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We show that the double cobar construction, Ω 2 C * (X), of a simplicial set X is a homotopy BValgebra if X is a double suspension, or if X is 2-reduced and the coefficient ring contains the field of rational numbers Q. Indeed, the Connes-Moscovici operator defines the desired homotopy BV-algebra structure on Ω 2 C * (X) when the antipode S : ΩC * (X) → ΩC * (X) is involutive. We proceed by defining a family of obstructions

When X is a suspension, the only obstruction remaining is O 2 := E 1,1 -τE 1,1 where E 1,1 is the dual of the ⌣ 1 -product. When X is a double suspension the obstructions vanish.

Introduction

Adams' cobar construction provides a model of the loop space of a 1-connected topological space [START_REF] Adams | On the cobar construction[END_REF]. The cobar construction is a functor from differential graded coalgebras to differential graded algebras; for iteration, a coproduct is thus needed. For a 1-reduced simplicial set X, Baues defined [START_REF] Baues | The cobar construction as a Hopf algebra[END_REF] a DG-bialgebra structure on its first cobar construction ΩC * (X). The resulting double cobar construction is an algebraic model for the double loop space. We show that the double cobar construction, Ω 2 C * (X), of a simplicial set X is a homotopy BValgebra (a homotopy G-algebra in the sense of Gerstenhaber-Voronov [START_REF] Gerstenhaber | Homotopy G-algebras and moduli space operad[END_REF] together with a degree one operator) if X is a double suspension, or if X is 2-reduced and the coefficient ring contains the field of rational numbers Q.

Baues' coproduct on ΩC * (X) is equivalent to a homotopy G-coalgebra structure {E k,1 } k≥1 on the DG-coalgebra C * (X), that is a family of operations

E k,1 : C * (X) → C * (X) ⊗k ⊗ C * (X), k ≥ 1,
satisfying some relations. This corresponds also to the coalgebra structure of C * (X) over the second stage filtration operad F 2 χ of the surjection operad χ given in [START_REF] Berger | Combinatorial operad actions on cochains[END_REF][START_REF] Mcclure | Multivariable cochain operations and little n-cubes[END_REF], see Section 4.1. Since a bialgebra structure determines the antipode (whenever it exists), the antipode S : ΩC * (X) → ΩC * (X) on the cobar construction is then determined by the homotopy G-coalgebra structure on C * (X).

As a model for the chain complex of double loop spaces, the double cobar construction is expected to be a Batalin-Vilkovisky algebra up to homotopy. Indeed, it is well-known that the circle action on the double loop space Ω 2 X by rotating the equator defines a BV operator; thereby the homology H * (Ω 2 X) is a Batalin-Vilkovisky algebra [START_REF] Getzler | Batalin-Vilkovisky algebras and two-dimensional topological field theories[END_REF].

The cobar construction ΩH of an involutive Hopf algebra turns out to be the underlying complex in the Hopf-cyclic Hochschild cohomology of H, [START_REF] Connes | Cyclic cohomology and Hopf algebra symmetry[END_REF]. The cyclic operator requires an involutive antipode on the underlying bialgebra H. Assuming that the antipode is involutive, Menichi proved [START_REF] Menichi | Batalin-Vilkovisky algebras and cyclic cohomology of Hopf algebras[END_REF], that for a unital (ungraded) Hopf algebra H, the Connes-Moscovici operator induces a Batalin-Vilkovisky algebra on the homology of the cobar construction H * (ΩH).

By defining a family of operations

O n : C * (X) → C * (X) ⊗n , n ≥ 2,
we provide a criterion for the involutivity of S in terms of the operations

E k,1 : C * (X) → C * (X) ⊗k ⊗ C * (X).
By Kadeishvili's work [START_REF] Kadeishvili | On the cobar construction of a bialgebra[END_REF] the double cobar construction is a homotopy G-algebra, it is endowed with a family of operations

E 1,k : Ω 2 C * (X) ⊗ Ω 2 C * (X) ⊗k → Ω 2 C * (X), k ≥ 1,
satisfying some relations. In particular, the following bracket

{a; b} = E 1,1 (a ⊗ b) -(-1) (|a|+1)(|b|+1) E 1,1 (b ⊗ a), a, b ∈ Ω 2 C * (X),
together with the DG-product of Ω 2 C * (X), induces a Gerstenhaber algebra structure on the homology H * (Ω 2 C * (X)). The vanishing of the operations

O n : C * (X) → C * (X) ⊗n , n ≥ 2,
gives a sufficient condition for the extension of the homotopy G-algebra structure on Ω 2 C * (X)

given by Kadeishvili to the homotopy BV-algebra structure whose BV-operator is the Connes-Moscovici operator. We establish the following for a general homotopy G-coalgebra, Proposition 3.3. Let (C, d, ∇ C , E k,1 ) be a homotopy G-coalgebra.

1. The cobar construction ΩC is an involutive DG-Hopf algebra if and only if all the obstructions O n : C → C ⊗n defined in (3.5) for n ≥ 2 are zero. 2. Let C be 2-reduced i.e. C 0 = R and C 1 = C 2 = 0. If all the obstructions O n : C → C ⊗n are zero, then the double cobar construction Ω 2 C is a homotopy BV-algebra given by the Connes-Moscovici operator.

We apply this criterion to the homotopy G-coalgebra C * (X) of a 1-reduced simplicial set X. We show that, when ΣX is a simplicial suspension, the family of operations

O n : C * (ΣX) → C * (ΣX) ⊗n reduces to O 2 : C * (ΣX) → C * (ΣX) ⊗ C * (ΣX).
This operation O 2 is the deviation from the cocommutativity of the operation

E 1,1 : C * (ΣX) → C * (ΣX) ⊗ C * (ΣX).
In fact, E 1,1 is the only non-trivial operation of the family {E k,1 } k≥1 defining the homotopy Galgebra structure on C * (ΣX), see Propositions 4.4 and 4.5. However, in the case of a double simplicial suspension Σ 2 X, the operation E 1,1 is also trivial, and all the obstructions

O n : C * (Σ 2 X) → C * (Σ 2 X) ⊗n , n ≥ 2,
are zero. As a consequence, the cobar construction ΩC * (Σ 2 X) is the free tensor DG-algebra with the shuffle coproduct. Thus we have, Theorem 4.6. Let Σ 2 X be a double suspension. Then:

• the homotopy G-coalgebra structure on C * (Σ 2 X) corresponding to Baues' coproduct

∇ 0 : ΩC * (Σ 2 X) → ΩC * (Σ 2 X) ⊗ ΩC * (Σ 2 X),
has trivial higher operations i.e. E 1,k = 0 for k ≥ 1;

• the double cobar construction Ω 2 C * (Σ 2 X) is a homotopy BV-algebra with the Connes-Moscovici operator as BV-operator.

On the other hand, if the ground ring contains the field of rational numbers Q, we deform (see Section 4.4 for the precise statement) (ΩC * (X), ∇ 0 , S) into a cocommutative DG-Hopf algebra (ΩC * (X), ∇ ′ 0 , S ′ ). Therefore, (ΩC * (X), ∇ ′ 0 , S ′ ) has an involutive antipode and the homotopy BValgebra structure we consider on the deformed double cobar construction Ω(ΩC * (X), ∇ ′ 0 , S ′ ) follows. Thus, we have Theorem 4.8. Let X be a 2-reduced simplicial set. Then the double cobar construction Ω(ΩC * (X), ∇ ′ 0 , S ′ ) over R ⊃ Q coefficients is a homotopy BV-algebra with BV-operator the Connes-Moscovici operator.

The paper is organized as follows.

In the first section we review background materials on the bar-cobar constructions and Hopf algebras. The second section is devoted to the structures of homotopy G-algebras [START_REF] Kadeishvili | On the cobar construction of a bialgebra[END_REF] and homotopy BValgebras [START_REF] Menichi | Batalin-Vilkovisky algebras and cyclic cohomology of Hopf algebras[END_REF] on the cobar construction. These first two sections fix notations and sign conventions.

In the third section we define the family of operations O n : C → C ⊗n , n ≥ 2, on a homotopy G-coalgebra (C, E k,1 ).

In the section 4 we give applications : In the subsection 4.1 we set the convention for the homotopy G-coalgebra structure on C * (X). We compare the homotopy G-coalgebra structure on C * (X) coming from Baues' coproduct with the action of the surjection operad given in [START_REF] Berger | Combinatorial operad actions on cochains[END_REF][START_REF] Mcclure | Multivariable cochain operations and little n-cubes[END_REF]. Subsections 4.2 and 4.3 give applications to simplicial suspensions. In the case of single suspension ΣX the family of operations O n : C * (ΣX) → C * (ΣX) ⊗n , n ≥ 2 reduces to O 2 . We show that, for a double suspension, this last obstruction O 2 vanishes. The last subsection 4.4 is devoted to the rational case. We prove that the double cobar construction of a 2-reduced simplicial set is a homotopy BV-algebra. In Appendix we recall and specify some facts about the Hirsch and the homotopy G-algebras. In particular, we make explicit the signs related to our sign convention.

Notations and preliminaries

Conventions and notations

Let R be a commutative ring. A graded R-module M is a family of R-modules {M n } where indices n run through the integers. The degree of a ∈ M n is denoted by |a|, so here |a| = n. The r-suspension s r is defined by (s r M) n = M n-r . Algebras (respectively coalgebras) are understood as associative algebras (respectively coassociative coalgebras). A unital R-algebra (A, µ, η) is called augmented if there is an algebra morphism ǫ : A → R. We denote by A the augmentation ideal Ker(ǫ). For a coalgebra (C, ∇) the n-iterated coproduct is denoted by

∇ (n) : C → C ⊗n+1
for n ≥ 1. We use the Sweedler notation,

∇(c) = c 1 ⊗ c 2 and ∇ (n) (c) = c 1 ⊗ c 2 ⊗ • • • ⊗ c n+1 ,
where we have omitted the sum. A counital R-coalgebra (C, ǫ) is called coaugmented if there is a coalgebra morphism η : R → C. We denote by C = Ker(ǫ) the reduced coalgebra with the reduced coproduct

∇(c) = ∇(c) -c ⊗ 1 -1 ⊗ c. A (co)algebra A is called connected if it is both (co)augmented and A n = 0 for n ≤ -1 and A 0 ∼ = R. A (co)algebra, A is called n-reduced if it is both connected and A k = 0 for 1 ≤ k ≤ n. A coaugmented coalgebra C is called conilpotent if the following filtration F 0 C := R F r C := R ⊕ {c ∈ C|∇ n (c) = 0, n ≥ r} for r ≥ 1, is exhaustive, that is C = r F r C.

