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2. Regularization on weighted graphs

2.1 Graph derivatives

Let G = (V,E) be an undirected graph, where
V = {v1, v2, . . . , vn} is a finite set of vertices and
E ⊆ V × V is a finite set of edges. Two vertices u
and v are said to be adjacent if the edge (u, v) ∈ E. A
graph is weighted if we associate to it a weight func-
tion: w : V × V → R+, that satisfies the following
conditions:

w(u, v) = w(v, u), ∀u, v ∈ E,
w(u, v) > 0, if u �= v,
w(u, u) = 0, otherwise.

We consider now the derivative operators on graphs
we need for regularization. Let H(V ) be a Hilbert
space of real-valued functions on vertices. A function
f : V → R in H(V ) assigns a vector fv to each ver-
tex v in V . The local variation of the weighted gradient
operator ��� of a function f ∈ H(V ) at a vertex v is
defined by:

��f (v)� =
��

u∼v

w(u, v)(f(v)− f(u))2. (1)

This can be viewed as a measure of the regularity of a
function around a vertex.

The weighted p-Laplace operator, with
p ∈ [0,+∞[, at a vertex v is defined on H(V )
by :

(∆pf)(v) =
1
p

�

u∼v

γ(u, v) (f(v)− f(u)) , where,

γ(u, v) = w(u, v)
�
��f (v)�p−2 + ��f (u)�p−2

�

2.2 p-Laplace regularization on weighted

graphs

Consider a function f0 that could be an image, a video
or any discrete data set. This function is defined over
the vertices V of a weighted graph Gw = (V,E, w)
by f0 : V → Rm. f0 is an observation of an original
function f corrupted by a noise n :f0 = f + n.
The discrete regularization of f0 ∈ H(V ) using the
weighted p-Laplace operator consists in seeking a func-
tion f∗ ∈ H(V ) that is not only smooth enough on Gw,
but also close enough to f0. It can be formalized by the
minimization of two energy terms:

f∗ = min
f∈H(V )

8
<

:
1

p

X

v∈V

��f(v)�p +
λ

2
�f − f0�2

H(V )

9
=

; (2)

where p ∈ [0,+∞[ is the smoothness degree, λ is
the fidelity parameter, called the Lagrange multiplier,

which specifies the trade-off between the two compet-
ing terms, and �f represents the weighted gradient of
the function f over the graph. The solution of prob-
lem (2) leads to a family of nonlinear filters, parameter-
ized by the weight function, the degree of smoothness,
and the fidelity parameter.
The first energy in (2) is the smoothness term or reg-
ularizer, whereas the second is the fitting term. Both
energy functions in Ep are strictly convex functions of
f . In particular, by standard arguments in convex analy-
sis, Problem (2) has a unique solution, for p ≥ 1, which
satisfies:

(∆pf(v)) + λ(f(v)− f0(v)) = 0, ∀v ∈ V .

3. Video regularization

To denoise video sequences, one can consider a
video sequence as a simple sequence of independent
frames and process each frame separately. Evidently,
this would yield poor results from a performance and
denoising quality viewpoints. A video sequence mainly
differs from a sequence of images in that the consec-
utive frames of a video are usually related due to the
temporal redundancy from one frame to another. There-
fore, the temporal dimension is an essential feature that
should be integrated in the denoising algorithm itself.
The extension to video sequences is based on the inte-
gration of time into the regularization process. We will
take advantage of the high temporal redundancy of the
data due to the high frame rates, which enhances the
quality of our regularization. Hence, we develop a spa-
tiotemporal regularization on weighted graphs.

3.1 Proposed algorithm

We consider the video sequence as a function
f defined over the vertices of a weighted graph
Gk1,k2,k3 = (V,E,w), where k1, k2, k3 ∈ N3. A
vertex u is defined by a triplet (i, j, t) where (i, j) in-
dicates the spatial position of the vertex and t, which is
a frame number, indicates the temporal position of the
vertex within the video sequence. We denote by u ∼ v
a vertex u that belongs to the neighborhood of v which
is defined as follows:

Nk1,k2,k3(v) =

(
u = (i�, j�, t�) ∈ V :

|i− i�| ≤ k1, |j − j�| ≤ k2, |t− t�| ≤ k3.

)

Similarly, we extend the definition of the patch to
videos to obtain 3D patches. A patch around a vertex
v is a box of size rx × ry × rt, denoted by B(v). Then,
we associate to this patch a feature vector defined by:

F (f0, v) = f0(u), u ∈ B(v).



The weight function w associated to Gk1,k2,k3 pro-
vides a measure of the distance between its vertices
that can simply incorporate local, semi-local or nonlo-
cal features according to the topology of the graph and
the image.

We consider the following two general weight func-
tions:

wL(u, v) = exp

„
−

|f(u)− f(v)|2

2σ2
d

«

wNL(u, v) = wL(u, v).exp

„
−
�F (f0, u)− F (f0, v)�2

h2

«
,

where σ2
d depends on the variations of |f(u) − f(v)|

over the graph. h can be estimated using the standard
deviation depending on the variations of �F (f0, u) −
F (f0, v)� over the graph.

wL(u, v) is a measure of the difference between
f(u) and f(v) values, and is used in the local approach
of denoising. In addition to the difference between val-
ues, wNL(u, v) includes a similarity estimation of the
compared features by measuring a L2 distance between
the patches around u and v. It is the nonlocal approach.

