
HAL Id: hal-00822388
https://hal.science/hal-00822388

Submitted on 15 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

About an inverse problem for a free boundary
compressible problem in hydrodynamic lubrication

K. Ait Hadi, Guy Bayada, M. El Alaoui Talibi

To cite this version:
K. Ait Hadi, Guy Bayada, M. El Alaoui Talibi. About an inverse problem for a free boundary
compressible problem in hydrodynamic lubrication. Journal of Inverse and Ill-posed Problems, 2015.
�hal-00822388�

https://hal.science/hal-00822388
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

About an inverse problem for a free boundary
compressible problem in hydrodynamic lubrication

K. Ait Hadi · G. Bayada ·
M. El Alaoui Talibi

Received: date / Accepted: date

Abstract In this paper an inverse problem is considered for a non coercive
partial differential equation, issued from a mass conservation cavitation model
for a slightly compressible fluid. The cavitation phenomenon and compress-
ibility take place and are described by the Elrod model. The existence of an
optimal solution is proven. Optimality conditions are derived and some nu-
merical results are given.
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1 Introduction

The present work comes within the scope of inverse problems in hydrodynamic
lubrication. Numerous works are based upon the computation of the solution
of various forms of the Reynolds partial differential equation established in
1886. This equation enables one to compute the hydrodynamic pressure (P )
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in a lubricated device, from data like the velocities distribution on the surfaces
surrounding the thin film flow, the gap between these surfaces(or equivalently
the shape of one of these surfaces) and the rheological characteristics of the
fluids. However, due to severe operational conditions(the gap between the sur-
faces can be of some micrometers only and the relative velocity of the surfaces
some meters/second), some of these data are not really well known.
This is the case for example of the surfaces which are deformed from an initial
known shape by the hydrodynamic pressure inside the fluid. Experimentally,
the knowledge of this pressure (P ) can now be obtained with a good precision.
It becomes then possible to find the real shape (h) of the surfaces by solving an
inverse problem with Reynolds equation as state equation. Such information
is important as if the related gap is too small, it means that some contact is
possible between the two surfaces thus inducing wear and possible failure of
the device.
Two other very similar problems in the lubrication field can be mentioned.
The first one is to find the gap (h) such that the pressure (P ) is the greatest
possible. In some specific situation the solution is the Rayleigh-step bearing
[31] in which the optimum gap h is a discontinuous function. More recently,
generalized Reynolds equation for heterogeneous slip/no slip engineered sur-
faces have been proposed [9]. As a consequence, a no-slip condition for the
velocity is valid on some part of the fluid boundary and slip occurs on the
other part. Due to this non homogeneity, the resulting Reynolds equation con-
tains discontinuous coefficients. Finding the best location of the slip/no-slip
regions is mathematically close to the previous optimization problem.
Another difficulty must be considered in these aforementioned identification-
optimization problems. It is due to cavitation, the well-known phenomenon in
fluid mechanics when fluid is no longer homogeneous and takes some diphasic
aspect with the appearance of air bubbles. This phenomenon occurs very often
in lubrication and cannot be ignored, especially as the gap (h) is not constant.
Taking cavitation into account implies considering a new non linear operator
as state equation instead of the classical Reynolds equation. Various models
exist in the mechanical literature. The most common one is based upon a vari-
ational inequality for the pressure [27]. However, as it is not a mass preserving
model, it is often replaced by the Jacobsson Floberg Olssen (JFO) model, in
which a new variable θ is introduced. This variable describes the local pro-
portion of fluid (or saturation) considering the presence of air bubbles in the
flow [25]. In a widely referenced paper [20] , it has been pointed out that the
(JFO) model is equivalent to a free boundary complementary problem with
two unknowns, pressure P and saturation θ with

P ≥ 0, 0 ≤ θ ≤ 1, P (1− θ) = 0

Existence and uniqueness aspects of such models have been mathematically
studied in a lot of papers [2] . However another aspect of the Elrod-Adams pa-
per has been less studied in the mathematical literature: authors try to recover
the somewhat heuristic JFO model by introducing a small compressibility in
the classical (non cavitated) Reynolds equation. They show that the JFO
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model can be obtained as the limit of this compressible model and propose
some numerical procedures to solve it. Although being somewhat heuristic,
this result has been supported by recent rigorous mathematic results [14] for
the asymptotic thin film compressible Navier Stokes system. The interest of
the more physical compressible Elrod-Adams model is that there is only one
unknown (the density of lubricant) instead of two (P and θ) in the JFO model.
The price to pay is that the state equation is a non linear degenerate partial
differential equation. The importance of the choice of a model of cavitation in
the simulation of lubrication devices has often been mentioned [9, 4].
Although these inverse-optimization problems are of permanent interest in the
mechanical literature [3, 12, 15, 17, 19, 21, 29], few mathematical works ex-
ist. One of the first attempts [29] is devoted to the optimum Rayleight step
bearing. In [30] the identification procedure for a gap with known pressure
is studied. However, in these works cavitation is not considered. In [8], varia-
tional inequality is chosen to model the cavitation and optimality problems are
studied by way of penalization. The Elrod-Adams model is considered in [19]
using some regularizations which enables one to gain optimality conditions.
The present study addresses the identification process of the gap for a given
pressure and takes the cavitation into account by way of the slightly compress-
ible model proposed by Elrod-Adams. This model has also the advantage of
preserving the mass flow.
This problem presents many mathematical difficulties essentially bound to the
complexity of the criterion considered as a function of the thickness. It is not
even a locally Lipschitz function. We are lead to consider a more general func-
tional framework which is the space of the functions of bounded variation. To
deal with these difficulties a double regularization is introduced by approach-
ing the degenerate part of the state equation with a particular sequence of
monotonous and continuously differentiable functions. Thus a sequence of reg-
ularized control problems can be obtained.

The paper is organized as follows. Section 2 is devoted to the physical
background, the statement of the problem and the proof of the existence of a
control. In section 3, we formulate the regularized control problem for which
an existence result is proved. Optimality conditions are given in section 4,
and some a priori estimates are obtained, so allowing us to pass to the limit.
The optimality system for the initial problem is derived in the one-dimensional
case. In the last section some numerical results show that the optimality system
associated to an inverse algorithm is efficient.

Finally let us mention that from a mathematical aspect, the problem here
studied is very close to the one of the ”dam problem” [13] with unsaturated
porous media or multiple fluid saturated porous media. In this case, the un-
knowns to be determined are the value of the porosity parameters of the soil
[18] and the measured data is the hydraulic pressure.
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2 Formulation of the problem and existence of control

2.1 Description of the physical problem (Elrod-Adams model)

Let Ω the square ]0, 1[×]0, 1[ of the (x, y) plane, Γ0 = {(x, y) ∈ ∂Ω, x = 0},
and Γ = ∂Ω\Γ0. The lubricant is assumed to be contained in a three dimen-

sional volume between the lower flat surface Ω with horizontal velocity
−→
U and

an upper one describe by z = h(x, y) at rest. If h is small, the pressure is
known to be independent from z and to obey the following Reynolds equation
defined on Ω [23].

div

(
ρ

12η
h3∇P

)
= div

(
h
−→
U ρ

2

)
on Ω, (1)

where P (x, y) is the pressure of the lubricant, h(x, y) is the film thickness, ρ

is the density of lubricant, η is the viscosity,
−→
U is the relative velocity of the

surfaces of the mechanism in which lubricant takes place.
For a slightly compressible fluid like water or oil, the law linking P and ρ is
usually described by introducing the bulk number β with: see [25]

P = β log(ρ), ρ > 1, P > 0, (2)

Taking into account the possible existence of a cavitation area where P is zero
and ρ ≤ 1 lead to generalize (2) in

P = β log((ρ− 1)+ + 1), ρ ≥ 0, β > 0.

in which f+ = sup(f, 0). Rewriting (1) in term of ρ, we gain by differentiating
in the distributional sense

div

(
β
h3

12η
∇(ρ− 1)+ − ρh

−→
U

2

)
= 0. (3)

Introducing u = β(ρ− 1) as the primary unknown, equation (3) becomes

div

(
h3

12η
∇u+ −

(
1 +

1

β
u

)
h
−→
U

2

)
= 0.