The bar and cobar constructions

We refer to [START_REF] Loday | Algebraic Operads. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete[END_REF]Chapter 2] for the background materials related to the bar and cobar constructions.

The cobar construction is a functor

Ω : DGC 1 → DGA 0 (C, d C , ∇ C ) → ΩC = (T(s -1 C), d Ω )
from the category of 1-connected DG-coalgebras to the category of connected DG-algebras. Here, T(s -1 C) is the free tensor algebra on the module s -1 C and d Ω is the unique derivation such that

d Ω (s -1 c) = -s -1 d C (c) + (s -1 ⊗ s -1 )∇ C (c) for all c ∈ C.
The bar construction is a functor

B : DGA 0 → DGC c (A, d A , µ A ) → B A = (T c (s A), d B )
from the category of connected DG-algebras to the category of conilpotent DG-coalgebras. Here, T c (s A) is the cofree tensor coalgebra on the module s A and d B is the unique coderivation with components

T c (s A) s A ⊕ (s A) ⊗2 s A. -s d A s -1 + s µ A (s -1 ⊗ s -1 )
We recall the bar-cobar adjunction, Theorem 1.1. [14, Theorem 2.2.9] For every augmented DG-algebra Λ and every conilpotent DG-coalgebra C there exist natural bijections

Hom DG-Alg (ΩC, Λ) ∼ = Tw(C; Λ) ∼ = Hom DG-Coalg (C, B Λ).
The set Tw(C; Λ) of twisting cochains from C to Λ is the set of degree 1 linear maps f : C → Λ verifying the twisting condition:

∂ f := d f + f d = -µ Λ ( f ⊗ f )∇ C .

Hopf algebras

Definition 1.2. For a DG-bialgebra (H, d, µ, η, ∇, ǫ) an antipode S : H → H is a chain map which is the inverse of the identity in the convolution algebra Hom(H, H); the convolution product being f ⌣ g = µ( f ⊗ g)∇. Explicitly, S satisfies S(a 1 )a 2 = ηǫ(a) = a 1 S(a 2 ) for all a ∈ H. (c) a 2 S(a 1 ) = ηǫ(a). vi. If H is commutative or cocommutative, then S 2 = id.

Homotopy structures on the cobar construction

Homotopy G-algebra on the cobar construction

We present the homotopy G-algebra structure on the cobar construction of a 1-reduced DGbialgebra given in [START_REF] Kadeishvili | On the cobar construction of a bialgebra[END_REF]. The homotopy G-algebras are also known as the Gerstenhaber-Voronov algebras defined in [START_REF] Gerstenhaber | Homotopy G-algebras and moduli space operad[END_REF]. We define the Hirsch algebras and the homotopy G-algebras via the bar construction.

Definition 2.1.

A Hirsch algebra Λ is the data of a connected DG-algebra (Λ, d, µ Λ ) together with a map µ : B Λ ⊗ B Λ → B Λ making B Λ into an associative unital DG-bialgebra.

For a connected DG-algebra Λ a DG-product µ : B Λ ⊗ B Λ → B Λ corresponds to a twisting cochain E ∈ Tw(B Λ ⊗ B Λ, Λ), cf. Theorem 1.1. After a correct use of desuspensions (see sign convention below), the latter is a family of operations {E i,j } i,j≥1 , E i,j : Λ ⊗i ⊗ Λ ⊗j → Λ satisfying some relations, see [START_REF] Kadeishvili | On the cobar construction of a bialgebra[END_REF]. We denote by µ E : B Λ ⊗ B Λ → B Λ such a DG-product.

A Hirsch algebra is a particular B ∞ -algebra whose underlying A ∞ -algebra structure is a DGA structure. Recall that the bar construction B Λ of a DG-algebra Λ is the cofree tensor coalgebra T c (sΛ) together with the derivation induced by the differential and the product of Λ.

Λ T c (sΛ) DGA (d Λ , µ Λ ) DGC d induced by d Λ and µ Λ A ∞ {µ k } k≥0 DGC d induced by µ k for k ≥ 0 Hirsch (d Λ , µ, {E i,j } i,j≥1 ) DG-bialgebra d induced by d Λ and µ ; DG-product µ E B ∞ ({µ k } k≥0 , {E i,j } i,j≥1 ) DG-bialgebra d induced by µ k for k ≥ 0 ; DG-product µ E Definition 2.2. A homotopy G-algebra (Λ, d Λ , µ Λ , {E 1,j } j≥1 ) is a Hirsch algebra (Λ, d Λ , µ Λ , {E i,j } i,j≥1
) such that E i,j = 0 for i ≥ 2.

Sign convention

Let E ∈ Tw(B Λ ⊗ B Λ, Λ) be a twisting cochain. Its (i, j)-component is E i,j : (s Λ) ⊗i ⊗ (s Λ) ⊗j → Λ. We denote by E i,j :

Λ ⊗i ⊗ Λ ⊗j → Λ the component E i,j (a 1 ⊗ ... ⊗ a i ⊗ a i+1 ⊗ ... ⊗ a i+j ) := (-1) ∑ i+j-1 s=1 |a s |(i+j-s) E i,j (s ⊗i ⊗ s ⊗j )(a 1 ⊗ ... ⊗ a i ⊗ a i+1 ⊗ ... ⊗ a i+j ) = E i,j (s a 1 ⊗ ... ⊗ s a i ⊗ s a i+1 ⊗ ... ⊗ s a i+j ). (2.1)
The degree of E i,j is i + j -1. We denote

E i,j ((a 1 ⊗ ... ⊗ a i ) ⊗ (b 1 ⊗ ... ⊗ b j )) by E i,j (a 1 , ..., a i ; b 1 , ...b j ).
Let B be a 1-reduced DG-bialgebra. For a ∈ B and b

:= s -1 b 1 ⊗ ... ⊗ s -1 b s ∈ ΩB, we set a ⋄ b = s -1 (a 1 b 1 ) ⊗ ... ⊗ s -1 (a s b s ).
Proposition 2.3. [START_REF] Kadeishvili | On the cobar construction of a bialgebra[END_REF] Let B be a 1-reduced DG-bialgebra. Then the cobar construction (ΩB, d Ω ) together with the operations E 1,k , k ≥ 1 defined by

E 1,k (s -1 a 1 ⊗ ... ⊗ s -1 a n ; b 1 , ..., b k ) = ∑ 1≤i 1 ≤i 2 ≤...≤i k ≤n ± s -1 a 1 ⊗ ... ⊗ s -1 a i 1 -1 ⊗ a i 1 ⋄ b 1 ⊗ ... ⊗ s -1 a i k -1 ⊗ a i k ⋄ b k ⊗ s -1 a i k +1 ⊗ ... ⊗ s -1 a n (2.2)
when n ≥ k and zero when n < k is a homotopy G-algebra.

In particular the operation E 1,1 : ΩB ⊗ ΩB → ΩB is given by

E 1,1 (s -1 a 1 ⊗ ... ⊗ s -1 a m ; s -1 b 1 ⊗ ... ⊗ s -1 b n ) := m ∑ l=1 (-1) γ s -1 a 1 ⊗ ...(a 1 l • b 1 ) ⊗ ... ⊗ s -1 (a n l • b n ) ⊗ ... ⊗ s -1 a m (2.3) with γ = n ∑ u=1 |b u | m ∑ s=l+u |a s | + m -l -u + 1 + κ n (a l ) + n ∑ u=2 (|a u l | -1) u-1 ∑ s=1 |b s | -u + 1 + n ∑ s=1 (|a s l | -1)(2n -2s + 1) + n-1 ∑ s=1 (|a s l | + |b s |)(n -s),
where

κ n (a) := ∑ 1≤2s+1≤n |a 2s+1 | if n is even; ∑ 1≤2s≤n |a 2s | if n is odd.
We postpone the construction of this operation to Appendix.

Homotopy BV-algebra on the cobar construction

We define a homotopy BV-algebra as a homotopy G-algebra (in the sense of Gerstenhaber-Voronov [START_REF] Gerstenhaber | Homotopy G-algebras and moduli space operad[END_REF]) together with a BV-operator. The main example, that we will discuss in details, is the cobar construction of a 1-reduced involutive DG-Hopf algebra H. The BV-operator on ΩH is the Connes-Moscovici operator defined in [START_REF] Connes | Cyclic cohomology and Hopf algebra symmetry[END_REF].

Definition 2.4.

A homotopy BV-algebra Λ is a homotopy G-algebra together with a degree one DG-operator ∆ : Λ → Λ subject to the relations:

∆ 2 = 0; {a; b} = (-1) |a| ∆(a • b) -∆(a) • b -(-1) |a| a • ∆(b) + d Λ H(a; b) + H(d Λ a; b) + (-1) |a| H(a; d Λ b) for all a, b ∈ Λ, where {-; -} is the Gerstenhaber bracket {a; b} = E 1,1 (a; b) -(-1) (|a|+1)(|b|+1) E 1,1 (b; a) and H : Λ ⊗ Λ → Λ is a degree 2 linear map.
A straightforward calculation shows that:

∆({a; b}) = {∆(a); b} + (-1) |a|+1 {a; ∆(b)} -∂H(a; b), where H(a; b) := ∆H(a; b) + H(∆(a); b) + (-1) |a| H(a; ∆(b)) ∀a, b ∈ Λ.
Therefore ∆ is a derivation for the bracket {-; -} if ∆ is a derivation for H, or more generally if ∆ is a derivation for H up to a homotopy.

