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Abstract 

Due to the periodical motions of most machinery in steady state operation, 

many diagnosis techniques are based on frequency analysis. This is often per-

formed through Fourier transform. Some extensions of these techniques to the 

more general case of non stationary operation have been proposed. They are based 

on signal processing advances such as time-frequency representations and adap-

tive filtering. The technique proposed in this paper is based on the observation 

that, when under non stationary operation, the vibrations of a machine are still 

tightly related to the speed variations. It is thus suggested to decompose the vibra-

tion signal over a set of time-varying frequency sine waves synchronized with the 

speed variations, instead of fixed frequency sine waves. This set of time-varying 

frequency sine waves is shown to be an orthonormal basis of the subspace it spans 

in the case of linear frequency variations. An insight to the improvement such de-

composition can provide for spectral analysis, cyclostationary analysis and time-

frequency representation is given. Some application examples are presented over 

both simulated signals and real-life signals. 
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1 Introduction 

In rotating machinery, under varying rotation speed, the vibration signal is non-

stationary and its statistic characteristics vary with time. For such a signal, con-

ventional general harmonic analysis, performed through Fast Fourier Transform 

(FFT), doesn’t provide accurate information for the spectrum of the signal, due to 

the non-constant speed. In order to overcome the limitations of this technique, ap-

propriate methods have been dedicated to varying speed cases. The best known 

methods are Order Tracking analysis by short-time Fourier transform (STFT) [1], 

windowed Fourier transform (WFT) or angular resampling [2]. These last years, 

new methods as Vold Kalman filter [3] or Gabor Order Tracking approach [4] 

have been introduced. The main characteristic of these methods is that they are 

based on resampling scheme or sampled STFT. However in many cases, all pre-

vious techniques have limited resolution or show a number of gaps [5]. For the 

STFT, depending on the window used, quality analysis may be affected. Regard-

ing the angular resampling of the vibration signal, its drawback is that the reson-

ance frequencies of the rotating machine are disturbed by the process.  

In order to avoid the previous shortcomings, we propose a new technique called 

Speed Transform (ST) when the speed varies linearly. This new approach consists 

in expanding the vibration signal into a series of elementary oscillatory functions, 

whose frequencies depend on the variation of the speed. The main advantage of 

the new approach is that it adapts to the vibration signal and components so that 

the resonance frequencies are preserved. 

The paper is organized as follows. In section 2, ST is presented in both theoret-

ical and practical implementation aspects. In section 3, ST is applied to simulated 

data and in section 4 it is applied to real-life data. Our conclusion is presented in 

section 5. 

. 

2 Speed Transform, theory and practical implementation 

Applying Fourier analysis to a signal consists in decomposing that signal over a 

basis of elementary oscillatory functions. The definition of the Fourier transform 

of a signal 𝑠 𝑡  is well known and is given by: 

𝑆 𝑓 =  𝑠 𝑡 𝑒−2𝜋𝑗𝑓𝑡 𝑑𝑡
+∞

−∞
  (1) 

where the Fourier transform of the signal 𝑠 𝑡  is denoted by 𝑆 𝑓 , 𝑡 stands for 

time and 𝑓 for frequency. When actually applied to vibration signals, it usually 

comes to a slightly different tool that can be described by: 
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𝑆 𝑓 =
1

2𝑇
 𝑠 𝑡 𝑒−2𝜋𝑗𝑓𝑡 𝑑𝑡

+𝑇

−𝑇
  (2) 

It thus consists in evaluating the closeness of the signal 𝑠 𝑡  to a set of elemen-

tary oscillatory functions 𝑒2𝜋𝑗𝑓𝑡  over a finite time interval T, or in other terms, 

evaluating a mean contribution of each of these 𝑒2𝜋𝑗𝑓𝑡   functions to the signal over 

that interval. In what follows, this practical tool will be considered as Fourier 

transform. 