In the sequel, we will consider more precisely the case of a journal bear-
ing (see Figure 1) with a supply line located at x = 0. It is a usual lu-
brication device in which a known quantity of fluid Θ0 is supplied through
Γ0 = {(x, y) ∈ ∂Ω, x = 0, 0 < y < 1} while the pressure is assumed to be
known on Γ = ∂Ω\Γ0 and equal to zero (the atmospheric pressure).

For simplicity sake we assume η = 1
6 ,
−→
U ==

(
1
0

)
so that the weak formula-

tion of the state problem reads :

(Ph)


Find u ∈ L2(Ω) verifying u+ ∈ V,

(
1 + 1

βu
)
≥ 0∫

Ω
h3∇u+ · ∇φ dxdy −

∫
Ω
h
(

1 + 1
βu
)
∂φ
∂x dxdy =

∫
Γ0
Θ0φ dy ∀φ ∈ V

Θ0 ∈ L∞(Γ0), Θ0 ≥ 0
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with V :=
{
ϕ ∈ H1(Ω), ϕ/Γ = 0

}
.

Figure 1: Geometry of a cylindrical journal bearing.

For a given pressure Pd in L2(Ω), we define the following optimal control
problem that will be studied in the sequel

(M)

Min J(h) = 1
2 ‖P (h)− Pd‖2L2(Ω) = 1

2

∥∥∥β log
(

1 + 1
βu

+(h)
)
− Pd

∥∥∥2
L2(Ω)

h ∈ Uad

in which u(h) denotes the solution of (Ph) for a given h. Uad wil be defined
later.

2.2 About the state equation

Problem (Ph) has been studied in [1] and existence and uniqueness have been
obtained for h = h(x) lipschitz continuous function satisfying the condition

min
{x∈[0,1]}

(h3(x))− 1

β
Cp ‖h‖L∞(Ω) > 0, (4)

with Cp the constant imbedding of H1
0 (Ω) into L2(Ω).

However, as it was detailed in the introduction, discontinuous function h(x, y)
could be solutions of some optimization-identification process. The set Uad in
(M) is then defined in a more general way by:

Uad = {h ∈ BV (Ω) ∩ L∞(Ω) / 0 < a ≤ h ≤ b a.e in Ω and ‖Dh‖ (Ω) ≤ C∗}

where C∗ is a given constant and in which BV (Ω) denotes the space of func-
tions of bounded variations in Ω:

BV (Ω) =
{
f ∈ L1(Ω), ‖Df‖ (Ω) < +∞

}
,
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with

‖Df‖ (Ω) := sup

{∫
Ω

f divϕ dxdy / ϕ ∈ C1
c

(
Ω,R2

)
; |ϕ| ≤ 1

}
.

It is known that BV (Ω) is a Banach space for the following norm

‖f‖BV (Ω) := ‖f‖L1(Ω) + ‖Df‖ (Ω).

Some properties of BV spaces are given in Appendix A [Lemma A3-A4].
A close examination of the proof of existence of the solution of (Ph) shows that
it is valid without any change for h(x, y) in Uad and not only for h(x) lipschitz
continuous so that theorems Th. 2.14 and Th.3.4 in [1] can be generalized as:

Theorem 1 With the assumption

a3 >
1

β
Cpb. (5)

For any h ∈ Uad and any Θ0, Θ0 ∈ L∞(Γ0), Θ0 ≥ 0, there exists at least a
solution u of (Ph) such that

‖u‖L2(Ω) ≤ C1,

‖∇u+‖(L2(Ω))2 ≤ C2,

where C1 and C2 are two positives constants which don’t depend on β.

Regarding the uniqueness of the solution of the state problem, the lack of
regularity of the coefficients cannot be easily overcome and we cannot gain
this property.
So, the optimal control problem is slightly modified and defined as a two
unknowns problem in which the state equation is considered as a constraint:

(M̃)



Min J̃(h, u) = 1
2 ‖P − Pd‖

2
L2(Ω) = 1

2

∥∥∥β log
(

1 + 1
βu

+
)
− Pd

∥∥∥2
L2(Ω)

subject to
h ∈ Uad = {h ∈ BV (Ω) ∩ L∞(Ω) / 0 < a ≤ h ≤ b a.e in Ω and ‖Dh‖ (Ω) ≤ C∗}

andu ∈ L2(Ω) verifying u+ ∈ V,
(

1 + 1
βu
)
≥ 0∫

Ω
h3∇u+ · ∇φ dxdy −

∫
Ω
h
(

1 + 1
βu
)
∂φ
∂x dxdy =

∫
Γ0
Θ0φ dy ∀φ ∈ V

Theorem 2 There exists at least one solution (h∗, u∗) for the problem (M̃).

Proof Let (hn, un)n∈N ⊂ Uad×L2(Ω) be a minimizing sequence for the problem
(M̃). According to the Proposition 7, there exists h∗ ∈ Uad and a subsequence
hnk such that hnk tends to h∗ in Lλ(Ω) for any λ ∈ [1,+∞[ .
By Theorem 1,

∥∥∇u+nk∥∥ ≤ C1 and ‖unk‖ ≤ C2, so that unk converges weakly
(for a subsequence) to u∗ in L2(Ω), u+nk tends to ũ in H1(Ω) weakly and
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strongly in L2(Ω) strongly, with ũ ≥ 0. Let us define u−nk = u+nk − unk , we
immediatly get the weak convergence in L2(Ω) of u−nk towards w = ũ − u∗.
Let χ be the characteristic function of {(x, y) ∈ Ω,w(x, y) < 0}, we have

0 ≤ lim

∫
Ω

χu−nkdxdy =

∫
Ω

χwdxdy ≤ 0

So that w ≥ 0 a.e.
As

lim

∫
Ω

u+nku
−
nk
dxdy =

∫
Ω

ũwdxdy = 0, w ≥ 0, ũ ≥ 0

We gain w = u∗
−

and ũ = u∗
+

.
Let us now prove that u∗ is a solution of the problem (Ph∗).
By substracting the right hand side of (Phnk ) and

∫
Ω

(h∗)3∇u+∗ ∇φ−
∫
Ω
h∗
(

1 + 1
βu∗

)
∂φ
∂x

for some φ ∈ V , we obtain∣∣∣∫Ω h3nk∇u+nk .∇φ− ∫Ω hnk (1 + 1
βunk

)
∂φ
∂x −

∫
Ω

(h∗)3∇u+∗ .∇φ+
∫
Ω
h∗
(

1 + 1
βu∗

)
∂φ
∂x

∣∣∣
≤
∣∣∫
Ω
h3nk

(
∇u+nk −∇u

+
∗
)
.∇φ

∣∣+
∣∣∫
Ω
∇u+∗

(
h3nk − (h∗)3

)
.∇φ

∣∣
+
∣∣∣∫Ω 1

βhnk (unk − u∗)
∂φ
∂x

∣∣∣+ ∣∣∣∫Ω (1 + 1
βu∗

)
(hnk − h∗)

∂φ
∂x

∣∣∣− ∫Ω (hnk − h∗)
∂φ
∂x

As hnk ∈ Uad, using (7) and the weak convergence of ∇u+nk , each term of the
right hand side of the above inequality tends to zero, so we have :∫
Ω

h3nk∇u
+
nk
.∇φ−

∫
Ω

hnk

(
1 +

1

β
unk

)
∂φ

∂x
→
∫
Ω

(h∗)3∇u+∗ .∇φ−
∫
Ω

h∗
(

1 +
1

β
u∗

)
∂φ

∂x

From the definition of the state equation (Ph), we immediately get that u∗

is a solution associated with the gap h∗. The next thing to prove is that

lim J(hnk , unk) = J(h∗, u∗)

As, u+(hnk) → u+∗ in L2(Ω), an application of the Lebesgue’s dominated
convergence theorem implies:

β log

(
1 +

1

β
u+nk)

)
→ β log

(
1 +

1

β
u+∗

)
in L2(Ω).

So that (h∗, u∗) is a solution of the problem (M̃).

