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Homotopy BV-algebra structure on the double cobar

construction

Alexandre Quesney

Abstract

We show that the double cobar construction, Ω2C∗(X), of a simplicial set X is a homo-
topy BV-algebra if X is a double suspension, or if X is 2-reduced and the coefficient ring

contains the ring of rational numbers Q. Indeed, Connes’ operator defines the desired
hBVa-structure on Ω2C∗(X) when the antipode S : ΩC∗(X) → ΩC∗(X) is involutive.

We proceed by defining a family of obstructions On : C̃∗(X) → C̃∗(X)⊗n, n ≥ 2 mea-

suring the difference S2 − Id. When X is a suspension, the only obstruction remaining
is O2 := E1,1 − τE1,1 where E1,1 is the dual of the ⌣1-product. When X is a double

suspension the obstructions vanish. We make explicit an hBVa-structure on Ω2C∗(X).
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Introduction

Adams’ cobar construction is a model of the loop space of a 1-connected topological space

[Ada56]. The cobar construction is a functor from differential graded coalgebras to differen-

tial graded algebras; for iteration, a coproduct is thus needed. For a 1-reduced simplicial set
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X, Baues defined [Bau98] a DG-bialgebra structure on its first cobar construction ΩC∗(X).
The resulting double cobar construction is an algebraic model for the double loop space.

Baues’ coproduct on ΩC∗(X) tantamounts to a homotopy G-coalgebra structure {Ek,1}k≥1

on the DG-coalgebra C∗(X). Thus this homotopy G-coalgebra structure on C∗(X) deter-

mines an antipode S : ΩC∗(X) → ΩC∗(X) on the cobar construction. Under the hypothesis

of an involutive antipode, Menichi proved [Men04], that for a unital (ungraded) Hopf alge-

bra A, Connes’ operator induces a Batalin-Vilkovisky algebra on the homology of the cobar

construction H∗(ΩA).

By defining a family of operations On : C̃∗(X) → C̃∗(X)⊗n, n ≥ 2 which measures the

difference S2 − Id, we provide a criterion for the involutivity of S in terms of the operations

Ek,1. Also, the circle action on Ω2X by rotating the equator defines a BV operator, and turns

the Gerstenhaber algebra H∗(Ω2X) into a Batalin-Vilkovisky algebra [Get94]. The vanishing

of operations On : C̃∗(X) → C̃∗(X)⊗n gives a sufficient condition to the extension of the

homotopy G-algebra Ω2C∗(X) into the homotopy BV-algebra whose BV-operator is Connes’

operator.

Proposition 3.0.6. Let (C, d,∇C, Ek,1) be a homotopy G-coalgebra.

1. The cobar construction ΩC is an iDGH if and only if all the obstructions On : C̃ → C̃⊗n

defined by

On :=
n

∑
s=1

∑
n1+...+ns=n

µ
(s)
Ω(12)

(Fn1 ⊗ ... ⊗ Fns)Fs

for n ≥ 2 are zero.

2. Let C be 2-reduced.

(a) If there exists an integer n such that Ok = 0 for k ≤ n, then Ω2(C≤n) is a homotopy

BV-algebra.

(b) If all the obstructions On : C̃ → C̃⊗n are zero, then the double cobar construction Ω2C is

a homotopy BV-algebra given by the BV-operator defined in (2.12).

We apply this criterion to the homotopy G-coalgebra C∗(X) of a 1-reduced simplicial set

X. We show that when ΣX is a simplicial suspension, the family On : C̃∗(ΣX) → C̃∗(ΣX)⊗n

reduces to O2 : C̃∗(ΣX) → C̃∗(ΣX)⊗2 which is the deviation from cocommutativity of the

dual of the ⌣1-product E1,1 : C̃∗(ΣX) → C̃∗(ΣX)⊗2.

Proposition 5.0.12. The hGc-structure Ek,1 on C∗(ΣX) defined in Proposition 4.0.9 is

E1,1(σ) = ∑
1<l<n

±σ(0, ..., l)⊗ σ(0, l, l + 1, ..., n);

Ek,1 = 0 for k ≥ 2.

Proposition 5.0.13. Let (C, d,∇C, Ek,1) be an hGc with Ek,1 = 0 for k ≥ 2. If O2 = E1,1 − τE1,1 is

zero, then so is On for n ≥ 2.
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1. Notations and preleminaries

In the case of a double simplical suspension Σ2X, the homotopy G-coalgebra C∗(Σ2X)
becomes trivial and all obstructions On : C̃∗(Σ2X) → C̃∗(Σ2X)⊗n, n ≥ 2 are zero. As a

consequence, the cobar construction ΩC∗(Σ2X) is the free tensor DG-algebra with the shuffle

coproduct. We make explicit a homotopy BV-algebra structure on Ω2C∗(Σ2X).

Proposition 6.0.14. Let Σ2X be a double suspension. Then :

• the hGc-structure on C∗(Σ2X), defined in Proposition 4.0.9, is trivial;

• the double cobar construction Ω2C∗(Σ2X) is an hBVa with the BV-operator from (2.12).

On the other hand, if the ground ring contains the ring Q, we deform ΩC∗(X) into a

cocommutative DG-Hopf algebra. Consequently, ΩC∗(X) has an involutive antipode and

the homotopy BV-algebra structure we consider on Ω2C∗(X) follows.

Proposition 7.0.16. Let X be a 2-reduced simplicial set. Then the double cobar construction (Ω2C∗(X), dΩ2)
over R ⊃ Q coefficients is an hBV-algebra with BV-operator defined in (2.12).

The paper is organized as follows.

In the first section we define and recall some basics facts about the bar and cobar con-

structions, and antipode for Hopf algebras.

In the second section two homotopy structures on the cobar construction ΩA are intro-

duced : a homotopy G-algebra structure when A is a DG-bialgebra and a homotopy BV-

algebra structure when A is a DG-Hopf algebra with an involutive antipode.

In the third section we consider a homotopy G-coalgebra (C, Ek,1). We describe the an-

tipode on the cobar construction ΩC by the operations Ek,1. We define a family of operations

On : C̃ → C̃⊗n, n ≥ 2 which measures the difference S2 − Id.

In the fourth section we recall the coproduct defined by Baues in [Bau98]. We show that

the obtained homotopy G-coalgebra structure corresponds to the one given in [BF04, Kad03].

In the sections 5 and 6, we consider simple and double simplicial suspensions ΣX, Σ2X

of a simplicial set X. We reduce the obstructions On : C̃∗(ΣX) → C̃∗(ΣX)⊗n, n ≥ 2 to

O2 for a simple suspension; we show that all On : C̃∗(Σ2X) → C̃∗(Σ2X)⊗n are zero for a

double suspension. As a consequence we obtain an hBVa-structure on Ω2C∗(Σ2X) we write

explicitly.

The last section is devoted to the rational case. We deform step by step a DG-Hopf alge-

bra with some good properties into a cocommutative DG-Hopf algebra. We prove that the

double cobar construction of a 2-reduced simplicial set is a homotopy BV-algebra.

Acknowledgment I would like to thank Jean-Claude Thomas for his very helpful remarks,

in particular for suggesting me study of suspensions. I am grateful to Muriel Livernet for

the useful conversation at the IHP.

