f (t) = a n .The proof then follows verbatim that of Theorem 4.2 with X i substituted by f (X i ).

Differences between Gibbs principle under LDP and under extreme deviation

It is of interest to confront the present results with the general form of the Gibbs principle under linear constraints in the LDP range.

Consider the application of the above result to r.v's Y 1 , .., Y n with Y i := (X i ) 2 where the X i 's are i.i.d. and are such that the density of the i.i.d. r.v's Y i 's satisfy (2.1) with all the hypotheses stated in this paper, assuming that Y has a Weibull distribution with parameter larger than 2 . By the Gibbs conditional principle under a point conditioning (see e.g. [START_REF] Diaconis | Conditional Limit Theorems for Exponential Families and Finite Versions of de Finetti's Theorem[END_REF]), for fixed a, conditionally on ( n i=1 Y i = na) the generic r.v. Y 1 has a non degenerate limit distribution

p * Y (y) := exp ty E exp tY 1 p Y (y)
and the limit density of

X 1 under ( n i=1 X 2 i = na) is p * X (x) := exp tx 2 E exp tX 2 1 p X (x)
a non degenerate distribution, with m Y (t) = a . As a consequence of the above result, when a n → ∞ the distribution of X 1 under the condition ( n i=1 X 2 i = na n ) concentrates sharply at -√ a n and + √ a n .

EDP under exceedances 5.1 DLP and EDP

This section extends the previous Theorem 4.2 when the conditioning event has non null measure and writes A n = (S n 1 ≥ na n ) . It also provides a bridge between the "democratic localization principle (DLP)" (1.1) and the conditional Gibbs principle. We denote the density of X 1 given A n by p An to differentiate it from p an .

In the LDP case, when a n = a > EX 1 then the distribution of X 1 given (S n 1 ≥ na) or given (S n 1 = na) coincide asymptotically, both converging to the tilted distribution at point a, the dominating point of [a, ∞) . This result follows from the local approach derived in [START_REF] Diaconis | Conditional Limit Theorems for Exponential Families and Finite Versions of de Finetti's Theorem[END_REF], which uses limit results for sums of i.i.d. r.v's, and from Sanov Theorem which amounts to identify the Kullback-Leibler projection of the p.m. P on the set of all p.m's with expectation larger or equal a. When a is allowed to tend to infinity with n no Sanov-type result is available presently, and the first approach, although cumbersome, has to be used. The "dominating point property" still holds.

Most applications of extreme deviation principles deal with phenomenons driven by multiplicative cascade processes with power laws; see e.g. [START_REF] Sornette | Critical phenomena in natural sciences[END_REF] for fragmentation models and turbulence. For sake of simplicity we restrict to this case, assuming therefore that h belongs to R k-1 for some k > 1. All conditions and notation of Section 2 are assumed to hold. Furthermore, since we consider the asymptotics of the marginal distribution of the sample under A n , it is natural to assume that a n is such that the democratic localization principle holds together with the local Gibbs conditional principle.

Specialized to the present setting it holds (see Theorem 6 in [START_REF] Broniatowski | Light tails: All summands are large when the empirical mean is large[END_REF])

as n → ∞. In the present case when h belongs to R k-1 , making use of Theorem ;this proves that (5.3) might be improved. However the qualitative bound k = 2 appears both in the DLP and in the EDP.

High level sets of functions

We explore the consequences of Theorem 5.2 in connection with (1.1) in the context when the conditioning event writes

A n := 1 n n i=1 f (X i ) ≥ a n
where the i.i.d. r.v's X 1 , .., X n belong to R d , and f is a real valued function such that the density p f of f (X 1 ) satisfies all the hypotheses of Section 2. We denote P An the distribution of (X 1 , .., X n ) given A n . We assume that p f satisfies (2.1) with h in R k-1 , k > 1.

