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SPLINE DISCRETE DIFFERENTIAL FORMS AND A NEW FINITE

DIFFERENCE DISCRETE HODGE OPERATOR.

Aurore Back1 and Eric Sonnendrücker2

Abstract. We construct a new set of discrete differential forms based on B-splines of arbitrary
degree as well as an associated Hodge operator. The theory is first developed in 1D and then
extended to multi-dimension using tensor products. We link our discrete differential forms with
the theory of chains and cochains. The spline discrete differential forms are then applied to the
numerical solution of Maxwell’s equations.
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1. Introduction

The equations of physics are mathematical models consisting of geometric objects and relationships be-
tween them. There are many methods to discretize equations, but few maintain the physical nature of
objects that constitute them. To respect the geometrical nature of physics, it is necessary to change the
point of view and use differential geometry, also for the numerical study. In differential geometry and tensor
calculus, differential forms are an approach to multivariable calculus that is independent of coordinates.
The operators such as divergence, curl or gradient are replaced by the exterior derivative d. The exterior
derivative acts on a k-form to produce a (k+1)-form. So the fundamental theorem of calculus, the divergence
theorem, Green’s theorem, and Stokes’ theorem are also well defined in differential geometry and we also
have the de Rham cohomology. Another advantage to use this approach is to know where, in the equations,
there is a coordinates dependance i.e. a metric dependance. These notions can be determined by using the
Hodge star operator. There have been several articles on the subject because there are many problems such
as the discretization of Hodge star operator [2, 3, 12] (an important notion which contains all the metric of
our domain), and the interpolation of differential forms [1, 4–6]. The first who used this point of view to
discretize equations is Alain Bossavit [4]. He uses Whitney elements [5] to discretize differential forms and
hence, discretize Maxwell equations in the language of differential geometry and until now, the basis functions
used for interpolation have been Whitney forms. In this paper we propose to define a new class of discrete
differential forms using B-splines and so a new discrete Hodge operator. This new approach proves to have
many advantages. It allows to define high order approximation and higher degree B-splines are computed
by recurrence with de Boor algorithm [8] so its easy and efficient to implement them; discrete differential
forms verify the same properties as ”continuous” differential forms especially they preserve the de Rham
diagram. Moreover, the new discrete Hodge star operator is represented by a banded matrix and respect
some properties of continuous approach when the degree of B-splines tends to infinite. It also appears that
in the Finite Element context our B-spline discrete differential forms are naturally related to the B-spline
finite elements appearing in isogeometric analysis [7, 14].
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In the sequel, we recall the construction of B-splines and their properties (for this part the reader is
refered to the book of de Boor [8]) then we explain how to construct discrete differential forms based on
B-splines for uniform and non uniform meshes and for periodic and perfect conductors boundary conditions.
Our objects are constructed in detail in the 1D case and are extended to the 3D case by tensor product
using the 1D forms. We explain also the construction of applications acting on differential forms such as the
exterior derivative and so the Hodge operator. For discretizing the last operator, we adapt the technique
of T. Tarhasaari, L. Kettunen and A. Bossavit [3] for discretizing the Hodge star operator to the case of
B-splines. The Hodge star operator ⋆ must verify the fact that ⋆⋆−1 applied on a k-differential form must
be equal to (−1)k(n−k) (where n corresponds to the dimension of our space). We will see, numerically, that
these property is verify when the degree of B-splines tends to infinite. Then, in the fourth part, we show the
link between the k-cochains or differential k-forms and k-chains but with a discrete point of view. It is the
discrete version of integration of k-forms. This part proves the coherence of discrete differential forms based
on B-splines because we obtain the same link that we can find in the continuous case and we show that the
discrete de Rham diagram is also preserved. Finally, we apply this theory to the Maxwell equations and
we test it on uniform meshes with periodic conditions and on non uniform meshes with perfect conductors
boundary conditions. Moreover, since this point of view provides a geometric formulation of Lagrangian
equations, this means no reference coordinate system and so the construction of approximation schemes
remains valid in case of continuous deformation, so we apply a change of variables on non uniform mesh
with perfect conductors boundary conditions.

2. A short overview of B-splines

Let us denote by T = (ti)06i6M a non uniform set of increasing knots who can contains multiplicity. B-
splines on T can be defined recursively. We remark that we make the difference between nodes of mesh and
knots using for constructing the B-spline. Later, we will see that this difference allows to define some kind
of boundary conditions. In particular natural boundary conditions (vanishing second derivative), Hermite
boundary condition (given derivative), or periodic boundary conditions can be used. Let us denote by Bα

i

the B-spline of degree α with support in the interval [ti, ti+α+1]. Then Bα
i is defined recursively by

B0
i (x) =

∣
∣
∣
∣

1 if ti ≤ x < ti+1

0 else,

and for α ≥ 1

Bα
i (x) =

x − ti
ti+α − ti

Bα−1
i (x) +

ti+α+1 − x

ti+α+1 − ti+1
Bα−1

i+1 (x) (1)

The B-splines verify the following properties:

(1) The B-spline Bα
i is a polynomial of degree α between two consecutive knots,

(2) We can have knots with a multiplicity m.
(3) The B-spline Bα

i is of class Cα+1−m on knot t with multiplicity m.

(4) Partition of unity: for any point x, we have
N+α∑

i=0

Bα
i (x) = 1.

We shall also need the recursion formula for the derivatives:

Bα
i
′(x) = α

(

Bα−1
i (x)

ti+α − ti
−

Bα−1
i+1 (x)

ti+α+1 − ti+1

)

. (2)

For details, the reader is refered to the book of de Boor [8]

3. Construction of discrete differential forms based on B-splines in 1D

case

3.1. Uniform periodic mesh

3.1.1. Construction of discrete 0-form

Let us define by x0 < x1 < · · · < xN−1 < xN the nodes of our 1D mesh and by N + 1 the number of
nodes. Since we assume a 1D periodic domain with xN − x0 as periodicity, all functions will be equal at
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x0 and xN . Then xN will not be part of the mesh. In these conditions, the B-splines of degree α, Bα
i are

defined on knots equal to ti = x0 + i∆x for i = −[α+1
2 ], . . . , N + α + 1 (there are no multiplicity and [α+1

2 ]

corresponds to the entire part of α+1
2 ) and ∆x = (x0 − xN )/N . So we have N + α + 1 knots, N nodes and

N B-splines ( because we consider that for i > N − [α+1
2 ], we have Bi is equal to Bα

i−N ).
In the 1D case, we need to define discrete 0-forms and 1-forms that will be constructed using basis

functions denoted respectively by w0,α
i and w1,α

i .

Let us start with the discrete 0-form. We define the basis functions w0,α
i = Bα

i and the space of linear
spline 0-forms Sα

0 will be the vector space generated by these basis functions. Any function C0 ∈ Sα
0 writes

C0(x) =

N−[ α+1

2
]

∑

j=−[ α+1

2
]

c0
jB

α
j (x) =

N−1∑

j=0

c0
j−[ α+1

2
]
Bα

j−[ α+1

2
]
(x),

For more simplicity, in the following, we will denote by Bα
j (x) the B-spline Bα

j−[ α+1

2
]
(x) and by c0

j the

coefficients c0
j−[ α+1

2
]
i.e

C0(x) =
N−1∑

j=0

c0
jB

α
j (x).

The c0
j defined by the interpolation conditions C0(xi) =

∑N−1
j=0 c0

jB
α
j (xi) for 0 ≤ i ≤ N − 1 which is

a linear system that can be written in matrix form M0
αc0 = C

0, with C
0 = (C0(x0), . . . , C

0(xN−1))
T ,

c0 = (c0
0, . . . , c

0
N−1)

T and M0
α the square matrix whose components are m0

ij = Bα
j (xi) for i, j = 0 . . . N − 1.

Lemma 3.1. On a uniform set of nodes, we have

• for all odd α, the matrix (M0
α,ij)0≤i,j≤N−1 is non singular.

• for all even α and number of mesh points N an odd number, the matrix (M0
α,ij)0≤i,j≤N−1 is non

singular.

Proof. We denote Bα
i,j = Bα

i (xj) = M0
α,ij . We can easily show by induction, with help of the formula (1),

that Bα
i,j = 0 for j /∈ {i+1, . . . , i+α}, Bα

i,i+1 = Bα
i,i+α = 1 and Bα

i+1,j = Bα
i,j−1. So the formula (1) becomes:

Bα
i,j =

j − i

α
Bα−1

i,j +
i + α + 1 − j

α
Bα−1

i,j−1.

We notice that M0
α is a circulant matrix and since Bα

i,j = 0 for j /∈ {i + 1, . . . , i + α}, it can be written:

M0
α =

α∑

j=1

Bα
0,jJ

j
N , (3)

where JN =










0 1 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 1 0
0 . . . . . . 0 1
1 0 . . . . . . 0










with N × N its size. We can factorize (3) by JN

α! and we obtain:

M0
α =

JN

α!