1 Notations and preleminaries

Conventions and notations An element a ∈ Mn where M is a graded object is said of

degree n; we denote |a| its degree. By the r-suspension sr we mean the r-shifting degree
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1. Notations and preleminaries

(sr M)n = Mn−r. For graded modules M, M′, N and N′ and two linear maps

f : M → M′, g : N → N′

of degree | f | and |g| respectively, the tensor map

f ⊗ g : M ⊗ N → M′ ⊗ N′

follows the Koszul sign rule

( f ⊗ g)(m ⊗ n) = (−1)|g||m| f (m)⊗ g(n).

For (A, µ), (A′, µ′) two graded algebras, we use the convention that the tensor product A ⊗
A′ is an algebra with

(µ ⊗ µ′)(1 ⊗ τ ⊗ 1)

as product where

τ(a ⊗ b) = (−1)|a||b|b ⊗ a.

A unital algebra (A, η) is called augmented if there is an algebra morphism ǫ : A → R. We

denote by A the augmentation ideal Ker(ǫ). For a coalgebra (A,∇) we use the Sweedler

notation for the coproduct,

∇(a) = a1 ⊗ a2

where we have omitted the sum. A counital coalgebra (A, ǫ) is called coaugmented if there

is a coalgebra morphism η : R → A. We denote by Ã = Ker(ǫ) the reduced coalgebra. The

reduced coalgebra is endowed with the reduced coproduct

∇(a) = ∇(a)− a ⊗ 1 − 1 ⊗ a.

Let (A,∇A) and (B,∇B) be two coalgebras. Their tensor product A ⊗ B is still a coalgebra

with the coproduct

∇A⊗B = (1 ⊗ τ ⊗ 1)(∇A ⊗∇B).

An algebra or a coalgebra A is called n-reduced if it is both connected and Ak = 0 for

1 ≤ k ≤ n.

The bar and cobar constructions Let (C, d,∇C) be a connected DG-coalgebra. Adam’s

cobar construction [Ada56] is the free DG-algebra

ΩC := (T(s-1 C̃), dΩ)

whose differential is induced by

dΩ = − s-1 ds + (s-1 ⊗ s-1)∇Cs.

We will denote dΩ = d0 + d1 where d0 is the linear differential induced by dC as a derivation

and d1 is the quadratic differential induced by the coproduct.
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1. Notations and preleminaries

Let (Λ, dΛ, µΛ) to be a DG-algebra. The bar construction is the cofree coalgebra

BΛ = (Tc(s Λ), dBΛ,∇BΛ)

whith the differential whose component on s Λ is

dBΛ = − s d s-1 + s µΛ(s
-1 ⊗ s-1).

We denote dBΛ = d0 + d1 where d0 is the linear differential induced by dΛ and d1 is the

quadratic differential induced by the product.

Let (C, dC,∇C) and (Λ, dΛ, µΛ) to be respectively a conilpotent1 DG-coalgebra and an

augmented DG-algebra. We denote by Hom(C, Λ) the set of linear morphisms from C to Λ.

We have the commutative diagram

HomAlg(ΩC; Λ) Hom(C̃; Λ) HomCoalg(C; BΛ)

HomDG-Alg(ΩC; Λ) Tw(C; Λ) HomDG-Coalg(C; BΛ)

where horizontal maps are natural bijections. We denote by Tw(C; Λ) the set of twisting

cochains : a map f : C → Λ is a twisting cochain if it satisfies the Brown’s condition

∂ f = − f ⌣ f in the convolution DG-algebra (Hom(C; Λ),⌣, ∂). The differential ∂ is given

by ∂ f = dΛ f − (−1)| f | f dC and the ⌣-product by f ⌣ g := µΛ( f ⊗ g)∇C.

Hopf algebras

Definition 1.0.1. For a DG-bialgebra (H, d, µ, η, ∆, ǫ) an antipode S : H → H is a linear

chain map which is the inverse of the identity in the convolution algebra Hom(H,H); the

convolution product being f ⌣ g = µ( f ⊗ g)∆. Explicitly, S satisfies

S(a1)a2 = ηǫ(a) = a1S(a2)

for all a ∈ H.

Definition 1.0.2. A DG-Hopf algebra (H, d, µ, η, ∆, ǫ, S) is a DG-bialgebra H endowed with

an antipode S. If moreover, the antipode is involutive (i.e S2 = id) we call H an involutive

DG-Hopf algebra (or iDGH for short).

An antipode satisfies the following properties.

Proposition 1.0.3. [Swe69, Proposition 4.0.1]

i. S(a2)⊗ S(a1) = (−1)|a
1 ||a2|S(a)1 ⊗ S(a)2 (coalgebra antimorphism);

1The conilpotency hypothesis of C is only necessary for the right hand part of the diagram, that is to extend a

map from Hom(C̃; Λ) (resp. Tw(C; Λ)) to a map in HomCoalg(C; BΛ) (resp. HomDG-Coalg(C; BΛ)). We will only

use this to the coalgebra C = BΛ ⊗ BΛ which is conilpotent.

5



2. Homotopy structures on the cobar construction

ii. S(η(1)) = η(1) (unital morphism);

iii. S(ab) = (−1)|a||b|S(b)S(a) (algebra antimorphism);

iv. ǫ(S(a)) = ǫ(a) (counital morphism).

v. The following equations are equivalent:

(a) S2 = S ◦ S = id;

(b) S(a2)a1 = ηǫ(a);

(c) a2S(a1) = ηǫ(a).

vi. If H is commutative or cocommutative, hence S2 = id.

2 Homotopy structures on the cobar construction

2.1 Homotopy G-algebra on the cobar construction

In this section we present the homotopy G-algebra structure on the cobar construction of

a 1-reduced DG-bialgebra given in [Kad05]. A homotopy G-algebra is a particular Hirsch

algebra and has the property to induce in homology a Gerstenhaber algebra structure. We

define the Hirsch algebras and homotopy G-algebras via the bar construction. Also we recall,

Definition 2.1.1. A Gerstenhaber algebra A is a graded commutative algebra (A, ·) together

with a degree one bracket { ; } : A ⊗ A → A which satisfies the three following properties

{a, b} = −(−1)(|a|−1)(|b|−1){b, a} (The degree 1 antisymmetry);(2.1)

{a, b · c} = {a, b} · c + (−1)(|a|−1)|b|b · {a, c} (The degree 1 Poisson identity);(2.2)

{a, {b, c}} = {{a, b}, c} + (−1)(|a|−1)(|b|−1){b, {a, c}} (The degree 1 Jacobi identity).

(2.3)

To an associative DG-product (of degree 0) µE : BΛ⊗ BΛ → BΛ which is also a coalgebra

map corresponds a twisting cochain Ẽ ∈ Tw(BΛ, Λ). Its (i, j)-th component is Ẽi,j : (s Λ)⊗i ⊗

(s Λ)⊗j → Λ. We denote by Ei,j : Λ
⊗i

⊗ Λ
⊗j

→ Λ the component

(2.4) Ei,j(a1 ⊗ ... ⊗ ai ⊗ ai+1 ⊗ ... ⊗ ai+j)

:= (−1)∑
i+j−1
s=1 |as|(i+j−s)Ẽi,j(s

⊗i ⊗ s⊗j)(a1 ⊗ ... ⊗ ai ⊗ ai+1 ⊗ ... ⊗ ai+j)

= Ẽi,j(s a1 ⊗ ... ⊗ s ai ⊗ s ai+1 ⊗ ... ⊗ s ai+j).