 

The tool described by Eq. (2) exhibits a nice asymptotic property. Let us eva-

luate the closeness of two functions of the basis 𝑒2𝜋𝑗 𝑓1𝑡  and 𝑒2𝜋𝑗 𝑓2𝑡  when the time 

interval tends to infinity, i.e.: 

lim𝑇→+∞
1

2𝑇
 𝑒−2𝜋𝑗 𝑓1𝑡𝑒−2𝜋𝑗 𝑓2𝑡𝑑𝑡

+𝑇

−𝑇
=  

0 𝑓𝑜𝑟 𝑓1 ≠ 𝑓2

1 𝑓𝑜𝑟 𝑓1 = 𝑓2

  (3) 

This is equal to zero for 𝑓1 ≠ 𝑓2 (cross terms) and equal to one for 𝑓1 = 𝑓2 (auto 

terms). This property allows to evaluate the contribution of  any 𝑒2𝜋𝑗𝑓𝑡  function to 

the signal by applying Eq. (2), provided that the time interval is long enough to 

ensure that the cross-terms vanish. 

 

This tool is thus well fitted to the physical nature of vibration signals under sta-

tionary operation. Indeed, the periodical movements of machinery generate pe-

riodical components within the temporal moments of the signals. Due to the nice 

property described by Eq. (3) these periodical components produce spectral lines 

through Fourier analysis. 

 

Under non stationary operation, Fourier analysis keeps its nice mathematical 

properties but does not fit any more to the physical model of the data. Indeed, 

many components of the vibration signal follow the speed variations, so that they 

are not any more periodic. All the components that are tied to the rotation fre-

quency of the machine spread over a frequency band. Retrieving their amplitude 

or even detecting them through Fourier analysis thus becomes difficult. 

This is why we propose to use a basis of elementary oscillatory functions 

whose frequencies follow the speed variations. This would allow preserving the 

main advantage of frequency analysis, which is to fit to the physical model of the 

data. But what about the mathematical properties of the decomposition over such a 

time-varying basis? More precisely, do a set of 𝑒2𝜋𝑗  𝑛  Δ𝑓 𝑡   𝑡  functions, whose fre-

quencies 𝑛 Δ𝑓 𝑡  follow the speed variations, still exhibit the property described 

by Eq. (3)? We showed (see appendix) that provided the variations of 𝑛 Δ𝑓 𝑡  are 

linear versus time, that mathematical property still holds. 

 

Let us give some specifications for this new analysis tool that will be called 

speed transform: 
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• first, the frequencies of the basis functions should all be proportional to the 

speed variations, 

• their frequencies must always be smaller than the Nyquist frequency, 

• they should be equi-spaced over the analysis band, in terms of proportion of 

the rotation speed, rather than in terms of frequency band, 

• they should be equi-spaced with such step ∆𝑓 𝑡  that no component tied to 

the rotation speed could be missed in the analysis interval. 

 

In order to satisfy these specifications, let us first define some expressions: 𝑟 𝑡  
will stand for the rotation speed in Hertz and 𝑇 = 𝑁𝑇𝑒  for the duration of the vi-

bration signal, with 𝑁 the total number of samples and 𝑓𝑒   the sampling period. 

The different parameters used to generate the basis are shown on Fig.1. The rota-

tion frequency (in green) and the basis functions frequencies (blue) are 

represented versus the number of samples in reduced frequency. 

The example is given for a 𝑁 = 64 samples base, with speed variations in re-

duced frequency given by 𝑟 𝑡 = 0.1 + 0.001 ∗ 𝑡. The green plot represents the 

rotation frequency variation  𝑟 𝑡  and the red one represents the time-varying fre-

quency resolution ∆𝑓 𝑡  of the speed transform. It is proportional to 𝑟 𝑡  and the 

proportionality coefficient is an integer value 𝑘  such that 𝑟 𝑡 = 𝑘 ∆𝑓 𝑡  and 

𝑚𝑎𝑥 ∆𝑓 𝑡  ≤
1

𝑇
 in order to have a sufficient resolution not to miss any compo-

nent. The basis 𝐵 is composed of  
𝑁

2
+ 1 = 33 oscillatory functions 𝑏𝑛 𝑡  calcu-

lated as follows: 

