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Abstract—The problem of joint estimation of power spectrum
and modulation from realizations of frequency modulated station-
ary wideband signals is considered. The study is motivated by
some specific signal classes from which departures to stationarity
can carry relevant information and has to be estimated.

The estimation procedure is based upon explicit modeling of
the signal as a wideband stationary Gaussian signal, transformed
by time-dependent, smooth frequency modulation. Under such
assumptions, an approximate expression for the second order
statistics of the transformed signal’s Gabor transform is obtained,
which leads to an approximate maximum likelihood estimation
procedure.

The proposed approach is validated on numerical simulations.

I. INTRODUCTION

Usual time-frequency models for audio signals often rest
upon expansions with respect to dictionaries of time-frequency
waveforms, such as Gabor frames, wavelet frames, or more
general families. Such descriptions are generally adequate for
signal classes such as (voiced) speech, music,... where specific
time-frequency localisation properties can be exploited. They
are less effective for less structured signals, such as wideband
sound signals.

We are concerned here with an alternative description of
audio signals, aiming at describing different sound classes such
as environmental noise, engine sound,... which are in addition
non-stationary, in the sense that they carry information related
to dynamics. As an example, think of an accelerating engine
sound, where the acceleration can generally be perceived. This
example suggests to study sound models, which we will term
timbre×dynamics, in which a reference (stochastic) stationary
signal, characterized by its timbre, is modulated by some
dynamic deformation. Given such signals, a problem is to
estimate the modulation (and possibly the underlying power
spectrum). While many techniques have been developed for
frequency modulation estimation for narrow band signals (see
e.g. [1], the wideband case is more complex and has apparently
received less attention.

A class of models based upon deformations of stationary
processes has been proposed and studied in [2], motivated
by the famous shape from texture image processing problem.
A main aspect of the approach is based on the remark that
a generic class of transformations can be represented by
transport equations in a suitable representation space.

We adopt here a more explicit point of view, and limit to sta-
tionary Gaussian processes, transformed by a time-dependent

modulation. We characterize the distribution of fixed time
slices of a Gabor transform of such signals, and formulate
the corresponding maximum likelihood estimation problem.
As a result, we provide an estimation algorithm which is
demonstrated on a small number of numerical examples.

II. FREQUENCY MODULATION OF STATIONARY RANDOM
SIGNALS

A. Notations and background

1) Random signals: We shall be concerned with complex
Gaussian random signal models X of finite length L, which
we shall assume zero-mean for the sake of simplicity. As is
customary in finite-dimensional Gabor analysis, we shall also
assume periodic boundary conditions, i.e. Xt+L = Xt. Given
such a signal X , we shall denote by CX its covariance matrix,
and by RX its relation matrix (see [3] for details), defined as

CX(t, s) = E
{
XtXs

}
, RX(t, s) = E {XtXs} , (1)

and we will write X ∼ CN (0, CX , RX). X is said to be
circular if RX = 0.

2) Time-frequency representation: We shall use the follow-
ing notations. Given a window function g, the corresponding
short time Fourier transform of a signal (STFT) x ∈ CL is
defined by

Vgx(m,n) =
L−1∑
t=0

x[t]g[t− n]e−2iπm(t−n)/L . (2)

Given lattice constants a and b (divisors of the signal length
L) the corresponding Gabor transform reads

Gx[m,n] = Vgx(mb, na) m = 0, . . .M−1, n = 0 . . . N−1 ,
(3)

with M = L/b and N = L/a. GX is an M × N array. For
suitably chosen g, and a and b small enough, the Gabor trans-
form is invertible (see [4], [5]); in finite dimensional situations,
efficient algorithms have been developed and implemented
(see [6]).

Remark 1 (Notations): As usual, summation bounds in the
frequency domain depend of the parity of the signal length L.
For the sake of simplicity, we introduce some notations and
denote by IL the integer interval IL = [1− L/2, L/2] if L is
even, and the integer interval IL = [−(L−1)/2, (L−1)/2] if L
is odd. The corresponding positive frequencies interval will be
denoted by I+L = [0, L/2] if L is even, and I+L = [0, (L−1)/2]
if L is odd.