The degree of Ei,j is i + j − 1.

Definition 2.1.2. A Hirsch algebra Λ is the data of a connected DG-algebra (Λ, d, µΛ) to-

gether with a map µE : BΛ ⊗ BΛ → BΛ making BΛ into an associative unital DG-bialgebra.

We denote it by (Λ, Ei,j) where the operations Ei,j are the ones corresponding to the product

µE by using the sign convention (2.4). A homotopy G-algebra (hGa for short) is a Hirsch

algebra whose operations Ei,j = 0 for i ≥ 2.
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2. Homotopy structures on the cobar construction

The unitary condition gives

E0,i = Ei,0 = 0 for every i 6= 1 and E0,1 = E1,0 = IdΛ.(2.5)

We denote Ei,j(a1, ..., ai; b1, ...bj) for Ei,j((a1 ⊗ ...⊗ ai)⊗ (b1 ⊗ ...⊗ bj)). Over Λ
⊗i

⊗ Λ
⊗j

⊗ Λ
⊗k

the associativity condition reads

(2.6) E1,k(Ei,j(a1, ..., ai; b1, ...bj); c1, ..., ck)+

i+j

∑
n=1

∑
0≤i1≤...≤in≤i
0≤j1≤...≤jn≤j

(−1)α1 En+1,k(Ei1,j1(a1, ..., ai1 ; b1, ...bj1), ...

..., Ei−in,j−jn(ain+1, ..., ai; bjn+1, ...bj); c1, ..., ck)

=
j+k

∑
m=1

∑
0≤j1≤...≤jn≤j
0≤k1≤...≤kn≤k

(−1)α2 Ei,m+1(a1, ..., ai; Ej1 ,k1
(b1, ..., bj1 ; c1, ...ck1

), ...

..., Ej−jm,k−km
(bjm+1, ..., bj; ckm+1, ...ck))

+ Ei,1(a1, ..., ai; Ej,k(b1, ..., bj; c1, ...ck))

where

α1 =
n

∑
u=1

(
iu+1

∑
s=iu+1

|as|+ iu+1 − iu

)(
ju

∑
s=1

|bs|+ ju

)

α2 =
m

∑
u=1

(
ju+1

∑
s=ju+1

|bs|+ ju+1 − ju

)(
ku

∑
s=1

|cs|+ ku

)

with

i0 = 0; j0 = 0; k0 = 0;

in+1 = i; jn+1 = jm+1 = j; km+1 = k.

For example when i = j = k = 1 the relation (2.6) gives :

(2.7) E1,1(E1,1(a; b); c) = E1,1(a; E1,1(b; c)) + E1,2(a; b, c) + (−1)(|b|−1)(|c|−1)E1,2(a; c, b)

− E2,1(a, b; c)− (−1)(|a|−1)(|b|−1)E2,1(b, a; c).
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2. Homotopy structures on the cobar construction

The condition dµE = µE(d ⊗ 1 + 1 ⊗ d) reads over Λ
⊗i

⊗ Λ
⊗j

:

(2.8) dΛEi,j(a1, ..., ai; b1, ..., bj)

+ ∑
0≤i1≤i
0≤j1≤j

(−1)β2 Ei1,j1(a1, ..., ai1 ; b1, ..., bj1) · Ei−i1,j−j1(ai1+1, ..., ai; bj1+1, ..., bj) =

=
i

∑
l=1

(−1)β3 Ei,j(a1, ..., dΛ(al), ..., ai); b1, ..., bj)

+
i−1

∑
l=1

(−1)β4 Ei−1,j(a1, ..., al · al+1, ..., ai); b1, ..., bj)

+
j

∑
l=1

(−1)β5 Ei,j(a1, ..., ai); b1, ..., dΛ(bl), ..., bj)

+
j−1

∑
l=1

(−1)β6 Ei,j−1(a1, ..., ai); b1, ..., bl · bl+1, ..., bj)

where

β2 =
i1

∑
s=1

|as|+
j1

∑
s=1

|bs|+ i1 + j1 +

(
i

∑
s=i1+1

|as|+ i − i1

)(
j1

∑
s=1

|bs|+ j1

)

β3 =
l−1

∑
s=1

|as|+ l

β4 =
l−1

∑
s=1

|as|+ l + |al |

β5 =
i

∑
s=1

|as|+ i +
l−1

∑
s=1

|bs|+ l

β6 =
i

∑
s=1

|as|+ i +
l−1

∑
s=1

|bs|+ l + |bl |.

We consider now Λ := ΩA = T(s-1 Ã) where A is a 1-reduced DG-bialgebra. We write

a := s-1 a1 ⊗ ... ⊗ s-1 am a typical element in ΩA. The degree |a| of a = s-1 a1 ⊗ ... ⊗ s-1 am

is ∑
m
s=1 |as| − m. We construct a ⌣1-product E1,1 : Λ ⊗ Λ → Λ making Λ into a homotopy

pre-Gerstenhaber algebra. That is, the bracket defined by

(2.9) {a; b} = E1,1(a; b)− (−1)(|a|−1)(|b|−1)E1,1(b; a)

which induces a Gerstenhaber bracket on the homology. The ⌣1-product is a homotopy for

the product of Λ. We define

(2.10) E1,1(s
-1 a1 ⊗ ...⊗ s-1 am; s-1 b1 ⊗ ... ⊗ s-1 bn)

:=
m

∑
l=1

(−1)γ3 s-1 a1 ⊗ ...(a1
l · b1)⊗ ... ⊗ s-1(an

l · bn)⊗ ... ⊗ s-1 am

8



2. Homotopy structures on the cobar construction

with

γ3 =
n

∑
u=1

|bu|

(
m

∑
s=l+u

|as|+ m − l − u + 1

)
+ κn(al) +

n

∑
u=2

(|au
l | − 1)

(
u−1

∑
s=1

|bs| − u + 1

)

+
n

∑
s=1

(|as
l | − 1)(2n − 2s + 1) +

n−1

∑
s=1

(|as
l |+ |bs|)(n − s),

where

κn(a) :=

{
∑1≤2s+1≤n |a

2s+1| if n is even;

∑1≤2s≤n |a
2s| if n is odd.

Let us define the others operations E1,k : Λ ⊗ Λ
⊗k

→ Λ giving the hGa-structure of

Λ = ΩA.

We use the notation a ⋄ b = s-1(a1b1)⊗ ... ⊗ s-1(asbs) where b := s-1 b1 ⊗ ... ⊗ s-1 bs. We have

(2.11) E1,k(s
-1 a1 ⊗ ... ⊗ s-1 an; b1, ..., bk) =

∑
1≤i1≤i2≤...≤ik≤n

± s-1 a1 ⊗ ...⊗ s-1 ai1−1 ⊗ ai1 ⋄ b1 ⊗ ...⊗ s-1 aik−1 ⊗ aik
⋄ bk ⊗ s-1 aik+1 ⊗ ...⊗ s-1 an

when n ≥ k and zero when n < k. We have,

Proposition 2.1.3. [Kad05] Let A be a 1-reduced DG-bialgebra. Then the cobar construction (ΩA, dΩ)
together with E1,k defined in (2.10) and (2.11) is a homotopy G-algebra.