In the example we consider hereafter, the homotopy H is itself antisymmetric, more precisely, we have H(a; b)

:= H 1 (a; b) -(-1) (|a|+1)(|b|+1) H 1 (b; a)
. It turns out that the operator ∆ is not a derivation for H in general. However we do not know yet if there exists a homotopy H ′ such that H = ∂H ′ . A. Connes and H. Moscovici defined in [START_REF] Connes | Cyclic cohomology and Hopf algebra symmetry[END_REF] a boundary map on the cobar construction of an involutive Hopf algebra H. This operator, hereafter called the Connes-Moscovici operator, induces a BV-operator on the homology H * (ΩH). More precisely, let (H, d, µ, η, ∇, ǫ, S) be an involutive DG-Hopf algebra, that is with an involutive antipode S. With our sign convention, the Connes-Moscovici operator ∆ : ΩH → ΩH is zero on both R = (s -1 H) ⊗0 and (s -1 H) ⊗1 , and is given on the n-th component (s -1 H) ⊗n , n ≥ 2 by:

∆(s -1 a 1 ⊗ s -1 a 2 ⊗ ... ⊗ s -1 a n ) = n-1 ∑ i=0 (-1) i π n τ i n (s -1 a 1 ⊗ s -1 a 2 ⊗ ... ⊗ s -1 a n ), (2.4) 
where τ n is the cyclic permutation

τ n (s -1 a 1 ⊗ s -1 a 2 ⊗ ... ⊗ s -1 a n ) := (-1) (|a 1 |-1)(∑ n i=2 |a i |-1) s -1 a 2 ⊗ s -1 a 3 ⊗ ... ⊗ s -1 a n ⊗ s -1 a 1 ,
and

π n := (s -1 µ) ⊗n-1 τ n-1,n-1 (S ⊗n-1 ⊗ 1 ⊗n-1 )((τ∇) (n-2) ⊗ 1 n-1 ) s ⊗n , τ n,n (a 1 ⊗ a 2 ⊗ ... ⊗ a n ⊗ b 1 ⊗ ... ⊗ b n ) := (-1) ∑ n-1 i=1 |b i |(∑ n j=i+1 |a j |) a 1 ⊗ b 1 ⊗ a 2 ⊗ b 2 ⊗ ... ⊗ a n ⊗ b n . More explicitly, ∆(s -1 a 1 ⊗ s -1 a 2 ⊗ ... ⊗ s -1 a n ) = n ∑ k=1 ± s -1 S(a n-1 k )a k+1 ⊗ s -1 S(a n-2 k )a k+2 ⊗ ... ⊗ s -1 S(a 1 k )a k-1 . (2.5)
The involutivity of the antipode of H makes ∆ into a square zero chain map. L. Menichi proved [17, Proposition 1.9] that for a unital (ungraded) Hopf algebra H, the Connes-Moscovici operator induces a Batalin-Vilkovisky algebra on the homology of the cobar construction H * (ΩH). In our context, Proposition 2.5. [START_REF] Menichi | Batalin-Vilkovisky algebras and cyclic cohomology of Hopf algebras[END_REF] Let H be a 1-reduced involutive DG-Hopf algebra. Then the cobar construction (ΩH, d Ω ) is a homotopy BV-algebra whose the BV-operator is defined in (2.4).

Proof. Let us define Menichi's homotopy H(a; b)

:= H 1 (a; b) -(-1) (|a|+1)(|b|+1) H 1 (b; a). H 1 (s -1 a 1 ⊗ ... ⊗ s -1 a m ; s -1 b 1 ⊗ ... ⊗ s -1 b n ) := ∑ 1≤j≤p≤m-1 (-1) ξ j +n+1 π s m+n-1 τ s,n+m-1-j m+n-1 ρ (p-j+1) n+m (s -1 a 1 ⊗ ... ⊗ s -1 a m ⊗ s -1 b 1 ⊗ ... ⊗ s -1 b n ) (2.6)
with

ξ j =          m ∑ s=1 |a s | for j = 1; m ∑ s=m-j+1 |a s | for j > 1.
Where,

π s m = π m (s -1 ) ⊗m τ s,i m := (τ s m ) i τ m (a 1 ⊗ a 2 ⊗ ... ⊗ a m ) := (-1) |a 1 |(∑ n i=2 |a i |) a 2 ⊗ a 3 ⊗ ... ⊗ a m ⊗ a 1 ρ (i) m+1 := (1 ⊗i-1 ⊗ µ ⊗ 1 ⊗m-i )(1 ⊗i-1 ⊗ τ m-i+1,1 )s ⊗m+1 τ k,1 (a 1 ⊗ ... ⊗ a k ⊗ b) := (-1) |b|(∑ k i=2 |a i |) a 1 ⊗ b ⊗ a 2 ⊗ ... ⊗ a k .
By Proposition [17, Proposition 1.9] we have

{a; b} = (-1) |a| ∆(a • b) -∆(a) • b -(-1) |a| a • ∆(b) + d 1 H(a; b) + H(d 1 a; b) + (-1) |a| H(a; d 1 b)
on the cobar construction (ΩH,

d 0 + d 1 )
, where d 1 is the quadratic part of the differential d Ω . The operators involved in the above equation commute with d 0 . Therefore we can replace d 1 by d Ω in the previous equation.

Involutivity of the antipode of ΩC in terms of the homotopy G-coalgebra C

A Hirsch coalgebra C is the formal dual of a Hirsch algebra, that is it corresponds to a DG-coproduct ∇ : ΩC → ΩC ⊗ ΩC making ΩC into a DG-bialgebra. Baues' coproduct [START_REF] Baues | The cobar construction as a Hopf algebra[END_REF] ∇ 0 : ΩC * (X) → ΩC * (X) defined on the cobar construction of a simplicial set X corresponds to a homotopy G-coalgebra structure E k,1 on C * (X), that is a particular case of Hirsch coalgebra structure. With this example in mind we consider a homotopy G-coalgebra (C, E k,1 ). Then there exists a unique antipode S : ΩC → ΩC on its cobar construction. The purpose of this section is to give a criterion for the involutivity of the antipode S in terms of the operations E k,1 . This takes the form of a family of operations

O n : s -1 C → (s -1 C) ⊗n , n ≥ 2.
For convenience, we set

C := s -1 C. Thus O n : C → C ⊗n , n ≥ 2. Definition 3.1. A Hirsch coalgebra C is the data of a 1-reduced DG-coalgebra (C, d, ∇ C
) together with a map ∇ : ΩC → ΩC ⊗ ΩC making ΩC into a coassociative counital DG-bialgebra. The corresponding operations on C are denoted by E i,j : C → C ⊗i ⊗ C ⊗j . The degree of E i,j is 0. A homotopy G-coalgebra is a Hirsch coalgebra whose operations E i,j = 0 for j ≥ 2.

Let the cobar construction (ΩC, d, µ Ω , ∇) be a DG-bialgebra. We can define the antipode S : ΩC → ΩC by S(η(1)) = η(1) and for σ ∈ C n with n ≥ 1 by

S(σ) := -σ -µ Ω (S ⊗ 1)∇(σ) (3.1) which makes sense since ∇(σ) ⊂ i+j=n 0<i,j<n (ΩC) i ⊗ (ΩC) j . Indeed, µ Ω (S ⊗ 1)∇(η(1)) = ηǫη(1) = η(1) gives immediately that S(η(1)) = η(1). Moreover, since µ Ω (S ⊗ 1)∇(σ) = 0 for all σ ∈ C n with n ≥ 1, we have µ Ω (S ⊗ 1)∇(σ) = µ Ω (S ⊗ 1)∇(σ) + µ Ω (S(σ) ⊗ η(1) + S(η(1)) ⊗ σ) = µ Ω (S ⊗ 1)∇(σ) + S(σ) + σ = 0.
Remark 3.2. Equivalently, we can define S, see [14, section 1.3.10 p.15], as the geometric serie (Id) ⌣-1 = ∑ n≥0 (ηǫ -Id) ⌣n with (ηǫ -Id) ⌣0 = ηǫ and where ⌣ denote the convolution product from Definition 1.2. Note that this sum is finite when it is evaluated on an element. This presentation is combinatorial and gives for

[σ] ∈ (s -1 C) n , S([σ]) = ηǫ([σ]) + (ηǫ -Id)([σ]) + µ Ω ∇([σ]) -µ (2) Ω ∇ (2) ([σ]) + ... + (-1) n-1 µ (n) Ω ∇ (n) ([σ]). (3.2)
By the iii of Proposition 1.4 the antipode is an algebra antimorphism that is an algebra morphism from (ΩC, µ Ω ) to ΩC (12) := (ΩC, µ Ω (12) := µ Ω τ). Moreover, it is also a DG-map, therefore it corresponds to a twisting cochain F ∈ Tw(C, ΩC [START_REF] Kassel | Quantum groups[END_REF] ). An antipode is determined by the underlying bialgebra structure. Here the latter is equivalent to a homotopy G-algebra structure E k,1 on C. We make explicit the twisting cochain F in terms of E k,1 . We recall the notation C := s -1 C. We write

F i : C → C ⊗i for the i-th component of F. The relation 1 µ Ω (1 ⊗ S)∇ = ηǫ gives F 1 = -Id C ; (3.3) F n = ∑ 1≤s≤n-1 n 1 +...+n s =n-1 n i ≥1 (-1) s+1 (1 ⊗n 1 +...+n s-1 ⊗ E n s ,1 )...(1 ⊗n 1 ⊗ E n 2 ,1 )E n 1 ,1 , n ≥ 2. (3.4)
Let the operation E n i ,1 : C → C ⊗n i ⊗ C be represented by the tree in Figure 1. Then the summands of the equation (3.4) are represented by the tree in Figure 2.