To denoise video sequences, we use the Gauss-
Jacobi iterative algorithm presented in [3]. For all (u, v)
in E:

f (0) = f0

γ(k)(u, v) = w(u, v)
`
� � f (k)(v)�p−2 + � � f (k)(u)�p−2

´

f (k+1)(v) =
pλf0(v) +

P
u∼v γ(k)(u, v)f (k)(u)

pλ +
P

u∼v γ(k)(u, v)
(3)

where γ(k) is the function γ at the step k. The weights
w(u, v) are computed from f0, or can be given as an
input.

At each iteration, the new value f (k+1), at a vertex v,
depends on two quantities, the original value f0(v) and
a weighted average of the existing values in a neighbor-
hood of v. This shows that the proposed filter, obtained
by iterating, is a low-pass filter which can accomo-
date many graph structures and weight functions. For
more details on the Gauss-Jacobi iterative algorithm,
the reader is referred to [3].

Observe that for the specific parameters p = 2,
λ = 0 and after one iteration we retrieve the nonlocal
means solution of Buades et al. [2].

3.2 Improvements

The nonlocal method compares all the patches
within a volume of size k1 × k2 × k3 with the cen-
tral patch of this volume, and is observed to be slow.
In the sequel, we reduce the processed data to X% and
made an optimized nonlocal version. In our work, for

each vertex v, we randomly select vertices within the
3D window, W (v), centered in v. Hence, the optimized
nonlocal algorithm is as follows:
Algorithm. For each vertex v of the graph:

1. Construct NW (v), the nonlocal neighborhood

of v: Select randomly X% of the vertices in W (v)
and out of the patch B(v).

2. Compute the patch similarity between B(v) and
B(u) for all u ∈ NW . All the patches B(u) must
be included in W (v).

3. Update the value f(v) according to (3)

The above algorithm is iterated N times. We imple-
mented a version where the algorithm is iterated unitl
convergence. As a consequence, we accelerate the non-
local method, and obtain equally attractive results as
demonstrated in section 4.

4. Experimental results

To test our algorithms, we considered the following
parameters : 3 × 3 × 3 patches, 7 × 7 × 3 windows,
p = 2 and λ = 0. We corrupted sequences with syn-
thetic zero-mean additive white Gaussian noise random
variable n having a variance σ2.

As shown in Figure 1, the nonlocal method gives
the best visual result. Noise is highly reduced while
thin structures such as textures and details are well pre-
served. The local method produces a good result but
some details are lost. The optimized nonlocal method
perserves details and is faster than the nonlocal one.
These visual observations are further confirmed by the
PSNR measures reported in Table 1. Although these re-
sults are slightly in favor of the nonlocal method, the
proposed optimized variant produces very competitive
results, using only 30% of the data, thereby achieving a
faster computational performance (computational time
is reduced by 70%). Neverthesless, we work on order-
ing the patches and select the best ones instead of a ran-
dom selection to reduce the little loss of quality.

Table 1. Comparison of the PSNR, expressed

in dB, of noisy sequences (noise level σ = 10)

denoised by our methods after one iteration.

Media Input Local Nonlocal Optimized

Flower 22.96 23.82 25.15 25.87
Tennis 24.68 27.12 28.65 28.18
Football 24.68 25.14 26.02 26.68
Mobile 21.24 24.31 27.08 26.22



(a) Original (b) Noisy, σ = 10

Figure 1. Illustration of our three denoising

methods with parameters p = 2, λ = 0 and

h = 30 after ten iterations. (a) original image;

(b) noisy image; from left to right: local, non-

local and optimized nonlocal results.

To evaluate the quality of our video algorithm, we
implemented a 2D version of our approach which cor-
responds to the algorithm by Elmoataz et al., and ap-
plied it to denoise the video frames as single images.
Then we applied our video algorithm to the same video
considered this time as a volume. We compared the 2D
and our 3D results. The PSNR of the video results are
consistently higher than the PSNR of the 2D results as
shown in Figure 2. It is observed that video process-
ing with the optimized nonlocal method gives a higher
quality denoising than image processing.

Figure 2. PSNR comparison between video

and image denoising results.

5. Conclusion

In this paper, a new algorithm has been introduced
for the denoising of video sequences. The algorithm
does not require any motion estimation and is based
on discrete regularization on graphs. We view a video
sequence as a volume to benefit from temporal redun-
dancy, which enhances the denoising results as demon-
strated by our experiments.

We take advantage of local and nonlocal regularities
in our methods to reduce noise while preserving signif-
icant features and details in the video. As the nonlo-
cal method is time-consuming, we reduced the amount
of processed data (by 70% in our tests) to gain in time
comsuption (reduced by 70%), without compromising
the denoising quality.

Our future research will investigate the ordering of
patches within a window in order to choose the most
similar patches in lieu of randomly selected ones. As
a direct application of our algorithm, we shall also em-
ploy this work for inpainting purposes.
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