B. The model: definition and main estimates

We are concerned here in a simple model of signal trans-
formation, which may be written as follows. We denote
by X a zero-mean, wide sense stationary Gaussian random
process, with covariance matrix CX , and by Z the associated
analytic signal. We denote by SX the power spectrum of
X , and assume that SX(0) = 0, and if L is even, that
SX(L/2) = 0. Under such an assumption, it is easy to show
that Z is a circular complex Gaussian random vector (by a
finite dimensional version of a standard argument, see e.g. [7]).

The observation is assumed to be the real part Y r = Re(Y )
of a complex valued signal Y ; for the sake of simplicity we
shall only work with the latter, assumed to be an USB (upper
sideband) modulated version Y of a reference stationary signal
X , of the form

Yt = Zte
2iπγ(t)/L +Nt , (4)

where γ ∈ C2 is an unknown smooth, slowly varying
modulation function, and N = {Nt, t = 0, . . . L−1} is a real
Gaussian white noise, with variance σ2

0 . Obviously, when γ is
not a constant function, Y is not a wide sense stationary signal
any more. The problem at hand is to estimate the unknown
modulation γ and the original power spectrum SX from a
single realization of Y .

Clearly, Z ∼ CN (0, CZ , 0) is a circular complex Gaussian
random signal, with covariance matrix

CZ(t, s) =
∑
ν∈I+L

SX(ν)e2iπν(t−s)/L , (5)

and is therefore wide-sense stationary.
In the proposed approach, we will base the estimation on a

Gabor representation of the observed signal, and deliberately
disregard correlations across time of the Gabor transform
(hence focusing on time slices of the Gabor transform of the
observation). The distribution of time slices of the analytic
signal Z of the original signal is characterized in the following
two results, which result from direct calculations.

Proposition 1: For fixed n, the Gabor transform GN [., n]
of the gaussian white noise is a stationary Gaussian random
vector, with circular covariance matrix

CGN [m,m′] = σ2
0

L−1∑
k=0

ĝ[k]ĝ[k − (m′ −m)b] (6)

Proposition 2: For fixed time index n, the Gabor transform
GZ [., n] of the analytic signal is a circular complex Gaussian
random vector, with covariance matrix

CGZ [m,m
′] =

∑
k∈I+L

SX [k]ĝ[k −mb]ĝ[k −m′b] (7)

The estimation of the modulation will be based upon an
approximation of the covariance matrix of the observed signal.
In a few words, the Gabor transform of the frequency mod-
ulated signal can be approximated by a deformed version of
the Gabor transform of the original signal. The deformation

takes the form of a time-varying frequency shift. A more
precise argument, based upon first order approximation of the
modulation function γ, leads to the following result.

Theorem 1: 1) For fixed time, the Gabor transform GY
may be approximated as

GY [m,n] = G(n;γ′(na)/b)[m] +R[m] , (8)

where G(n;δ) is a frequency-shifted Gabor transform

G(n;δ)[m] =

L−1∑
t=0

Ztg[t− na]e−2iπ[m−δ][t−an]/M

+ GN [m,n] , (9)

and the remainder is bounded as follows: for all m,m′,∣∣E{R[m]R[m′]
}∣∣ ≤ σ2

Z

(πe
L
‖γ′′‖∞µ2 + 2µ1

)2
, (10)

where σ2
Z is the variance of Z and with

µ1 =
∑
t∈IcT

|g(t)| , µ2 =
∑
t∈IT

t2|g(t)| , T =

√
L

π‖γ′′‖∞
(11)

where IT = [−T, T ] and IcT = IL\IT
2) Given δ, and for fixed n, G(n;δ) is distributed follow-

ing a circular multivariate complex Gaussian law, with
covariance matrix

CG(n;δ) [m,m′] = CGZ [m− δ,m′ − δ] + CGN [m,m′] .
(12)

The estimation procedure described below is a maximum
likelihood approach, which requires inverting the covariance
matrix of vectors G(n;δ). The latter is positive semi-definite
by construction, but not necessarily definite. The result below
provides a sufficient condition on g and the noise for invert-
ibility.