1 • • • n i Figure 1: The operation E n i ,1 . 1 • • • n 1 1 • • • n 2 1 • • • n s Figure 2: A summand of F n
The three first terms are

F 1 = -Id C , F 2 = E 1,1 and F 3 = -(1 ⊗ E 1,1 )E 1,1 + E 2,1 .
Formulated in these terms, the n-th component of the difference S 2 -Id is zero for n = 1 and

O n := n ∑ s=1 ∑ n 1 +...+n s =n µ (s) Ω (12) (F n 1 ⊗ ... ⊗ F n s )F s (3.5) for n ≥ 2. The terms (F n 1 ⊗ ... ⊗ F n s )F s have codomain C ⊗n 1 ⊗ C ⊗n 2 ⊗ • • • ⊗ C ⊗n s . The s-iterated product µ (s) Ω (12)
permutes these s blocks as the permutation

1 2 • • • s -1 s s s -1 • • • 2 1     in S s ,
where S s denotes the symmetric group on s objects. The two first terms we obtain are

O 2 = F 2 -τF 2 = E 1,1 -τE 1,1
and

O 3 = (1 + τ 3 )F 3 + τ 2,1 (F 2 ⊗ 1)F 2 + τ 1,2 (1 ⊗ F 2 )F 2 = (τ 1,2 -1 -τ 3 )(1 ⊗ E 1,1 )E 1,1 + τ 2,1 (E 1,1 ⊗ 1)E 1,1 + (1 + τ 3 )E 2,1 ,
1 We can also consider µ Ω (S ⊗ 1)∇ = ηǫ. It gives equivalent F n but with a more complicated description because of the apparition of permutations. For example

F 3 = -(E 1,1 ⊗ 1)E 1,1 -(τ ⊗ 1)E 2,1 .
where the permutations are τ In fact we can make more precise the second point of the previous proposition. Let M be a DGmodule and let M ≤n be the sub-module of elements m ∈ M of degree |m| ≤ n. The homotopy G-coalgebra structure on a connected coalgebra C preserves the filtration C ≤n . Indeed the degree of the operations E k,1 : C → C ⊗k ⊗ C is 0. We have,

1,2 (a ⊗ b ⊗ c) = ±b ⊗ c ⊗ a, τ 2,1 (a ⊗ b ⊗ c) = ±c ⊗ a ⊗ b and τ 3 (a ⊗ b ⊗ c) = ±c ⊗ b ⊗ a;
Proposition 3.4. Let (C, d, ∇ C , E k,1 ) be an i-reduced homotopy G-coalgebra, i ≥ 2. If there exists an integer n such that O k = 0 for ki ≤ n -1, then Ω 2 (C ≤n ) is a homotopy BV-algebra. Proof. The degree of O k : C → C ⊗k is 0. Then on s -1 (C ≤n ) = C ≤n-1 the only eventually non-zero operations O k : C ≤n → ( C ≤n ) ⊗k are those with ki ≤ n -1.
Remark 3.5. The two previous propositions work for a Hirsch coalgebra C instead of a homotopy G-coalgebra : the operations from (3.5) have the same definition in terms of F n ; only the F n 's defining the antipode differ. However, the involved techniques above are quite similar for Hirsch coalgebras.

Remark 3.6. For a general Hirsch coalgebra (C, E i,j ) the condition of cocommutativity of the coproduct on ΩC is E i,j = τE j,i for all (i, j). Accordingly, with Proposition 1.4 we see (already in component three) that condition for the antipode to be involutive is weaker than condition for coproduct to be cocommutative. When the Hirsch coalgebra is a homotopy G-coalgebra, the cocommutativity of the coproduct means that the homotopy G-coalgebra is quasi trivial: E 1,1 = τE 1,1 and E k,1 = 0 for k ≥ 2.

Applications

On a homotopy G-coalgebra structure of C * (X)

The chain complex C * (X) of a topological space or a simplicial set X has a rich algebraic structure, it is an E ∞ -coalgebra. This was treated in many papers including J. McClure and J. Smith [START_REF] Mcclure | Multivariable cochain operations and little n-cubes[END_REF], C. Berger and B. Fresse [START_REF] Berger | Combinatorial operad actions on cochains[END_REF]. For example, the surjection operad χ introduced in [START_REF] Mcclure | Multivariable cochain operations and little n-cubes[END_REF] acts on the normalized chain complex C * (X) of a simplicial set X making it into a coalgebra over χ, see [START_REF] Berger | Combinatorial operad actions on cochains[END_REF][START_REF] Mcclure | Multivariable cochain operations and little n-cubes[END_REF]. It has a filtration of suboperads

F 1 χ ⊂ F 2 χ ⊂ • • • ⊂ F n-1 χ ⊂ F n χ ⊂ • • • ⊂ χ.
This structure leads to a coproduct ∇ 0 : ΩC * (X) → ΩC * (X) ⊗ ΩC * (X) first defined by Baues in [START_REF] Baues | The cobar construction as a Hopf algebra[END_REF]. The third stage filtration F 3 χ gives a homotopy cocommutativity ∇ 1 : ΩC * (X) → ΩC * (X) ⊗ ΩC * (X) to Baues' coproduct, see [START_REF] Baues | The cobar construction as a Hopf algebra[END_REF]. In turn the operation ∇ 1 : ΩC * (X) → ΩC * (X) ⊗ ΩC * (X) is cocommutative up to a homotopy ∇ 2 : ΩC * (X) → ΩC * (X) ⊗ ΩC * (X) and so on. The resulting structure is known as a structure of DG-bialgebra with Steenrod coproduct ∇ i . This was achieved by Kadeishvili in [START_REF] Kadeishvili | Cochain operations defining Steenrod ⌣ i -products in the bar construction[END_REF] where the corresponding operations in χ are given.

Baues' coproduct [3, p.334], [4, (2.9) equation ( 3)] on the cobar construction ΩC * (X) corresponds to a homotopy G-coalgebra on C * (X). By a direct comparison, we see that this homotopy G-coalgebra structure coincides with the one given in [START_REF] Berger | Combinatorial operad actions on cochains[END_REF][START_REF] Mcclure | Multivariable cochain operations and little n-cubes[END_REF]. To be more precise, let

E k,1 0 : C * (X) → C * (X) ⊗k ⊗ C * (X)
be the operations defined by Baues' coproduct

∇ 0 : ΩC * (X) → ΩC * (X) ⊗ ΩC * (X). Let E 1,k : C * (X) → C * (X) ⊗ C * (X) ⊗k
the operations defined by

E 1,k (s -1 σ) = ∑ 0≤j 1 <j 2 <...<j 2k ≤n ± s -1 σ(0, ..., j 1 , j 2 , ..., j 3 , j 4 , • • • , j 2k-1 , j 2k , ..., n) ⊗ s -1 σ(j 1 , ..., j 2 ) ⊗ s -1 σ(j 3 , ..., j 4 ) ⊗ • • • ⊗ s -1 σ(j 2k-1 , ...j 2k ), for s -1 σ ∈ C n (X). These are the operations denoted by AW(1, 2, 1, 3, ..., k -1, 1, k) in [5, section 2.2] where AW(u) : C * (X) → C * (X) ⊗n is defined for a surjection u ∈ χ(n) d . The operad F 2 χ is generated by the surjections (1, 2) and (1, 2, 1, 3, ..., 1, k, 1, k + 1, 1) for k ≥ 1. Then the operations E 1,k := AW(1, 2, 1, 3, ..., k, 1, k + 1, 1),
define a homotopy G-coalgebra structure on C * (X). We have Proposition 4.1. Let X be a 1-reduced simplicial set. Then

E k,1 0 = ±τ 1,k E 1,k ,
where τ 1,k orders the factors as the following permutation

1 2 • • • k k + 1 2 3 • • • k + 1 1     .
Proof. First we recall Baues' coproduct ∇ 0 . We adopt the same conventions as in [START_REF] Baues | The double bar and cobar constructions[END_REF]. For

σ i ∈ X, the tensor [σ 1 |σ 2 |...|σ n ] is the tensor s -1 σ i 1 ⊗ s -1 σ i 2 ⊗ ... ⊗ s -1 σ i r where the indices i j are such that σ i j ∈ X n i j with n i j ≥ 2. For a subset b = {b 0 < b 1 < ... < b r } ⊂ {0, 1, .
.., n} we denote by i b the unique order-preserving injective function

i b : {0, 1, ..., r} → {0, 1, ..., n} such that Im(i b ) = b. Let σ ∈ X n and 0 ≤ b 0 < b 1 ≤ n. We denote by σ(b 0 , ..., b 1 ) the element i * b σ ∈ X b 1 -b 0 where b = {b 0 , b 0 + 1, ..., b 1 -1, b 1 }. Let b ⊂ {1, ..., n -1}, we denote by σ(0, b, n) the element i * b ′ σ where b ′ = {0} ∪ b ∪ {n}. Baues' coproduct ∇ 0 [3, p.334] is defined on σ ∈ X n , n ≥ 2 by: ∇ 0 : ΩC * (X) → ΩC * (X) ⊗ ΩC * (X) s -1 σ = [σ] → ∑ b={b 1 <b 2 <...<b r } b⊂{1,...,n-1} (-1) ζ [σ(0, ..., b 1 )|σ(b 1 , ..., b 2 )|...|σ(b r , ..., n)] ⊗ [σ(0, b, n)] (4.1)
where

ζ = r|σ(0, .., b 1 )| + r ∑ i=2 (r + 1 -i)|σ(b i-1 , ..., b i )| -r(r + 1)/2,
it is extended as an algebra morphism on the cobar construction. We show that the coproduct ∇ 0 defines the same homotopy G-coalgebra structure on C * (X) when X is 1-reduced. Let σ be an n-simplex, then Baues' coproduct is a sum over the subset b = {b 1 < b 2 < ... < b r } ⊂ {1, ..., n -1}. For such a b, we set b 0 := 0, b r+1 := n and we defined β l ∈ b ∪ ∅ as follows. For l = 1,

β 1 := min 1≤i≤r+1 {b i | b i -b i-1 ≥ 2},
and let η 1 be the index such that b η 1 = β 1 ; for l ≥ 2,

β l := min η l-1 +1≤i≤r+1 {b i | b i -b i-1 ≥ 2}
where η l is the index such that b η l = β l . Moreover, we set α l := b η l -1 . Let k be the integer such that 1 ≤ l ≤ k. Explicitly, k is given by:

k = #{1 ≤ i ≤ r + 1 | b i -b i-1 ≥ 2}.
Thus the coproduct ∇ 0 is

∇ 0 ([σ]) = n ∑ k=0 ∑ 0≤α 1 ≤β 1 ≤α 2 ≤•••≤α k ≤β k ≤n β i -α i ≥2, 1≤i≤k ± s -1 σ(α 1 , ..., β 1 ) ⊗ s -1 σ(α 2 , ..., β 2 ) ⊗ • • • • • • ⊗ s -1 σ(α k , ..., β k ) ⊗ s -1 σ(0, ..., α 1 , β 1 , ..., α 2 , • • • , α k , β k , ..., n).
Thus we have,

E k,1 (s -1 σ) = ∑ ± s -1 σ(α 1 , ..., β 1 ) ⊗ s -1 σ(α 2 , ..., β 2 ) ⊗ • • • ⊗ s -1 σ(α k , ..., β k )⊗ s -1 σ(0, ..., α 1 , β 1 , ..., α 2 , • • • , α k , β k , ..., n).
The result is obtained by setting j 2l-1 = α l and j 2l = β l . Since X is 1-reduced, the elements σ(j l , ..., j l+1 ) such that j l+1j l = 1 are elements in X 1 = * = s 0 ( * ) and then are degenerate.

