Regularization on weighted graphs 2.1 Graph derivatives

Let G = (V, E) be an undirected graph, where V = {v 1 , v 2 , . . . , v n } is a finite set of vertices and E ⊆ V × V is a finite set of edges. Two vertices u and v are said to be adjacent if the edge (u, v) ∈ E. A graph is weighted if we associate to it a weight function: w : V × V → R + , that satisfies the following conditions:

w(u, v) = w(v, u), ∀u, v ∈ E, w(u, v) > 0, if u = v,
w(u, u) = 0, otherwise.

We consider now the derivative operators on graphs we need for regularization. Let H(V ) be a Hilbert space of real-valued functions on vertices. A function f : V → R in H(V ) assigns a vector f v to each vertex v in V . The local variation of the weighted gradient operator of a function f ∈ H(V ) at a vertex v is defined by:

f (v) = u∼v w(u, v)(f (v) -f (u)) 2 . (1)
This can be viewed as a measure of the regularity of a function around a vertex.

The weighted p-Laplace operator, with p ∈ [0, +∞[, at a vertex v is defined on H(V ) by :

(∆ p f )(v) = 1 p u∼v γ(u, v) (f (v) -f (u))
, where,

γ(u, v) = w(u, v) f (v) p-2 + f (u) p-2

p-Laplace regularization on weighted graphs

Consider a function f 0 that could be an image, a video or any discrete data set. This function is defined over the vertices V of a weighted graph

G w = (V, E, w) by f 0 : V → R m . f 0 is an observation of an original function f corrupted by a noise n :f 0 = f + n.
The discrete regularization of f 0 ∈ H(V ) using the weighted p-Laplace operator consists in seeking a function f * ∈ H(V ) that is not only smooth enough on G w , but also close enough to f 0 . It can be formalized by the minimization of two energy terms:

f * = min f ∈H(V ) 8 < : 1 p X v∈V f (v) p + λ 2 f -f 0 2 H(V ) 9 = ; (2) 
where p ∈ [0, +∞[ is the smoothness degree, λ is the fidelity parameter, called the Lagrange multiplier, which specifies the trade-off between the two competing terms, and f represents the weighted gradient of the function f over the graph. The solution of problem (2) leads to a family of nonlinear filters, parameterized by the weight function, the degree of smoothness, and the fidelity parameter. The first energy in (2) is the smoothness term or regularizer, whereas the second is the fitting term. Both energy functions in E p are strictly convex functions of f . In particular, by standard arguments in convex analysis, Problem (2) has a unique solution, for p ≥ 1, which satisfies:

(∆ p f (v)) + λ(f (v) -f 0 (v)) = 0, ∀v ∈ V .

Video regularization

To denoise video sequences, one can consider a video sequence as a simple sequence of independent frames and process each frame separately. Evidently, this would yield poor results from a performance and denoising quality viewpoints. A video sequence mainly differs from a sequence of images in that the consecutive frames of a video are usually related due to the temporal redundancy from one frame to another. Therefore, the temporal dimension is an essential feature that should be integrated in the denoising algorithm itself. The extension to video sequences is based on the integration of time into the regularization process. We will take advantage of the high temporal redundancy of the data due to the high frame rates, which enhances the quality of our regularization. Hence, we develop a spatiotemporal regularization on weighted graphs.

Proposed algorithm

We consider the video sequence as a function f defined over the vertices of a weighted graph G k1,k2,k3 = (V, E, w), where k 1 , k 2 , k 3 ∈ N 3 . A vertex u is defined by a triplet (i, j, t) where (i, j) indicates the spatial position of the vertex and t, which is a frame number, indicates the temporal position of the vertex within the video sequence. We denote by u ∼ v a vertex u that belongs to the neighborhood of v which is defined as follows:

N k 1 ,k 2 ,k 3 (v) = ( u = (i , j , t ) ∈ V : |i -i | ≤ k1, |j -j | ≤ k2, |t -t | ≤ k3.
)

Similarly, we extend the definition of the patch to videos to obtain 3D patches. A patch around a vertex v is a box of size r x × r y × r t , denoted by B(v). Then, we associate to this patch a feature vector defined by:

F (f 0 , v) = f 0 (u), u ∈ B(v).
The weight function w associated to G k1,k2,k3 provides a measure of the distance between its vertices that can simply incorporate local, semi-local or nonlocal features according to the topology of the graph and the image.

We consider the following two general weight functions:

w L (u, v) = exp " - |f (u) -f (v)| 2 2σ 2 d « w NL (u, v) = w L (u, v).exp " - F (f 0 , u) -F (f 0 , v) 2 h 2 « ,
where σ 2 d depends on the variations of |f (u) -f (v)| over the graph. h can be estimated using the standard deviation depending on the variations of F (f 0 , u) -F (f 0 , v) over the graph.

w L (u, v) is a measure of the difference between f (u) and f (v) values, and is used in the local approach of denoising. In addition to the difference between values, w NL (u, v) includes a similarity estimation of the compared features by measuring a L 2 distance between the patches around u and v. It is the nonlocal approach.