2.2 Homotopy BV-algebra on the cobar construction

We describe here the homotopy BV-structure we obtain on ΩH when H is a 1-reduced invo-

lutive DG-Hopf algebra. This structure induces a structure of Batalin-Vilkovisky algebra in

homology.

Definition 2.2.1. A Batalin-Vilkovisky algebra Λ is a Gerstenhaber algebra (Λ, { , }) to-

gether with a degree +1 operator B : Λ → Λ satisfying

1. B2 = 0;

2. {a; b} = (−1)|a|
(
B(a · b)− B(a) · b − (−1)|a|a · B(b)

)
for all a, b ∈ Λ.

Definition 2.2.2. A homotopy BV-algebra Λ (hBVa for short) is a homotopy G-algebra to-

gether with a DG-operator B : Λ → Λ subject to relations:

1. B2 = 0;

2. {a; b} = (−1)|a|
(
B(a · b)− B(a) · b− (−1)|a|a · B(b)

)
+ dΛH(a; b)+ H(dΛa; b)+ (−1)|a|H(a; dΛb)

for all a, b ∈ Λ,

where {−,−} is the Gerstenhaber bracket in the form (2.9) and H : Λ ⊗ Λ → Λ is a degree

2 linear map.
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2. Homotopy structures on the cobar construction

Connes’ operator for Hopf algebras A defined in [CM00] induces a BV-operator on H∗(ΩA)
provided that the antipode is involutive. With our sign convention it is given by :

(2.12) B(s-1 a1 ⊗ s-1 a2 ⊗ ... ⊗ s-1 an) =
n−1

∑
i=0

(−1)iπnτi
n(s

-1 a1 ⊗ s-1 a2 ⊗ ... ⊗ s-1 an).

where τn is the cyclic permutation

τn(s
-1 a1 ⊗ s-1 a2 ⊗ ... ⊗ s-1 an) := (−1)(|a1|−1)(∑n

i=2 |ai|−1) s-1 a2 ⊗ s-1 a3 ⊗ ... ⊗ s-1 an ⊗ s-1 a1

and

πn := (s-1 µ)⊗n−1τn−1,n−1(S
⊗n−1 ⊗ 1⊗n−1)((τ∆)(n−2) ⊗ 1n−1) s⊗n

τn,n(a1 ⊗ a2 ⊗ ... ⊗ an ⊗ b1 ⊗ ... ⊗ bn) := (−1)∑
n−1
i=1 |bi|(∑

n
j=i+1 |aj|)a1 ⊗ b1 ⊗ a2 ⊗ b2 ⊗ ... ⊗ an ⊗ bn.

For example,

B(s-1 a ⊗ s-1 b) = (−1)|a|−1 s-1(S(a)b) + (−1)|a|(|b|−1)+1 s-1(S(b)a).

The involutivity of the antipode of A makes B into a square zero chain map. The following

proposition is essentially an adaptation of [Men04, Proposition 1.9] to our context.

Proposition 2.2.3. Let A be a 1-reduced iDGH. Then the cobar construction (ΩA, dΩ) is a homotopy

BV-algebra with BV-operator defined in (2.12).

Proof. Let us define the homotopy H(a; b) := H1(a; b)− (−1)(|a|−1)(|b|−1)H1(b; a).

(2.13) H1(s
-1 a1 ⊗ ... ⊗ s-1 am; s-1 b1 ⊗ ... ⊗ s-1 bn)

:= ∑
1≤j≤p≤m−1

(−1)ξ j+n+1πs
m+n−1τ

s,n+m−1−j
m+n−1 ρ

(p−j+1)
n+m (s-1 a1 ⊗ ... ⊗ s-1 am ⊗ s-1 b1 ⊗ ...⊗ s-1 bn)

with

ξ j =





m

∑
s=1

|as| for j = 1;

m

∑
s=m−j+1

|as| for j > 1.

Where,

πs
m = πm(s

-1)⊗m

τs,i
m := (τs

m)
i

τm(a1 ⊗ a2 ⊗ ... ⊗ am) := (−1)|a1 |(∑
n
i=2 |ai |)a2 ⊗ a3 ⊗ ... ⊗ am ⊗ a1

ρ
(i)
m+1 := (1⊗i−1 ⊗ µ ⊗ 1⊗m−i)(1⊗i−1 ⊗ τm−i+1,1)s

⊗m+1

τk,1(a1 ⊗ ... ⊗ ak ⊗ b) := (−1)|b|(∑
k
i=2 |ai|)a1 ⊗ b ⊗ a2 ⊗ ... ⊗ ak.

By the Proposition [Men04, Proposition 1.9] we have

{a; b} = (−1)|a|
(

B(a · b)− B(a) · b− (−1)|a|a · B(b)
)
+ d1H(a; b)+ H(d1a; b)+ (−1)|a|H(a; d1b).

on the cobar construction (ΩA, d0 + d1). The operators involved in the above equation com-

mute with d0. Therefore we can replace d1 by dΩ in the previous equation. �
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3. Involutivity of the antipode of ΩC in terms of hGc C

3 Involutivity of the antipode of ΩC in terms of the homotopy G-

coalgebra C

Let us consider a homotopy G-coalgebra (C, Ek,1). We describe the antipode on the cobar

construction ΩC in terms of the operations Ek,1. We define a family of operations On : C̃ →
C̃⊗n, n ≥ 2 which measures the difference S2 − Id.

Definition 3.0.4. A Hirsch coalgebra C is the data of a 1-reduced DG-coalgebra (C, d,∇C)

together with a map ∇ : ΩC → ΩC ⊗ ΩC making ΩC into a coassociative counital DG-

bialgebra. The corresponding operations on C are denoted by Ei,j : C̃ → C̃⊗i ⊗ C̃⊗j. A

homotopy G-coalgebra (hGc for short) is a Hirsch coalgebra whose operations Ei,j = 0 for

j ≥ 2.

Let the cobar construction (ΩC, d, µ,∇) to be a DG-bialgebra. We can define the antipode

S : ΩC → ΩC by S(1) = 1 and for σ ∈ C̃n with n ≥ 2 by

(3.1) S(σ) := −σ − µ(S ⊗ 1)∇(σ)

which makes sense since

∇(σ) ⊂
⊕

i+j=n
0<i,j<n

(ΩC)i ⊗ (ΩC)j.

Remark 3.0.5. Equivalently, we can define S to be the geometric serie (Id)⌣−1 = ∑n≥0(ηǫ −
Id)⌣n with (ηǫ − Id)⌣0 = ηǫ and where ⌣ denote the convolution product from 1.0.1. Note

that this sum is finite when it is evaluated on an element. This presentation is combinatorial

and gives for [σ] ∈ (s-1 C)n,

S([σ]) = ηǫ([σ]) + (ηǫ − Id)([σ]) + µ∇([σ]) − µ(2)∇
(2)

([σ]) + ... + (−1)n−1µ(n)∇
(n)

([σ]).