𝐵 =  𝑏𝑛 𝑡 = 𝑒2𝜋𝑗𝑛  ∆𝑓 𝑡  𝑡 , 0 ≤ 𝑛 ≤ 𝑁/2  (3) 

On Fig. 2 is displayed the modulus of the basis correlation matrix. As expected 

from theory, it is a diagonal matrix with unitary diagonal terms. The non diagonal 

terms should be zero but some side effects appear due to the fact that the basis 

functions are finite length. These side effects can be minimized by applying an 

apodisation window, such as Hamming window, as shown on Fig. 3. 
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Fig. 1 – Frequencies of the basis functions 

 

Fig. 2 – Modulus of the correlation matrix of the basis 
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Fig. 3 – Modulus of the correlation matrix of the basis computed with apodisation 

As usual, the shape of the main lobe and side-lobes depends on the apodisation 

window. The width of the main lobe and the maximum speed resolution 

𝑚𝑎𝑥 ∆𝑓 𝑡   are both related to the inverse of the length of the signal. This en-

sures that one of the calculated samples at least will be located on the main lobe. 

This prevents any component whose variations are not a integer multiples of 

∆𝑓 𝑡 . from not being detected. In order to improve the amplitude estimation of 

these components some interpolation can be applied, as in classical spectral analy-

sis. 

3 Application to simulated data 

 

We first applied this technique to the analysis of simulated toothed gearing vi-

brations. The features of the simulated experiment are the following ones: 

• the two wheels are respectively 20 and 22 toothed ones,  

• the rotation frequency of the 20 toothed wheel is variable and given by 

𝑓20 𝑡 = 16 + 1.5 𝑡 , the gearing frequency by 𝑓𝑒𝑛𝑔  𝑡 = 20 𝑓20 𝑡  and the 22 

toothed wheel frequency by  𝑓22 𝑡 = 𝑓𝑒𝑛𝑔  𝑡 /22. 

• the vibration signal is given by 𝑠 𝑡 = 𝑠𝑒𝑛𝑔  𝑡   𝑠20 𝑡 + 𝑠22 𝑡   with:  
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• 𝑠𝑒𝑛𝑔  𝑡 = cos 2𝜋𝑓𝑒𝑛𝑔  𝑡 𝑡 + 𝜑𝑒𝑛𝑔   where  𝜑𝑒𝑛𝑔  is a random phase 

• 𝑠20 𝑡 =  cos 2𝜋𝑚𝑓20 𝑡 𝑡 + 𝜑20,𝑚 
8
𝑚=1  with 𝜑20,𝑚  random (resp.  𝑠22 𝑡 , 

 𝑓22 𝑡  and 𝜑22,𝑚 ). 

• the total number of available samples is 𝑁 = 20000 , i. e. a 1s time interval. 

 

The amplitude spectrum of this simulated signal is displayed on Fig. 4. It was 

calculated by applying a 65536 sample Fourier transform over the whole signal, 

with a Hamming apodisation window. Due to the speed variation, the energy of 

the gearing fundamental and its sidebands spread over several frequency channels. 

Only the lowest frequencies, corresponding to the inferior sidebands of the 36 

toothed wheel modulation, can be separated. This comes from the fact that their 

frequencies are varying slower than that of the higher frequency components. 

Nevertheless, though they can be separated, the amplitude displayed on the spec-

trum is erroneous, since the energy of each sideband is spread over several neigh-

boring frequency channels. 

 

 

Fig. 4 Amplitude spectrum of the simulated toothed gearing vibration signal 
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appear at harmonic positions of the speed signal. The transform was computed 

over the whole signal with Hamming windowing and interpolated by 8. 