3 Approached state equation

It has been proved in [1] that a convenient way to obtain an existence theorem
for (Ph) is to consider an approached problem (Ph)ηε depending on two small
parameters ε > 0, η > 0 so that the solution of (Ph)ηε tends to the one of (Ph)
as ε and η tend to zero. More precisely, ε and η are related to two continuous
approximations of the Heaviside graph namely gε(u) and Hη(u) such that:

gε(u) =

1 if u > 0,
−
(
1− 1

ε

)
u+ 1 if −ε ≤ u ≤ 0,

ε if u < −ε.
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Hη(u) =


0 if u < 0,
u
η if 0 ≤ u ≤ η,
1 if u > η.

and the following approached problem is defined by:

(Ph)ηε


Let θ0 ∈ L∞(Γ0), 0 ≤ θ0 ≤ 1, find uηε ∈ V such that∫
Ω
h3gε(uηε)∇uηε∇φ dxdy −

∫
Ω
hHη

(
1 + 1

βuηε

)(
1 + 1

βuηε

)
∂φ
∂x dxdy

=
∫
Γ0
Θ0φ dy ∀φ ∈ V.

(6)

Let us define Gε(t) =
∫ t
0
gε(z) dz, Gε

This is a continuous, increasing function so that a reciprocal function G−1ε
exists. Using the classical Kirchoff transformation, (6) is rewritten as:∫

Ω
h3∇Gε(uηε)∇φ dxdy −

∫
Ω
hHη

(
1 + 1

βuηε

)(
1 + 1

βuηε

)
∂φ
∂x dxdy

=
∫
Γ0
Θ0φ dy ∀φ ∈ V.

Let vηε = Gε(uηε). A sequence of approached problems (Ph)ηε is defined as:

(Ph)ηε


Let Θ0 ∈ L∞(Γ0), Θ0 ≥ 0, find vηε ∈ V such that:∫
Ω
h3∇vηε.∇φ dxdy −

∫
Ω
hTηε(vηε)

∂φ
∂x dxdy

=
∫
Γ0
Θ0φ dy ∀φ ∈ V.

where

Tηε(v) := Hη

(
1 +

1

β
G−1ε (v)

)(
1 +

1

β
G−1ε (v)

)
(7)

Remark 1 [1, Th. 2.14] : If (4) is satisfied, then (Ph)ηε admits a unique solution
vηε such that

‖vηε‖H1(Ω) ≤ C, (8)

where C is a constant which does not depend on (β, η, ε). There exists u in
L2(Ω) such that vηε converges weakly to u+ in H1(Ω) and G−1ε (vηε) tends
strongly to u in L2(Ω) so that

u+ = lim
ηε
vηε (9)

u− = − lim
ηε
G−1ε (−v−ηε) (10)

Moreover u is a solution of (Ph).

Remark 2 The two parameters ε and η have different meanings. The first one
is a regularization parameter and the second one a penalization parameter.
Moreover, the proof of convergence in [1] is such that η tends to zero first and
then ε. So that one cannot choose η = ε. Numerical results (5) showed that
optimal choice are obtained by choosing η � ε.
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Remark 3 As from (1) , vηε tends to u+ in H1(Ω), it is always possible to
choose ε and η so that the condition :

1 +
1

β
vηε(h) ≥ ν > 0 a.e in Ω. (11)

is fulfilled for a given ν, 0 < ν < 1. This condition will be used in the sequel.

Let Fηε be the application defined from V × L∞(Ω) to H−1(Ω) by

Fηε(v, h) = −div
(
h3∇v

)
+
∂ (hTηε(v))

∂x
,

where Tηε(v) := Hη

(
1 + 1

βG
−1
ε (v)

)(
1 + 1

βG
−1
ε (v)

)
.

Proposition 1 : The mapping (v, h) 7→ Fηε(v, h) is continuously differen-
tiable from V × L∞(Ω) to H−1(Ω)

Proof Let (w, g) ∈ V × L∞(Ω), with (w, g) 6= 0,
let us define

δ(w, g) =
Fηε(v + w, h+ g)− Fηε(v, h)− (Lηε(v, h), w, g)

‖w‖V + ‖g‖L∞(Ω)

,

where Lηε is the application defined from V×L∞(Ω) to L(V×L∞(Ω), H−1(Ω))
by

(Lηε(v, h), w, g) = −div
(
3h2g∇v

)
+

∂(gTηε(v))
∂x

−div
(
h3∇w

)
+

∂(hṪηε(v)w)
∂x ,

so that

δ(w, g) = 1

(‖w‖V +‖g‖L∞(Ω))

(
∂(g(Tηε(v+w)−Tηε(v)))

∂x

−div
(
((h+ g)3 − h3 − 3h2g)∇v

)
− div(((h+ g)3 − h3)∇w)

+
∂(h(Tηε(v+w)−Tηε(v)−Ṫηε(v)w))

∂x

)
,

and

‖δ(w, g)‖H−1(Ω) ≤
1

(‖w‖V +‖g‖L∞(Ω))

(∥∥(h+ g)3 − h3 − 3h2g
∥∥
L∞(Ω)

‖v‖V
+
∥∥(h+ g)3 − h3

∥∥
L∞(Ω)

‖w‖V
+ ‖g‖L∞(Ω) ‖Tηε(v + w)− Tηε(v)‖L2(Ω)

+ ‖h‖L∞(Ω)

∥∥∥Tηε(v + w)− Tηε(v)− Ṫηε(v)w
∥∥∥
L2(Ω)

)
,

as

(h+ g)3 − h3 − 3h2g = g3 + 3hg2,

then ∥∥(h+ g)3 − h3 − 3h2g
∥∥
L∞(Ω)

≤ O
(
‖g‖L∞(Ω)

)
‖g‖L∞(Ω) ,∥∥(h+ g)3 − h3

∥∥
L∞(Ω)

≤ O
(
‖g‖L∞(Ω)

)
.
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As Tηε is Lipschitz and using the Poincare inequality, we get

‖Tηε(v + w)− Tηε(v)‖L2(Ω) ≤ O (‖w‖V ) ,

As Tηε is continuously differentiable, there exists Ṫηε such that∥∥∥Tηε(v + w)− Tηε(v)− Ṫηε(v)w
∥∥∥
L2(Ω)

≤ O (‖w‖V )
2
,

it follows that

‖δ(w, g)‖H−1(Ω) ≤ O
(
‖w‖V + ‖g‖L∞(Ω)

)
,

So, differentiability of Fηε is gained with ∇Fηε(v, h) = Lηε(v, h).
In the same way, it can be proved that ∇Fηε is continuous from V × L∞(Ω)
to L(V × L∞(Ω), H−1(Ω)).

Proposition 2 : The mapping h 7→ vηε(h) which defines the solution of
(Ph)ηε is continuously differentiable from Uad to V.

Proof The proof is based upon the implicit function theorem for the equation

Fηε(vηε(h), h) = 0. (12)

It is already known from Proposition 1 that Fηε is continuously differentiable.
The only thing to prove now is that

∇1(Fηε(vηε(h), h)) is an isomorphism from V to H−1(Ω) (13)

where ∇1 denotes the derivative with respect to the first variable.
To do that, it is sufficient to prove that the linear problem{

zηε ∈ H1
0 (Ω)

−div(h3∇zηε) +
∂(hṪηε(vηε)zηε)

∂x = f in H−1(Ω)
(14)

with f ∈ H−1(Ω), admits a unique solution.
Uniqueness:
Let z = z1ηε− z2ηε in which z1ηε and z2ηε are two solutions for (14) and γ > 0 is a
real given parameter. Multiplying the difference of the two equations satisfied

by z1ηε and z2ηε, by the test function z+

γ+z+ which belongs to H1
0 (Ω), we get∫

Ω

h3∇z∇
(

z+

γ + z+

)
=

∫
Ω

hṪηε(vηε)z
∂

∂x

(
z+

γ + z+

)
,

using the fact that

∇
(

z+

z+ + γ

)
= γ

∇z+

(z+ + γ)
2 ,

we get as h belongs to Uad∫
Ω

∣∣∣∣ ∇z+γ + z+

∣∣∣∣2 ≤ b

a3

∥∥∥Ṫηε(vηε)∥∥∥
L∞(Ω)

∫
Ω

∣∣∣∣∣ ∂
∂xz

+

γ + z+

∣∣∣∣∣ .
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It follows, from the Poincaré inequality, that∫
Ω

(
log

(
1 +

z+

γ

))2

≤ C,

where C a constant that doesn’t depend on γ.
Letting γ tend to zero, we obtain z ≤ 0 a.e in Ω. Substituting z for −z we get
z ≥ 0 a.e in Ω. The uniqueness is proved.
Existence:
Let A%ηε be the application defined from H1

0 (Ω)to H−1(Ω) by:

A%ηε(v) = %Iv − div(h3∇v) +
∂
(
hṪηε(vηε)v

)
∂x

.