In the two next subsections 4.2 and 4.3 we adopt the above notations for the homotopy Gcoalgebra structure E 1,k on C * (X).

Obstruction to the involutivity of the antipode of ΩC * (ΣX)

Let ΣX be a simplicial suspension of a simplicial set X. We show that the family of obstructions O n : C * (ΣX) → C * (ΣX) ⊗n defined in (3.5) can be reduced to O 2 : C * (ΣX) → C * (ΣX) ⊗2 ; the latter being governed by the (lack of) cocommutativity of the operation E 1,1 . Definition 4.2. [15, Definition 27.6 p.124] Let X be a simplicial set such that X 0 = * and with face and degeneracy operators s j : X n → X n+1 and d j : X n → X n-1 . The simplicial suspension ΣX is defined as follow. The component (ΣX) 0 is just an element a 0 and (ΣX) n = {(i, x) ∈ N ≥1 × X n-i }/ (i, s n 0 ( * )) = s n+i 0 (a 0 ) . We set a n = s n 0 (a 0 ). The face and degeneracy operators are generated by:

• d 0 (1, x) = a n for all x ∈ X n ; • d 1 (1, x) = a 0 for all x ∈ X 0 ; • d i+1 (1, x) = (1, d i (x)) for all x ∈ X n , n > 0; • s 0 (i, x) = (i + 1, x); • s i+1 (1, x) = (1, s i (x)),
with the other face and degeneracy operators determined by the requirement that ΣX is a simplicial set. Proposition 4.3. [START_REF] Hess | A chain coalgebra model for the James map[END_REF] The differential of (ΩC * (ΣX), d 0 + d 1 ) is reduced to its linear part d 0 .

Proof. The only non degenerate elements in ΣX are (1, x) and we have that d 0 (1, x) = a n is degenerate. Therefore the Alexander-Whitney coproduct on C * (ΣX) is primitive (we recall that C * are the normalized chains). Then, the reduced coalgebra C * (ΣX) is a trivial coalgebra; so the quadratic part d 1 of the differential d Ω = d 0 + d 1 on the cobar construction is trivial.

A natural coproduct to define is the shuffle coproduct (primitive on cogenerators) which gives a cocommutative DG-Hopf structure to ΩC * (ΣX); applying Proposition 2.5 we obtain on Ω 2 C * (ΣX) a homotopy BV-algebra structure. However, this coproduct does not correspond to Baues' coproduct ∇ 0 . Indeed, the homotopy G-algebra structure on C * (ΣX) is not completely trivial. Because of the cocommutativity of the Alexander-Whitney coproduct on C * (ΣX), the operation E 1,1 must be a chain map but not necessary the zero map. We obtain, Proposition 4.4. The homotopy G-coalgebra structure E k,1 on C * (ΣX) given by Baues' coproduct is

E 1,1 (s -1 σ) = ∑ 1<l<n ± s -1 σ(0, ..., l) ⊗ s -1 σ(0, l, l + 1, ..., n); E k,1 = 0 for k ≥ 2.
Proof. For a non-degenerate σ ∈ (ΣX) n , we have d 0 σ = σ(1, ..., n) is degenerate. Consequently, the operation

E 1,1 (s -1 σ) = ∑ k<l ± s -1 σ(k, ..., l) ⊗ s -1 σ(0, ..., k, l, l + 1, ..., n) reduces to E 1,1 (s -1 σ) = ∑ 1<l<n ± s -1 σ(0, ..., l) ⊗ s -1 σ(0, l, l + 1, ..., n).
The higher operations E k,1 for k ≥ 2 given by

E 1,k (s -1 σ) = ∑ 0≤j 1 <j 2 <...<j 2k ≤n ± s -1 σ(0, ..., j 1 , j 2 , ..., j 3 , j 4 , • • • , j 2k-1 , j 2k , ..., n) ⊗ s -1 σ(j 1 , ..., j 2 ) ⊗ s -1 σ(j 3 , ..., j 4 ) ⊗ • • • ⊗ s -1 σ(j 2k-1 , ...j 2k )
are zero since the terms σ(j 3 , ..., j 4 ) are degenerate.

The triviality of higher operations E k,1 for k ≥ 2 does not imply the vanishing of higher obstructions O n since the E 1,1 operation appears in all the O n 's. However, we can reduce the family of obstructions O n to only O 2 in this case.

Proposition 4.5. Let (C, d, ∇ C , E k,1 ) be a homotopy G-coalgebra with E k,1 = 0 for k ≥ 2. If O 2 = E 1,1 -τE 1,1 is zero, then so is O n for n ≥ 2.
Proof. By making explicit the coassociativity of the coproduct ∇ : ΩC → ΩC we obtain, in particular, the equation

(1 ⊗ E 1,1 )E 1,1 -(E 1,1 ⊗ 1)E 1,1 = (τ ⊗ 1)E 2,1 + (1 ⊗ 1)E 2,1 .
Therefore the triviality of the higher operation E 2,1 implies that E 1,1 is coassociative. Together with the vanishing of O 2 we obtain a coassociative and cocommutative operation E 1,1 . We use this fact to vanish the O n 's : by (3.4), the terms F i , i ≤ n involved in O n are

F n =(-1) n (1 ⊗n-2 ⊗ E 1,1 ) • • • (1 ⊗ E 1,1 )E 1,1 .
Now because of the coassociativity of E 1,1 we can write each term µ

(s) Ω (12) (F n 1 ⊗ ... ⊗ F n s )F s of the sum O n = n ∑ s=1 ∑ n 1 +...+n s =n µ (s) Ω (12) (F n 1 ⊗ ... ⊗ F n s )F s
as ±σ • F n where σ is a permutation (depending of the term we consider). Now using the cocommutativity and again the coassociativity of E 1,1 we can remove all transpositions to obtain ±F n . A direct counting shows that positive and negative terms are equal in number : the sign of (F n 1 ⊗ ... ⊗ F n s )F s is (-1) n 1 +...+n s +s = (-1) n+s and the number of partitions of n into s integers ≥ 1 is ( n-1 s-1 ). Therefore we can consider O 2 as the only obstruction to the involutivity of the antipode on the cobar construction.

Homotopy BV-algebra structure on

Ω 2 C * (Σ 2 X)
Here we prove that the homotopy G-coalgebra structure on C * (Σ 2 X) is trivial and then that ΩC * (Σ 2 X) is an involutive DG-Hopf algebra with the shuffle coproduct. Theorem 4.6. Let Σ 2 X be a double suspension. Then :

• the homotopy G-coalgebra structure on C * (Σ 2 X) corresponding to Baues' coproduct

∇ 0 : ΩC * (Σ 2 X) → ΩC * (Σ 2 X) ⊗ ΩC * (Σ 2 X),
has trivial higher operations i.e. E 1,k = 0 for k ≥ 1;

• the double cobar construction Ω 2 C * (Σ 2 X) is a homotopy BV-algebra with the BV-operator from (2.4).

Proof. By Proposition 4.4 the operations E k,1 for k ≥ 2 are trivial. Therefore to prove the first statement it remains to prove that E 1,1 is trivial. This follows that

d 1 (1, (1, x)) = (1, d 0 (1, x)) = (1, a n ) = s n+1 (1, a 0 ) is degenerate. Indeed, the operation E 1,1 (s -1 σ) = ∑ 1<l<n ± s -1 σ(0, ..., l) ⊗ s -1 σ(0, l, l + 1, ..., n) is trivial since l > 1.
For the second statement since the homotopy G-coalgebra structure is trivial, all the obstructions O n are zero and so, by Proposition 3.3, we obtain the announced homotopy BV-algebra structure on Ω 2 C * (Σ 2 X).