 

 

Fig. 5 Spectrogram of the vibration signal computed over 1024 sample slices 

 

Fig. 6 Spectrogram of the vibration signal computed over 8192 sample slices 

 

 

 

Fig. 7 Speed transform (in black) displayed versus the proportion of the 20 toothed wheel 

rotation frequency. Green lines are the true 22 toothed sidebands and red ones the true 

gearing fundamental and true 20 toothed sidebands. 
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4 Application to real-life data 

Here the speed transform is applied to the vibration signal of a diesel engine.  

 

In order to build the basis functions 𝑏𝑛 𝑡 = 𝑒2𝜋𝑗𝑛   𝑟 𝑡 /𝐾  𝑡  we first need to esti-

mate from the tachometer signal the function 𝑔 𝑡 = 2𝜋𝑟 𝑡  𝑡, i.e. the angular po-

sition of the shaft, if we suppose that it is zero for 𝑡 = 0. This can be easily done 

based on the following properties: 

 𝑔 𝑡  must be an order 2 polynomial 

 It must be such that 𝑠𝑖𝑛 𝑔 𝑡  = 0 at each tick of the tachometer sig-

nal 

A curve is built by associating an integer multiple of 2π to each tick time and a 

curve fitting procedure allows finding the order 2 polynomial fitted to that curve. 

The coefficients of this polynomial are then used to compute the value of 𝑔 𝑡  at 

any time t. 

The speed transform has first been computed on the time interval between 

30.6 s and 32 s, where the rotation frequency is stationary and equal to 75 Hz (see 

Fig. 8), in order to compare the result to Fourier transform.  

 

 

Fig. 8 The rotation speed of the diesel engine estimated from the tachometer signal 

The amplitude spectrum and the speed transform calculated on that interval are 

displayed on Fig. 9 and 10. This confirms that the usual Fourier transform is ac-

tually a particular case of the proposed speed transform. Note however a slight 

improvement of the latter as compared to the former due to the compensation of 

small speed fluctuations. 
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Fig. 9 The Amplitude spectrum and speed transform calculated between 30.6 s and 32 s 

 

 

Fig. 10 Zoom on the high frequencies 
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other techniques, such as those based on time-varying filters or angular resampling 

preconditioning.  

 

 

Fig. 11 The Amplitude spectrum and speed transform calculated between 25 s and 30 s 

 

 

Fig. 12 Zoom on the low frequencies 
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Fig. 13 Zoom on the high frequencies 
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6 Appendix 

 

We are interested in: 

lim
𝑇→∞

𝐼 𝑇  

where: 

I T =
1

2𝑇
 𝑒2𝜋𝑗  𝑓1 𝑡 −𝑓2 𝑡  𝑡𝑑𝑡

𝑇

−𝑇

  

Let us suppose that the variations of 𝑓1 𝑡  and 𝑓2 𝑡  are linear. In this case, 

there exist 𝛼 𝑒𝑡 𝛽 such that: 

𝑓1 𝑡 − 𝑓2 𝑡 = 𝛼𝑡 + 𝛽 

Which leads to: 

𝐼 𝑇 =
1

2𝑇
 𝑒2𝜋𝑗  𝛼𝑡+𝛽 𝑡𝑑𝑡

𝑇

−𝑇

=  
1

2𝑇
 𝑒2𝜋𝑗  𝛼𝑡2+𝛽𝑡  𝑑𝑡

𝑇

−𝑇

 

𝐼 𝑇 =
1

2𝑇
 𝑒

2𝜋𝑗  𝛼 𝑡+
𝛽

2𝛼
 

2

−
𝛽2

4𝛼
 
𝑑𝑡

𝑇

−𝑇

=
1

2𝑇
𝑒−2𝜋𝑗

𝛽2

4𝛼  𝑒
2𝜋𝑗  𝛼 𝑡+

𝛽
2𝛼

 
2

 
𝑑𝑡

𝑇

−𝑇

  

The variable is changed from t to x: 