In which the operator I : H1
0 (Ω)→ H−1(Ω) is defined by

〈Iv, w〉 =

∫
Ω

vw.

We can choose % > 0 so that A%ηε is coercive, and hence so that
(
A%ηε
)−1

exists
and is continuous .
Let us remark that zηε is a solution of (14) if and only if

zηε − %
(
A%ηε
)−1 ◦ Izηε =

(
A%ηε
)−1

f.

As H1
0 (Ω) is compactly embedded in L2(Ω), then I is completely continu-

ous. On the other hand %
(
A%ηε
)−1

is continuous, so %
(
A%ηε
)−1 ◦ I is completely

continuous. Applying the Fredholm’s alternative [11] allows us to conclude.

4 Approximate cost function and necessary optimality conditions

To cope with the possible non uniqueness of the solution for the control prob-
lem, we introduce as in [5, 10] a modified cost function which forces the solution
of the approximate problem to converge towards the solution (h∗, u∗) deduced
from theorem (2). Let us remark that usually, only one additional term is
added. However possible non uniqueness of the state equation due to the weak
regularity of the coefficient h∗ leads us to introduce another additional term
containing u∗ in Jηε(h).

The initial problem (M) is approximated by:

(M)ηε

{
Find h∗ηε ∈ Uad such that
Jηε(h

∗
ηε) = Minh∈Uad Jηε(h)

where

Jηε(h) =
1

2

∥∥∥∥β log

(
1 +

1

β
vηε(h)

)
− Pd

∥∥∥∥2
L2(Ω)

+
1

2
‖h− h∗‖2L2(Ω)+

1

2
‖vηε(h)− u∗‖2L2(Ω)

vηε(h) satifies (Ph)ηε and (h∗, u∗) are given by theorem (2).
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4.1 Necessary optimality conditions for the problem (M)ηε

Theorem 3 : There exists at least one optimal control h∗ηε ∈ Uad for the
problem (M)ηε satisfying the following optimality system:
Let Θ0 ∈ L∞(Γ0) and Θ0 ≥ 0,{

find v∗ηε ∈ V such that for all φ ∈ V∫
Ω

(
h∗ηε
)3∇v∗ηε∇φ dxdy − ∫Ω h∗ηεTηε (v∗ηε) ∂φ∂x dxdy =

∫
Γ0
Θ0φ dy,

(15)

and for all h ∈ Uad∫
Ω

(
h− h∗ηε

)(
Tηε
(
v∗ηε
) ∂qηε
∂x
− 3

(
h∗ηε
)2∇qηε∇v∗ηε + h∗ηε − h∗

)
≥ 0, (16)

where qηε is a solution of the adjoint state equation{
qηε ∈ H1(Ω) such that (qηε)/Γ = 0, ∇qηε.−→n /Γ0

= 0 and

−div(
(
h∗ηε
)3∇qηε)− h∗ηεṪηε(v∗ηε)∂qηε∂x = Lηε

(17)

where Lηε =
β log(1+ 1

β v
∗
ηε)−Pd

1+ 1
β v
∗
ηε

.

Proof To prove that (M)ηε admits at least one solution, the same arguments
as for the proof of existence of a solution to (M) are used.
To determine the adjoint system (17) it is sufficient to use the lagrangian:

L(h, v, q) = f(h, v)+

∫
Ω

(
h∗ηε
)3∇v∇q dxdy−∫

Ω

h∗ηεTηε (v)
∂q

∂x
dxdy−

∫
Γ0

Θ0q dy,

where

f(h, v) =
1

2

∥∥∥∥β log

(
1 +

1

β
v

)
− Pd

∥∥∥∥2
L2(Ω)

+
1

2
‖h− h∗‖2L2(Ω)

defined for h ∈ Uad, v ∈ V satisfying the condition (11) and q ∈ V . The
results of proposition (1) and (2) allow us to obtain (16) and (17).

4.2 Optimality conditions for the problem (M) (1D case)

We will restrict ourselves to the one-dimensional case Ω = ]0, 1[ for which
some estimates for the adjoint state can be established. The essential difficulty
essentially comes from the term h∗ηεṪηε(v

∗
ηε)

∂qηε
∂x in equation (17).

In the following, we assume that

Pd ∈ L∞(]0, 1[) (18)

Proposition 3 : Under the assumption (18) we have ‖qηε‖L∞(]0,1[) ≤ C.
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Proof LetQ = qηε+kl(x), with l(x) =
∫ x
0

z

(h∗ηε)
3
(z)
dz, and k a positive constant

to be defined later.
we get (

h∗ηε
)3

(x)
dl

dx
= x and

d

dx

((
h∗ηε
)3

(x)
dl

dx

)
= 1,

then

− d

dx

((
h∗ηε
)3

(x)
dQ

dx

)
− h∗ηεṪηε(v∗ηε)

dQ

dx
= Zηε(k),

with

Zηε(k) = L∗ηε − k

(
1 +

xṪηε(v
∗
ηε)(

h∗ηε
)2

)
.

From definition (15), v∗ηε satisfies the same kind of equation as vηε with h∗ηε
instead of h. As both h∗ηε and h verify (4), then v∗ηε satisfies an estimate like
(8).
Due to this estimate, using (11) and (18), we have∥∥Lηε(v∗ηε)∥∥L∞(]0,1[)

≤ C (19)

Let us choose k =
∥∥Lηε(v∗ηε)∣∣L∞[0,1]

, then Zηε(k) ≤ 0. By applying the max-

imum principle [24, Th 8.1], we get consequently Q ≤ sup
{0,1}

Q, which implies

that

qηε(x) = Q(x)− kl(x) ≤ sup
{0,1}

Q− kl(x) ≤ C1.

On the other hand the choice of k = −
∥∥Lηε(v∗ηε)∥∥L∞(]0,1[)

implies that Zηε(k) ≥
0. Using the same arguments we get qηε(x) ≥ C2.
So ‖qηε‖L∞(]0,1[) ≤ C.

Let us prove now the

Proposition 4 : If h∗ηε is an optimal control of the problem (M)ηε, then qηε
satisfies the following estimate

‖qηε‖H1(]0,1[) +

∥∥∥∥h∗ηεṪηε(v∗ηε)∂qηε∂x

∥∥∥∥
L1(]0,1[)

+

∥∥∥∥h∗ηεṪηε(v∗ηε)∂qηε∂x

∥∥∥∥
H−1(]0,1[)

≤ C.

(20)

Proof This is a direct consequence of 4 in which aε, uε, gε, Lε are respectively
h∗

3

ηε, qηε, h
∗
ηεṪηε(v

∗
ηε)

∂qηε
∂x and Lηε. Assumption(40) is exactly (17) while as-

sumptions (41, 42, 43, 44) are fulfilled by inequality (19), proposition 3 and
the fact that hηε belongs to Uad.

In the one dimensional case, the following result will be proved:
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Lemma 1 There exists a constant C which does not rely on (β, ε, η) such that
the sequence (vηε)

∗ satisfies the estimation

‖
dv∗ηε
dx
‖L∞(]0,1[) ≤ C (21)

Proof Let ϕ ∈ D(]0, 1[). Then the function φ =
∫ x
1
ϕ(t)dt is a test function for

(15) so we have∫ 1

0

h∗
3

ηε

dv∗ηε
dx

ϕdx =

∫ 1

0

h∗ηεTηε(v
∗
ηε)ϕdx−

∫ 1

0

Θ0ϕdx (22)

so we deduce that

h∗
3

ηε

dv∗ηε
dx

= h∗ηεTηε(v
∗
ηε)−Θ0 a.e ∈]0, 1[ (23)

Due to the one dimensional assumption the space H1(]0, 1[) is continuously
imbedded in L∞(]0, 1[) and from (8) the sequence (v∗ηε)ηε is bounded in L∞(]0, 1[).
From the definition (7) of Tηε we conclude that (Tηε(v

∗
ηε))ηε is bounded in

L∞(]0, 1[).
So the estimate (21) is obtained.

Proposition 5 For all p ∈ [1,∞[ the sequence (h∗ηε, v
∗
ηε) converges to (h∗, u∗

+

)
defined by theorem 2 in Lp(]0, 1[)×H1(]0, 1[)− weak) such that∫ 1

0

h∗
3 du∗

+

dx

dϕ

dx
dx−

∫ 1

0

h∗
(

1 +
1

β
u∗
)
dϕ

dx
dx = Θ0ϕ(0) ∀ϕ ∈ V (24)

Proof As (h∗ηε) ⊂ Uad then by (7) there exists h̃ ∈ Uad such that, after passing

to a subsequence, h∗ηε converges strongly to some h̃ in Lp(]0, 1[) for all p ∈
[1,∞[.
As h∗ηε is solution of the problem (M)ηε we have

Jηε(h
∗
ηε) ≤ Jηε(h∗) (25)

and in the same way as in the end of the proof of theorem (2) we get

lim
η,ε→0

Jηε(h
∗
ηε) = J̃(h̃, ũ) +

1

2

∥∥∥h̃− h∗∥∥∥2
L2(Ω)

+
1

2
‖ũ− u∗‖2L2(Ω)

and from the definition of J̃

lim
η,ε→0

Jηε(h
∗) = J̃(h∗, u∗)

so passing to the limit in (25) we get

J̃(h̃, ũ) +
1

2

∥∥∥h̃− h∗∥∥∥2
L2(Ω)

+
1

2
‖ũ− u∗‖2L2(Ω) ≤ J̃(h∗, u∗)
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Moreover, the definition of (h∗, u∗) implies

J̃(h∗, u∗) ≤ J̃(h̃, ũ)

so that ũ = u∗ and h̃ = h∗. As u∗ is unique, any subsequence (vηε) converges
towards u∗.

By the same arguments as in the proof of [1, Th. 2.14] the weak-limit ũ+ in
H1(]0, 1[) of (v∗ηε) is a solution of (Ph̃) and the solution ũ of the limit problem
is defined by ũ+ = limηε(vηε) and ũ− = − limηε(G

−1
ε (−v−ηε)).

In order to conclude, we need to prove the strong H1 convergence of v∗ηε
towards u∗

+

. To do that, we will adopt a two step procedure, letting first η
tend to zero and then ε. The strong convergence will be proved for each of the
two steps, so inducing the result.

Proposition 6 As η tends to zero, there exists v∗ε and h∗ε strong limits in
H1(]0, 1[) and in Lp(]0, 1[) for all 1 ≤ p ≤ ∞ of v∗ηε and h∗ηε such that

∫
Ω

h∗
3

ε ∇v∗ε .∇φ dx−
∫
Ω

h∗ε

(
1 +

1

β
G−1ε (v∗ε )

)+
∂φ

∂x
dx = Θ0φ(0) ∀φ ∈ V. (26)

Proof From appendix 3 and estimate (21), there exists a weak limit v∗ε in H1

and a strong limit in Lp(]0, 1[) of v∗ηε and h∗ηε as η tends to zero. Moreover, let
us remark that for any sequence wη which strongly converges in L2(]0, 1[) to
w, we get

Hη(wη).wη −→ w+strongly in L2(]0, 1[) (27)

Due to the definition (7) of Tηε and as the convergence of v∗ηε implies the
L2−strong convergence of G−1ε (v∗ηε), then using (27) and passing to the limit
in η in equation (15), we get exactly (26).
To prove the strong convergence of v∗ηε to v∗ε , we write using (15):

∫
Ω

h∗
3

ε

(
d(v∗ηε − v∗ε )

dx

)2

dx =

∫
Ω

(h∗
3

ε − h∗
3

ηε)

(
d(v∗ηε − v∗ε )

dx

)2

dx+

∫
Ω

(h∗ε − h∗ηε)Tηε(vηε)
d(v∗ηε − v∗ε )

dx
dx

−
∫
Ω

h∗εTηε(vηε)
d(v∗ηε − v∗ε )

dx
dx

The result follows immediately from (21), the strong convergence of h∗ηε and
the fact that Tηε(vηε) is bounded in L∞(]0, 1[).

For the sequence (vε) the following lemma can also be proved :

Lemma 2 The sequence (vε) verifies

lim
ε→0

∫
Ω

|∇v∗
−

ε |2dx = 0 (28)
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Proof Choosing v∗
−

ε as a test function in (26) we obtain

−
∫
Ω

h3ε |∇v∗
−

ε |2 =

∫
Ω

hε

(
1 +

1

β
G−1ε (v∗ε )

)+
∂v∗

−

ε

∂x
dx+Θ0v

∗−
ε (0) (29)

From the definition of Gε we get

0 ≤
(

1 +
1

β
G−1ε (v∗ε )

)
≤ 1 (30)

and
G−1ε (v∗ε ) = G−1ε (v∗

+

ε ) +G−1ε (−v∗
−

ε ) = v∗
+

ε +G−1ε (−v∗
−

ε ) (31)

so we can rewrite (29) as

−
∫
Ω

h∗
3

ε |
dv∗

−

ε

dx
|2 =

∫
Ω

h∗ε
dv∗

−

ε

dx
dx+

∫
Ω

h∗ε
1

β
G−1ε (−v∗

−

ε )
dv∗

−

ε

dx
dx+Θ0v

∗−
ε (0)

(32)

Due to proposition 5 the sequence (v∗ε ) converges, up to a subsequence, to u∗
+

in H1(Ω) weak and strongly in L2(Ω) where u∗ is a solution of the problem
(Ph∗). The first term of the right hand side in (32) tends to 0 and from the
compact inclusion of H1(Ω) in C0(Ω) the third term also tends to 0. To

study the limit of the term
∫
Ω
hε

1
βG
−1
ε (−v−ε )

dv∗
−
ε

dx dx, the function Bε(x) =∫ x
0
G−1ε (t)dt is introduced. We have:∫

Ω

hε
1

β
G−1ε (−v∗

−

ε )
dv∗

−

ε

dx
dx = −

∫
Ω

h∗ε
dBε(−v∗

−

ε )

dx
dx

As h∗ε ∈ BV (Ω) and Bε is continuous we can now apply the formula for
integration by parts [28, page 297-298] to obtain∫
Ω

h∗ε
dBε(−v∗

−

ε )

dx
dx = −

∫
Ω

Bε(−v∗
−

ε )Dhε+h
∗
ε (1)Bε(−v∗

−

ε )(1)−h∗ε (0)Bε(−v∗
−

ε )(0)

in the sens of Riemann-Stieltjes and as Bε(0) = 0, we have∫
Ω

h∗ε
dBε(−v∗

−

ε )

dx
dx = −

∫
Ω

Bε(−v∗
−

ε )Dh∗ε − h∗ε (0)Bε(−v∗
−

ε (0))

from (30) we have

|Bε(−v∗
−

ε )| ≤ β| − v∗
−

ε | and |Bε(−v∗
−

ε (0))| ≤ β|v∗
−

ε (0)|

using the definition of Uad and the compact embedding of H1(Ω) into C0(Ω):∣∣∣∣∣
∫
Ω

h∗ε
dBε(−v∗

−

ε )

dx
dx

∣∣∣∣∣ ≤ β(|Dh∗ε |+ b)‖v−ε ‖C0[0,1] (33)

so

lim
ε→0

∫
Ω

h∗ε
dBε(−v∗

−

ε )

dx
dx = 0
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Theorem 4 The sequence (v∗ε ) and in turn (v∗ηε) converges strongly to u∗
+

in
H1(Ω).

Proof The H1 weak convergence of (v∗ε ) towards u∗
+

comes from proposition
5 and estimate 21. By making the difference between equations (26) and (24)

and choosing v∗ε − u∗
+

as a test function we get

∫
Ω

h∗
3

(
dv∗ε
dx
− du∗

+

dx

)2

dx =
∫
Ω

(
h∗

3 − h∗3ε
)(

dv∗ε
dx −

du∗
+

dx

)
dv∗ε
dx dx

+
∫
Ω

(h∗ − h∗ε )
(

1 + 1
βG
−1
ε (v∗ε )

)(
dv∗ε
dx −

du∗
+

dx

)
dx

+ 1
β

∫
Ω
h∗
(
G−1ε (v∗ε )− u∗+

)(
dv∗ε
dx −

du∗
+

dx

)
dx

Due to the fact that h∗ and h∗ε belong to Uad, the sequence (h∗ε ) converges to
h∗ in Lp(Ω) for all 1 ≤ p <∞. From estimate (21) the first and second terms
of the right hand side of the equality go to zero as ε tends to zero. For the last
term, it can be rewritten as:

I = 1
β

∫ 1

0
h∗
(
G−1ε (v∗ε )− u∗+

)
(
dv∗

+

ε

dx −
du∗

+

dx )dx− 1
β

∫ 1

0
h∗
(
G−1ε (v∗ε )− u∗+

)
dv∗
−
ε

dx dx

= I1 + I2

by lemma 2, I2 tends to zero using (31).
Let us rewrite I1:

I1 =
1

β

∫
Ω

h∗
(
v∗

+

ε − u∗
+
)(dv∗+ε

dx
− du∗

+

dx

)
dx− 1

β

∫
Ω

h∗
(
G−1ε (−v∗

−

ε )− u∗
−
)(dv∗+ε

dx
− du∗

+

dx

)
dx

since (v∗
+

ε ) converges strongly to u∗
+

in L2(Ω) and weakly in H1(]0, 1[) , the
first term in the above equality tends to 0 and the second can be rewritten as

1

β

∫
Ω

h∗
(
G−1ε (−v∗

−

ε )− u∗
−
)(dv∗+ε

dx
− du∗

+

dx

)
dx =

1

β

∫ 1

0

h∗

(
G−1ε (−v∗

−

ε )
du∗

+

dx

)
dx+

1

β

∫
Ω

h∗u∗
− dv∗

+

ε

dx
dx

(34)
Using the same arguments as in remark 1, (10) and proposition 5 we then
deduce that this term tends to

1

β

∫ 1

0

h∗u∗
− du∗

+

dx
dx+

1

β

∫
Ω

h∗u∗
− du∗

+

dx
dx

which is zero.
The strong H1 convergence of (v∗ε ) towards u∗

+

is proved and in turn that of
v∗ηε by using the triangle inequality.
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Theorem 5 : Let (h∗, u∗) be an optimal control of the problem (M̃). Then
there exist (q, λ) in H1(]0, 1[)×M(]0, 1[) such that∫

]0,1[

h∗
3 du∗

+

dx

dφ

dx
dx−

∫
]0,1[

h∗
(

1 +
1

β
u∗
)
dφ

dx
dx = Θ0φ(0) ∀φ ∈ V, (35)

∀h ∈ Uad ∫
]0,1[

(h− h∗)

((
1 +

1

β
u∗
)
dq

dx
− 3h∗

2 dq

dx

du∗
+

dx

)
dx ≥ 0, (36)


q ∈ V,∫
]0,1[

h∗
3 dq
dx

dφ
dx dx−

∫
]0,1[

λφ dx =
∫
]0,1[

β log
(
1+ 1

β u
∗+
)
−Pd

1+ 1
β u
∗+ φ dx, ∀φ ∈ V,

(37)
with M(]0, 1[) = (C0(]0, 1[))∗ the space of bounded measures in ]0, 1[.

Proof According to the estimate (20) there exist two multipliers q and λ in
H1(]0, 1[) and M(]0, 1[) respectively, such that qηε converges weakly to q in
H1(]0, 1[), ληε converges to λ in H−1(]0, 1[)-weakly and M(]0, 1[)-*-weakly.
Due to Remark 1, there exists u in L2(]0, 1[) such that v∗ηε converges weakly

to u∗
+

in H1(]0, 1[) and G−1ε (v∗ηε) tends to u∗ in L2(]0, 1[).
Passing to the limit with respect to η and ε in (15)-(17), we obtain (35)-(37).

5 Numerical realization

The theory in the previous sections has been mainly developped in the context
of the hydrodynamic lubrication(The Reynolds state is the governing equation
for thin film flow). The one-dimensional assuption for which optimality con-
ditions have been obtained in section 4 can be associated with a bearing (see
figure 1) whose diameter is small with respect of its width: the so called in-
finitely long bearing [23]. In that case the flow is roughly independent of the
variable y (in reality there is a small boundary layer on both ends of the bear-
ing) and the one dimensional Reynolds equation is used to get the pressure
inside the device. As it will be shown in the following figures, the pressure
reaches its maximal value around the middle of the device where the gap is
minimal. This value can be so high that the surface of the device can be lo-
cally deformed [16] and a flat part appears: the original shape is truncated.
In most of the applications, this phenomenon is amplified by the variation of
the viscosity with the pressure (piezoviscosity). This phenomenon is not taken
into account in the present work as the state Reynolds equation that is dealt
with is highly non linear. Thus the related inverse problem is not included in
the present study. Nevertheless, we will retain as a numerical illustration of
the present theory the identification of a locally deformed surface h by the
knowledge of the pressure field Pd.
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5.1 Initialization:

Assuming the gap h is known, the pressure Pd = β log(1 +
u+
d

β ) will be in-
troduced by the following procedure to prevent the so called ”inverse crime
problem”:

- It can be proved as in [6] that for suitable data the solution of (3) for
a journal bearing geometry is a continuous function. Moreover the non
cavitated area is made of two (unknown) parts, namely [0, A] and [B, 1].
The first one is located in the convergent part of the bearing, the second

one in the divergent part. In addition
dP

dx
= 0 on x = B so that ρ = 1 at

this point. The mass flow conservation in [B, 1] gives:

h(B)ρ(B) = h(B) = Θ0

This allows us to compute the location of B as soon as min(h)[0,1] ≤ Θ0 ≤
max(h)[0,1].
- A backward ordinary differential equation iterative procedure is carried
out from x = B to solve the Reynolds equation

−h3 du
+

dx
+

(
1 +

1

β
u

)
h = Θ0

This procedure is stopped at a point A where the pressure becomes non
positive. The overall solution is defined by: ud(x) = u(x) for A ≤ x ≤ B
and u(x) = 0 elsewhere.

5.2 Choice of the penalization parameters and the datas

To identify the deformed thickness hd(x) from the desired pressure pd com-
puted by the above procedure we use the optimality system (15)-(17). Equation
(15) is solved using the P1 finite elements and fixed-point procedure. We then
solve the corresponding adjoint problem (17) and we evaluate the gradient of
Jηε (16). To minimize Jηε on Uad we take a regularized descent direction Dηε

obtained as a solution of the elliptic problem{
−∆Dηε + rDηε = −∇(Jηε) in Ω
∂Dηε
∂n = 0 on ∂Ω

(38)

where r is a parameter which has to be adjusted numerically to accelerate the
convergence of the projected BFGS with Armijo rule [26].
For tests below the exact deformed thikness is

hd(x) =

{
1 + 0.5cos(2πx) if x ∈ ([0, 1]− [0.4, 0.6])
0.6 if x ∈ ([0, 1]− [0.4, 0.6])

(39)

The choice of the values of the parameters deserves further discussions. The
value chosen for β is a usual value for the bulk modulus of a lubricant [32]. The
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values of η and ε have been chosen to obtain the best stability with respect to
the number of grid’s points.
The initial thickness is h(x) = 1 + 0, 5cos(2πx) , β = 1.109, η = 10−5 and
ε = 2.10−3

The value Θ0 = 0.675 for the input mass flow is chosen so that two cavitation

regions exist. The table below shows the variation of Prec =
Jηε(h)
Jηε(h0)

according

to the NIT number of iterations and for different values of the number m of
of grid’s points.

m = 101 m = 201 m = 301 m = 401
NIT Prec Prec Prec Prec

1 1.0000E + 00 1.0000E + 00 1.0000E + 00 1.0000E + 00
5 1.52571e− 03 2.43188e− 03 2.12803e− 03 2.32768e− 03
10 1.34161e− 03 1.23072e− 03 1.06685e− 03 1.15125e− 03
20 1.33785e− 03 1.38974e− 04 4.75835e− 04 4.50564e− 04
40 1.33785e− 03 1.84877e− 05 1.23317e− 04 1.70753e− 04

Table 1
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Fig. 2

Fig. 2 shows the good convergence of the projected-BFGS algorithm combined
with our choice of the regularized descent direction Dηε for m = 201.
Fig. 3 and Fig. 4 depict a comparaison between the computed pressure and
thickness profiles and the exact ones for m = 401 after various number of
iterations.
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6 Conclusion

The present work shows how is it possible to get some identification process
for thin film flow taking a correct mass preserving condition into account. It



22 K. Ait Hadi et al.

opens the way to optimization problems in the same mechanical area, as find-
ing the best shape (the function h) to minimize friction or oil consumption. An
interesting feature is that recent physical studies of the gaseous cavitation in
lubrication tends to give a physical meaning to some mathematical problems
close to the approximate one (6)[7] used in the present paper. This induces
an additional reason to introduce more efficient numerical methods for solving
both direct and inverse problems.
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References

1. Ait Hadi, K., Bayada, G., El Alaoui Talibi, M.: Existence and uniqueness
for a non coercive lubrication problem. J. Math. Anal. Appl. 327(1),
585–610 (2007)

2. Alvarez, S.J., Carrillo, J.: A free-boundary problem in theory of lubrica-
tion. Commun. Partial Differential Equations 19, 11-12, 1743–1761
(1994)

3. Auloge, J.Y., Bourguin, P., Gay, B.: The optimum design of one-
dimensional bearings with non-newtonian lubricants. Journal of Lu-
brication Technology 105, 391–395 (1983)

4. Ausas, R., Ragot, P., Leiva, J., Jai, M., Bayada, G., Buscaglia, G.: The
impact of the cavitation model in the analysis of micro textured lubri-
cated journal bearings. ASME Journal of Tribology 129, 1219–1234
(2007)

5. Barbu, V.: Necessary conditions for non convex distributed control prob-
lems governed by variational inequalities. J. Math. Anal. Appl. 80,
566–598 (1981)

6. Bayada, G., Chambat, M.: Analysis of a free boundary problem in partial
lubrication. Quarterly of applied math XL(4), 372 (1983)

7. Bayada, G., Chupin, L.: Thin film compressible model and Jakobsson-
Floberg-Olsson/Elrod-Adams conservative cavitation model. Submitted
to ASME Journal of Tribology (2012)

8. Bayada, G., El Alaoui Talibi, M.: An application of the control by coeffi-
cients in a variational inequality for hydrodynamic lubrication. Nonlin-
ear Analysis 1, 315–328 (2000)

9. Bayada, G., Meurisse, M.H.: The impact of the cavitation model on the
theoritical performance of heteregenous slip/no enginered contact. Proc.
Inst. Mech. Eng., part J, Journal. Eng. Tribology 223, 3, 371–381 (2009)

10. Bermudez, A., Saguez, C.: Optimal control of variational inequalities. Con-
trol and Cybernetics 14(1-3), 9–30 (1985)

11. Brezis, H.: Analyse fonctionnelle Théorie et applications, Masson edn.
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applications en lubrification elastohydrodynamique. Ph.D. thesis, Fac-
ulty of sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
(2001)

20. Elrod, H.G., Adams, M.L.: A computer program for cavitation in related
phenomena in lubrication. In: Proceedings, Mech. Eng. Publ. td., pp.
37–42 (1975)

21. Elsharkawy, A.A., Guedouar, L.H.: Direct and inverse solutions for elas-
tohydrodynamic lubrication of finite porous journal bearings. Transac-
tions of the ASME J. Tribol. 123(2), 276–282 (2001)

22. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of func-
tions, CRC Press, Florida edn. Studies in Advanced Mathematics (1992)

23. Frene, J., Nicolas, D., Degueurce, B., Berthe, D., Godet, M.: Lubrification
hydrodynamique, Paliers et Butées, Eyrolles Paris edn. (1990)

24. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of sec-
ond order, 2nd ed., springer-verlag, berlin edn. (1983)

25. Jakobson, B., Floberg, L.: The finite journal bearing considering vapor-
ization. Trans. Chalmers Univ. Tech. 190, 1–66 (1957)

26. Kelley, C.: Iterative Methods for Optimization, Frontiers in Applied Math-
ematics, SIAM edn. (1999)

27. Kinderleher, D., Stampacchia, G.: An introduction to variational inequal-
ities and applications, academic press edn. (1980)

28. Lang, S.: Real and Functional Analysis, Springer edn. (1993)
29. Maday, C.J.: The maximum principle approach to the optimal 1.dimen-

sional journal bearing. ASME J. Lub. Tech 92, 482–489 (1970)



24 K. Ait Hadi et al.

30. Meurisse, M.H.: Solution of the inverse problem in hydrodynamic lubrica-
tion. pp. 104–107. Inst. Mech. Eng London (1983)

31. Rayleigh, L.: Notes on the theory of lubrication. Philos Mag 35, 1–12
(1918)

32. Sahlin, F., Almquist, A., Larsson, R., Glavatskih, S.: A cavitation algo-
rithm for arbitrary lubricant compressibility. Tribology International
40, 1294–1300 (2007)



About an inverse problem for a free boundary 25

A Some properties of BV-Spaces[22]

Lemma 3 :
i) (Lower semicontinuity):
Suppose fk ∈ BV (Ω) (k = 1, ...) and fk → f in L1(Ω), then

‖Df‖ (Ω) ≤ lim inf
k→+∞

‖Dfk‖ (Ω).

ii) (Compactness):
Let fk ∈ BV (Ω) (k = 1, ...) satisfying sup

k
‖fk‖BV (Ω) < +∞, then there exist a subsequence(

fkj

)
1≤j≤+∞

and f ∈ BV (Ω) such that

fkj → f in L1(Ω).

Using the previous lemma, we can prove the following result.

Proposition 7 :
i) Uad is a nonempty convex closed subset of BV (Ω) ∩ L∞(Ω).
ii) Let (hn) be a sequence of Uad, then there exists h ∈ Uad such that hn → h in Lλ(Ω)
(for a subsequence) ∀λ ∈ [1,+∞[ .

Proof i) Let (hn)n∈N ⊂ Uad, the assertion (ii) of the Lemma 3 implies that there exists

h ∈ BV (Ω) such that hn → h in L1(Ω) (for a subsequence). However as 0 < a ≤ hn ≤ b
a.e in Ω, it follows that 0 < a ≤ h ≤ b a.e in Ω. And according to (i) Lemma 3, we have

‖Dh‖ (Ω) ≤ lim inf
n→+∞

‖Dhn‖ (Ω) ≤ C∗,

therefore, h ∈ Uad.
ii) Thanks to the previous assertion, there exists h ∈ Uad such that hn → h in L1(Ω) (for
a subsequence), in addition

‖hn − h‖λLλ(Ω)
≤ (b− a)λ−1 ‖hn − h‖L1(Ω) ,

for all λ ∈ [1,+∞[ , from where the result follows.
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B Some technical lemmas

Here, we give the general theorem:

Theorem 6 Let uε be a solution of the following problem{
uε ∈ H1(Ω) such that uε(1) = 0, duε

dx
(0) = 0 and

− d
dx

((aε(x)) duε
dx

)− gε duεdx = Lε
(40)

we suppose that there exist constants C1, C2, C3 and C4 independent of ε such that

0 < C1 ≤ aε(x) ≤ C2 ∀x ∈ [0, 1] (41)

Lε ∈ L2(]0, 1[), gε ∈ L∞(]0, 1[) (42)

‖uε‖L∞(]0,1[) ≤ C3 ‖Lε‖L2(]0,1[) ≤ C4 (43)

gε ≥ 0 (44)

then

‖uε‖H1(]0,1[) +

∥∥∥∥gε duεdx
∥∥∥∥
L1(]0,1[)

+

∥∥∥∥gε duεdx
∥∥∥∥
H−1(]0,1[)

≤ C. (45)

Let us first prove the following technical lemma in wich V = ϕ ∈ H1(]0, 1[), ϕ(1) = 0.