To denoise video sequences, we use the Gauss-Jacobi iterative algorithm presented in [START_REF] Elmoataz | Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing[END_REF]. For all (u, v) in E:

f (0) = f 0 γ (k) (u, v) = w(u, v) ` f (k) (v) p-2 + f (k) (u) p-2 f (k+1) (v) = pλf 0 (v) + P u∼v γ (k) (u, v)f (k) (u) pλ + P u∼v γ (k) (u, v) (3) 
where γ (k) is the function γ at the step k. The weights w(u, v) are computed from f 0 , or can be given as an input.

At each iteration, the new value f (k+1) , at a vertex v, depends on two quantities, the original value f 0 (v) and a weighted average of the existing values in a neighborhood of v. This shows that the proposed filter, obtained by iterating, is a low-pass filter which can accomodate many graph structures and weight functions. For more details on the Gauss-Jacobi iterative algorithm, the reader is referred to [START_REF] Elmoataz | Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing[END_REF].

Observe that for the specific parameters p = 2, λ = 0 and after one iteration we retrieve the nonlocal means solution of Buades et al. [START_REF] Buades | Denoising image sequences does not require motion estimation[END_REF].

Improvements

The nonlocal method compares all the patches within a volume of size k 1 × k 2 × k 3 with the central patch of this volume, and is observed to be slow. In the sequel, we reduce the processed data to X% and made an optimized nonlocal version. In our work, for each vertex v, we randomly select vertices within the 3D window, W (v), centered in v. Hence, the optimized nonlocal algorithm is as follows: Algorithm. For each vertex v of the graph:

1. Construct N W (v), the nonlocal neighborhood of v: Select randomly X% of the vertices in W (v) and out of the patch B(v).

2.

Compute the patch similarity between B(v) and B(u) for all u ∈ N W . All the patches B(u) must be included in W (v).

Update the value f (v) according to (3)

The above algorithm is iterated N times. We implemented a version where the algorithm is iterated unitl convergence. As a consequence, we accelerate the nonlocal method, and obtain equally attractive results as demonstrated in section 4.

Experimental results

To test our algorithms, we considered the following parameters : 3 × 3 × 3 patches, 7 × 7 × 3 windows, p = 2 and λ = 0. We corrupted sequences with synthetic zero-mean additive white Gaussian noise random variable n having a variance σ 2 .

As shown in Figure 1, the nonlocal method gives the best visual result. Noise is highly reduced while thin structures such as textures and details are well preserved. The local method produces a good result but some details are lost. The optimized nonlocal method perserves details and is faster than the nonlocal one. These visual observations are further confirmed by the PSNR measures reported in Table 1. Although these results are slightly in favor of the nonlocal method, the proposed optimized variant produces very competitive results, using only 30% of the data, thereby achieving a faster computational performance (computational time is reduced by 70%). Neverthesless, we work on ordering the patches and select the best ones instead of a random selection to reduce the little loss of quality. To evaluate the quality of our video algorithm, we implemented a 2D version of our approach which corresponds to the algorithm by Elmoataz et al., and applied it to denoise the video frames as single images. Then we applied our video algorithm to the same video considered this time as a volume. We compared the 2D and our 3D results. The PSNR of the video results are consistently higher than the PSNR of the 2D results as shown in Figure 2. It is observed that video processing with the optimized nonlocal method gives a higher quality denoising than image processing. 

Conclusion

In this paper, a new algorithm has been introduced for the denoising of video sequences. The algorithm does not require any motion estimation and is based on discrete regularization on graphs. We view a video sequence as a volume to benefit from temporal redundancy, which enhances the denoising results as demonstrated by our experiments.

We take advantage of local and nonlocal regularities in our methods to reduce noise while preserving significant features and details in the video. As the nonlocal method is time-consuming, we reduced the amount of processed data (by 70% in our tests) to gain in time comsuption (reduced by 70%), without compromising the denoising quality.

Our future research will investigate the ordering of patches within a window in order to choose the most similar patches in lieu of randomly selected ones. As a direct application of our algorithm, we shall also employ this work for inpainting purposes.
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 1 Figure 1. Illustration of our three denoising methods with parameters p = 2, λ = 0 and h = 30 after ten iterations. (a) original image; (b) noisy image; from left to right: local, nonlocal and optimized nonlocal results.
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 2 Figure 2. PSNR comparison between video and image denoising results.

Table 1 .

 1 Comparison of the PSNR, expressed in dB, of noisy sequences (noise level σ = 10) denoised by our methods after one iteration.

	Media	Input Local Nonlocal Optimized
	Flower	22.96 23.82	25.15	25.87
	Tennis	24.68 27.12	28.65	28.18
	Football 24.68 25.14	26.02	26.68
	Mobile	21.24 24.31	27.08	26.22