Proposition 3: Assume that the window g is such that

Kg := min
t=0...L−1

(
b−1∑
k=0

|g[t+ kM ]|2
)
> 0 . (13)

Then for all x ∈ CM ,

x∗CGx ≥ σ2
0Kg , (14)

and the covariance matrix is therefore boundedly invertible.
Remark 2: The condition may seem at first sight unnatural

to Gabor frame experts. However, it simply expresses that
the number M of frequency bins shouldn’t be too large if
one wants the covariance matrix to be invertible. However,
reducing M also reduces the precision of the estimate, and a
trade-off has to be found, as discussed in the next section.

C. Improving the frequency resolution

We propose here a method to improve the frequency res-
olution of our estimations. We have already seen that the
invertibility of the covariance matrix requires that the number
of frequency bins of the Gabor transform shouldn’t be too
large. As a result however, it may be convenient, as we shall



see later, to have access to the information contained in all the
frequency frames of the short time Fourier transform defined
in equation (2). For this purpose, we also consider alternative
versions of the Gabor transform, associated with frequency-
shifted sampling lattices:

Gcx[m,n] = Vgx(mb+ c, na) , m ∈ ZM , n ∈ ZN , (15)

where c ∈ [0, b − 1] . We now have at our disposal a
collection of b Gabor transforms, which are all different
subsampled versions of the STFT. The previous results and
proofs remain valid with this new definition of the Gabor
transform. Equations (8) and (9) now become

GcY [m,n] = G(n;γ′(na)/b+c/b)[m] +R , (16)

where

G(n;δc)[m] =

L−1∑
t=0

Ztg[t− na]e−2iπ[m−δ
c][t−an]/M

+ GcN [m,n] , (17)

and the associated Equation (12) now reads:

CG(n;δc) [m,m′] = CGZ [m−δc,m′−δc]+ CGN [m,m′] . (18)

The rationale will be that a frequency shift δc can be
estimated from each one of these thansforms, and the optimal
one will be retained.

III. ESTIMATION PROCEDURE

We now describe in some details the estimation procedure
corresponding to our problem. The estimation problem is the
following: from a single realization of the signal model (4),
estimate the modulation function γ and the original power
spectrum SX . We first notice the indeterminacy in the prob-
lem, namely the fact that adding an affine function to γ is
equivalent to shifting SX . This has to be fixed by adding an
extra constraint in the estimation procedure.

A. Maximum likelihood modulation estimation

We now turn to the estimation procedure, that exploits the
above results. With the same notations as before, we fix a value
of the time index n, and denote for simplicity by G = G(n) the
corresponding fixed time slice of GcZ . Due to the multivariate
complex Gaussian distribution of the signal and the fixed time
Gabor transform slices, the log-likelihood of a slice takes the
form

Lδ(G) = G∗ (CG(n;δc))
−1 G+ln

(
πM det(CG(n;δc))

)
. (19)

Therefore, the maximum likelihood estimate for the frequency
shift assumes the form

δ̂c=argmin
δc

[
G∗(CG(n;δc))

−1G + ln
(
πMdet(CG(n;δc))

)]
.

(20)
However, we notice that det(CG(n;δc)) actually does not de-
pend on the modulation parameter δc. Therefore the maximum
likelihood estimate reduces to

δ̂c = argmin
δc

[
G∗ (CG(n;δc))

−1 G
]
, (21)

a problem to be solved numerically. Notice that this requires
the knowledge of the covariance matrix CG(n;0) corresponding
to the Gabor transform of the noisy stationary signal. The latter
is generally not available, and has to be estimated as well.

As δc(n) ≈ (γ′(an)− c) /b, the estimates of δ for each n
lead to an estimate of γ′. Since we solve the minimisation
problem by an exhaustive search on the δc, the estimate of
γ′ is coarsely quantized (see Remark 2), as b is large and
γ̂′(an) ∈ [c, b + c, 2b + c, .., (M − 1)b + c]. This problem is
solved by using the family of frequency-shifted versions of
Gabor transform described in subsection II-C and making a
new exhaustive search on the δ̂c

δ̂ = argmin
c

[
G∗
(
CG(n;δ̂c)

)−1 G] . (22)

The quantization effect on the final estimation of the modula-
tion function is therefore attenuated, i.e. γ̂′(an) ∈ [0, L − 1].
Obtaining from this estimation a smoother estimate for the
modulation function γ requires extra interpolation techniques.