α∑

j=1

(
j(α − 1)!Bα−1

0,j + (α + 1 − j)(α − 1)!Bα−1
0,j−1

)
Jj−1

N ,

=
JN

α!
Eα−1(JN ),

where Eα−1(X) =
∑α

j=1

(
j(α − 1)!Bα−1

0,j + (α + 1 − j)(α − 1)!Bα−1
0,j−1

)
Xj−1 are Eulerian polynomials. Their

coefficients are positive and symmetric (symmetric means that if P (X) = an Xn + . . . + a0, an−k = ak).
Moreover, the eigenvalues of JN are the Nth roots of unity: {ω0, ω1, . . . } with ω = exp( 2iπ

N ). So, the

eigenvalues of M0
α are {ω0Eα−1(ω0), ω1Eα−1(ω1), . . . }. Since the determinant is the product of eigenvalues,
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if an Eulerian polynomial has a root which is a root of unity, M0
α is singular. But we know [13] that Eulerian

polynomials have real, negative and distinct roots. So, if −1 is the root of Eulerian polynomials, M0
α is

singular. We can observe that if α is an odd number, Eα−1(X) is a polynomial with even degree and
positive, symmetric coefficients. So Eα−1(−1) 6= 0 if α is an odd number that implies M0

α is non singular. If
α is an even number we have Eα−1(−1) = 0 and so −1 must not be a root of JN . However, exp( 2ikπ

N ) = −1

if and only if N is an even number and k = N
2 . So Eα−1(−1) 6= 0 if α is an even number and N an odd

number that implies M0
α is non singular. �

3.1.2. Construction of the exterior derivative and discrete 1-form

The exterior derivative is an application who acts on k-form and return a (n − k)-form where n is the
dimension of our space. So, in the 1D case if we apply on discrete 0-form the exterior derivative, to be
coherent, we must be have a 1-form. That is help us to construction the 1-form and the discrete exterior
derivative. To define them we apply the exterior derivative on discrete 0-form. We obtain

dC0(x) =
N−1∑

i=0

c0
i d (Bα

i (x)) =
N−1∑

i=0

c0
i (D

α
i (x) − Dα

i+1(x)) dx

=
N∑

i=1

(c0
i − c0

i−1)D
α
i (x) dx

=
N∑

i=1

(c0
i − c0

i−1)
1wα

i (x)

where c0
N = c0

0. We deduce that in order to define the 1-forms we shall need the notation

Dα
i (x) =

α

ti+α − ti
Bα−1

i (x),

for this function linked to the derivative of the B-spline Bα−1
i . We can now define the basis functions for

the discrete 1-forms by

w1,α
i (x) = Dα

i (x) dx.

The discrete exterior derivative d is defined by a matrix contains 0, 1 and −1 and acting on splines coefficients
such as d(c0

i )06i6N−1 = (c0
i − c0

i−1)16i6N . It corresponds to the incidence matrix.

The space of linear spline 1-forms Sα
1 will be the vector space generated by these basis functions. Any

1-form C1 ∈ Sα
1 writes

C1(x) =
N−1∑

j=0

c1
jD

α
j (x) dx,

the coefficients c1
j being defined by the relations

∫ xi+1

xi

C1(x) =
N−1∑

j=0

c1
j

∫ xi+1

xi

Dα
j (x) dx for 0 ≤ i ≤ N − 1,

this also defines a linear system that can be written in matrix form M1
αc1 = C

1, with

C
1 = (

∫ x1

x0

C1(x), . . . ,

∫ xN

xN−1

C1(x))T ,

c1 = (c1
0, . . . , c

1
N−1)

T and M1
α the square matrix whose components are m1

ij =
∫ xi+1

xi
Dα

j (x) dx.

Lemma 3.2. Under the conditions of the previous lemma, the matrix M1
α is non singular.
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Proof. The basis functions w
1,α
i have been chosen using the recursion formula for the spline derivatives (2)

and verify

w
1,α
i (x) − w

1,α
i+1(x) = Bα

i
′(x) dx.

Using this relation and the fact that Bα
i (x) vanishes for x 6∈ [ti, ti+α], it follows easily by recurrence on the

degree α that
∫ ti+ν+1

ti+ν

w
1,α
i (x) =

ν∑

k=0

Bα
i+k(ti+ν+1) −

ν−1∑

k=0

Bα
i+k(ti+ν).

In the case of uniform meshes, we have the property Bα
i+k(ti+ν+1) = Bα

i+k+ν+1(ti). So, we deduce that

(M1
α)i,j =

∫ xi+1

xi
Dα

j (x) dx = Bα
j+1(xi+1). �

3.1.3. The discrete Hodge Star

The Hodge Star is an application who associates a k-form to a (n − k)-form in n-dimensionnal space.
That says, in 3-dimensionnal space, it associates a 0-form to a 3-form and a 1-form to a 2-form. Indeed,
for the mesh that’s means the number of nodes must be equal to the number of volumes and the number
of edges must be equal to the number of surfaces. No mesh verify these assumptions so we must consider
two meshes: a primal mesh where nodes are denoted by xi and a dual mesh where the dual nodes are the
middle of the primal nodes, xi+1/2 = (xi + xi+1)/2. With these construction we obtain that the number of
nodes is equal to the number of dual volumes, the number of edges is equal to the number of dual surfaces
and vice versa, the number of dual nodes is equal to the number of volumes and the number of dual edges
is equal to the number of surfaces.
So we deduce that we must consider two types of differential forms: the primal forms, constructed on the
primal mesh and dual forms on the dual mesh.

Denoting by Bα
j+1/2 the splines whose knots are based on the dual mesh, the discrete 0-forms and 1-forms

on the dual mesh are defined in the same way by

C̃0(x) =
N−1∑

j=0

c̃0
j+1/2B

α
j+1/2(x),

with the c̃0
j+1/2 defined by the interpolation conditions C̃0(xi+1/2) =

∑N−1
j=0 c̃0

j+1/2B
α
j+1/2(xi+1/2) for 0 ≤

i ≤ N − 1 which is a linear system that can be written in matrix form M̃0
αc̃0 = C̃

0, with

C̃
0 = (C̃0(x1/2), . . . , C̃

0(xN−1/2))
T ,

c̃0 = (c̃0
1/2, . . . , c̃

0
N−1/2)

T and M̃0
α the square matrix whose components are m̃0

ij = Bα
j+1/2(xi+1/2). We have

that M̃0
α meet the conditions of the first lemma and so the square matrix is non singular.

A discrete 1-form on the dual mesh is defined by

C̃1(x) =

N−1∑

j=0

c̃1
j+1/2D

α
j+1/2(x) dx,

the coefficients c̃1
j+1/2 being defined by the relations

∫ xi+3/2

xi+1/2

C̃1(x) =
N−1∑

j=0

c̃1
j+1/2

∫ xi+3/2

xi+1/2

Dα
j+1/2(x) dx for 0 ≤ i ≤ N − 1,

this also defines a linear system that can be written in matrix form M̃1
αc̃1 = C̃

1, with

C̃
1 = (

∫ x3/2

x1/2

C̃1(x), . . . ,

∫ xN+1/2

xN−1/2

C̃1(x))T ,
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c̃1 = (c̃1
1/2, . . . , c̃

1
N−1/2)

T and M̃1
α the square matrix whose components are m̃1

ij =
∫ xi+3/2

xi+1/2
Dα

j+1/2(x) dx. For

the same reason as M1, M̃1
α is non singular. Note that due to the periodicity hypothesis

∫ xN+1/2

xN−1/2
C̃1(x) =

∫ xN

xN−1/2
C̃1(x) +

∫ x1/2

x0
C̃1(x).

Having defined discrete 0-forms and 1-forms on both grids, we can now define in a natural way the discrete
Hodge operators [2,3], mapping primal 0-forms to dual 1-forms, primal 1-forms to dual 0-forms and the other
way round.

As discrete differential forms are defined by their coefficients in the appropriate basis, the discrete Hodge
operator should map those coefficients to those on the image basis. Let us start with the discrete Hodge
mapping primal 0-forms to dual 1-forms. Given a discrete 0-form on the primal mesh

C0(x) =
N−1∑

j=0

c0
jB

α
j (x),

we can apply the continuous Hodge operator to it, as ⋆1 = dx, we get

⋆C0(x) =
N−1∑

j=0

c0
jB

α
j (x) dx.

Now, as Bα
j are not splines on the dual mesh, this does not define a discrete differential form on the dual

mesh. We need an additional projection step. Denoting by πC0 the projection of ⋆C0 on the space of discrete
differential forms of the same order on the dual mesh, we can write

πC0(x) =
N−1∑

j=0

c̃1
j+1/2D

α
j+1/2(x) dx,

with
∫ xi+3/2

xi+1/2

⋆C0(x) =
N−1∑

j=0

c̃1
j+1/2

∫ xi+3/2

xi+1/2

Dα
j+1/2(x) dx for 0 ≤ i ≤ N − 1.

Now defining S̃1 the matrix whose i, j coefficient is
∫ xi+3/2

xi+1/2
Bα

j (x) dx, this relation becomes in matrix form

S̃1c0 = M̃1
αc̃1,

so that the discrete Hodge operator mapping c0 to c̃1 is

(M̃1
α)−1S̃1 with S̃1

i,j =

∫ xi+3/2

xi+1/2

Bα
j (x) dx.

In order to define the Hodge operator mapping discrete 1-forms on the primal grid to discrete 0-forms on
the dual grid, we apply the continuous Hodge operator (⋆dx = 1) to a discrete 1-form on the primal grid

⋆C1(x) =
N−1∑

j=0

c1
jD

α
j (x).

Its projection on the space of discrete 0-forms on the dual grid is defined by the point values ⋆C1(xi+1/2).
Hence in the same way as before the discrete Hodge in this case is defined by

(M̃0
α)−1S̃0 with S̃0

i,j = Dα
j (xi+1/2).

The Hodge operators mapping from the dual grid to the primal grid are naturally defined in the same
way by

(M1
α)−1S1 with S1

i,j =

∫ xi+1

xi

Bα
j+1/2(x) dx,



TITLE WILL BE SET BY THE PUBLISHER 7

(M0
α)−1S0 with S0

i,j = Dα
j+1/2(xi).

Let us finally explicit the different matrices involved in the Hodge operators for the case of uniform
periodic linear and cubic splines. In the case of a uniform mesh, due to the recurrence relation on spline
derivatives we have

Dα
j (x) − Dα

j+1(x) = Bα
j+1

′(x).