(3.2)

By the iii of Proposition 1.0.3 the antipode is an algebra antimorphism that is an algebra

morphism from (ΩC, µΩ) to ΩC(12) := (ΩC, µΩ(12)
:= τµΩ). Moreover, it is also a DG-map,

therefore it corresponds to a twisting cochain F ∈ Tw(C, ΩC(12)). An antipode is determined

by the underlying bialgebra structure and here, the latter is equivalent to a homotopy G-

algebra structure Ek,1 on C. We make explicit the twisting cochain F in terms of Ek,1.

We write Fi : C̃ → C̃⊗i the i-th component of F. The relation2 µΩC(1 ⊗ SF)∇ = ηǫ gives

F1 = −IdC̃;(3.3)

Fn = (−1)n ∑
1≤s≤n−1

n1+...+ns=n−1
ni≥1

(1⊗n1+...+ns−1 ⊗ Ens,1)...(1⊗n1 ⊗ En2,1)En1,1, n ≥ 2.(3.4)

For example, the three first terms are F1 = −IdC̃, F2 = E1,1 and F3 = −(1 ⊗ E1,1)E1,1 − E2,1.

2We can also consider µΩC(SF ⊗ 1)∇ = ηǫ. It gives equivalent Fn but with a more complicated description

because of apparition of permutations. For example F3 = −(E1,1 ⊗ 1)E1,1 − (τ ⊗ 1)E2,1.

11



4. The cobar construction ΩC∗(X) and the hGc C∗(X)

Formulated in this terms, the n-th component of the difference S2 − Id is zero for n = 1

and

n

∑
s=1

∑
n1+...+ns=n

µ
(s)
Ω(12)

(Fn1 ⊗ ... ⊗ Fns)Fs(3.5)

for n ≥ 2. For example, the two first terms we obtain are F2 − τF2 = E1,1 − τE1,1 and

(1 + τ3)F3 + τ2,1(F2 ⊗ 1)F2 + τ1,2(1 ⊗ F2)F2

= (τ1,2 − 1 − τ3)(1 ⊗ E1,1)E1,1 + τ2,1(E1,1 ⊗ 1)E1,1 − (1 + τ3)E
2,1,

where the permutations are τ1,2(a ⊗ b ⊗ c) = ±b ⊗ c ⊗ a, τ2,1(a ⊗ b ⊗ c) = ±c ⊗ a ⊗ b and

τ3(a ⊗ b ⊗ c) = ±c ⊗ b ⊗ a; the signs being given by the Koszul sign rule.

Now we are ready to establish

Proposition 3.0.6. Let (C, d,∇C, Ek,1) be a homotopy G-coalgebra.

1. The cobar construction ΩC is an iDGH if and only if all the obstructions On : C̃ → C̃⊗n

defined by

On :=
n

∑
s=1

∑
n1+...+ns=n

µ
(s)
Ω(12)

(Fn1 ⊗ ... ⊗ Fns)Fs(3.6)

for n ≥ 2 are zero.

2. Let C be 2-reduced.

(a) If there exists an integer n such that Ok = 0 for k ≤ n, then Ω2(C≤n) is a homotopy

BV-algebra.

(b) If all the obstructions On : C̃ → C̃⊗n are zero, then the double cobar construction Ω2C is

a homotopy BV-algebra given by the BV-operator defined in (2.12).

Remark 3.0.7. The previous proposition works for a Hirsch coalgebra C instead of a homo-

topy G-coalgebra : the operations from (3.6) have the same definition in terms of Fn; only the

Fn’s defining the antipode differ. However, the involved technics above are quite similar for

Hirsch coalgebras.

Remark 3.0.8. For a general Hirsch coalgebra (C, Ei,j) the condition of cocommutativity of

the coproduct on ΩC is Ei,j = τEj,i for all (i, j). Accordingly, with Proposition 1.0.3 we see

(already in component three) that condition for the antipode to be involutive is weaker than

condition for coproduct to be cocommutative. When the Hirsch coalgebra is an hGc, the

cocommutativity of the coproduct means that the hGc is quasi trivial : E1,1 = τE1,1 and

Ek,1 = 0 for k ≥ 2.

4 The cobar construction ΩC∗(X) and the homotopy G-coalgebra

C∗(X)

Let us fix the base ring k to be any commutative ring. Here we recall the coproduct intro-

duced by Baues in [Bau98] and describe it via the coaction of the second filtration of the

12



4. The cobar construction ΩC∗(X) and the hGc C∗(X)

surjection operad F2χ on C∗(X). We explicit the antipode on the cobar construction of a sim-

plicial set.

Coproduct Let us fix X to be a 1-reduced simplicial set, that is X0 = X1 = ∗. We recall the

augmentation

ǫ : ΩC∗(X) → k

s-1 a1 ⊗ ... ⊗ s-1 an 7→

{
0 for n ≥ 1

idk for n = 0.

(4.1)

To give an explicit formulation of the coproduct we need to introduce some notations. For

σi ∈ X, [σ1|σ2|...|σn] denote the tensor s−1σi1 ⊗ s−1σi2 ⊗ ... ⊗ s−1σir
where indices ij are such

that σij
∈ Xnij

with nij
≥ 2. For a subset b = {b0 < b1 < ... < br} ⊂ {0, 1, ..., n} we denote

by ib the unique order preserving injective function ib : {0, 1, ..., r} → {0, 1, ..., n} such that

Im(ib) = b. Let σ ∈ Xn and 0 ≤ b0 < b1 ≤ n. By σ(b0, ..., b1) we mean i∗b σ ∈ Xb1−b0

where b = {b0, b0 + 1, ..., b1 − 1, b1}. Let b ⊂ {1, ..., n − 1}. By σ(0, b, n) we mean i∗b′σ where

b′ = {0} ∪ b ∪ {n}.

We define the coproduct ∇0 on elements σ ∈ Xn, n ≥ 2 by :

∇0 : ΩC∗(X) → ΩC∗(X)⊗ ΩC∗(X)

s−1σ = [σ] 7→ ∑
b={b1<b2<...<br}

b⊂{1,...,n−1}

(−1)ζ [σ(0, ..., b1)|σ(b1, ..., b2)|...|σ(br , ..., n)]⊗ [σ(0, b, n)]

(4.2)

where

ζ = r|σ(0, .., b1)|+
r

∑
i=2

(r + 1 − i)|σ(bi−1, ..., bi)| − r(r + 1)/2,

and extend it as an algebra morphism.

Coproduct as a homotopy G-coalgebra Let X be a simplicial set. We denote by DX is the

set of degenerate elements and we set C∗(X) := spank(X)/spank(DX) to be the normalized

chain complex. The chain complex C∗(X) is a homotopy G-coalgebra (hGc for short) that is

a coalgebra over the operad F2χ, see [Kad05, Kad03]. We establish3

Proposition 4.0.9. Let X be a 1-reduced simplicial set. Then the homotopy G-coalgebra C∗(X) given

by the coproduct defined in (4.2) is the homotopy G-coalgebra C∗(X) given by the coaction of F2χ.