Remark 3: As an alternative, one may also avoid exhaustive
searches and seek minimizers in (21) using more elaborate
numerical techniques, that would avoid quantization effects.
This question is currently under study.

B. Estimation of the underlying covariance matrix

We now describe a method for estimating the covariance
matrix CG(n;0) . Suppose that an estimate γ̂ of the modulation
function γ is available. Then the signal Y can be demodulated
by setting

U = Y e−2iπγ̂/L , (23)

Clearly, U is an estimator of Z + Ne−2iπγ/L, the noisy
stationary signal. We can now compute the covariance matrix
CGU of the Gabor transform of U , which is an estimator of
CGZ + CGN . Comparing with equation (9) we finally obtain
an estimator for the covariance matrix

CGU ≈ CG(n;0) (24)

Remark 4: The power spectrum SX of the stationary signal
can be estimated from U using a standard Welch periodogram
estimator, or by marginalizing the square modulus of the
Gabor transform of the demodulated signal, as described in [4].

C. Summary of the estimation procedure

We now summarize an iterative algorithm to jointly estimate
the covariance matrix CG(n;0) and the modulation function
γ, that exploits alternatively the two procedures described
above. The procedure is as follows, given a first estimation
of the modulation function, we can perform a first estimation
of the covariance matrix, which in turn allows us obtain a
new estimation of the modulation function. The operation is
repeated until the stopping criterion is satisfied.

For the initialization, we need a first modulation frequency
estimate, for which we use the center of mass of the modulated
signal Gabor transform

δ̂(0)(n) =

∑M−1
m=0 m|G(n;δ)|2[m]∑M−1
m=0 |G(n;δ)|2[m]

. (25)



Fig. 1. Gabor transform of a frequency modulated synthetic stationary
random signal, superimposed with the frequency modulation: estimate (red)
and original (yellow).

The stopping criterion is based upon the evolution of the
frequency modulation along the iterations. More precisely, we
use the empirical criterion

||δ̂(k) − δ̂(k+1)||2
||δ̂(k+1)||2

< ε (26)

The pseudo-code of the algorithm can be found below

Algorithm 1 Joint covariance and modulation estimation
Initialize as in (25)
while criterion (26) is false do
• Compute γ̂(k) by interpolation from δ(k).
• Demodulate Y using γ̂(k) following (23)
• Compute the Gabor transform of the demodulated
signal Ĝ(k;n)[m] = GU(k) [m,n]
• Estimate δ̂(k+1) using the covariance matrix of Ĝ(k;n)

from (21) and (22)
• k := k + 1

end while

IV. NUMERICAL RESULTS

The proposed estimation procedure has been implemented
using MATLAB/OCTAVE, and relies on the LTFAT toolbox [8]
for the time-frequency transforms.

We display in Fig. 1 an example of estimation result. The
original signal was generated as pseudo-random stationary
Gaussian signal with a smooth, wideband power spectrum,
that was further modulated by a smooth frequency modulation
function. Fig. 1 displays the Gabor transform of the modulated
signal (positive frequencies only), together with the original
and the estimate for the frequency modulation. For the sake
of clarity, the frequency estimate has been displayed below
the relevant part of the Gabor transform (remember that it is
defined up to an additive constant). As can be seen, the result
is fairly satisfactory, the estimated modulation follows closely
the ground truth.
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Fig. 2. Log-log plot of the evolution of the criterion proposed in (26)
according on the number of iterations.

To asses the convergence properties of the proposed ap-
proach, the same experiment was run several times with the
same modulation law and different seeds for the underlying
stationary noise. We display in Fig. 2 the evolution of the
criterion as a function of the iteration index, averaged over 20
realizations. Convergence appears to be fast, with power-law
like decay speed.

V. CONCLUSION

We have presented in this paper a new approach for modula-
tion frequency and power spectrum estimation from wideband
signals, based upon explicit modeling. A main point that is
exploited in our approach is the fact that modulations can be
locally approximated by frequency shifts in the Gabor domain.
The algorithm has been validated using numerical simulations,
that show that when signals are generated according to the
model of interest, very accurate results can be obtained.

Further developments include numerical tests on real sig-
nals, such as natural sounds generated by rolling bodies
with variable speed,... We shall also consider extending this
approach to other transformation models, such as time warping
or more general transformations.
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