Integrating between i an i + 1 and using that Bα
j (x) = Bα

0 (x − xj) yields

∫ xi+1

xi

(Dα
0 (x − xj) − Dα

0 (x − xj − ∆x)) dx = Bα
0 ((i − j)∆x) − Bα

0 ((i − j − 1)∆x).

So that ∫ xi+1

xi

Dα
j (x) dx = Bα

j+1(xi+1).

From this it follows that on a uniform grid M0
α = M1

α = M̃0
α = M̃1

α are all the usual degree α periodic spline
interpolation matrix.

For linear splines (α = 1) the matrices M0
1 = M1

1 = M̃0
1 = M̃1

1 = I are all the identity matrix. For cubic
splines (α = 3) these matrices are the circulant matrices with 2/3 on the diagonal and 1/6 on the upper and
lower diagonal.

Let us now come to the Hodge matrices. Due to their expressions the matrices are also constant circulant
matrices with S0

α = S̃0
α and S1

α = S̃1
α. In the case α = 1, Dα

i (x) = 1
∆x for xi−1 ≤ x ≤ xi and 0 elsewhere.

Hence

S0
1 = S̃0

1 =
1

∆x
I.

And a simple computation yields that S1
1 = S̃1

1 are circulant matrices with three diagonals that read

S1
1 = S̃1

1 = ∆x circ[
1

8
,
3

4
,
1

8
],

where

circ[
1

8
,
3

4
,
1

8
] =











1
8 0 . . . 1

8
3
4

3
4

1
8 0 . . . 1

8
1
8

3
4

1
8 0

0
. . .

. . .
. . .

...
... 0 1

8
3
4

1
8











.

Notice that S0
1 and S̃1

1 are not exactly the inverse of each other as is the case for their continuous

counterparts and the same for S1
1 and S̃0

1 , but for example S̃1
1 and (S0

1)−1 can be used as approximations
for the discrete Hogde operator.

In the case of cubic splines we have, the following circulant matrices

S0
3 = S̃0

3 =
1

∆x
circ[

1

8
,
3

4
,
1

8
],

S1
3 = S̃1

3 = ∆x circ[
1

384
,
19

96
,
115

192
,
19

96
,

1

384
].

In theory, we have ⋆ ⋆ ωk = (−1)k(n−k)ωk for all differential k-forms in n-dimensional Riemann man-

ifold. We do not have this property with discrete differential forms but (Mn−k)−1Sn−k(M̃n−k)−1S̃n−k

tends to (−1)k(n−k)Id when we increase the order of spline for interpolation. We remark that it does
not depend on the number of mesh points. In the case of periodic domain in 1-dimension, we study
(Mn−k)−1Sn−k(M̃n−k)−1S̃n−k − (−1)k(n−k)Id and we obtain the following table:

Degree of Spline Frobenius norm 2-norm 1-norm
α = 1 3.66358772244 1.5246887983 1.75
α = 3 0.0723421421156 0.0625 0.0625
α = 5 0.0145136394546 0.00821424978684 0.0137692232972
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3.2. Non uniform mesh with perfect conductors boundary conditions

For perfect conductors boundary conditions the main idea is the same. We have a primal and dual meshes,
primal and dual forms construct respectively on primal and dual mesh, the same construction for discrete
exterior derivative and the same idea for the construction of Hodge Star. The only difference is the set of
knots who determine the construction of B-spline.

Remark 3.1. We have three types of points. We called by nodes the points describing our mesh, by knots

the points helping to construct B-splines, and by points the points used for interpolation.

In the case of periodic boundary conditions, the notions of nodes, knots and points are equivalent; In the

case of perfect conductors boundary conditions these elements are all different.

3.2.1. Construction of B-splines

The primal 1D mesh of our domain will be a non uniform set of nodes x0 < x1 < · · · < xN−1 < xN . For
perfect conductors boundary conditions, using a degree α, the set of knots is corresponding to the set of
nodes x0 < x1 < · · · < xN−1 < xN but we duplicate α + 1 times the knots in the boundary to have a set of
B-splines C0 on the boundary x0 and xN and Cα+1 otherwise. So, the set of knots constructing the set
of B-splines is x0, . . . , x0

︸ ︷︷ ︸

α+1

, x1, . . . , xN−1, xN , . . . , xN
︸ ︷︷ ︸

α+1

. In this case, we have to contend a problem because we

have N + α splines functions and N + 1 different points for interpolation in the primal mesh. So we must

add interpolation’s points on primal mesh. So as α is odd, we add the middle of (α−1)
2 first primal cells and

(α−1)
2 last primal cells. For example, if α equals 3, we must add 2 points, so we take the middle of [x0, x1]

and [xN−1, xN ].
The primal interpolation points will be

{x0, · · · , xN} ∪

{
(xi+1 + xi)

2
|i ∈ {0, · · · ,

(α − 1)

2
− 1}

}

∪

{
(xi−1 + xi)

2
|i ∈ {N −

(α − 1)

2
+ 1, · · · , N}

}

.

Denoting by p0 < p1 < · · · < pN+α−1 the interpolation nodes of our primal mesh in increasing order.

For the case of dual mesh, we proceed with the same idea. The dual mesh will consist of the middle points
of the primal mesh with the extremal points x0 and xN , i.e. N + 2 nodes: x0 < x1/2 < · · · < xN−1/2 < xN .
And so the set of knots is x0, . . . , x0

︸ ︷︷ ︸

α+1

< x1/2 < · · · < xN−1/2 < xN , . . . , xN
︸ ︷︷ ︸

α+1

, and constructs N+α+1 B-splines.

The same previous problem appears, we have N +α+1 B-splines and N +2 different nodes or interpolation’s

points. So we consider α is odd and we add the middle of (α−1)
2 first dual cells and (α−1)

2 last dual cells. For
example, if α equals 3, we must add 2 points, so we take the middle of [x0, x1/2] and [xN−1/2, xN ].
The dual interpolation points of our dual mesh will be

˘

x
−1/2 = x0, x1/2 · · · , xN−1/2, xN = xN+1/2

¯

∪



(xi−1/2 + xi+1/2)

2
|i ∈ {0, · · · ,

(α − 1)

2
− 1} ∪ {N −

(α − 1)

2
+ 1, · · · , N}

ff

and denoting by p̃0 < p̃1 < · · · < p̃N+α in increasing order.

3.2.2. Construction of discrete differential forms

With this construction, we can interpolate primal and dual 0 and 1-forms. Let us start with the discrete
0-form on the primal mesh. Any function C0 ∈ Sα

0 writes

C0(x) =
N+α−1∑

j=0

c0
jB

α
j (x),

with the c0
j defined by the interpolation conditions C0(pi) =

∑N+α−1
j=0 c0

jB
α
j (pi) for i ∈ {0, · · ·N + α − 1} on

the primal mesh which is a linear system that can be written in matrix form M0
αc0 = C

0, with

C
0 =

(
C0(p0), . . . , C

0(pN+α−1)
)T

,
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c0 =
(
c0
0, . . . , c

0
N+α−1

)T
and M0

α the square matrix with size N +α whose components are m0
i,j = Bα

j (pi) for
j = 0, · · · , N + α − 1 and i = 0, · · ·N + α − 1.

Lemma 3.3. The matrix M0
α is non singular.

Proof. M0
α meets the conditions of the Schoenberg-Whitney Theorem [8] and so the square matrix is non

singular. �

The space of linear spline 1-forms Sα
1 will be the vector space generated by these basis functions. Any 1-form

C1 ∈ Sα
1 writes

C1(x) =
N+α−2∑

j=0

c1
jD

α
j (x) dx,

the coefficients c1
j being defined by the relations

∫ pi+1

pi

C1(x) =

N+α−2∑

j=0

c1
j

∫ pi+1

pi

Dα
j (x) dx for 0 ≤ i ≤ N + α − 2,

this also defines a linear system that can be written in matrix form M1
αc1 = C

1, with

C
1 =

(∫ p1

p0
C1(x), . . . ,

∫ pN+α−1

pN+α−2
C1(x)

)T

, c1 =
(
c1
0, . . . , c

1
N+α−2

)T
and M1

α the square matrix with size N +

α − 1 whose components are m1
i,j =

∫ pi+1

pi
Dα

j (x) dx for j, i = 0, · · ·N + α − 2.

Lemma 3.4. The matrix M1
α is non singular.

Proof. Using the relation w
1,α
i (x)−w

1,α
i+1(x) = Bα

i
′(x) dx and the fact that Bα

i (x) vanishes for x 6∈ [xi, xi+α],
it follows easily by recurrence on the degree α that

∫ pi+1

pi

w
1,α
i (x) =

N−1∑

k=j

Bα
k (pi+1) −

N−1∑

k=j

Bα
k (pi) =: Aα

j (pi+1) − Aα
j (pi).

We can observe that M1
α is the principal minor (1,1) of the matrix












1 0 · · · · · · 0

−1 1 0
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 −1 1












M0
α












1 0 · · · · · · 0

1 1 0
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

1 · · · · · · 1 1












=











Aα
−α(p0) Aα

−α+1(p0) · · · Aα
N−1(p0)∫ p1

p0
D−α

∫ p2

p1
D−α

... M1
α∫ pN+α−1

pN+α−2
D−α











.