Proof. Let us first define succinctly the surjection operad χ and its coaction on C∗(X). We

refer to [BF04, Section 1.2] for the complete definition.

Let r ≥ 1, d ≥ 0 be two integers. Let u : {1, ..., r + d} → {1, ..., r} be a surjective map.

We represent it by a sequence (u(1), u(2), ..., u(r + d)). Such a map is said degenerate if

3 The results in the sequel work for both the sign convention of [BF04] and ours. For the sake of clarity, we

do not keep track of them.
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4. The cobar construction ΩC∗(X) and the hGc C∗(X)

there exists an 1 ≤ i < r + d such that u(i) = u(i + 1). We define χ(r)d to be the module

freely generated by the non-degenerate surjective maps u : {1, ..., r + d} → {1, ..., r}. It is

an Sr-module in the following sense: to a permutation σ ∈ Sr and an element u ∈ χ(r)d the

surjective map σ · u is given by the sequence (σ(u(1)), ..., σ(u(r + d))).

The suboperad F2χ ⊂ χ is generated by (1, 2) and (1, 2, 1, 3, 1, ..., 1, k, 1, k + 1, 1) for k ≥ 1.

Let us describe shortly how the surjection operad χ acts on C∗(X). Let us consider an

element u ∈ χ(r)d and a n-simplex σ. Integers r, d and n being fixed, we cut the interval

[0, n] = {0, 1, ..., n} ⊂ N into r + d subintervals, 0 = n0 ≤ n1 ≤ ... ≤ nr+d = n. For

u = (u(1), ..., u(r + d)) we attribuate to the subinterval [ni−1, ni] the label u(i).

0 = n0 n1 n2 ni−1 ni nr+d−1 nr+d = n

u(1) u(2) u(i) u(r + d)

We denote by I(j) the concatenation of subintervals with value j that is

I(j) := [nj1−1, nj1 ], [nj2−1, nj2 ], ..., [njl−1, njl ]

where j1 < j2 < ... < jl are the indices such that u(j1) = u(j2) = ... = u(jl) = j. Finally, for

such a u = (u(1), ..., u(r + d)) ∈ χ(r)d, we define the operation

E(u) : C̃∗(X) → C̃∗(X)⊗r

to be

E(u)(σ) := ∑±σ(I(1))⊗ ... ⊗ σ(I(r)),

the sum being over all cuttings.

For example, let (1, 2) ∈ χ(2)0 then we obtain

E((1, 2))(σ) = ∑
0≤i≤n

±σ(0, ..., i)⊗ σ(i, ..., n),

that is the Alexander-Withney coproduct.

To the elements u = (1, 2, 1, 3, 1, ..., 1, k, 1, k + 1, 1) with k ≥ 1 corresponds the operations E1,k

defining the hGc-structure on C∗(X). For an n-simplex σ we have

E1,k(σ) = ∑
0≤j1<j2<...<j2k≤n

± σ(0, ..., j1, j2, ..., j3, j4, · · · , j2k−1, j2k, ..., n)⊗ σ(j1, ..., j2)⊗ σ(j3, ..., j4)⊗ · · · ⊗ σ(j2k−1, ...j2k).

Now we show that the coproduct ∇0 from (4.2) defines the same hGc-structure on C∗(X)

when X is 1-reduced. We remark that since X is 1-reduced, the elements σ(jl , ..., jl+1) where

jl+1 − jl = 1 belong to X1 = ∗ = s0(∗) and are degenerate. We denote by Ek,1
0 the operations

defined by the coproduct ∇0. To show the correspondance it is sufficient to show that each

(k, 1)-component are equal i.e Ek,1
0 = τ1,kE1,k. Let σ be an n-simplex, this coproduct is a sum

over all subsets b = {b1 < b2 < ... < br} ⊂ {1, ..., n − 1}. Let b0 := 0, βl ∈ b ∪ ∅ defined as

follow. For l = 1 we set

β1 := min
1≤i≤r

{bi | bi − bi−1 ≥ 2},

14



5. Obstruction to the involutivity of the antipode of ΩC∗(ΣX)

and η1 the index such that bη1
= β1; for l ≥ 2, we set

βl := min
ηl−1+1≤i≤r

{bi | bi − bi−1 ≥ 2}

where ηl is the index such that bηl
= βl . Additionally, we set αl := bηl−1. We obtain that

Ek,1
0 (σ) = ∑±σ(α1, ..., β1)⊗ σ(α2, ..., β2)⊗ ... ⊗ σ(αk, ..., βk)⊗ σ(0, b, n)

To establish the complete correspondance it remains to compare σ(0, b, n) = σ(0, b1, b2, ..., br, n)

with σ(0, ..., α1, β1, ..., α2, · · · , αk, βk, ..., n). But they are equal by minimality of βl . �

5 Obstruction to the involutivity of the antipode of ΩC∗(ΣX)

Let ΣX be a simplicial suspension of a simplicial set X. We show that the family of obstruc-

tions On : C̃∗(ΣX) → C̃∗(ΣX)⊗n defined in (3.6) can be reduced to O2 : C̃∗(ΣX) → C̃∗(ΣX)⊗2;

the latter being governed by the (lack of) cocommutativity of the operation E1,1.

Definition 5.0.10. A simplicial suspension ΣX of a simplicial set X with X0 = ∗ is the sim-

plicial set given by (ΣX)0 = a0 and (ΣX)n = {(i, x) ∈ N≥1 ×Xn−i}/
(
(i, sn

0(∗)) = sn+i(a0) =

an+i

)
. The face and degeneracy operators are generated by :

• d0(1, x) = an for all x ∈ Xn;

• d1(1, x) = a0 for all x ∈ X0;

• di+1(1, x) = (1, di(x)) for all x ∈ Xn, n > 0;

• s0(i, x) = (i + 1, x);

• si+1(1, x) = (1, si(x)).

Proposition 5.0.11. [HPS07] The differential of (ΩC∗(ΣX), d0 + d1) is reduced to its linear part

d0.

Proof. The only non degenerate elements in ΣX are (1, x) and we have that d0(1, x) = an is

degenerate. Therefore the Alexander-Whitney coproduct on C∗(ΣX) is primitive (we recall

that C∗ are the normalized chains). Then, the reduced coalgebra C̃∗(ΣX) is a trivial coalgebra;

so the quadratic part d1 of the differential dΩ = d0 + d1 on the cobar construction is trivial.

�

A natural coproduct to define is the shuffle coproduct (primitive on cogenerators) which

gives a cocommutative DG-Hopf structure to ΩC∗(ΣX); applying Proposition 2.2.3 to X 1-

reduced, we obtain on Ω2C∗(ΣX) an hBVa-structure. However, this coproduct does not cor-

respond to the one defined in (4.2). Indeed, the hGa-structure on C∗(ΣX) is not completely

trivial. Because of cocommutativity of the Alexander-Whitney coproduct, the operation E1,1

must be a chain map but not neccessary the zero map. We obtain,
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5. Obstruction to the involutivity of the antipode of ΩC∗(ΣX)

Proposition 5.0.12. The hGc-structure Ek,1 on C∗(ΣX) defined in Proposition 4.0.9 is

E1,1(σ) = ∑
1<l<n

±σ(0, ..., l)⊗ σ(0, l, l + 1, ..., n);

Ek,1 = 0 for k ≥ 2.