Using the DLP stated in Section 5.1 it holds

P An n i=1 (f (X i ) ∈ (a n -ǫ n , a n + ǫ n )) → 1 which implies that P An (f (X 1 ) ∈ (a n -ǫ n , a n + ǫ n )) → 1.
In turn, using Theorem 5.2

G an (f (X 1 ) ∈ (a n -ǫ n , a n + ǫ n )) → 1
where G an has density g an defined through g an (y) := e ty φ f (t) p f (y) with φ f (t) := Ee tf (X) and m f (t) = a n . Note that following (4.9), G an is nearly gaussian with expectation a n and standard deviation s f (t) := (d/dt) m f (t). Turning back to Theorem 4.4 it then holds where we used a Taylor expansion in the second line. This completes the proof.

Proof of Lemma 5.1

For the density p defined in (2.1), we show that g is convex when x is large. If h ∈ R β , it holds for x large g ′′ (x) = h ′ (x) = h(x) x β + ǫ(x) > 0.

If h ∈ R ∞ , its reciprocal function ψ(x) belongs to R 0 . Set x := ψ(u); for x large

g ′′ (x) = h ′ (x) = 1 ψ ′ (u) = u ψ(u)ǫ(u) > 0,
where the inequality holds since ǫ(u) > 0 under condition (2.7), for large u. Therefore g is convex for large x . Therefore, the density p with h ∈ R satisfies the conditions of Jensen's Theorem 6.2.1 ( [START_REF] Jensen | Saddlepoint approximations[END_REF]). A third order Edgeworth expansion in formula (2.2.6) of ( [START_REF] Jensen | Saddlepoint approximations[END_REF]) yields

P (S n 1 ≥ na n ) = Φ(t n ) n exp(-nt n a n ) √ nt n s(t n ) B 0 (λ n ) + O µ 3 (t n ) 6 √ ns 3 (t n ) B 3 (λ n ) , (6.1) 
where λ n = √ nt n s(t n ), and B 0 (λ n ) and B 3 (λ n ) are defined by

B 0 (λ n ) = 1 √ 2π 1 - 1 λ 2 n + o( 1 λ 2 n ) , B 3 (λ n ) ∼ - 3 √ 2πλ n .

Fix y 1

 1 in R and define t through m(t) := a n . (4.2) Define s 2 := s 2 (t). Consider the following condition lim t→∞ ψ(t) 2

Theorem 4 . 1 .

 41 With the above notation and hypotheses denoting m := m(t), assuming (4.3), it holds

Theorem 4 . 2 .

 42 With all the above notation and hypotheses it holdsp an (Y 1 ) = g an (Y 1 ) (1 + R n )where g an = π an the tilted density at point a n , and where R n is a function of Y 1 , .., Y n such that P an (|R n | > δ √ n) → 0 as n → ∞ for any positive δ.

  |P an (C ∩ E δ ) -P an (C)| < η n and sup C∈B(R) |G an (C ∩ E δ ) -G an (C)| < η n for some sequence η n → 0 ; hence sup C∈B(R) |P an (C) -G an (C)| < δ + 2η n for all positive δ, which proves the claim. As a consequence, applying Scheffé's Lemma we have proved |p ang an | dx → 0 as n → ∞ as sought.

Lemma 4 . 4 .

 44 Under the above hypotheses and notation, for any compact set K

  Theorem 5.1. When the above hypotheses hold let a n satisfies where m f (t) = a n . Then there exists a sequence ǫ n satisfying lim n→∞ ǫ n /n = 0 such that a r.v. X in R d with density g an is a solution of the inequationa nǫ n < f (x) < a n + ǫ n with probability 1 as n → ∞. The sequence ǫ n satisfies + u/s) β-1 ∼ t 1-1/β l 1 (t) β-1 (t + u/s) 1-1/β l 1 (t + u/s) β-1 -→ 1.Case 2: if h ∈ R ∞ . Then we have ψ(t) ∈ R 0 ; hence it holds

	lim inf n→∞ g an (x) := log g(a n ) log n e tf (x) φ f (t) p(x) > δ lim n→∞ n log a n a k-2 n ǫ 2 n = 0. 6.1 Proof of Lemma 4.4 with h in R k-1 , k > 1 and 6 Appendix It follows that s 2 (t + u/s) s 2 ∼ ψ ′ (t + u/s) ψ ′ (t) = ψ(t) β-1 l 0 ψ(t) β + ǫ ψ(t) ψ(t + u/s) β-1 l 0 ψ(t + u/s) β + ǫ ψ(t + u/s) ∼ ψ(t) β-1 st ∼ 1 t ψ ′ (t) = 1 tψ(t)ǫ(t) -→ 0. Hence for any u ∈ K, we get as n → ∞ u s = o(t), thus using the slowly varying propriety of ψ(t) we have s 2 (t + u/s) s 2 ∼ ψ ′ (t + u/s) ψ ′ (t) = ψ(t + u/s)ǫ(t + u/s) t + u/s t ψ(t)ǫ(t) ψ(t 1 ∼ ǫ(t + u/s) ǫ(t) = ǫ(t) + O ǫ ′ (t)u/s ǫ(t) -→ 1,