The matrix A on the left hand side is non singular because it’s the product of non singular matrices. Since
for all i, pi > x0 and the support of D−α is ]x−α, x0[, we have

∫ pi+1

pi
D−α = 0. Furthermore, Aα

−α(p0) 6= 0

because Bi(x) > 0 and B−α(p0) 6= 0. So, 0 6= det(A) = Aα
−α(p0)det(M1

α) that implies det(M1
α) 6= 0. �

The discrete 0-forms and 1-forms on the dual mesh are defined in the same way by

C̃0(x) =
N+α∑

j=0

c̃0
j+1/2B

α
j+1/2(x),

with the c̃0
j+1/2 defined by the interpolation conditions

C̃0(p̃i) =
N+α∑

j=0

c̃0
j+1/2B

α
j+1/2(p̃i) for i ∈ {0, · · · , N + α}
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on the dual mesh which is a linear system that can be written in matrix form M̃0
αc̃0 = C̃

0, with

C̃
0 =

(

C̃0(p̃0), C̃
0(p̃1), · · · , C̃0(p̃N+α)

)T

,

c̃0 =
(

c̃0
1/2, . . . , c̃

0
N+α+1/2

)T

and M̃0
α the square matrix with size N + α + 1 whose components are m̃0

i,j =

Bα
j+1/2(p̃i) and is nonsingular with help Schoenberg-Whitney Theorem.

A discrete 1-form on the dual mesh is defined by

C̃1(x) =
N+α−1∑

j=0

c̃1
j+1/2D

α
j+1/2(x) dx,

the coefficients c̃1
j+1/2 being defined by the relations

∫ p̃i+1

p̃i

C̃1(x) =
N+α−1∑

j=0

c̃1
j+1/2

∫ p̃i+1

p̃i

Dα
j+1/2(x) dx for 0 ≤ i ≤ N + α − 1,

this also defines a linear system that can be written in matrix form M̃1
αc̃1 = C̃

1, with

C̃
1 =

(∫ p̃1

p̃0
C̃1(x), · · · ,

∫ p̃N+α−1

p̃N+α−2
C̃1(x)

)T

, c̃1 =
(

c̃1
1/2, . . . , c̃

1
N+α−1/2

)T

and M̃1
α the square matrix with size

N + α whose components are m̃1
i,j =

∫ p̃i+1

p̃i
Dα

j+1/2(x) dx and is nonsingular thanks to the previous lemma.

3.2.3. The discrete Hodge operator:

Let us start with the discrete Hodge [2, 3] mapping primal 0-forms to dual 1-forms. Given a discrete
0-form on the primal mesh

C0(x) =
N+α∑

j=0

c0
jB

α
j (x),

and so

⋆C0(x) =
N+α−1∑

j=0

c0
jB

α
j (x) dx.

Denoting by πC0 the projection of ⋆C0 on the space of discrete differential forms of the same order on the
dual mesh, we can write

πC0(x) =
N+α−1∑

j=0

c̃1
j+1/2D

α
j+1/2(x) dx,

with
∫ p̃i+1

p̃i

⋆C0(x) =
N+α−1∑

j=0

c̃1
j+1/2

∫ p̃i+1

p̃i

Dα
j+1/2(x) dx for 0 ≤ i ≤ N + α − 1.

Now defining S̃1 the square matrix with a size N + α whose i, j coefficient is
∫ p̃i+1

p̃i
Bα

j (x) dx, this relation

becomes in matrix form
S̃1c0 = M̃1

αc̃1,

so that the discrete Hodge operator mapping c0 to c̃1 is

(M̃1
α)−1S̃1 with S̃1

i,j =

∫ ni+1/2

ni−1/2

Bα
j (x) dx.

In order to define the Hodge operator mapping discrete 1-forms in the primal grid to discrete 0-forms on
the dual grid, we apply the continuous Hodge operator to a discrete 1-form on the primal grid

⋆C1(x) =
N+α−2∑

j=0

c1
jD

α
j (x).
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Its projection on the space of discrete 0-forms on the dual grid is defined by the point values ⋆C1(p̃i) for
i ∈ {0, · · · , N + α}. Hence in the same way as before the discrete Hodge in this case is defined by

(M̃0
α)−1S̃0 with S̃0

i,j = Dα
j (p̃i).

We can notice that this matrix is not square because its size is (N + α + 1) × (N + α − 1).
The Hodge operators mapping from the dual grid to the primal grid are naturally defined in the same

way by

(M1
α)−1S1 with S1

i,j =

∫ pi+1

pi

Bα
j+1/2(x) dx.

This matrix is not square, its size is (N + α − 1) × (N + α + 1), but the matrix S0 is square, with a size
(N + α) × (N + α):

(M0
α)−1S0 with S0

i,j = Dα
j+1/2(pi).

In the case of perfect conductors boundary ⋆ ⋆ ωk = (−1)k(n−k)ωk for all differential k-forms in n-

dimensional Riemann manifold. In 1-dimension, (Mn−k)−1Sn−k(M̃n−k)−1S̃n−k tends to (−1)k(n−k)Id when
we increase the order of spline for interpolation.
We study the different norm for (Mn−k)−1Sn−k(M̃n−k)−1S̃n−k − (−1)k(n−k)Id, we obtain the following
table:

Degree of Spline Frobenius norm 2-norm 1-norm
α = 1 2.34520787991 0.499657383689 0.5
α = 3 0.177424498932 0.0622720895077 0.0754437671418
α = 5 0.0490270024226 0.0345996163058 0.0209297727957

4. Construction of discrete differential forms based on B-splines in 3D

case

4.1. The basis

We are now going to define the 3D discrete differential forms on a cartesian grid, which will be needed for
Maxwell’s equations, by tensor product using the 1D form. This procedure can be generalized in a natural
way to any number of dimensions.

The set of 3D discrete differential forms will be defined as the span of the following basis functions:

• The basis functions for the 0-forms are

0wα
i,j,k(x, y, z) = Bα

i (x)Bα
j (y)Bα

k (z).

• The basis functions for the 1-forms are

1w
α,x
i,j,k(x, y, z) = Dα

i (x)Bα
j (y)Bα

k (z) dx,

1w
α,y
i,j,k(x, y, z) = Bα

i (x)Dα
j (y)Bα

k (z) dy,

1wα,zi, j, k(x, y, z) = Bα
i (x)Bα

j (y)Dα
k (z) dz.

• The basis functions for the 2-forms are

2w
α,x
i,j,k(x, y, z) = Bα

i (x)Dα
j (y)Dα

k (z) dy ∧ dz,

2w
α,y
i,j,k(x, y, z) = Dα

i (x)Bα
j (y)Dα

k (z) dz ∧ dx,

2w
α,z
i,j,k(x, y, z) = Dα

i (x)Dα
j (y)Bα

k (z) dx ∧ dy.
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• The basis functions for the 3-forms are

3wα
i,j,k(x, y) = Dα

i (x)Dα
j (y)Dα

k (z) dx ∧ dy ∧ dz.

This construction will yield the same basis functions as in [7] and [14] where vector calculus is used.

4.2. Example: the Maxwell equations

The 3D Maxwell equations can be written in terms of differential forms [4] in the following way

−∂t
2D + d 1H = 2J, (4)

∂t
2B + d 1E = 0, (5)

d 2D = 3ρ, (6)

d 2B = 0, (7)

where 2D, 2B, 2J are 2-forms, 1E, 1H are 1-forms and 3ρ is a 3-form.
For the purpose of numerical validation, let us consider the 2D case, where all functions depend only on

the x and y variables. In this case, the Maxwell equations keep their three components, we therefore still
need to consider the differential forms in a 3D space but restrict them to coefficients depending only on x
and y. For the discretization of Maxwell’s equations with our spline discrete differential forms, we can define
two dual uniform cartesian grids of [0, 1]3. The mesh we shall consider will be a the cartesian product of a
2D mesh with one cell of length one in the z direction. The primal 2D grid is based on the points xi = i/∆x,
yj = j/∆y, with (i, j) ∈ [0, Nx]× [0, Ny] and Nx∆x = Ny∆y. In case of periodic boundary conditions in the
x direction, the point xNx corresponds to x0 and is omitted from the grid. Periodic boundary conditions in
the other direction are dealt with in the same manner.

The points of the dual grid are xi+1/2 = (i + 1/2)/∆x, yj+1/2 = (j + 1/2)/∆y, with (i, j, k) ∈ [0, Nx −
1] × [0, Ny − 1].

The basis functions for our spline discrete differential forms in this case will be

• for the 0-forms

0wα
i,j(x, y) = Bα

i (x)Bα
j (y),

• for the 1-forms

1w
α,x
i,j (x, y) = Dα

i (x)Bα
j (y) dx, 1w

α,y
i,j (x, y) = Bα

i (x)Dα
j (y) dy, 1w

α,z
i,j (x, y) = Bα

i (x)Bα
j (y) dz,

• for the 2-forms

2w
α,x
i,j (x, y) = Bα

i (x)Dα
j (y) dy ∧ dz, 2w

α,y
i,j (x, y) = Dα

i (x)Bα
j (y) dz ∧ dx,

2w
α,z
i,j (x, y) = Dα

i (x)Dα
j (y) dx ∧ dy,

• for the 3-forms

3wα
i,j(x, y) = Dα

i (x)Dα
j (y) dx ∧ dy ∧ dz.

The discrete differential forms on the dual mesh are defined in the same way with their indices on the
dual mesh.

Let us now introduce approximations of the unknowns of Maxwell’s equations as linear combinations of
these basis functions for the corresponding p-forms. Let us denote by 1w̃α and 2w̃α, the discrete spline
one form and two form basis functions for the splines with knots being the points of the dual mesh. In 2D,
Maxwell’s equations decouple into two systems, one linking the x and y components of 2D and 1E and the
z component of 2B and 1H, and the other one linking the x and y components of 2B and 1H and the z
component of 2D and 1E. We shall only consider the first one here. The other can be dealt with similarly.
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Let us now express the relevant components of our electromagnetic field in the appropriate basis of discrete
differential forms

2Dx
h(t, x, y) =

∑

i,j

dx
i+1/2,j+1/2(t)

2w̃
α,x
i+1/2,j+1/2(x, y), 1Ex

h(t, x, y) =
∑

i,j

ex
i,j(t)

1w
α,x
i,j (x, y),

2D
y
h(t, x, y) =

∑

i,j

dy
i+1/2,j+1/2(t)

2w̃
α,y
i+1/2,j+1/2(x, y) 1E

y
h(t, x, y) =

∑

i,j

ey
i,j(t)

1w
α,y
i,j (x, y),

1Hz
h(t, x, y) =

∑

i,j

hz
i+1/2,j+1/2(t)

1w̃
α,z
i+1/2,j+1/2(x, y), 2Bh(t, x, y) =

∑

i,j

bz
i,j(t)

2w
α,z
i,j (x, y).