𝑥 = 𝑡 +
𝛽

2𝛼
 

𝑑𝑡 = 𝑑𝑥 

−𝑇 +
𝛽

2𝛼
≤ 𝑥 ≤ 𝑇 +

𝛽

2𝛼
 

Which leads to: 

𝐼 𝑇 =
1

2𝑇
𝑒−2𝜋𝑗

𝛽2

4𝛼  𝑒2𝜋𝑗𝛼 𝑥2
𝑑𝑥

𝑇+
𝛽

2𝛼

−𝑇+
𝛽

2𝛼

  

The integral can be decomposed into three parts: 

 𝑒2𝜋𝑗𝛼 𝑥2
𝑑𝑥

𝑇+
𝛽

2𝛼

−𝑇+
𝛽

2𝛼

= 𝐼1 + 𝐼2 + 𝐼3 

with: 

𝐼1 = 𝑒2𝜋𝑗𝛼 𝑥2
𝑑𝑥

−𝑇

−𝑇+
𝛽

2𝛼

  

𝐼2 = 𝑒2𝜋𝑗𝛼 𝑥2
𝑑𝑥

−𝑇

−𝑇

  

𝐼3 = 𝑒2𝜋𝑗𝛼 𝑥2
𝑑𝑥

𝑇+
𝛽

2𝛼

𝑇

  

The integrals 𝐼1 et 𝐼3 are finite so that the only problem is to calculate: 

lim
𝑇→∞

1

2𝑇
𝑒−2𝜋𝑗

𝛽2

4𝛼  𝐼2 𝑇  

Let  J T = 𝑒2𝜋𝑗𝛼 𝑡2
𝑑𝑡

𝑇

−𝑇
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 limT→+∞ J T = 𝐽∞ =  𝑒2𝜋𝑗𝛼 𝑡2
𝑑𝑡

+∞

−∞
 

Let us change variable t to : 𝑢 =  2𝜋𝛼 𝑡 
 

The expression becomes : 

 𝐽∞ =
1

 2𝜋𝛼
 𝑒𝑗 𝑢

2
𝑑𝑢

+∞

−∞
=

1

 2𝜋𝛼
2 𝑒𝑗 𝑢

2
𝑑𝑢

+∞

0
 

Which is proportional to the well known Fresnel integral:  𝑒𝑗 𝑢
2
𝑑𝑢

+∞

0
=

 𝜋

2
𝑒 𝑗

𝜋

4  

So that 𝐽∞ =
1

 2𝛼
𝑒 𝑗

𝜋

4  

 

This proves that lim𝑇→∞ 𝐼 𝑇 = 0 whenever 𝑓1 𝑡 − 𝑓2 𝑡 ≠ 0 

 

If 𝑓1 𝑡 − 𝑓2 𝑡 = 0, it is easy to show that 𝐼 𝑇 = 1 for any value of T. 

7 References 

[1] G.Meltzer, Y.Y.Ivanov, ―Fault Detection in Gear Drives with Non-

stationary Rotational Speed—part II: the Time Frequency Approach,‖ Mechanical 

Systems and Signal Processing, vol.17, June,2003, pp. 1033-1047. 

 

[2] H. André, Z. Daher, J. Antoni ―Comparison between angular sampling and 

angular resampling methods applied on the vibration monitoring of a gear mesh-

ing in non stationary conditions‖, ISMA 2010 

 

[3] M.Ch Pan, Y.F. Lin., 2006 ―Further exploration of Vold Kalman filtering 

order tracking with shaft speed information-(I) theoretical part, numerical imple-

mentation and parameter investigations‖, Mechanical Systems and Signal 

Processing., vol. 20 (5), pp. 1134-1154 

 

[4] S. Hui, J. Wei, and S. Qian, ―Discrete Gabor Expansion for Order Track-

ing,‖ will appear in IEEE Trans. of Instrumentation and Measurements, June 

2003. 

 

[5] D.K. Bandhopadhyay, D. Griffiths, Methods for analyzing order spectra, 

SAE paper 951273, 1995 

 