We make explicit the homotopy BV-algebra structure on Ω 2 C * (Σ 2 X). Let us first observe that Baues' coproduct ∇ 0 is a shuffle coproduct. Indeed, the homotopy G-coalgebra structure on C * (Σ 2 X) being trivial, for any element a ∈ C * (Σ 2 X) we have

∇ 0 (s -1 a) = (E 1,0 + E 0,1 )(s -1 a) = s -1 a ⊗ 1 + 1 ⊗ s -1 a ∈ ΩC * (Σ 2 X) ⊗ ΩC * (Σ 2 X).
Therefore its extension ∇ 0 : ΩC * (Σ 2 X) → ΩC * (Σ 2 X) ⊗ ΩC * (Σ 2 X) as algebra morphism is the shuffle coproduct, see [START_REF] Kassel | Quantum groups[END_REF]Theorem III.2.4]. We write ∇ 0 as

∇ 0 ([a 1 |...|a n ]) = ∑ I 0 ∪I 1 ±[a I 0 ] ⊗ [a I 1 ]
where the sum is taken over all partitions I 0 ⊔ I 1 of I = {1, ..., n} with

I 0 = {i 1 < i 2 < ... < i k } and I 1 = {j 1 < j 2 < ... < j n-k }.
We denote a I 0 to be a i 1 ⊗ a i 2 ⊗ ... ⊗ a i k . Also we denote a I -1 0 to be a i k ⊗ ... ⊗ a i 2 ⊗ a i 1 and similarly for a I 1 . Now we make explicit the BV-operator on a 2 and 3-tensor. For the sake of simplicity we do not keep track of signs; also to avoid confusion we write a = [a 1 |a 2 |...|a k ] for the basic elements of ΩC * (Σ 2 X) and [a 1 , a 2 , ..., a n ] for the basic elements of

Ω 2 C * (Σ 2 X). Thus [a 1 , a 2 , ..., a n ] is [[a 1,1 |a 1,2 |...|a 1,k 1 ], [a 2,1 |a 2,2 |...|a 2,k 2 ], ..., [a n,1 |a n,2 |...|a n,k n ]].
With these conventions, the BV-operator ∆ is given by

∆([a, b]) = ∆([[a 1 |...|a m ], [b 1 |...|b n ]]) = [[a m |...|a 1 |b 1 |...|b n ]] + [[b n |...|b 1 |a 1 |...|a m ]]. ∆([[a 1 |...|a m ], [b 1 |...|b n ], [c 1 |...|c r ]]) = [[a I -1 1 |b 1 |...|b n ], [a I -1 0 |c 1 |...|c r ]] + [[b I -1 1 |c 1 |...|c r ], [b I -1 0 |a 1 |...|a m ]] + [[c I -1 1 |a 1 |...|a m ], [c I -1 0 |b 1 |...|b n ]].
The homotopy H from Proposition 2.5 is given by

H([a, b]) = 0.
To know explicitly each term of

∆([a, b, c]) -[a, b, ∆([c])] -[∆([a, b]), c] -{[a, b]; [c]} = ∂H([a, b]; [c])
we need to know the following terms:

H([a, b]; [c]) = H([[a 1 |...|a m ], [b 1 |...|b n ]]; [[c 1 |...|c r ]]) = ±[[b n |...|b 1 |a 1 |...|a m |c 1 |...|c r ]], H([a, b, c]; [d]) = H([[a 1 |...|a m ], [b 1 |...|b n ], [c 1 |...|c r ]]; [[d 1 |...|d s ]]) = ±[[c I -1 1 |a 1 |...|a m |d 1 |...|d s ], [c I -1 0 |b 1 |...|b n ]] ± [[c I -1 1 |a 1 |...|a m ], [c I -1 0 |b 1 |...|b n |d 1 |...|d s ]] ± [[b I -1 1 |c 1 |...|c r ], [b I -1 0 |c 1 |...|c r |d 1 |...|d s ]],
and

H([a, b]; [c, d]) = ±[[c I -1 1 |a 1 |...|a m |d 1 |...|d s ], [c I -1 0 |b 1 |...|b n ]].
Remark 4.7. From a topological point of view, let us consider X to be a connected (countable) CWcomplex with one vertex. The James/Milgram's models J i (X) are H-spaces homotopically equivalent to Ω i Σ i X, see [18, theorem 5.2]. Moreover, for i ≥ 1 the cellular chain complex C * (J i (ΣX)) is a cocommutative, primitively generated DG-Hopf algebra, and C * (J i+1 (X)) is isomorphic to ΩC * (J i (ΣX)), [18, theorem 6.1 and 6.2]. Then using Proposition 2.5 we get a homotopy BValgebra structure on it which is similar to the one obtained in the simplicial context. Also, we have a DGA-quasi-isomorphism

ΩC * (J 1 (ΣX)) C * (J 2 (X)) C * (Ω 2 Σ 2 X). C * (j 2 )
4.4. Homotopy BV-algebra structure on Ω 2 C * (X) over R ⊃ Q

In [START_REF] Baues | The cobar construction as a Hopf algebra[END_REF], Baues gives an explicit construction of the cobar construction of a 1-reduced simplicial set X over the integer coefficient ring as a cocommutative up to homotopy DG-bialgebra. By using methods of [START_REF] Anick | Hopf algebras up to homotopy[END_REF], he shows that over a ring R containing Q as a subring, this DG-bialgebra can be deformed into a strictly cocommutative DG-bialgebra [START_REF] Baues | The cobar construction as a Hopf algebra[END_REF]Theorem 4.7]. The latter is isomorphic as DG-Hopf algebras to the universal enveloping algebra of the Lie algebra L(s -1 C * X) generated by the desuspension of the reduced coalgebra of normalized chain complex, combine [START_REF] Baues | The cobar construction as a Hopf algebra[END_REF]Theorem 4.8] and [START_REF] Kassel | Quantum groups[END_REF]Proposition V.2.4]. Hence, over such a ring R, the cobar construction ΩC * (X) is (can be deformed into) an involutive DG-Hopf algebra. By applying Proposition 2.5 to the resulting involutive cobar construction (ΩC * (X), ∇ ′ 0 , S ′ ), we obtain Theorem 4.8. Let X be a 2-reduced simplicial set. Then the double cobar construction Ω(ΩC * (X), ∇ ′ 0 , S ′ ) over R ⊃ Q coefficients is a homotopy BV-algebra with BV-operator the Connes-Moscovici operator.

In the sequel we detail how the antipode is deformed. We extend the deformation (given in [START_REF] Baues | The cobar construction as a Hopf algebra[END_REF]) of the DG-bialgebra structure of the cobar construction to a deformation of the DG-Hopf structure. The resulting cobar construction (ΩC * (X), ∇ ′ 0 , S ′ ) comes with (anti)derivation homotopies (see below) connecting the obtained DG-Hopf structure (∇ ′ 0 , S ′ ) with the initial one (∇ 0 , S).

First of all we extend some definitions from [START_REF] Baues | The cobar construction as a Hopf algebra[END_REF].

Let DGA 0 be the category of connected DG-algebras (associative). For a free DG-module V, we denote by L(V) the DG-Lie algebra which is the free graded Lie algebra on the free module V. We set V ≤n (resp. V <n ) the sub DG-module of elements v ∈ V such that |v| ≤ n (resp. |v| < n). Similarly, V ≥n (resp. V >n ) denotes the subset of elements v ∈ V such that |v| ≥ n (resp. |v| > n). 

d(V ≤n+1 ) ⊂ L(V ≤n ) ⊂ T(V) = A (4.7)
V ≤n ⊂ ker(∇). (4.8)

Appendix

Here we recall and develop some facts about the Hirsch and the homotopy G-algebras. A Hirsch (Λ,

d Λ , •, {E 1,k } k≥1 ) corresponds to a product µ E : B Λ ⊗ B Λ → B Λ such that (B Λ, d B Λ , µ E ) is a unital DG-bialgebra.
We write down the relations among the E i,j , i, j ≥ 1 coming from both the associativity of µ E and the Leibniz relation

d B Λ µ E = µ E (d B Λ ⊗ 1 + 1 ⊗ d B Λ ).
We detail the construction of the operation E 1,1 defined in (2.3).

Unit condition

For all s a = s a 1 ⊗ ... ⊗ s a i ∈ BΛ we have:

µ E (1 Λ ⊗ s a) = µ E (s a ⊗ 1 Λ ) = s a (4.10)
The product being determined by its projection on Λ we have:

prµ E (1 Λ ⊗ s a) = E 0,i (1 Λ ⊗ s a) = pr(s a 1 ⊗ ... ⊗ s a i ) = a 1 if i = 1; 0 if i = 1,
and also the symmetric relation. Thus,

E 0,i = E i,0 = 0 for all i = 1 and E 0,1 = E 1,0 = Id Λ . (4.11) 

Associativity condition

With the sign convention (2.1), the associativity of µ E gives on Λ ⊗i ⊗ Λ ⊗j ⊗ Λ ⊗k : 

E 1,k (E i,j (
+ E i,1 (a 1 , ..., a i ; E j,k (b 1 , ..., b j ; c 1 , ...c k )) (4.12)
where

α 1 = n ∑ u=1 i u+1 ∑ s=i u +1 |a s | + i u+1 -i u j u ∑ s=1 |b s | + j u α 2 = m ∑ u=1 j u+1 ∑ s=j u +1 |b s | + j u+1 -j u k u ∑ s=1 |c s | + k u with i 0 = 0; j 0 = 0; k 0 = 0; i n+1 = i; j n+1 = j m+1 = j; k m+1 = k.
For i = j = k = 1, that is on Λ ⊗ Λ ⊗ Λ, the relation (4.12) gives:

E 1,1 (E 1,1 (a; b); c) = E 1,1 (a; E 1,1 (b; c)) + E 1,2 (a; b, c) + (-1) (|b|-1)(|c|-1) E 1,2 (a; c, b) -E 2,1 (a, b; c) -(-1) (|a|-1)(|b|-1) E 2,1 (b, a; c). (4.13) Leibniz relation On Λ ⊗i ⊗ Λ ⊗j , the projection of d B µ E = µ E (d B ⊗ 1 + 1 ⊗ d B ) gives: d Λ E i,j (a 1 , ..., a i ; b 1 , ..., b j ) + ∑ 0≤i 1 ≤i 0≤j 1 ≤j (-1) β 2 E i 1 ,j 1 (a 1 , ..., a i 1 ; b 1 , ..., b j 1 ) • E i-i 1 ,j-j 1 (a i 1 +1 , ..., a i ; b j 1 +1 , ..., b j ) = = i ∑ l=1 (-1) β 3 E i,j (a 1 , ..., d Λ (a l ), ..., a i ; b 1 , ..., b j ) + i-1 ∑ l=1 (-1) β 4 E i-1,j (a 1 , ..., a l • a l+1 , ..., a i ; b 1 , ..., b j ) + j ∑ l=1 (-1) β 5 E i,j (a 1 , ..., a i ; b 1 , ..., d Λ (b l ), ..., b j ) + j-1 ∑ l=1 (-1) β 6 E i,j-1 (a 1 , ..., a i ; b 1 , ..., b l • b l+1 , ..., b j ) (4 .14) 
where

β 2 = i 1 ∑ s=1 |a s | + j 1 ∑ s=1 |b s | + i 1 + j 1 + i ∑ s=i 1 +1 |a s | + i -i 1 j 1 ∑ s=1 |b s | + j 1 β 3 =η 0 (s a) β 4 =η 1 (s a) β 5 = i ∑ s=1 |a s | + i + η 0 (s b) β 6 = i ∑ s=1 |a s | + i + η 1 (s b). For s a := s a 1 ⊗ • • • ⊗ s a i , the following signs η 0 (s a) = l-1 ∑ s=1 |a s | + l η 1 (s a) = l ∑ s=1 |a s | + l,
are the signs of the differential of the bar construction. And similarly for s

b = s b 1 ⊗ • • • ⊗ s b j .
Remark 4.15. When the twisting cochain E : B Λ ⊗ B Λ → Λ has E i,j = 0 except E 1,0 and E 0,1 , then Λ is a commutative DG-algebra.