In order to obtain equations relating the coefficients of this discrete differential forms, we inject these
expressions into the Maxwell equations (4)-(7), and take the De Rahm maps for two forms on each facet of
the the dual mesh for (4) and (6) and of primal mesh for (5) and (7) .

Let us first compute the exterior derivatives of 1Hh and 1Eh:

d 1Hz
h(t, x, y) =

∑

i,j

hz
i+1/2,j+1/2(t)d

1w̃
α,z
i+1/2,j+1/2(x, y)

=
∑

i,j

hz
i+1/2,j+1/2(t)

(

−Bα
i+1/2

′(x)Bα
j+1/2(y) dz ∧ dx + Bα

i+1/2(x)Bα
j+1/2

′(y) dy ∧ dz
)

,

using the formula (2) for the derivative of the spline functions and the definition of Dα
i , (3.1.2), we get

d 1Hz
h(t, x, y) =

∑

i,j

hz
i+1/2,j+1/2(t)

(

(Dα
i+3/2(x) − Dα

i+1/2(x))Bα
j+1/2(y) dz ∧ dx

+Bα
i+1/2(x)(Dα

j+1/2 − Dα
j+3/2)(y) dy ∧ dz

)

=
∑

i,j

(hz
i−1/2,j+1/2(t) − hz

i+1/2,j+1/2(t))D
α
i+1/2(x)Bα

j+1/2(y) dz ∧ dx

+
∑

i,j

(hz
i+1/2,j+1/2(t) − hz

i+1/2,j−1/2(t))B
α
i+1/2(x)Dα

j+1/2(y) dy ∧ dz. (8)

In the same way

d 1Ex
h(t, x, y) =

∑

i,j

ex
i,j(t)d

1w̃
α,x
i,j (x, y)

= −
∑

i,j

ex
i,j(t)D

α
i (x)Bα

j
′(y) dx ∧ dy

= −
∑

i,j

(ex
i,j(t) − ex

i,j−1(t))D
α
i (x)Dα

j (y) dx ∧ dy, (9)

and

d 1E
y
h(t, x, y) =

∑

i,j

ey
i,j(t)d

1w̃
α,y
i,j (x, y)

=
∑

i,j

ey
i,j(t)B

α
i
′(x)Dα

j (y) dx ∧ dy

=
∑

i,j

(ey
i,j(t) − ey

i−1,j(t))D
α
i (x)Dα

j (y) dx ∧ dy, (10)

Ampere’s law (4), without current, for the first two components can be written

∂t
2Dx + ∂t

2Dy − d 1H = 0.
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Then using expression (8) and identifying the components on the basis vectors of the discrete differential
forms we get the following relation between the spline coefficients

dx
i+1/2,j+1/2

′(t) + hz
i+1/2,j+1/2(t) − hz

i+1/2,j−1/2(t) = 0,

dy
i+1/2,j+1/2

′
(t) − hz

i+1/2,j+1/2(t) + hz
i−1/2,j+1/2(t) = 0.

On the other hand, Faraday’s law (5), for the third component can be written

∂t
2Bz + d 1E = 0.

This becomes using (9) and (10) and identifying the components on the basis vectors of the discrete differ-
ential forms

bz
i,j

′(t) + (ey
i,j(t) − ey

i−1,j(t)) − (ex
i,j(t) − ex

i,j−1(t)) = 0.

4.2.1. Discrete Hodge operators:

Let us denote by

bz = ((bz
i,j))1≤i≤Nx−1,1≤j≤Ny−1, ex = ((ex

i,j))1≤i≤Nx−1,1≤j≤Ny−1, ey = ((ey
i,j))1≤i≤Nx−1,1≤j≤Ny−1,

hz = ((hz
i+1/2,j+1/2))1≤i≤Nx−1,1≤j≤Ny−1, dx = ((dx

i+1/2,j+1/2))1≤i≤Nx−1,1≤j≤Ny−1,

dy = ((dy
i+1/2,j+1/2))1≤i≤Nx−1,1≤j≤Ny−1,

the matrices of spline coefficients on the discrete grids.
We now need to define the discrete Hodge operators mapping dx to ex, dy to ey and bz to hz. The same

procedure as for the 1D case will be used. We have

2Dx
h(t, x, y) =

∑

i,j

dx
i+1/2,j+1/2(t)B

α
i+1/2(x)Dα

j+1/2(y) dy ∧ dz,

defines a 2-form to which we can apply the continuous Hodge operator, yielding the one form

⋆ 2Dx
h(t, x, y) =

∑

i,j

dx
i+1/2,j+1/2(t)D

α
i+1/2(x)Bα

j+1/2(y) dx.

We now define the image of 2D by the discrete Hodge operator as the projection of this 1-form onto
the primal grid. Denoting 1Eh =

∑

i,j ex
i,j(t)D

α
i (x)Bα

j (y) dx this image. Then we have for any (k, l) ∈

[0, Nx − 1] × [0, Ny − 1]

∫ xk+1

xk

⋆ 2Dx
h(t, x, yl) =

∑

i,j

dx
i+1/2,j+1/2(t)

∫ xk+1

xk

Bα
i+1/2(x) dx Dα

j+1/2(yl) =
∑

i,j

ex
i,j(t)

∫ xk+1

xk

Dα
i (x) dx Bα

j (yl).

Recalling that
∫ xk+1

xk
Bα

i (x) dx is the term at position (k, i) of matrix M1
α, that Bα

j (yl) is the term at position

(l, j) of matrix M0
α and denoting by S1 the matrix whose (k, i) component is

∫ xk+1

xk
Bα

i+1/2(x) dx and by S0

the matrix whose (l, j) component is Dα
j+1/2(yl), the above relation can be written in matrix form

S1dx(S0)T = M1
αex(M0

α)T .

This defines the discrete Hodge operator mapping d to e. Note that on a uniform grid all these matrices are
symmetric so that the transpose can be omitted. For the y component, the Dα

i and Bα
j are interchanged so

that we get
S0dy(S1)T = M0

αey(M1
α)T .

And the same computation gives us the discrete Hodge operator for the z component

S1bz(S1)T = M0
αhz(M0

α)T .
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5. Link with the theory of chains and cochains

We now point out the link of our discrete differential forms with the theory of chains and cochains
[4, 6, 9, 15].

5.1. Notion of chain

Hypercubes [16, 17]: Let us denote by Ω a domain and by T its boundary. We pave Ω with squares and we
denote by m this mesh. We call 0-cubes, the nodes of our mesh, 1-cubes, the edges, 2-cubes, the squares and
3-cubes, the cubes ( 4-cubes, the tesseract, 5-cubes for the penteract, ..). We define an orientation for all of
elements of m and denote by Hα,p(m) the set of p-cubes (we will see that in the case of a non periodic domain
the number of p-cubes depends on the degree of B-splines α). Now, we define the boundary operator ∂ that
maps a p-cube to a (p − 1)-cube. For example: let ei a vector who has for origin xi and for extremity point
xi+1, so the boundary of ei is ∂ei = xi+1 − xi. In fact, we can define the boundary operator ∂p, mapping a
p-cube to a (p − 1)-cube, by a sparse matrix containing only −1, 1 or 0 with size |Hα,p−1(m)| × |Hα,p(m)|.
These matrices are called the transpose of incidence matrices and verify ∂p ∂p+1 = 0.
Notion of Chains and discrete manifolds: A p-chain cp is a linear combination of all p-cubes on m i.e.:

cp =
∑

hp,s∈Hα,p(m)

cp,s hp,s,

where cp,s ∈ R. We will denote the set of all p-chains as Cα,p(m). We define that a p-dimensional manifold
is discretized by a p-chain and the boundary operator acts on p-chains by linearity as:

∂cp = ∂




∑

hp,s∈Hα,p(m)

cp,s hp,s



 =
∑

hp,s∈Hα,p(m)

cp,s ∂ hp,s,

and when we collect the s-th (p − 1)-cube we obtain:

∂cp =
∑

hp−1,s∈Hα,p−1(m)

(∂pcp)s hp−1,s,

where cp = (cp,s)s is a column vector containing the coefficients of a p-chain. And so, applying the boundary
operator on a p-chain is equivalent to applying the operator ∂p on coefficients of a p-chain. Furthermore,
since all p-chains are defined by their |Hα,p(m)| coefficients cp,s, we can find a bijection mapping Cα,p(m)

to R
|Hα,p(m)|. But, before, we will define the mapping that determines the coefficients cp,s.

A p-chain cp represents a discrete p-manifold, so for all basis functions pwα
i ∈ Wα,p(m) we can compute the

integral of pwα
i over cp. So, coefficient cp,s is defined by the relations, for all i ∈ |Hα,p(m)|:

∫

cp

pwα
i =

∑

hp,s∈Hα,p(m)

cp,s

∫

hp,s

pwα
i .

This yields a linear system. For example, in one dimension, we must solve

• for a 0-chain

C0 = (M0
α)t c0,

where C0 = (Bα
0 (c0), . . . , B

α
|Hα,0(m)|−1(c0))

t, c0 = (c0,0, . . . , c0,|Hα,0(m)|−1)
t and M0

α is the square

matrix we constructed for discrete differential 0-forms.
• for a 1-chain

C1 = (M1
α)t c1,

where C1 = (
∫

c1
Dα

0 (x)dx, . . . ,
∫

c1
Dα

|Hα,1(m)|−1(x)dx)t, c1 = (c1,0, . . . , c1,|Hα,1(m)|−1)
t and M1

α is the

square matrix we constructed for discrete differential 1-forms.

In the same way, in two or three dimension, we can remark that we also must solve linear systems involving
tensor products of matrices (M1

α)t and (M0
α)t. More generally, for all dimensions, we denote by M

p
α the square
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matrix that we use for finding the coefficients of p-chain cp i.e. for solving the linear system Cp = (Mp
α)tcp.

Now, we can define Pt
α mapping Cα,p(m) to R

|Hα,p(m)| and Rt
α mapping R

|Hα,p(m)| to Cα,p(m) such that

Pt
α : Cα,p(m) → R

|Hα,p(m)|

cp 7→ {cp | Cp = (Mp
α)t cp}

and

Rt
α : R

|Hα,p(m)| → Cα,p(m)

cp = (cp,s)s 7→
∑

hp,s∈Hα,p(m)

cp,s hp,s.

Now we can show that we have a de Rham complex:

Cα,3(m)
∂ //

Pt
α

��

Cα,2(m)
∂ //

Pt
α

��

Cα,1(m)
∂ //

Pt
α

��

Cα,0(m)

Pt
α

��
R

|Hα,3(m)|
∂3

//

Rt
α

OO

R
|Hα,2(m)|

∂2

//

Rt
α

OO

R
|Hα,1(m)|

∂1

//

Rt
α

OO

R
|Hα,0(m)|

Rt
α

OO

with ∂2∂3 = 0 and ∂1∂2 = 0.

Lemma 5.1. This diagram is commutative.

Proof. Remember a property of B-splines Bα
j (xi+1) − Bα

j (xi) =
∫ xi+1

xi
Dj(x) dx −

∫ xi+1

xi
Dj+1(x) dx, this

becomes in matrix from (M0
α)t ∂1 = ∂1 (M1

α)t and we have also (M1
α)t ∂2 = ∂2 (M2

α)t and (M2
α)t ∂3 =

∂3 (M3
α)t. Then, remenber also that applying the boundary operator on a p-chain its equivalent to applying

the operator ∂p on the coefficients of the p-chain. So, for a 1-chain c1, ∂ c1 =
∑

h0,s∈Hα,0(m)(∂
1c1)s h0,s and

so Pt
α ∂ c1 = ((M0

α)t)−1 ∂1 c1 and ∂1 Pt
α c1 = ∂1 ((M1

α)t)−1 c1. We can deduce that ∂1 (Pα)t c1 = Pt
α ∂ c1.

Proceeding in the same way, we also obtain that ∂2 Pt
α c2 = Pt

α ∂ c2 and ∂3 Pt
α c3 = Pt

α ∂ c3. �

In the dual mesh, denoting by H⋆
α,p(m) the p-cell, dual of (n− p)-cubes and C⋆

α,p(m) the set of p-chain in
the dual mesh. Similarly, we obtain a de Rham complex, also commutative:

C⋆
α,3(m) ∂ //

Pt
α

��

C⋆
α,2(m) ∂ //

Pt
α

��

C⋆
α,1(m) ∂ //

Pt
α

��

C⋆
α,0(m)

Pt
α

��
R

|Hα,0(m)|
(∂1)t

//

Rt
α

OO

R
|Hα,1(m)|

(∂2)t

//

Rt
α

OO

R
|H2,α(m)|

(∂3)t

//

Rt
α

OO

R
|Hα,3(m)|

Rt
α

OO

5.2. Notion of cochain

Cochains: A p-cochain wp is the dual of a p-chain. That is to say wp is a linear mapping that takes p-chains
to R:

wp : Cα,p(m) → R

cp 7→ wp(cp)

We denote the set of p-cochains or p-forms by Wα,p(m). By duality, this space has a finite dimension
|Hα,p(m)|. A p-cochain wp operates on a p-chain cp and returns a linear combination of the values of the
cochain on each p-cube.
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Link with differentials forms: p-cochains are discrete analogs of differential forms. So, a discrete differential
p-form, wp, is a linear mapping that takes p-chains to R. We have seen, during the construction of discrete
differential p-forms, or p-cochains, that they can be written as:

wp =
∑

p
w

α
s ∈W α,p(m)

wp,s pwα
s ,

where the coefficients wp,s are defined as the solution of the linear system:

W
p = M

p
α wp.

Now, we can define the non degenerate bilinear form:

〈 , 〉 : Wα,p(m) × Cα,p(m) → R

(wp, cp) 7−→ 〈wp, cp〉 =

∫

cp

wp.

Let cp a p-chain and wp a differential p-form, we obtain by linearity:

∫

cp

wp =
∑

hp,s∈Hα,p(m)

cp,s

∫

hp,s

wp.

So, the bilinear mapping acts on the spline coefficients and on the coefficients of p-chains as:

〈wp, cp〉 = ct
p M

p
α wp,

where cp and wp are column vectors of coefficients of the p-chain cp and the p-cochain wp respectively.
Exterior derivative, Stokes theorem and de Rham complex: The exterior derivative maps a (p − 1)-form to
p-form. For example, in the 3D case and p = 1:

dw0 = d
(∑

wi,j,kBα
i (x)Bα

j (y)Bα
k (z)

)

=
∑

wi,j,kd
(
Bα

i (x)Bα
j (y)Bα

k (z)
)

=
∑

wi,j,k(Dα
i (x) − Dα

i+1(x))Bα
j (y)Bα

k (z) dx

+ wi,j,k(Dα
j (y) − Dα

j+1(y))Bα
i (x)Bα

k (z) dy

+ wi,j,k(Dα
k (z) − Dα

k+1(z))Bα
i (x)Bα

j (y) dz

=
∑

(wi,j,k − wi−1,j,k)Dα
i (x)Bα

j (y)Bα
k (z) dx

+ (wi,j,k − wi,j−1,k)Bα
i (x)Dα

j (y)Bα
k (z) dy

+ (wi,j,k − wi,j,k−1)Bα
i (x)Bα

j (y)Dα
k (z) dz

=
∑

(wi,j,k − wi−1,j,k) 1w
α,x
i,j,k(x, y, z)

+ (wi,j,k − wi,j−1,k) 1w
α,y
i,j,k(x, y, z)

+ (wi,j,k − wi,j,k−1) 1w
α,z
i,j,k(x, y, z).

We remember that we have an equivalence between applying the boundary operator on a p-chain and applying
∂p on coefficients of a p-chain for p = 1, 2, 3 respectively. Here, we have the dual property. We can see that
applying the exterior derivative on a differential p-form is equivalent to applying the incidence matrix (∂p)t

on the spline coefficients.
Now, construct a diagram. Denoting by F p(Ω) the set of differential p-forms on Ω (not discrete). We can
pass from p-form to a (p + 1)-form by exterior derivative and the sequence

F 0(Ω)
d // F 1(Ω)

d // F 2(Ω)
d // F 3(Ω) ,
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is exact when Ω is star-shaped [10] and we have, in the same way, for discrete differential p-forms,

Wα,0(m)
d // Wα,1(m)

d // Wα,2(m)
d // Wα,3(m) ,

is exact when m is the mesh of a star-shaped Ω. Seeing that Wα,p(m) was constructed as a finite dimensional
subspace of F p(Ω), we can project the set of differential p-forms on W p,α(m). We obtain the de Rham
complex:

F 0 d //

proj

��

F 1 d //

proj

��

F 2 d //

proj

��

F 3

proj

��
Wα,0(m)

d //

Pα

��

Wα,1(m)
d //

Pα

��

Wα,2(m)
d //

Pα

��

Wα,3(m)

Pα

��
R

|Hα,0(m)|
(∂1)t

//

Rα

OO

R
|Hα,1(m)|

(∂2)t

//

Rα

OO

R
|Hα,2(m)|

(∂3)t

//

Rα

OO

R
|Hα,3(m)|

Rα

OO

where proj is a projection and mapping Pα and Rα are the dual mapping of Pt
α and Rt

α defined by :

Pα : Wα,p(m) → R
|Hα,p(m)|

wp 7→ {wp|Wp = M
p
α wp}

and

Rα : R
|Hα,p(m)| → Wα,p(m)

wp 7→
∑

p
w

α
s ∈W α,p(m)

wp,s pwα
s .

Lemma 5.2. This diagram is commutative.

Proof. First, let us show that the part involving discrete differential p-forms and spline coefficients, a com-
mutative diagram.
With help of a property of splines, we have seen that (M0

α)t ∂1 = ∂1 (M1
α)t, (M1

α)t ∂2 = ∂2 (M2
α)t and

(M2
α)t ∂3 = ∂3 (M3

α)t. We take the tranpose and we have (∂1)t
M

0
α = M

1
α (∂1)t, (∂2)t

M
1
α = M

2
α (∂2)t

and (∂3)t
M

2
α = M

3
α (∂3)t. Furthermore, applying the exterior derivative on a differential p-form is equiv-

alent to applying the incidence matrix on the spline coefficients. We have Pα dw0 = (M1
α)−1 (∂1)t w0 and

(∂1)t Pα w0 = (∂1)t (M0
α)−1 w0 and so (∂1)t Pα w0 = Pα dw0. In the same way, we obtain (∂2)t Pα w1 =

Pα dw1, (∂3)t Pα w2 = Pα dw2.

Secondly, let us show that the part concerning differential p-forms and discrete differential p-forms is a
commutative diagram.
On the one hand, let ωp−1 ∈ F p−1(Ω) a differential (p − 1)-form. The exterior derivative of a (p − 1)-form
dωp−1 is p-form. So, with help of the Leibniz property , we obtain that

proj d ωp−1 =
∑

p
w

α
s ∈W α,p(m)

(

(Mp
α)

−1
(∂p)t

W
p−1
)

s

pwα
s .

On other hand, with help of exterior derivative on splines coefficients

d proj ωp−1 =
∑

p
w

α
s ∈W α,p(m)

(

(∂p)t
(
M

p−1
α

)−1
W

p−1
)

s

pwα
s .

And so, showing that d proj ωp−1 = proj d ωp−1 is equivalent to showing that (∂p)t
(
M

p−1
α

)−1
= (Mp

α)
−1

(∂p)t,
that we have. �
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Remark 5.1. Since splines have a compact support, we can observe that Wα,0(m) ⊂ H(grad,Ω), Wα,1(m) ⊂
H(curl, Ω), Wα,2(m) ⊂ H(div,Ω) and Wα,3(m) ⊂ L2(Ω) in the sense of differential forms. That is, if

wp ∈ Wα,p(m), wp ∧ ⋆wp ∈ L2(Ω) and dwp ∧ ⋆dwp ∈ L2(Ω).

Also, for p-cochains on the dual mesh Wα,p
⋆ , we have similarly a commutative diagram:

F 0 d //

proj

��

F 1 d //

proj

��

F 2 d //

proj

��

F 3

proj

��
Wα,0

⋆ (m)
d //

Pα

��

Wα,1
⋆ (m)

d //

Pα

��

Wα,2
⋆ (m)

d //

Pα

��

Wα,3
⋆ (m)

Pα

��
R

|H⋆
α,0(m)|

∂3

//

Rα

OO

R
|H⋆

α,1(m)|
∂2

//

Rα

OO

R
|H⋆

α,2(m)|
∂1

//

Rα

OO

R
|H⋆

α,3(m)|

Rα

OO

5.3. A broader view

In parallel with gradient, curl and divergence, we denote by G, R,D the matrix (∂p)t for p = 1, 2, 3
respectively. Furthermore, using Hodge star operator ⋆ mapping a p-form to a (n − p)-form, where n is the
dimension of space, we have

F 0

d

��

proj //

⋆

**
Wα,0(m)

d

��

Pα //
R

|Hα,0(m)|

G

��

Rα

oo
(M̃3)−1S̃3

//
R

|H⋆
α,3(m)|

(M0)−1S0

oo
Rα //

Wα,3
⋆ (m)

Pα

oo F 3
projoo

F 1

d

��

proj // Wα,1(m)

d

��

Pα //
R

|Hα,1(m)|

R

��

Rα

oo
(M̃2)−1S̃2

//
R

|H⋆
α,2(m)|

(M1)−1S1

oo

Gt

OO

Rα //
Wα,2

⋆ (m)
Pα

oo

d

OO

F 2
projoo

d

OO

F 2

d

��

proj // Wα,2(m)

d

��

Pα //
R

|Hα,2(m)|

D

��

Rα

oo
(M̃1)−1S̃1

//
R

|H⋆
α,1(m)|

(M2)−1S2

oo

Rt

OO

Rα //
Wα,1

⋆ (m)
Pα

oo

d

OO

F 1
projoo

d

OO

F 3
proj // Wα,3(m)

Pα //
R

|Hα,3(m)|

Rα

oo
(M̃0)−1S̃0

//
R

|H⋆
α,0(m)|

(M3)−1S3

oo

Dt

OO

Rα //
Wα,0

⋆ (m)
Pα

oo

d

OO

F 0
projoo

d

OO

⋆−1

jj
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6. Numerical results

6.1. Test case in 2D with periodic boundary conditions

In 2 dimension with periodic boundary condition, let us consider the following solution of Maxwell’s
equations: the electric field, a 1-form, is given by 1E = −ky sin(kx x+ky y−ω t)dx−kx sin(kx x+ky y−ω t)dy,
and the magnetic field, a 2- form, is given by 2B = ω cos(kx x + ky y − ω t)dx dy. Then, with help of the
Hodge star operator we obtain the formula for the electric displacement field: 1D = −ky sin(kx x + ky y −
ω t)dy − kx sin(kx x + ky y − ω t)dx and for the magnetizing field: 0H = ω cos(kx x + ky y − ω t). Constants
are given by kx = 2 π

Lx
, ky = 2 π

Ly
, where Lx and Ly are the length of our domain in x and y respectively and

ω =
√

k2
x + k2

y. We test our code with Lx = Ly = 1 and with a time scheme of order 4 and we observe that

the order of our scheme is given by the spline order.

Figure 1: The magnetizing
field H in 2D with periodic
boundary conditions.

Figure 2: The first compo-
nent of the electric displace-
ment field Dx in 2D with pe-
riodic boundary conditions.

Figure 3: The second com-
ponent of the electric displace-
ment field Dy in 2D with peri-
odic boundary conditions.

spline degree α = 1
Number of points L2 errors for Dx conv. order in Dx

10 0.963466687612
20 0.244961611114 1.97567910882
40 0.0617111800439 1.98895188936
80 0.015439432949 1.99891211506

spline degree α = 3
Number of points L2 errors for Dx conv. order in Dx

10 0.0346451065418
20 0.00221920090229 3.96453940841
40 0.000139584011258 3.99083467768
80 8.73723793614e-06 3.99781260726

6.2. Test case in 1D with perfect electric conductor boundary conditions

In one dimension with perfect electric conductor boundary conditions, we have a solution where the electric
field, a 0-form, is given by 0E = k

ω sin(k x) cos(ω t), and the magnetic field, a 1- form, has the form, 1B =
− cos(kx x) sin(ω t)dx. Then, with help of the Hodge star operator we obtain the formula for the electric
displacement field: 1D = k

ω sin(k x) cos(ω t)dx and for the magnetizing field : 0H = − cos(kx x) sin(ω t).

Constants are given by k = 2 π
L , where L are the length of our domain in x and ω = |kx|. We test our code

with Lx = 1 and with a time scheme of order 4 and we observe that the order of our scheme is given by the
spline order.
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Figure 4: The magnetizing field H in 1D with per-
fect electric conductor boundary conditions.

Figure 5: The electric field D in 1D with perfect
electric conductor boundary conditions.

spline degree α = 1
Number of points L2 errors for H conv. order in H
10 0.14405968937
20 0.0365895785828 1.9767117931
40 0.0091869581337 1.9927326542
80 0.00229392316474 2.000650123

spline degreeα = 3
Number of points L2 errors for H conv. order in H
10 0.00291782099873
20 0.000191704646607 3.93368451201
40 1.22331803519e-05 3.97851382897
80 7.61847256487e-07 4.00012583133

We are going up to time T = 2. These convergence order are obtain with a time step ∆t = ∆x/0.5 when
we use B-spline of degree 1 and ∆t = ∆x/3.5 when we use B-spline of degree 3.

6.3. Change of variables in two dimensions

6.3.1. General case

Let us now consider a computational domain defined by a mapping f from a square. The change of
variables f : (r, s) → (f1(r, s), f2(r, s)) = (x, y) is a diffeomorphism. Let us denote J the jacobian matrix of
f

J(r, s) =

(
∂f1

∂r (r, s) ∂f1

∂s (r, s)
∂f2

∂r (r, s) ∂f2

∂s (r, s)

)

,

and |J | its determinant. By definition we also have that the jacobian matrix of the inverse of f at point
(f1(r, s), f2(r, s)) is the inverse of the jacobian matrix of f ,

J−1(r, s) =





∂f−1

1

∂x (f1(r, s), f2(r, s))
∂f−1

1

∂y (f1(r, s), f2(r, s))
∂f−1

2

∂x (f1(r, s), f2(r, s))
∂f−1

2

∂y (f1(r, s), f2(r, s))



 =
1

|J |

(
∂f2

∂s (r, s) −∂f1

∂s (r, s)

−∂f2

∂r (r, s) ∂f1

∂r (r, s)

)

.

We discretize the cartesian domain parametrized by (r, s) and we will work only on this domain. The primal
2D mesh of our domain will be r0 < r1 < · · · < rNr−1 < rNr in the r-direction and s0 < s1 < · · · < sNs−1 <
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sNs in the s-direction. In 2D, Maxwell’s equations use the following differential forms

1H(x, y) = hz(x, y)dz,
2B(x, y) = bz(x, y)dx ∧ dy,
1E(x, y) = ex(x, y)dx + ey(x, y)dy,
2D(x, y) = dx(x, y)dy ∧ dz + dy(x, y)dz ∧ dx.

When we do the change of coordinates, we obtain

f⋆ 1H(r, s) = hz(f1(r, s), f2(r, s))dz,

f⋆ 2B(r, s) = bz(f1(r, s), f2(r, s))|J |dr ∧ ds,

f⋆ 1E(r, s) = (ex(f1(r, s), f2(r, s))
∂f1

∂r
(r, s) + ey(f1(r, s), f2(r, s))

∂f2

∂r
(r, s))dr

+(ex(f1(r, s), f2(r, s))
∂f1

∂s
(r, s) + ey(f1(r, s), f2(r, s))

∂f2

∂s
(r, s))ds,

f⋆ 2D(r, s) = (dx(f1(r, s), f2(r, s))
∂f2

∂r
(r, s) − dy(f1(r, s), f2(r, s))

∂f1

∂r
(r, s))dr ∧ dz

+(dx(f1(r, s), f2(r, s))
∂f2

∂s
(r, s) − dy(f1(r, s), f2(r, s))

∂f1

∂s
(r, s))ds ∧ dz.

Let us now express differentials forms in the new coordinates in the appropriate basis of discrete differential
forms

f⋆ 2Dr
h(t, r, s) =

∑

i,j

dr
i+1/2,j+1/2(t)

2w̃
α,r
i+1/2,j+1/2(r, s), f⋆ 1Er

h(t, r, s) =
∑

i,j

er
i,j(t)

1w
α,r
i,j (r, s),

f⋆ 2Ds
h(t, r, s) =

∑

i,j

ds
i+1/2,j+1/2(t)

2w̃
α,s
i+1/2,j+1/2(r, s) f⋆ 1Es

h(t, r, s) =
∑

i,j

es
i,j(t)

1w
α,s
i,j (r, s),

f⋆ 1Hz
h(t, r, s) =

∑

i,j

hz
i+1/2,j+1/2(t)

1w̃
α,z
i+1/2,j+1/2(r, s), f⋆ 2Bh(t, r, s) =

∑

i,j

bz
i,j(t)

2w
α,z
i,j (r, s).

Coefficients associated to splines are calculated with help of degree of freedom on the cartesian grid (r, s, z).
The exterior derivative d does not depend on the coordinate system, we have f⋆d = df⋆. This proprety
can be verified on discrete differential forms with help of the discrete exterior derivative acting on spline
coefficients. So Ampere’s law (4), without current, for the first two components can be written

∂tf
⋆ 2Dr + ∂tf

⋆ 2Ds − df⋆ 1H = 0.

On the other hand, Faraday’s law (5), without current, for the third component can be written

∂tf
⋆ 2Bz + df⋆ 1E = 0.

Discrete Hodge operators: We must be careful since f⋆ does not commute with the Hodge operator, so we
must define discrete Hodge operators in the new coordinate system such that the following equalities are
true:

f⋆ 2B = f⋆
(
⋆ 1H

)
,

f⋆ 1E = f⋆
(
⋆ 2D

)
.

We know f⋆ 1H, f⋆ 2D and we want calculate the spline coeficients for f⋆ 2B, f⋆ 1E . For this, we apply the
pullback f−1⋆ on f⋆ 1H, f⋆ 2D to come back in the old variables (x, y, z) to have 1H, 2D then we apply the
Hodge Star operator followed by the pullback f⋆. After simplication, we obtain
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f⋆
(
⋆ 1H

)
=
∑

i,j

dz
i+1/2,j+1/2(t)B

α
i+1/2(r)B

α
j+1/2(s)|J(r, s)|dr ∧ ds,

(f⋆(⋆ 2Dh))r(t, r, s) =
∑

i,j

(

dr
i+1/2,j+1/2(t)B

α
i+1/2(r)D

α
j+1/2(s)

(J tJ(r, s))1,1

|J(r, s)|

+ds
i+1/2,j+1/2(t)D

α
i+1/2(r)B

α
j+1/2(s)

(J tJ(r, s))2,1

|J(r, s)|

)

dr,

(f⋆(⋆ 2Dh))s(t, r, s) =
∑

i,j

(

dr
i+1/2,j+1/2(t)B

α
i+1/2(r)D

α
j+1/2(s)

(J tJ(r, s))1,2

|J(r, s)|

+ds
i+1/2,j+1/2(t)D

α
i+1/2(r)B

α
j+1/2(s)

(J tJ(r, s))2,2

|J(r, s)|

)

ds,

where (J tJ(r, s))i,j is the (i, j) coefficient of the matrix J tJ(r, s). We now define the image of 1H by f⋆⋆
as the projection of this 2-form, denoting by f⋆ 2Bh(t, r, s) =

∑

i,j bz
i,j(t)

2w
α,z
i,j (r, s), onto primal grid. Then

we have for any (k, l) ∈ [0, Nr − 1] × [0, Ns − 1]

∫ rk+1

rk

∫ sl+1

sl

f⋆(⋆ 1Hh)(t, r, s) =
∑

i,j

dz
i+1/2,j+1/2(t)

∫ rk+1

rk

∫ sl+1

sl

Bα
i+1/2(r)B

α
j+1/2(s)|J(r, s)|dr ∧ ds

=

∫ rk+1

rk

∫ sl+1

sl

f⋆ 2Bh(t, r, s) =
∑

i,j

bz
i,j(t)

∫ rk+1

rk

∫ sl+1

sl

2w
α,z
i,j (r, s).

Also, we denote by f⋆ 1Eh = f⋆ 1Er
h(t, r, s)+ f⋆ 1Es

h(t, r, s) =
∑

i,j er
i,j(t)

1w
α,r
i,j (r, s)+

∑

i,j es
i,j(t)

1w
α,s
i,j (r, s)

the projection of 2D and we have

∫ rk+1

rk

(f⋆ ⋆ 2Dh)r(t, r, sl) =
∑

i,j

dr
i+1/2,j+1/2(t)D

α
j+1/2(sl)

∫ rk+1

rk

(

Bα
i+1/2(r)

(J tJ)1,1(r, sl)

|J(r, sl)|

)

dr

+ ds
i+1/2,j+1/2(t)B

α
j+1/2(sl)

∫ rk+1

rk

(

Dα
i+1/2(r)

(J tJ)2,1(r, sl)

|J(r, sl)|

)

dr

=

∫ rk+1

rk

f⋆ 1Er
h(t, r, sl) =

∑

i,j

er
i,j(t)

∫ rk+1

rk

1w
α,r
i,j (r, sl),

∫ sl+1

sl

(f⋆(⋆ 2Dh))s(t, rk, s) =
∑

i,j

dr
i+1/2,j+1/2(t)B

α
i+1/2(rk)

∫ sl+1

sl

(

Dα
j+1/2(s)

(J tJ)1,2(rk, s)

|J(rk, s)|

)

ds

+ ds
i+1/2,j+1/2(t)D

α
i+1/2(rk)

∫ sl+1

sl

(

Bα
j+1/2(s)

(J tJ)2,2(rk, s)

|J(rk, s)|

)

ds

=

∫ sl+1

sl

f⋆ 1Es
h(t, rk, s) =

∑

i,j

es
i,j(t)

∫ sl+1

sl

1w
α,s
i,j (rk, s).

We proceed in the same way if we must solve f⋆ 1H = f⋆
(
⋆ 2B

)
knowing f⋆ 2B. We apply the pullback

f−1⋆ on f⋆ 2B to come back in the old variables (x, y, z) to have 2B then we apply the Hodge Star operator
followed by the pullback f⋆. After simplification, we obtain

f⋆
(
⋆ 2B

)
=
∑

i,j

bz
i,j(t)D

α
i (r)Dα

j (s)
1

|J(r, s)|
dz.
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We denote f⋆ 1Hz
h(t, r, s) =

∑

i,j hz
i+1/2,j+1/2(t)

1w̃
α,z
i+1/2,j+1/2(r, s) the projection onto the dual grid and so

we obtain

∫ 1

0

f⋆ ⋆ 2B(t, ri+1/2, sj+1/2) =
∑

i,j

bz
i,j(t)

Dα
i (ri+1/2)D

α
j (sj+1/2)

|J(ri+1/2, sj+1/2)|

= f⋆ 1Hz
h(t, ri+1/2, sj+1/2) =

∑

i,j

hz
i+1/2,j+1/2(t)

1w̃
α,z
i+1/2,j+1/2(ri+1/2, sj+1/2).

6.3.2. Test case in 2D with a change of variables and with perfect electric conductor boundary conditions

We consider a physical domain which is a ring with perfect electric conductor boundary conditions. We
have an exact solution where the electric field, a 1-form, is given by

1E = − cos(2 k θ) (A cos(ω t) + B sin(ω t)) J2 k(ω r)dθ + cos(2 k θ) (A cos(ω t) + B sin(ω t)) J ′
2 k(ω r)dr,

and the magnetic field, a 2- form, has the form,

2B = cos(2 k θ) (A cos(ω t) + B sin(ω t)) J2 k(ω r)dr dθ,

where J2 k is the Bessel’s function of the first kind with order 2 k and J ′
2 k her derivative. With the help of

the Hodge star operator, we obtain the formula for electric displacement field:

1D = − cos(2 k θ) (A cos(ω t) + B sin(ω t)) J2 k(ω r)dr + cos(2 k θ) (A cos(ω t) + B sin(ω t)) J ′
2 k(ω r)dθ,

and for magnetizing field:

0H = cos(2 k θ) (A cos(ω t) + B sin(ω t)) J2 k(ω r).

The intervals on which we have boundary conditions on perfect conductors are (r, θ) ∈ [γ1, γ2]× [0, π
2 ] where

γ1, γ2 are the first and second zero of Bessel’s function of the first kind with order 2k.
In this case the change of variables is nothing other than change of coordinates into polar coordinates.

Figure 6: The first compo-
nent of the electric displace-
ment field Dx in physic domain
with boundary conditions on
perfect conductors.

Figure 7: The second com-
ponent of the electric displace-
ment field Dy in physic domain
with boundary conditions on
perfect conductors.

Figure 8: The magnetizing
field H in physic domain with
boundary conditions on perfect
conductors.

We test our code with a time scheme of order 4 and we observe that the order of our scheme is given by
spline’s order as expected.

spline degree α = 1
Number of points Errors L2 for H conv. order in H
10 0.00513786236267
20 0.00238054129513 1.67535634073
40 0.000947723465878 1.82532724286
80 0.00035447325496 1.85426527326
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spline degree α = 3
Number of points Errors L2 for H conv. order in H
10 0.000245195436118
20 1.91520985487e-05 3.67545675312
40 1.4651702633e-06 3.7021629499
80 9.27738247413e-08 3.9875224167

We are going up to time T = 1 for order 1 and T = 2 for order 3. These convergence orders are obtained
with a time step ∆ t = min(∆x,∆y)/0.5 when we use B-splines of degree 1 and ∆ t = min(∆x,∆y)/3.5 when
we use B-splines of degree 3.
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