Proof. For a non degenerate σ ∈ (ΣX)n, we have d0σ = σ(1, ..., n) is degenerate. Conse-

quently, the operation defined in Proposition 4.0.9

E1,1(σ) = ∑
k<l

±σ(k, ..., l)⊗ σ(0, ..., k, l, l + 1, ..., n)

is reduced to

E1,1(σ) = ∑
1<l<n

±σ(0, ..., l)⊗ σ(0, l, l + 1, ..., n).

The higher operations Ek,1 for k ≥ 2 given by

E1,k(σ) = ∑
0≤j1<j2<...<j2k≤n

± σ(0, ..., j1, j2, ..., j3, j4, · · · , j2k−1, j2k, ..., n)⊗ σ(j1, ..., j2)⊗ σ(j3, ..., j4)⊗ · · · ⊗ σ(j2k−1, ...j2k)

are zero since the terms σ(jl , ..., jl+1) for l ≤ 3 are degenerate. �

The triviality of higher operations Ek,1 for k ≥ 2 does not imply the vanishing of higher

obstructions On since the E1,1 operation appears in all the On’s. However, we can reduce the

family of obstructions On to only O2 in this case.

Proposition 5.0.13. Let (C, d,∇C, Ek,1) be an hGc with Ek,1 = 0 for k ≥ 2. If O2 = E1,1 − τE1,1 is

zero, then so is On for n ≥ 2.

Proof. By making explicit the coassociativity of coproduct ∇ : ΩC → ΩC we obtain in

particular the equation

(1 ⊗ E1,1)E1,1 − (E1,1 ⊗ 1)E1,1 = (τ ⊗ 1)E2,1 − (1 ⊗ 1)E2,1.

Therefore the triviality of the higher operation E2,1 implies that E1,1 is coassociative. Together

with the vanishing of O2 we obtain a coassociative and cocommutative operation E1,1. We

use this fact to vanish the On : by (3.4), the terms Fi, i ≤ n involved in On are

Fn =(−1)n(1⊗n−2 ⊗ E1,1) · · · (1 ⊗ E1,1)E1,1.

Now because of the coassociativity of E1,1 we can write each term µ
(s)
Ω(12)

(Fn1 ⊗ ... ⊗ Fns)Fs of

the sum

On =
n

∑
s=1

∑
n1+...+ns=n

µ
(s)
Ω(12)

(Fn1 ⊗ ...⊗ Fns)Fs

as ±σ ◦ Fn where σ is a permutation (depending of the term we consider). Now using the

cocommutativity and again the coassociativity of E1,1 we can remove all transpositions to

obtain ±Fn. A direct counting shows that positive and negative terms are equal in number :

the sign of (Fn1 ⊗ ... ⊗ Fns)Fs is (−1)n1+...+ns+s = (−1)n+s and the number of partitions of n

into s integers ≥ 1 is (n−1
s−1). �

Therefore we can consider O2 as the only obstruction to the involutivity of the antipode

on the cobar construction.
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6 hBVa-structure on Ω2C∗(Σ2X)

We prove here the hGc-structure on C∗(Σ2X) is trivial and then that ΩC∗(Σ2X) is an involu-

tive DG-Hopf algebra with the shuffle coproduct.

Proposition 6.0.14. Let Σ2X be a double suspension. Then :

• the hGc-structure on C∗(Σ2X), defined in Proposition 4.0.9, is trivial;

• the double cobar construction Ω2C∗(Σ2X) is an hBVa with the BV-operator from (2.12).

Proof. By the Proposition 5.0.12 the operations Ek,1 for k ≥ 2 are trivial. Therefore to prove

the first statement it remains to prove that E1,1 is trivial. This follows from the fact that we

have d1(1, (1, x)) = (1, d0(1, x)) = (1, an) = sn+1(1, a0) is degenerate. The last operation

E1,1(σ) = ∑
1<l<n

±σ(0, ..., l)⊗ σ(0, l, l + 1, ..., n)

becomes trivial since l > 1.

For the second statement since the hGc-structure is trivial, all the obstructions On are zero

and so, by the Proposition 3.0.6 we obtain the announced hBVa-structure on Ω2C∗(Σ2X). �

We make explicit the hBVa-structure on Ω2C∗(Σ2X) by first observing that the coproduct

∇0 from (4.2) is a shuffle coproduct; we write it as

∇0([a1|...|an]) = ∑
I0∪I1

±[aI0
]⊗ [aI1

]

where the sum is taken over all partitions I0 ⊔ I1 of I = {1, ..., n} with I0 = {i1 < i2 < ... < ik}

and I1 = {j1 < j2 < ... < jn−k}. We denote aI0
to be ai1 ⊗ ai2 ⊗ ...⊗ aik

. Also we denote aI−1
0

to

be aik
⊗ ... ⊗ ai2 ⊗ ai1 and similarly for aI1

.

We make explicit now the BV-operator on a 2 and 3-tensor. For the sake of simplicity we

do not keep track of signs; also to avoid confusion we write a = [a1|a2|...|ak] an element in

ΩC∗(Σ2X) and [a1, a2, ..., an] an element in Ω2C∗(Σ2X).
Thus [a1, a2, ..., an] is [[a1,1|a1,2|...|a1,k1

], [a2,1|a2,2|...|a2,k2
], ..., [an,1|an,2|...|an,kn

]].

With these conventions, the BV-operator B is given by

B([a, b]) = B([[a1|...|am], [b1|...|bn]]) = [[am |...|a1|b1|...|bn]] + [[bn|...|b1|a1|...|am]].

B([[a1|...|am], [b1|...|bn], [c1|...|cr ]]) = [[aI−1
1
|b1|...|bn], [aI−1

0
|c1|...|cr ]] + [[bI−1

1
|c1|...|cr], [bI−1

0
|a1|...|am]]

+ [[cI−1
1
|a1|...|am], [cI−1

0
|b1|...|bn]].

Remark 6.0.15. In topological point of view, let us consider X to be a connected (count-

able) CW-complex with one vertex. The James/Milgram’s models Ji(X) are H-spaces ho-

motopically equivalent to ΩiΣiX, see [Mil66, theorem 5.2]. Moreover, for i ≥ 1 the cellular

chain complex C∗(Ji(ΣX)) is a cocommutative, pimitively generated DG-Hopf algebra, and

C∗(Ji+1(X)) is isomorphic to ΩC∗(Ji(ΣX)), [Mil66, theorem 6.1 and 6.2]. Then using Proposi-

tion 2.2.3 we get an hBVa-structure on it which is similar to the one obtained in the simplicial

context. Also, we have a DGA-quasi-isomorphism
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7. hBVa-structure on Ω2C∗(X) over R ⊃ Q

ΩC∗(J1(ΣX)) C∗(J2(X)) C∗(Ω2Σ2X).
C∗(j2)

7 hBVa-structure on Ω2C∗(X) over R ⊃ Q

In [Bau98], Baues gives an explicit construction of the cobar construction of a 1-reduced

simplicial set X over the integer coefficient ring as a cocommutative up to homotopy DG-

bialgebra. By using methods of [Ani89], he shows that over a ring R containing Q as a sub-

ring, this DG-bialgebra can be deformed into a strictly cocommutative DG-bialgebra [Bau98,

Theorem 4.7]. The latter is isomorphic as DG-Hopf algebra to the universal envelopping

algebra of the Lie algebra L(s-1 C̃∗X) generated by the desuspension of the reduced coalge-

bra of normalized chain complex, combine [Bau98, Theorem 4.8] and [Kas95, Proposition

V.2.4]. Hence, over such a ring R, the cobar construction ΩC∗(X) is (can be deformed into)

an involutive DG-Hopf algebra. By applying the Proposition 2.2.3 to H = ΩC∗(X) we obtain

Proposition 7.0.16. Let X be a 2-reduced simplicial set. Then the double cobar construction (Ω2C∗(X), dΩ2)

over R ⊃ Q coefficients is a homotopy BV-algebra with BV-operator defined in (2.12).