Case 1: if h ∈ R β . By Theorem 3.1, it holds s 2 ∼ ψ ′ (t) with ψ(t) ∼ t 1/β l 1 (t), where l 1 is some slowly varying function. It also holds ψ

′ (t) = 1/h ′ ψ(t) ; therefore 1 s 2 ∼ h ′ ψ(t) = ψ(t) β-1 l 0 ψ(t) β + ǫ ψ(t) ∼ βt 1-1/β l 1 (t) β-1 l 0 ψ(t) = o(t),

which implies that for any u ∈ K u s = o(t).

(a nǫ n < X i < a n + ǫ n ) S n 1 /n ≥ a n = 1.

(5.3) Furthermore, when 1 < k ≤ 2 then ǫ n can be chosen to satisfy ǫ n /a n → 0, and when k > 2, ǫ n can be chosen to satisfy ǫ n → 0.

We assume that both conditions (5.1) and (4.3) hold. Therefore we assume that the range of a n makes both the DLP and EDP hold. This is the case for example when

We state the following extension of Theorems 5.1 and 4.3.

Theorem 5.2. Assume (5.1) and (5.2). Then for any family of Borel sets B n such that

as n → ∞.

Remark 5.1. This Theorem is of the same kind as those related to conditioning on thin sets, in the range of the LDP; see [START_REF] Cattiaux | Deviations bounds and conditional principles for thin sets[END_REF].

Proof of Theorem 5.2: For the purpose of the proof, we need the following lemma, based on Theorem 6.2.1 of Jensen [START_REF] Jensen | Saddlepoint approximations[END_REF], in order to provide the asymptotic estimation of the tail probability P (S n 1 ≥ na n ). Its proof is differed to the Appendix. Define

(5.4) and let t n be defined through m(t n ) = a n .

Lemma 5.1. Let X 1 , ..., X n be i.i.d. random variables with density p defined in (2.1) and h ∈ R. Suppose that when n → ∞, it holds

Then it holds

hence by Theorem 5.1

.

Using Lemma 5.1 both in the numerator and the denominator, with some control using (5.1) and (5.2) proving that (5.5) holds with a n substituted by a n + ǫ n , we get C n → 0.

By Theorem 5.1, with

1 /n ≥ a n concentrates on ∆ n , as does its distribution given S n 1 /n ∈ ∆ + n . Furthermore both distributions are asymptotically equivalent in the sense that

for all sequence of Borel sets B n such that lim inf

We now prove Theorem 5.2. For a Borel set B = B n it holds

)

for some θ n in (0, 1) . The term C n is less than P (S n 1 /n > a n + ǫ n )/P (S n 1 /n > a n ) which tends to 0 as n tends to infinity, under (5.1) and (5.2), using Lemma 5.1.

Hence when B n is such that lim inf n→∞ P an+θnǫn (B n ) > 0 using Theorem 4.3 it holds, since a ′ n := a n + θ n ǫ n satisfies (4.3)

It remains to prove that

(5.7) Make use of (4.9) to prove the claim. Define t through m(t) = a n and t ′ through

We show that, as a n → ∞,

Since n/λ 2 n = 1/(t 2 n s 2 (t n )), (6.2) is equivalent to show that

.

holds. Hence we have

where the last step holds from condition (2.7). We have shown (6.2). Therefore

By (6.3), λ n goes to ∞ as a n → ∞, which implies further that B 3 (λ n ) → 0. On the other hand, by Theorem 3.1 , µ 3 /s 3 → 0. Hence we obtain from (6.1)

which together with (5.4) proves the claim.