We recall (cf. Definition 2.2) that when the twisting cochain E : B Λ ⊗ B Λ → Λ satisfies E i,j = 0 for i ≥ 2, then (Λ, d, µ Λ , {E 1,j }) is called a homotopy G-algebra. Remark 4.16. [13, Proposition 3.2] The condition E i,j = 0 for i ≥ 2 is equivalent to the following condition: for each integer r, I r := ⊕ n≥r (s -1 Λ) ⊗n is a right ideal for the product µ

E : B Λ ⊗ B Λ → B Λ.
For a homotopy G-algebra Λ, the equation (4.14) gives the three following equalities.

On Λ ⊗1 ⊗ Λ ⊗1 :

d Λ E 1,1 (a; b) -E 1,1 (d Λ a; b) + (-1) |a| E 1,1 (a; d Λ b) = (-1) |a| a • b -(-1) |a||b| b • a . (4.15) On Λ ⊗2 ⊗ Λ ⊗1 : E 1,1 (a 1 • a 2 ; b) = a 1 • E 1,1 (a 2 ; b) + (-1) |a 2 |(|b|-1) E 1,1 (a 1 ; b) • a 2 . (4.16) On Λ ⊗1 ⊗ Λ ⊗2 : d Λ E 1,2 (a; b 1 , b 2 ) + E 1,2 (d Λ a; b 1 , b 2 ) + (-1) |a|+1 E 1,2 (a; d Λ b 1 , b 2 ) + (-1) |a|+|b 1 | E 1,2 (a; b 1 , d Λ b 2 ) = (-1) |a|+|b 1 |+1 E 1,1 (a; b 1 )b 2 + (-1) (|a|-1)|b 1 | b 1 E 1,1 (a; b 2 ) -E 1,1 (a; b 1 b 2 ) . (4.17)
The sign in (2.3)

Now we give the construction of the operation E 1,1 in (2.3). Recall that B is a DG-bialgebra and that E 1,1 :

Λ ⊗ Λ → Λ with Λ := ΩB. First, we set E 1,1 (s -1 a; s -1 b) := s -1 (a • b) for all a, b ∈ B.
Next, using the equation (4.16), we extend this to:

E 1,1 (s -1 a 1 ⊗ ... ⊗ s -1 a m ; s -1 b) := m ∑ l=1 (-1) γ 1 s -1 a 1 ⊗ ... ⊗ s -1 (a l • b) ⊗ s -1 a l+1 ⊗ ... ⊗ s -1 a m , for all homogeneous elements a 1 , a 2 , • • • , a m , b ∈ B, where γ 1 = |b| m ∑ s=l+1 |a s | -m + l .
On the other hand, using a slight abuse of notation, we set

E 1,1 (s -1 a; s -1 b 1 ⊗ s -1 b 2 ) := (-1) |a 2 ||b 1 |+|a 2 | s -1 (a 1 • b 1 ) ⊗ s -1 (a 2 • b 2 ).
The abuse of notation comes from the fact that the terms (-1)

|a||b 1 |+|a| s -1 (b 1 ) ⊗ s -1 (a • b 2 ) and s -1 (a • b 1 ) ⊗ s -1 (b 2
) belong to the above terms i.e. the coproduct of B evaluated on the element a is not reduced. Using the equation (4.14) we extend E 1,1 (using the same abuse of notation) to: = f 1 ({a; b}).

E 1,1 (s -1 a; s -1 b 1 ⊗ ... ⊗ s -1 b n ) := (-1) γ 2 +|a|+1 s -1 (a 1 • b 1 ) ⊗ ... ⊗ s -1 (a n • b n ), with γ 2 = γ 2 (a) = κ n (a) + n ∑ u=2 (|a u | -1) u-1 ∑ s=1 |b s | -u + 1 + n ∑ s=1 (|a s | -1)(2n -2s + 1) + n-1 ∑ s=1 (|a s | + |b s |)(n -s), where κ n (a) := ∑ 1≤2s+1≤n |a 2s+1 | if n is even; ∑ 1≤2s≤n |a 2s | if n is odd.
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 1314 A DG-Hopf algebra (H, d, µ, η, ∇, ǫ, S) is a DG-bialgebra H endowed with an antipode S. If moreover, the antipode is involutive (i.e. S 2 = id) we call H an involutive DG-Hopf algebra.An antipode satisfies the following properties. [19, Proposition 4.0.1] i. S(a 2 ) ⊗ S(a 1 ) = (-1) |a 1 ||a 2 | S(a) 1 ⊗ S(a) 2 (coalgebra antimorphism). ii. S(η(1)) = η(1) (unital morphism). iii. S(ab) = (-1) |a||b| S(b)S(a) (algebra antimorphism). iv. ǫ(S(a)) = ǫ(a) (counital morphism). v. The following equations are equivalent: (a) S 2 = S • S = id; (b) S(a 2 )a 1 = ηǫ(a);
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 331 the signs being given by the Koszul sign rule. We conclude, Let (C, d, ∇ C , E k,1 ) be a homotopy G-coalgebra. The cobar construction ΩC is an involutive DG-Hopf algebra if and only if all the obstructions O n : C → C ⊗n defined in (3.5) for n ≥ 2 are zero. 2. Let C be 2-reduced. If all the obstructions O n : C → C ⊗n are zero, then the double cobar construction Ω 2 C is a homotopy BV-algebra whose the BV-operator is the Connes-Moscovici operator defined in (2.4).
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 495410411 Let f , g : A → B be two maps between two DG-modules A, B. A derivation homotopy between f and g is a mapF : A → B satisfying dF + Fd = fg (4.2)F(ab) = F(a)g(b) + (-1) |F||a| f (a)F(b) ∀a, b ∈ A.(4.3)An antiderivation homotopy between f and g is a mapΓ : A → B satisfying dΓ + Γd = fg (4.4) Γ(ab) = (-1) |a||b| (Γ(b)g(a) + (-1) |Γ||a| f (b)Γ(a)) ∀a, b ∈ A. (4Definition A homotopy DG-bialgebra (A, ∇, G 1 , G 2) is an object A in DGA 0 together with a coproduct ∇ in DGA 0 making (A, ∇) into a coalgebra in DGA 0 cocommutative up to G 1 , coassociative up to G 2 , both being derivation homotopies. Let (A, ∇, G 1 , G 2 ) be a homotopy DG-bialgebra such that A = TV, V being a DG-module with V 0 = 0. The counit is the augmentation of TV. We call (A, ∇, G 1 , G 2 , V) n-good if the following conditions (4.6), (4.7),(4.8) hold.∇ = τ∇ and (∇ ⊗ 1)∇ = (1 ⊗ ∇)∇ on V ≤n(4.6) 
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 419 Let (Λ, d Λ , •, E 1,k ) be a homotopy G-algebra. Then the degree 1 bracket {a; b} = E 1,1 (a; b) -(-1) (|a|-1)(|b|-1) E 1,1 (b; a)defines a Gerstenhaber algebra structure on the homology H(Λ, d Λ ).

Proof.

  The equality(4.15) shows the commutativity of the product of Λ up to homotopy. Indeed, it suffices to set E # 1,1 (a; b) := (-1) |a| E 1,1 (a; b) for each homogeneous element to obtain the desired homotopy. The symmetry condition (4.20) is satisfied by construction. The Jacobi relation (4.22) comes from (4.13). Indeed, let us first observe that applying (4.13) we have:E 1,1 (a; {b; c}) = E 1,1 (a; E 1,1 (b; c)) -(-1) (|b|-1)(|c|-1) E 1,1 (a; E 1,1 (c; b)) = E 1,1 (E 1,1 (a; b); c) -(-1) (|b|-1)(|c|-1) E 1,1 (E 1,1 (a; c); b) + R where R = -E 1,2 (a; b, c) -(-1) (|b|-1)(|c|-1) E 1,2 (a; c, b) -(-1) (|b|-1)(|c|-1) -E 1,2 (a; c, b) -(-1) (|b|-1)(|c|-1) E 1,2 (a; b, c) = 0. From this {a; {b; c}} =E 1,1 (a; {b; c}) -(-1) (|a|-1)(|b|+|c|) E 1,1 ({b; c}; a) =E 1,1 (a; {b; c}) -(-1) (|a|-1)(|b|+|c|) E 1,1 (E 1,1 (b; c); a) -(-1) (|b|-1)(|c|-1) E 1,1 (E 1,1 (c; b); a) =E 1,1 (E 1,1 (a; b); c) -(-1) (|b|-1)(|c|-1) E 1,1 (E 1,1 (a; c); b) -(-1) (|a|-1)(|b|+|c|) E 1,1 (b; E 1,1 (c; a)) -(-1) (|b|-1)(|c|-1) E 1,1 (c; E 1,1 (b; a)) + L,whereL = -(-1) (|a|-1)(|b|+|c|) E 1,2 (b; c, a) + (-1) (|c|-1)(|a|-1) E 1,2 (b; a, c) -(-1) (|b|-1)(|c|-1) E 1,2 (c; b, a) + (-1) (|b|-1)(|a|-1) E 1,2 (c; a, b) . By definition -{{a; b}; c} = -E 1,1 (E 1,1 (a; b); c) + (-1) (|a|-1)(|b|-1) E 1,1 (E 1,1 (b; a); c) + (-1) (|c|-1)(|a|+|b|) E 1,1 (c; E 1,1 (a; b)) -(-1) (|a|-1)(|b|-1) E 1,1 (c;E 1,1 (b; a)) . Thus we obtain, {a; {b; c}} -{{a; b}; c} = -(-1) (|b|-1)(|c|-1) E 1,1 (E 1,1 (a; c); b) -(-1) (|a|-1)(|b|+|c|) E 1,1 (b; E 1,1 (c; a)) + (-1) (|a|-1)(|b|-1) E 1,1 (E 1,1 (b; a); c) + (-1) (|c|-1)(|a|+|b|) E 1,1 (c; E 1,1 (a; b)) + L.