In fact, we can obtain this corollary in a slighty different way. Over the integer ring, the

cobar construction of a 1-reduced simplicial set, ΩC∗(X) is a DG-Hopf algebra (not invo-

lutive). Using the structure of the rational ring Q, we deform step by step this DG-Hopf

algebra into a cocommutative (hence involutive) DG-Hopf algebra over a ring R ⊃ Q.

We present first how to deform a DG-Hopf algebra with some good properties into a

cocommutative one and we apply this deformation to the cobar construction.

Let DGA0 be the category of connected DG-algebras (associative). For a free module

V, we denote by L(V) the DG-Lie algebra which is the free graded Lie algebra on the free

module V.

Definition 7.0.17. Let f , g : A → B be two maps between two DG-modules A, B. A deriva-

tion homotopy between f and g is a map F : A → B satisfying

dF + Fd = f − g(7.1)

F(ab) = F(a)g(b) + (−1)|F||a| f (a)F(b).(7.2)

Definition 7.0.18. A homotopy DG-bialgebra (A, ψ, G1, G2) is an object A in DGA0 together

with a coproduct ψ in DGA0 making (A, ψ) into a coalgebra in DGA0 cocommutative up to

G1, coassociative up to G2, both being derivation homotopies.

Definition 7.0.19. Let (A, ψ, G1, G2) be a homotopy DG-bialgebra such that A = TV, V being

a DG-module with V0 = 0. We call (A, ψ, G1, G2, V) n-good if the following conditions (7.3),

(7.4),(7.5) hold.

ψ = τψ and (ψ ⊗ 1)ψ = (1 ⊗ ψ)ψ on V≤n(7.3)

d(V≤n+1) ⊂ L(V≤n) ⊂ T(V) = A(7.4)

V≤n ⊂ ker(ψ).(7.5)
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7. hBVa-structure on Ω2C∗(X) over R ⊃ Q

In [Ani89], Anick showed when R ⊃ Q that a homotopy DG-bialgebra satisfying the

n-good condition is also (n + 1)-good. That is there exist an extension of this homotopy DG-

bialgebra which is (n + 1)-good. We consider the case of an n-good coassociative homotopy

DG-bialgebra with an antipode S and show we can deform it into a (n + 1)-good one.

Lemma 7.0.20. Let A := (A, ψ, G1, 0, S, V) be a homotopy DG-bialgebra with antipode S. We

suppose it is n-good. Then there exists a DG-Hopf algebra (A, ψn+1, Gn+1
1 , 0, Sn+1, Vn+1) which

both extends A and is (n + 1)-good. Moreover, there are derivation homotopies Fn+1 : ψ ≃ ψn+1

and Γn+1 : S ≃ Sn+1 with Fn+1(a) = 0 and Γn+1(a) = 0 for |a| < n, a ∈ A.

Proof. The part (n + 1)-good as bialgebra is already done in [Bau98, Theorem 4.5] where

ψn+1, Gn+1
1 ,Gn+1

2 , Fn+1 and Vn+1 are defined. Then we are just interested by the construction

of Sn+1 and Γn+1.

Let Sn+1 = S − Rn+1 where Rn+1 = µ(1 ⊗ S)ψn+1 − ηǫ. Then Rn+1 = 0 on V≤n. On Vn+1

we have

µ(1 ⊗ Sn+1)ψn+1 = µ(1 ⊗ S)ψn+1 − µ(1 ⊗ Rn+1)ψn+1

= µ(1 ⊗ S)ψn+1 − Rn+1

= µ(1 ⊗ S)ψn+1 − µ(1 ⊗ S)ψn+1 + ηǫ

= ηǫ.

Let Fn+1 be the homotopy between ψ and ψn+1, we have dFn+1 + Fn+1d = ψ − ψn+1. Setting

Γn+1 = −µ(1 ⊗ S)Fn+1 we obtain the desired homotopy. Indeed,

dΓn+1 + Γn+1d = −µ(1 ⊗ S)(dFn+1 + Fn+1d) = µ(1 ⊗ S)(ψn+1 − ψ) = Rn+1 = S − Sn+1.

By construction Fn+1 is such that Fn+1 = 0 on V<n ∪ V>n+1 then Γn+1 so.

The same argument is true with S′n+1 = S − R′n+1 with R′n+1 = µ(S ⊗ 1)ψn+1 − ηǫ and

Γn+1 = −µ(S ⊗ 1)Fn+1. Because of coassociativity, both S and S′ are equal. �

Lemma 7.0.21. Let (A = TV, ψ, G1, S) be a DG-Hopf algebra cocommutative up to the homotopy

G1 and with S as antipode. Suppose that (A, ψ, G1, S, V) is 1-good. Then there are a coproduct ψ∞

and an antipode S∞ such that (A, ψ∞, S∞) is a cocommutative DG-Hopf algebra. Moreover there are

derivation homotopies F : ψ ≃ ψ∞ and Γ : S ≃ S∞.

Proof. By iterating the previous Lemma 7.0.20 we obtain a n-good deformation as DG-Hopf

algebra for each n ≥ 1. Hence we define S∞ = Sn. We have µ(1⊗ S∞)ψ∞ = ηǫ and S∞ = S′∞.

The homotopy Γ is ∑n≥1 Γn. �

Proposition 7.0.22. Let Q ⊂ R and let X be a 1-reduced simplicial set. Then there is both a

coproduct ψ∞ and an antipode S∞ on the cobar construction ΩC∗X such that (ΩC∗(X), ψ∞, S∞)

is a cocommutative DG-Hopf algebra. Moreover there are derivation homotopies F : ∇0 ≃ ψ∞ and

Γ : S0 ≃ S∞, where ∇0 and S0 are respectively the coproduct from (4.2) and the resulting antipode.

Proof. We denote by G1 the homotopy to the cocommutativity of the coproduct ∇0. It is

defined in [Bau98, (4)]. We apply the Lemma 7.0.21 to (ΩC∗(X),∇0, G1, 0, S0, s-1 C̃∗X) which

is 1-good. �
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Finally we obtain

Proposition 7.0.16. Let X be a 2-reduced simplicial set. Then the double cobar construction (Ω2C∗(X), dΩ2)

over R ⊃ Q coefficients is an hBV-algebra with BV-operator defined in (2.12).
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