Lemma 4 :∫
]0,1[

∣∣∣∣gε duεdx
∣∣∣∣ ζ =

∫
]0,1[

sign0

(
duε

dx

)(
aε
duε

dx

dζ

dx
− Lεζ

)
∀ζ ∈ V,

where

sign0(z) =

 1 if z > 0,
0 if z = 0,
−1 if z < 0.

Proof Let signσ0 be the regularization of the function sign0 such that

signσ0 (z) =


1 if z > σ,
z
σ

if −σ ≤ z ≤ σ,
−1 if z < −σ,

with σ > 0. From (42) and the fact that uε belongs to V , we get that aε
duε
dx

belongs to

H1(]0, 1[). It follows that for any ζ ∈ V , then ζsignσ0 (aε
duε
dx

) also lies in V and can be chosen
as a test function in (40). So that∫

]0,1[ gεζsign
σ
0

(
aε
duε
dx

)
duε
dx

=
∫
]0,1[ sign

σ
0

(
aε
duε
dx

)(
aε
duε
dx

dζ
dx
− Lεζ

)
+
∫
]0,1[ aε

duε
dx

(
signσ0

)′ (
aε
duε
dx

)
ζ d
dx

(
aε
duε
dx

) (46)

As
∣∣∣(signσ0 )′ ( dqηεdx

)
dqηε
dx

∣∣∣ ≤ 1, we get

∫
]0,1[ aε

duε
dx

(
signσ0

)′ (
aε
duε
dx

)
ζ d
dx

(
aε
duε
dx

)
≤ C2

∫(∣∣∣ duεdx ∣∣∣≤σ)
∣∣∣ duεdx (signσ0 )′ ( duεdx )∣∣∣ ∣∣∣ζ d

dx

(
aε
duε
dx

)∣∣∣
≤ C2

∫(∣∣∣ duεdx ∣∣∣≤σ)
∣∣∣ζ d
dx

(
aε
duε
dx

)∣∣∣ ,
however

∫(∣∣∣ duεdx ∣∣∣≤σ)
∣∣∣ζ d
dx

(
aε
duε
dx

)∣∣∣ tends to
∫(

duε
dx

=0
) ∣∣∣ζ d

dx

(
aε
duε
dx

)∣∣∣ which is equal to 0

(by an application of the Lemma A.4 [27]), then∫
]0,1[

aε
duε

dx
(signσ0 )′

(
duε

dx

)
ζ
d

dx

(
aε
duε

dx

)
→ 0.

Then passing to the limit on σ in (46) and using (44), we obtain the result of the lemma.



About an inverse problem for a free boundary 27

Proof of theorem 6
Let us define λε = gε

duε
dx

γε =
1

1 + ‖λε‖L1(]0,1[) + ‖λε‖H−1(]0,1[)

, ũε = γεuε, λ̃ε = γελε,

then

γε +
∥∥∥λ̃ε∥∥∥

L1(]0,1[)
+
∥∥∥λ̃ε∥∥∥

H−1(]0,1[)
= 1. (47)

and from 40

−
d

dx

(
aε
dũε

dx

)
= λ̃ε + γεLε. (48)

Taking ũε as a test function in (48), we get

∫
]0,1[ aε

(
dũε
dx

)2
=
∫
]0,1[ λ̃εũε +

∫
]0,1[ γεLεũε

= γε
∫
]0,1[

(
λ̃ε + γεLε

)
uε,

From (43), uε is bounded in L∞ (]0, 1[). Moreover λ̃ε + γεLε is bounded in L1 (]0, 1[) from
(47) and (43 ), using (41), we get:

‖ũε‖2H1(]0,1[) ≤ Cγε. (49)

Now choosing φ ∈ H1
0 (]0, 1[) as a test function in (48), we get∫

]0,1[
aε
dũε

dx

dφ

dx
=

∫
]0,1[

λ̃εφ+

∫
]0,1[

γεLεφ,

which is rewritten as ∫
]0,1[

λ̃εφ =

∫
]0,1[

aε
dũε

dx

dφ

dx
−
∫
]0,1[

γεLεφ,

so that ∣∣∣∣∫ λ̃εφ

∣∣∣∣ ≤ C2 ‖ũε‖H1(]0,1[) ‖φ‖H1
0 (]0,1[)

+ γε ‖Lε‖L2(]0,1[) ‖φ‖H1
0 (]0,1[)

.

From (43) we get ∥∥∥λ̃ε∥∥∥
H−1(]0,1[)

≤ C
(
γε + ‖ũε‖H1(]0,1[)

)
. (50)

Now, let us suppose

Assumption (H) λε is not bounded in L1(]0, 1[) ∪H−1(]0, 1[)

Then γε tends (for a subsequence) to 0 , then ũε and λ̃ε converge to 0 respectively in
H1(]0, 1[) and H−1(]0, 1[) and according to (47)∥∥∥λ̃ε∥∥∥

L1(]0,1[)
→ 1. (51)

We aim to compute
∥∥∥λ̃ε∥∥∥

L1(]0,1[)
by way of the characterization

∥∥∥λ̃ε∥∥∥
L1(]0,1[)

= sup
w∈B(0,1)

∫ 1

0

∣∣∣λ̃ε∣∣∣wdx (52)
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in which B(0, 1) denotes the unit ball of C0([0, 1]).
Let us choose φ in H1(]0, 1[) such that φ ≥ 1 so that for any w in B(0, 1)

w ≤ φ (53)

Such a function φ cannot belong to V as it cannot be 0 for x = 1. So we locally modify φ
by introducing for any small non negative parameter σ

vσ(z) =

{
σ if z ≤ 1− σ,

φ(1)−σ
σ

z +
φ(1)(σ−1)+σ

σ
if z ≥ 1− σ,

Let us write from (53)∫ 1

0

∣∣∣λ̃ε∣∣∣w ≤ ∫ 1

0

∣∣∣λ̃ε∣∣∣φ =

∫ 1

0

∣∣∣λ̃ε∣∣∣ (φ− vσ) +

∫ 1

0

∣∣∣λ̃ε∣∣∣ vσ (54)

we can use ζ = γε(φ− vσ) as a test function in 4 so that (54) leads to:∫ 1

0

∣∣∣λ̃ε∣∣∣w ≤ ∫ 1

0
sign0

(
dũε

dx

)
aε
dũε

dx

dφ

dx
−
∫ 1

0
sign0

(
dũε

dx

)
aε
dũε

dx

dvσ

dx

− γε

∫ 1

0
sign0

(
dũε

dx

)
Lε(φ− vσ) +

∫ 1

0

∣∣∣λ̃ε∣∣∣ vσ
which is rewriten as ∫ 1

0

∣∣∣λ̃ε∣∣∣w ≤ I1 − I2 − I3 + I4 (55)

From (41) and (49): |I1| ≤ C
√
γε‖ dφdx ‖L2(]0,1[)

From (41) and the definition of vσ : I2 ≥ 0
From (43) and the definition of vσ : I3 ≥ −Cγε(1 + ‖vσ‖L2(]0,1[))

As λ̃ε belongs to L∞(]0, 1[) from (42),(43) and vσ ≥ 0 then:

I4 ≤ ‖λ̃ε‖L∞(]0,1[‖vσ‖L1(]0,1[)

As constant C does not depend on σ,w or ε, we can first let σ tend to zero so that
‖vσ‖L2(]0,1[) → 0 and we get∫ 1

0

∣∣∣λ̃ε∣∣∣w ≤ C√γε‖dφ
dx
‖L2(]0,1[) + Cγε

as φ does not depend on w and as γε tends to zero, we get

‖λ̃ε‖L1(]0,1[ ≤ C
√
γε

which is impossible from (51) and the assumption (H).
So assumption (H) is not true and this implies that there exists a constant C > 0 such that

‖λ̃ε‖L1(]0,1[ + ‖λ̃ε‖H−1(]0,1[ ≤ C (56)

According to (49) and the definition of ũε , we have

‖uε‖2H1(]0,1[) ≤
C

γε
= C(1 + ‖λ̃ε‖L1(]0,1[ + ‖λ̃ε‖H−1(]0,1[) (57)

Then from (56) we get
‖uε‖H1(]0,1[) ≤ C (58)

so estimate (45) is obtained from (56) and (58).