Finally, applying once

  again the equality (4.13) to both the 3-th and 4-th term, we obtain {a; {b; c}} -{{a; b}; c} = -(-1) (|b|-1)(|c|-1) E 1,1 (E 1,1 (a; c); b) -(-1) (|a|-1)(|b|+|c|) E 1,1 (b; E 1,1 (c; a)) + (-1) (|a|-1)(|b|-1) E 1,1 (b; E 1,1 (a; c)) + (-1) (|c|-1)(|a|+|b|) E 1,1 (E 1,1 (c; a); b) + L + L ′ = -(-1) (|b|-1)(|c|-1) E 1,1 ({a; c}; b) + (-1) (|a|-1)(|b|-1) E 1,1 (b; {a; c}) + L + L ′ =(-1) (|a|-1)(|b|-1) {b; {a; c}} + L + L ′ ,whereL ′ = (-1) (|a|-1)(|b|-1) E 1,2 (b; a, c) + (-1) (|a|-1)(|c|-1) E 1,2 (b; c, a) + (-1) (|c|-1)(|a|+|b|) -E 1,2 (c; a, b) -(-1) (|a|-1)(|b|-1) E 1,2 (c; b, a) .The equality L + L ′ = 0 is easily verified.The Poisson relation (4.21) follows from the equations (4.16) and(4.
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  ). Indeed, take (-1)|b 1 | E 1,2 (a; b 1 , b 2 )instead of E 1,2 (a; b 1 , b 2 ) in (4.17), we obtain: {a; bc} =E 1,1 (a; bc) -(-1) (|a|-1)(|b|+|c|-1) E 1,1 (bc; a)∼E 1,1 (a; b)c + (-1) (|a|-1)|b| bE 1,1 (a; c) -(-1) (|a|-1)(|b|+|c|-1) bE 1,1 (c; a) + (-1) |c|(|a|-1) E 1,1 (b; a)c ∼ E 1,1 (a; b) -(-1) (|a|-1)(|b|+|c|-1)+|c|(|a|-1) E 1,1 (b; a) c + b (-1) (|a|-1)|b| E 1,1 (a; c) -(-1) (|a|-1)(|b|+|c|-1) E 1,1 (c; a) ∼{a; b}c + (-1) (|a|-1)|b| b{a; c}, where ∼ is the equivalence relation: a ∼ b iff a is homotopic to b.The commutativity between the bracket and the differential follows from (4.15). Indeed,d Λ {a; b} =d Λ E 1,1 (a; b) -(-1) (|a|-1)(|b|-1) d Λ E 1,1 (b; a) = -E 1,1 (d Λ a; b) -(-1) |a| E 1,1 (a; d Λ b) + (-1) |a| a • b -(-1) |a||b| b • a -(-1) (|a|-1)(|b|-1) E 1,1 (d Λ b; a) -(-1) |b| E 1,1 (b; d Λ a) + (-1) |b| b • a -(-1) |a||b| a • b = -E 1,1 (d Λ a; b) -(-1) |a| E 1,1 (a; d Λ b) -(-1) (|a|-1)(|b|-1) E 1,1 (d Λ b; a) -(-1) |b| E 1,1 (b; d Λ a) + (-1) |a| a • b -(-1) |a||b| b • a -(-1) (|a|-1)(|b|-1)+|b| b • a -(-1) |a||b| a • b = -E 1,1 (d Λ a; b) -(-1) |a| E 1,1 (a; d Λ b) -(-1) (|a|-1)(|b|-1) E 1,1 (d Λ b; a) -(-1) |b| E 1,1 (b; d Λ a) = -{d Λ a; b} -(-1) |a| {a; d Λ b}.Proposition 4.20. An ∞-morphism of homotopy G-algebras induces in homology a morphism of Gerstenhaber algebras.Proof. Let us take the following convention f i := f i (s ⊗i ). Then the equation (4.18) reads for k = l = 1:E 1,1 ( f 1 (a); f 1 (b))f 1 E 1,1 (a; b) = (-1) |a|-1 f 2 (a; b) + (-1) |a|(|b|-1) f 2 (b; a). (4.23)We obtain{ f 1 (a); f 1 (b)} = E 1,1 ( f 1 (a); f 1 (b)) -(-1) |a|-1)(|b|-1) E 1,1 ( f 1 (b); f 1 (a)) = f 1 E 1,1(a; b) + (-1) |a|-1 f 2 (a; b) -(-1) |a|(|b|-1) f 2 (b; a) -(-1) |a|-1)(|b|-1) f 1 E 1,1 (b; a) + (-1) |b|-1 f 2 (b; a) -(-1) |b|(|a|-1) f 2 (a; b)

  a 1 , ..., a i ; b 1 , ...b j ); c 1 , ..., c k )+ E n+1,k (E i 1 ,j 1 (a 1 , ..., a i 1 ; b 1 , ...b j 1 ), ... ..., E i-i n ,j-j n (a i n +1 , ..., a i ; b j n +1 , ...b j ); c 1 , ..., c k ) E i,m+1 (a 1 , ..., a i ;E j 1 ,k 1 (b 1 , ..., b j 1 ; c 1 , ...c k 1 ), ... ..., E j-j m ,k-k m (b j m +1 , ..., b j ; c k m +1 , ...c k ))

		i+j
	∑ n=1 (-1) α 1 = ∑ 0≤i 1 ≤...≤i n ≤i 0≤j 1 ≤...≤j n ≤j j+k ∑ ∑ (-1) α 2
	m=1	0≤j 1 ≤...≤j m ≤j 0≤k 1 ≤...≤k m ≤k
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If moreover there exists a chain map S : A → A such that the condition: µ(1 ⊗ S)∇ = ηǫ = µ(S ⊗ 1)∇ on V ≤n (4.9) is satisfied, then A is called n-good + .

Lemma 4.12. Let A := (A = TV, ∇, G 1 , 0, S, V) be a homotopy DG-bialgebra with antipode S. We suppose it is n-good + for a map S : A → A. Then there exists a homotopy DG-bialgebra (A, ∇ n+1 , G n+1 1 , G n+1 2 , S n+1 , V n+1 ) which both extends A and is (n + 1)-good + . Moreover, there is a derivation homotopy F n+1 : ∇ ≃ ∇ n+1 and an antiderivation homotopy Γ n+1 : S ≃ S n+1 with F n+1 (a) = 0 and Γ n+1 (a) = 0 for |a| < n, a ∈ A.

Proof. The part (n + 1)-good as bialgebra is already done in [START_REF] Baues | The cobar construction as a Hopf algebra[END_REF]Theorem 4.5] where ∇ n+1 , G n+1 1 ,G n+1 2 , F n+1 and V n+1 are defined. Therefore we only need to construct S n+1 and Γ n+1 . We recall that (

The homotopy F n+1 between ∇ and ∇ n+1 is such that

we obtain the desired homotopy. Indeed,

Next we extend S n+1 on T((V n+1 ) ≤n+1 ) as an algebra antimorphism and we extend Γ n+1 as an antiderivation homotopy. We have µ(S n+1 ⊗ 1)∇ n+1 = ηǫ on (V n+1 ) ≤n+1 since ∇ n+1 is coassociative on (V n+1 ) ≤n+1 . Lemma 4.13. Let (A = TV, ∇, G 1 , S) be a DG-Hopf algebra cocommutative up to the homotopy G 1 and with S as antipode. Suppose that (A, ∇, G 1 , S, V) is 1-good + . Then there is a coproduct ∇ ′ and an antipode S ′ such that (A, ∇ ′ , S ′ ) is a cocommutative DG-Hopf algebra. Moreover there is a derivation homotopy F : ∇ ≃ ∇ ′ and an antiderivation homotopy Γ : S ≃ S ′ .

Proof. An iteration of Lemma 4.12 yields, for each n ≥ 1, an n-good

The derivation homotopy F is defined as ∑ n≥1 F n and the antiderivation homotopy Γ is defined as ∑ n≥1 Γ n . Proposition 4.14. Let Q ⊂ R and let X be a 1-reduced simplicial set. Then there is both a coproduct ∇ ′ and an antipode S ′ on the cobar construction ΩC * X such that (ΩC * (X), ∇ ′ , S ′ ) is a cocommutative DG-Hopf algebra. Moreover there is a derivation homotopy F : ∇ 0 ≃ ∇ ′ and an antiderivation homotopy Γ : S 0 ≃ S ′ , where ∇ 0 and S 0 are respectively Baues' coproduct [4, (3)] and the associated antipode.

Proof. We denote by G 1 the homotopy to the cocommutativity of the coproduct ∇ 0 . It is defined in [4, (4)]. We apply Lemma 4.13 to (ΩC * (X), ∇ 0 , G 1 , 0, S, s -1 C * X) which is 1-good + . Finally, we find the operation in (2.3):

where

Definition 4.17. An ∞-morphism between two homotopy G-algebras, say Λ and Λ ′ , is a morphism of unital DG-algebras between the associated bar constructions:

Such a morphism is a collection of maps 

for all k ≥ 1, l ≥ 1, and

for all n ≥ 1, where, ∂ is the differential of Hom(Λ ⊗n , Λ ′ ).

Now we show that the homology of a homotopy G-algebra is a Gerstenhaber algebra. To fix the convention: