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Summary

Designing environmental DNA microarrays that can
be used to survey the extreme diversity of microor-
ganisms existing in nature, represents a stimulating
challenge in the field of molecular ecology. Indeed,
recent efforts in metagenomics have produced a sub-
stantial amount of sequence information from various
ecosystems, and will continue to accumulate large
amounts of sequence data given the qualitative and
quantitative improvements in the next-generation
sequencing methods. It is now possible to take
advantage of these data to develop comprehensive
microarrays by using explorative probe design strat-
egies. Such strategies anticipate genetic variations
and thus are able to detect known and unknown
sequences in environmental samples. In this review,
we provide a detailed overview of the probe design
strategies currently available to construct both
phylogenetic and functional DNA microarrays,
with emphasis on those permitting the selection of
such explorative probes. Furthermore, exploration of
complex environments requires particular attention
on probe sensitivity and specificity criteria. Finally,
these innovative probe design approaches require
exploiting newly available high-density microarray
formats.

Introduction

The microbial world represents the most important and
diverse group of organisms living on earth (Whitman
et al., 1998; Curtis et al., 2002), comprising most of the
diversity of the three domains of life defined by Woese
and colleagues (1990): Archaea, Bacteria and Eucarya.
Furthermore, these organisms are widely distributed
across many environmental habitats, even the most
extreme. Their numerous enzymatic machineries have
allowed them to adapt to almost every ecological niche
and take advantage of any environmental condition
(Øvreås, 2000; Guerrero and Berlanga, 2006). Despite
our increasing knowledge of the role of microorganisms in
ecosystem functioning, our current vision of the microbial
world is still incomplete and several issues remain
unsolved. This is partially explained (i) by the tremendous
diversity of the genes and metabolisms of the existing
species but also of ecological niches and (ii) by techno-
logical limits such as our inability to culture the majority of
microorganisms (Amann et al., 1995; Pace, 1997).

Because of this huge microbial biocomplexity, high-
throughput molecular tools allowing simultaneous analy-
ses of existing populations are greatly needed (Torsvik
and Øvreås, 2002; Xu, 2006). Massive sequencing based
on next-generation sequencing (NGS) technologies and
microarrays are currently the most promising and comple-
mentary approaches to address these tasks (Claesson
et al., 2009; Roh et al., 2010; van den Bogert et al., 2011).
Using NGS, two specific strategies can be applied:
metagenomics, which refers to the study of the collective
genomes in a given environmental community and the
16S rDNA amplicon sequencing approach. In principle,
these methods enable: (i) access to the wide diversity of
microbial communities, (ii) identification of unknown
microorganisms and (iii) the potential to link structure to
functions (Simon and Daniel, 2009). Some limitations of
metagenomics, however, have been demonstrated: for
example, the huge difficulty of managing large amounts
of sequence data, or the short sequence read length
(400–500 bases maximum with 454 FLX Titanium instru-
ment from Roche), which complicates contigs assem-
bling, or the sequencing errors caused by NGS
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technologies (Roh et al., 2010). Furthermore, Quince and
colleagues (2008) estimated that detecting 90% of the
richness in some hyperdiverse environments could
require tens of thousands of times the current sequencing
effort, which is inconceivable. Oligonucleotide microarray
technologies have, however, been widely used for gene
detection and gene expression quantification, and more
recently, were adapted to profiling environmental commu-
nities in a flexible and easy-to-use manner (Zhou, 2003;
Wagner et al., 2007). These approaches can monitor the
presence, or the expression, of thousands of genes, com-
bining qualitative and quantitative aspects in only one
experiment (Tiquia et al., 2004; Marcelino et al., 2006;
Dugat-Bony et al., 2011). Furthermore, this technology
appears well adapted to multi-sample comparison.
Although several whole-genome arrays have been devel-
oped in the last few years, phylogenetic oligonucleotide
arrays (POAs), targeting the 16S rRNA genes, as well as
functional gene arrays (FGAs), targeting key genes
encoding enzymes involved in metabolic processes, are
the two major approaches to assess diversity of microbial
communities in the environment (Wagner et al., 2007).
Currently, the most comprehensive tools developed are
the high-density PhyloChip, with nearly 500 000 oligo-
nucleotide probes to almost 9000 operational taxonomic
units (Brodie et al., 2006), and the GeoChip 3.0 with
~ 28 000 probes covering approximately 57 000 gene
variants from 292 functional gene families (He et al.,
2010). Whereas microarrays were demonstrated as being
sufficiently sensitive, with detection of sequences repre-
senting genomic material from 0.05% to 5% of the total
environmental community (Bodrossy et al., 2003; Peplies
et al., 2004; Loy et al., 2005; Gentry et al., 2006; Mar-
celino et al., 2006; Palmer et al., 2006; Huyghe et al.,
2008), these methods require a sequence a priori to
determine probes and hence allow surveys only of micro-
organisms with available sequences in public databases
(Chandler and Jarrell, 2005; Wagner et al., 2007).

The main problem that must be faced to construct oli-
gonucleotide microarrays dedicated to microbial ecology
is the probe design step. Indeed, environmental microar-
rays often require this step to be manually performed.
Although numerous general probe design programmes
are currently freely accessible for academics [for recent
reviews see Lemoine and colleagues (2009)], only few
may be useful for microbial ecology applications and are
listed in Table 1. This review aims to show how probe
design strategies can avoid the limitation of sequence
availability and make possible the detection of previously
uncharacterized microbial populations present in nature.
We emphasize various recent methods combining the use
of both degenerate and non-degenerate oligonucleotide
probes to target either 16S rRNA markers, or new proteic
variants. In conclusion, we highlight other procedures and Ta
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limitations that must be circumvented, to improve microar-
ray development in terms of specificity and sensitivity.

General criteria for probe design

In silico probe design is one of the most critical step for
microarray experiments because the selected oligonucle-
otide probe set will have to combine: (i) sensitivity (e.g.
probes should detect low abundance targets in complex
mixtures), (ii) specificity (e.g. probes should not cross-
hybridize with non-target sequences) and (iii) uniformity
(e.g. probes should display similar hybridization behav-
iour) (Loy and Bodrossy, 2006; Wagner et al., 2007).
According to Lemoine and colleagues (2009), this
process requires dealing with many parameters and cur-
rently available probe design programmes differ in the
choice of criteria that are considered to select the best
probe set (Table 2).

Sensitivity

The sensitivity generally increases with probe length, as
the binding energy for longer probe-target hybrid com-
plexes is typically higher and hybridization kinetics are
irreversible (Hughes et al., 2001; Relogio et al., 2002;
Letowski et al., 2004). For example, probes of 60 mers
can detect targets with eightfold higher sensitivity than
those of 25 mers (Chou et al., 2004). However, their
threshold for differentiation is at 75–90% sequence simi-
larity (Kane et al., 2000; Taroncher-Oldenburg et al.,
2003; Tiquia et al., 2004), which indicates a poor speci-
ficity (Li et al., 2005). In contrast, short oligonucleotide
probes are more specific, allowing discrimination of
single nucleotide polymorphisms under optimal condi-
tions, but at the cost of reduced sensitivity (Relogio et al.,
2002). Furthermore, the formation of stable secondary
self-structures like stem-loops, hairpins and probe-to-
probe dimerization by the probes or their targets is
another crucial factor that must be considered to mini-
mize loss of microarray sensitivity. However, despite a
good knowledge of the thermodynamic properties of
nucleic acid duplex formation and dissociation in solution
(SantaLucia et al., 1996) and the availability of several
algorithms like Mfold (Zuker, 2003) or Hyther (Bommarito
et al., 2000) for their accurate prediction, these calcula-
tions should be treated cautiously in the microarray
context due to the limited knowledge on the thermody-
namics of hybridization at solid–liquid interfaces (Pozhit-
kov et al., 2006; 2007).

Specificity

The specificity of microarray hybridization is one of the
main effectors of the result quality (Kane et al., 2000;

Evertsz et al., 2001; Koltai and Weingarten-Baror, 2008).
Therefore, it is crucial that oligonucleotide probes must be
unique with respect to all non-target sequences. To check
probe specificity, software usually use results produced by
algorithms such as BLAST or suffix array method, to
search for cross-hybridization against databases con-
structed in accordance with the microarray application. In
this step, potential cross-hybridization prediction are
usually based on Kane’s recommendations (probe should
not have a total percent identity > 75–80% with a non-
target sequence, or contiguous stretches of identity
> 15 nt with a non-target sequence) (Kane et al., 2000) or
thermodynamics calculations (duplex’s stability between
the probe and the non-target sequence). Moreover, low-
complexity regions such as those containing long
homopolymers may also contribute to affect probe speci-
ficity and must therefore be avoided for probe design
(Wang and Seed, 2003; Leparc et al., 2009).

Uniformity

Because microarray technology relies on the simulta-
neous hybridization of many probes under the same con-
ditions (salt concentration, temperature, etc.), it is
important to ensure that the selected probes have ther-
modynamic behaviours as uniform as possible (Loy and
Bodrossy, 2006; Wagner et al., 2007). The easiest way to
achieve this is to select probes with homogeneous struc-
tural properties such as probe length, G + C content,
melting temperature (Tm) or binding capacities (DG).

Characterization of environmental species
with POAs

The classical way to characterize members of complex
bacterial communities relies on the small subunit riboso-
mal RNA gene (16S rRNA) analysis. This target is par-
ticularly well adapted to phylogenetic studies as it
contains highly conserved and variable moieties permit-
ting reliable and detailed bacterial classification. More-
over, the advent of many PCR-based approaches, as well
as sequencing projects, has led to the explosion of 16S
rRNA gene sequences now available in major specialized
sequence repositories, such as SILVA (Pruesse et al.,
2007), Greengenes (DeSantis et al., 2006) and the Ribo-
somal Database Project (RDP) (Cole et al., 2009).

In order to rapidly survey prokaryotic communities
present in complex environments high-throughput tools
have been developed, such as POAs using the SSU
rRNA biomarker (Wilson et al., 2002; Brodie et al., 2006;
Palmer et al., 2006; DeSantis et al., 2007). The main
obstacle in designing a POA, however, is potential cross-
hybridization. In many cases, the 16S rRNA genes of the
type species are too conserved to allow the design of
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discriminatory probes (Bae and Park, 2006). To circum-
vent this problem, a hierarchical design allows probing for
microbial taxa at different phylogenetic levels (Huyghe
et al., 2008; Liles et al., 2010), providing information on
the presence or absence of the branches and the twigs on
the Tree of Life.

Probe design for POA

Both fully automated software and manual approaches
have been developed to design POAs, taking into account
the main criteria for efficient probe design, which are
sensitivity and specificity. Currently, three programmes
have been developed to work with structured data for
retrieving and analysing sequences from dedicated data-
bases and to operate a phylogenetic probe design target-
ing the 16S rRNA gene.

The first programme is the Probe Design tool included
in the ARB programme package (Ludwig et al., 2004)
which is commonly used to select 10–100 mer oligonucle-
otides. The first step in the programme consists of the
target group selection. Second, the algorithm identifies
unique sequence stretches that could serve as target
sites, and subsequently returns a sorted list of potential
oligonucleotides. Third, the suggested probes can be
matched against all sequences in the database using the
Probe Match software programme. ARB also proposes
different sets of predefined probes, each targeting distinct
phylogenetic groups. It has been widely used to develop
low-density custom-made POAs, containing up to a few
hundred oligonucleotide probes. These probes usually
target either restricted microorganism groups known to
perform a specific metabolism (Loy et al., 2002; Kelly
et al., 2005; Franke-Whittle et al., 2009), or belonging to a
specific taxon (Castiglioni et al., 2004; Lehner et al., 2005;
Loy et al., 2005; Kyselkova et al., 2008; Schonmann
et al., 2009; Liles et al., 2010), or living in a habitat/
ecosystem of particular interest (Neufeld et al., 2006;
Sanguin et al., 2009). To illustrate this purpose, Sanguin
and colleagues (2009) identified multiple changes in
rhizobacterial community composition associated with the
decline of take-all disease of wheat caused by the soil-
borne fungus Gaeumannomyces graminis by using a
taxonomic 16S rRNA-based microarray targeting both
Bacteria, Archaea and the OP11 and OP2 candidate divi-
sions. ARB has also been used to construct phylogenetic
microarrays based on other biomarkers such as protein
coding genes (Bodrossy et al., 2003; Duc et al., 2009).

The second programme is the PRIMROSE programme
(Ashelford et al., 2002), which uses standard or custom
databases, and allows the design of degenerate probes.
Initially, a multiple alignment is produced using all the
different sequences representing a given taxon. Every
probe is subsequently tested against all the sequences of

the initial database, to characterize potential cross-
hybridizations and to verify good coverage of the targeted
taxon. Although this tool was developed to identify both
phylogenetic probes and primers, it has been mainly
applied to PCR-based and FISH (fluorescent in situ
hybridization) approaches (Rusch and Amend, 2004; Yu
et al., 2005; Feldhaar et al., 2007; Boeckaert et al., 2008;
Klitgaard et al., 2008; Muhling et al., 2008; Gittel et al.,
2009; Fraune et al., 2010; Bers et al., 2011). Few appli-
cations of POAs using PRIMROSE have been reported.
Blaskovic and Barak (2005) reported the development of
a user-friendly chip to specifically detect tick-borne bac-
teria responsible of human and animal diseases.

Nevertheless, neither of these two applications is built
specifically for the determination of discriminating posi-
tions within a set of very similar sequences. The third
programme is ORMA (Oligonucleotide Retrieving for
Molecular Applications), which represents a good alterna-
tive solution (Severgnini et al., 2009). This programme
designs and selects oligonucleotide probes for molecular
application experiments on sets of highly similar
sequences. Although it was first applied to the design of
probes targeting 16S rRNA genes, this software can be
used on any set of highly correlated sequences, such as
new potential phylogenetic biomarkers. Using this pro-
gramme, Candela and colleagues (2010) designed the
HTF-Microbi.Array allowing high taxonomic level finger-
printing of the human intestinal microbial community.

In parallel, other computational approaches not imple-
mented under fully automated software were developed
to design high-density POAs (thousands of oligonucle-
otide probes) allowing a comprehensive screening for all
known bacterial or archaeal taxa with a single microarray
(Wilson et al., 2002; DeSantis et al., 2007). These
approaches rely on sophisticated algorithms for the
design of a multitude of probes and for the analyses of
highly complex hybridization patterns. The best example
is the PhyloChip developed by Brodie and colleagues
(2006), which contains 500 000 probes based on the
Affymetrix GeneChip platform. This tool is able to simul-
taneously identify thousands of taxa present in an envi-
ronmental sample and has been applied to characterize
prokaryotic communities from ecosystems such as urban
atmosphere (Brodie et al., 2007), grassland soils (Cruz-
Martinez et al., 2009; DeAngelis et al., 2009), Antarctic
soils (Yergeau et al., 2009), mining-impacted soils
(Rastogi et al., 2010a,b), metal-contaminated river sedi-
ments (Rastogi et al., 2011), terrestrial volcanic glasses
(Kelly et al., 2010), rhizosphere of potato (Weinert et al.,
2011), citrus leaf (Sagaram et al., 2009), endotracheal
aspirates from patients colonized by Pseudomonas
aeruginosa (Flanagan et al., 2007), and pearly eyed
thrasher eggs (Shawkey et al., 2009). Recently, due to
increased interest in microbes of human and animal
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gastrointestinal tracts, a number of high-density microar-
rays were also developed to study the composition and
activity of intestinal microbiota (Palmer et al., 2006; Paliy
et al., 2009; Rajilic-Stojanovic et al., 2009).

The main limitation of all the strategies proposed
for 16S rRNA probe design is that they only ensure
the survey of known microorganisms with available
sequences in public databases. Unfortunately, the vast
majority of microbial species is still unidentified and, there-
fore, is not represented by sequences in public ribosomal
rRNA databases. A major challenge for the future is
improvement of microarray technology to, in part, rely on
new strategies for the design of explorative probes target-
ing sequences, which have not yet been described.

Explorative probe design strategies for POA

The ‘multiple probe concept’ consists of using several
probes targeting an organism at similar and different
phylogenetic/taxonomic levels. Designing probes using
this concept significantly reduces the risk of misidentifica-
tion, and often allows discrimination of bacteria down to
the species level (Ludwig et al., 1998; Loy and Bodrossy,
2006; Schliep and Rahmann, 2006; Huyghe et al., 2008;
Schonmann et al., 2009; Liles et al., 2010). Arrays con-
structed using this concept may ensure the detection of
unknown taxa using probes defined from known higher
phylogenetic levels. Because such probes are strictly
complementary to available sequences, however, they do
not harbour the explorative power to detect microorgan-
isms with uncharacterized phylogenetic signatures.

Currently, the only software dedicated to POAs offering
the possibility of designing explorative probes, is the Phyl-
Array programme (Militon et al., 2007) This algorithm gen-
erates 16S rRNA probes to globally monitor known and
unknown bacterial communities in complex environments.
The first step in the design is the extraction of all available
sequences corresponding to a given taxon from a custom
16S rRNA curated database. Second, a multiple
sequence alignment is performed using the ClustalW
algorithm (Thompson et al., 1994). Third, a degenerate
consensus sequence is produced taking into account
sequence variability at each position, which allows the
selection of degenerate probes. Finally, all combinations
from each degenerate probe are checked for cross-
hybridization against the 16S rRNA database. Among the
combinations derived from each degenerate probe, some
correspond to sequences not previously included in public
databases (Fig. 1). They should, therefore, allow for the
exploration of the as yet undescribed fraction of environ-
mental microbial communities. Moreover, comparative
experimental evaluations indicate that probes designed
with PhylArray yield a higher sensitivity and specificity
than those designed with the PRIMROSE and ARB strat-

egies (Militon et al., 2007). Recently, a microarray
designed with the PhylArray strategy has been employed
to evaluate the bacterial diversity in two different soils
(Delmont et al., 2011). The authors highlighted the signifi-
cant influence of several parameters like sampling depth
or DNA extraction protocols on the biodiversity estimation.

Detection of functional signatures for FGA design

Assessing the metabolic potential of microorganisms in
natural ecosystems is an interesting goal in microbial
ecology. In fact, some authors estimate that individual
environmental samples, like soil, may contain between
103 and 107 different bacterial genomes (Curtis et al.,
2002; Gans et al., 2005), each of them harbouring thou-
sands of genes. In this context, high-density oligonucle-
otide FGAs provide the best high-throughput tools to
access this tremendous genetic content (He et al., 2008).
GeoChips, composed of 50 mer probes designed with
CommOligo (Li et al., 2005), are currently the most
comprehensive FGAs. Indeed, these microarrays have
evolved over several generations and now target key
genes involved in most microbial functional processes
such as carbon, nitrogen, phosphorus and sulfur cycles,
energy metabolism, antibiotic resistance, metal resis-
tance and organic contaminant degradation (Rhee et al.,
2004; He et al., 2007; 2010; 2011). However, being able to
encompass the full diversity of gene family sequences
encountered in nature, described in databanks or not, is
still one of the most difficult challenges for the future. Most
FGAs described to date only monitor sequences avail-
able in databases and, therefore, cannot appraise the
unknown part of the microbial gene diversity present in
complex environments. A more extensive coverage of the
probe set is, therefore, crucial and designing explorative
probes represents a pertinent and essential approach.

Characterization of new functional signatures from
nucleic sequence alignment

Many probe design programmes are currently freely
accessible for academics [for recent reviews see Lemoine
and colleagues (2009)]. Most of them were developed
for use on single-genome datasets, and hence, are limited
to the determination of probes targeting specific gene
sequences (Table 2). In contrast, few strategies offer the
opportunity to design probes allowing a broad coverage of
multiple sequence variants for a given gene family.

With the availability of more and more sequences
corresponding to functional genes (complete genome
sequencing and environmental studies from specific func-
tional markers), new programmes have been developed
in the last decade taking into account this wide diversity.
Hierarchical Probe Design (HPD) was the first programme
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dedicated to functional oligonucleotide determination
based on the concept of cluster-specific probes (Chung
et al., 2005). The first step of the programme consists
of the alignment and hierarchical clustering of input
sequences in order to generate all possible candidate
probes. The optimal probe set is subsequently determined
according to probe quality criteria, including cluster
coverage, specificity, GC content and hairpin energy.
Although this tool is not explorative, it automatically pro-
duces probes against all nodes of the clustering tree,
providing an extensive coverage of known variants from a
conserved functional gene. Using this programme, Rinta-
Kanto and colleagues (2011) developed a taxon-specific
microarray targeting sulfur-related gene transcription in
members of Roseobacter clade, using data from 13
genome sequences. This FGA consisted of 1578 probes
to 431 genes and was applied to the study of diverse
natural Roseobacter communities. The results revealed
that dimethylsulfoniopropionate was not preferred over
other organic carbon and sulfur substrates by these
populations.

ProDesign, developed by Feng and Tillier (2007), uses
similar clustering methods with the aim of detecting all
members of a same gene family in environmental

samples. But, unlike HPD, this software uses spaced
seed hashing, rather than a suffix tree algorithm, in order
to benefit from permitted mismatches between a probe
and its targets, and ensures the re-clustering of groups for
which no probe was found. This results in a significant
improvement in sequence coverage. As with HPD,
however, this tool does not provide probes targeting
uncharacterized nucleic acid sequences. In addition, to
the best of our knowledge, no application using this
design strategy has been reported in literature.

Although both of these strategies allow a wider range
of sequence variants to be covered, and, therefore,
appear best suited to describe microbial communities
from complex environments, their main drawbacks are
their inability to generate explorative probes and the
absence of specificity tests (i.e. searching for potential
cross-hybridizations) against large databases represen-
tative of microbial diversity. Recently, an efficient func-
tional microarray probe design algorithm, called HiSpOD
(High Specific Oligo Design), was proposed to overcome
this problem (Dugat-Bony et al., 2011). It is particularly
useful for studying microbial communities in their envi-
ronmental context. HiSpOD takes into account classical
parameters for the design of effective probes (probe

Fig. 1. PhylArray programme workflow. PhylArray programme is composed of four steps: (i) sequence extraction for each taxon, (ii) multiple
sequence alignment, (iii) degenerate consensus sequence production and probe selection and (iv) specificity tests against the 16S rRNA
database.
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length, Tm, GC%, complexity) and combines supple-
mental properties not considered by previous pro-
grammes. First, it can allow for the design of degenerate
probes for gene families after multiple alignments of
nucleic sequences belonging to the same gene family,
and the production of consensus sequences. All combi-
nations deduced from these degenerate probes are then
divided into two groups. The first corresponds to specific
probes for sequences available in databanks, and the
second to explorative probes, which represent potential
new signatures not corresponding to any previously
described microorganisms (Fig. 2A). Both the probe sets
covering the most likely gene sequence variants and
those covering new combinations not yet deposited in
databanks are created based on multiple mutation
events already identified. Second, the specificity of all
selected probes is checked against a large formatted
database dedicated to microbial communities, the
EnvExBase (Environmental Expressed sequences data-
Base) composed of all coding DNA sequences (CDSs)
from Prokaryotes (PRO), Fungi (FUN) and Environmen-
tal (ENV) taxonomic divisions of the EMBL databank, in
order to limit cross-hybridizations. To validate this strat-
egy, a microarray focusing on the genes involved in

chloroethene solvent biodegradation was developed as
a model system and enabled the identification of active
cooperation between Sulfurospirillum and Dehalococ-
coides populations in the decontamination of a polluted
groundwater (Dugat-Bony et al., 2011).

Use of protein sequence signatures for probe design

Unlike the strategies outlined above, a number of new
strategies have been proposed to initiate probe design
not from nucleic acid sequences, but from conserved
peptidic regions, in order to survey all potential nucleic
acid variants.

The first strategy based on this principle was described
by Bontemps and colleagues (2005) and called CODEH-
MOP (for COnsensus DEgenerate Hybrid Motif Oligo-
nucleotide Probe). It comes from an adaptation of the
CODEHOP (for COnsensus DEgenerate Hybrid Oligo-
nucleotide Primer) PCR primer design strategy, originally
developed to identify distantly related genes encoding
proteins that belong to known families (Rose et al., 1998;
2003; Boyce et al., 2009). In the CODEHMOP strategy,
conserved amino acid motifs are identified from multiple
alignments of protein sequences. Then, all possible

Fig. 2. Explorative probe design strategies implemented in (A) HiSpOD and (B) Metabolic Design software. The example shows probe design
for the bphA1c gene encoding the Salicylate 1-hydroxylase alpha subunit involved in PAH degradation from three distinct Sphingomonas or
Sphingobium species with both strategies.
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nucleic combinations (15–21 nucleotides) from the most
highly conserved region (5–7 amino acids) of each protein
motif are recreated and flanked by 5′ and 3′ fixed ends
(12–15 nucleotides each), derived from the most frequent
nucleotide at each position. The final probes are called
‘hybrids’, as they consist of a variable central core, to
target a larger diversity, with some nucleic combinations
not corresponding to any yet described sequences, and
two fixed end sequences (available in databanks) added
to increase probe length. The authors used this approach
to design a prototype DNA array covering all described
and undescribed nodC (nodulation gene) sequences in
bacteria, and applied it to legume nodules (Bontemps
et al., 2005). This strategy allowed the authors to detect
new nodC sequences exhibiting less than 74% identity
with known sequences.

The application of the CODEHMOP strategy is limited
by the fact that it is not implemented into a fully automated
programme and no probe specificity test is incorporated.
Nevertheless, this approach appears to be the most com-
prehensive way of encompassing the larger diversity of
gene sequence variants potentially found for enzymes
mediating a given function. Furthermore, Terrat and col-
leagues (2010) developed a new software programme
called Metabolic Design, which ensures in silico recon-
struction of metabolic pathways, the identification of con-
served motifs from protein multiple alignments and the
generation of efficient explorative probes through a simple
convenient graphical interface. In this case, before the
probe design stage, the user reconstructs the chosen
metabolic pathway in silico with all substrates and prod-
ucts from each metabolic step. One reference enzyme for
each of these steps is selected and its protein sequence
extracted from a curated database (by default, Swiss-
Prot), which is then used to retrieve all homologous
proteins from complete databases (Swiss-Prot and
TrEMBL). After selecting the most pertinent homologous
sequences, they are aligned to begin the probe design
stage. The amino acids are back-translated for each
molecular site identified, taking into account all genetic
code redundancy, to produce a degenerate nucleic con-
sensus sequence. All degenerate probes that meet the
criteria defined by the user are retained (probe length and
maximal degeneracy). All the specific possible combi-
nations for each degenerate probe are subsequently
checked for potential cross-hybridizations against a rep-
resentative database (i.e. EnvExBase as in the HiSpOD
programme). Finally, an output file, listing all degenerate
probes selected by the user, permits the deduction of all
possible combinations and organizes them into specific
probes and exploratory probes (Fig. 2B). The approach
was validated by studying enzymes involved in the deg-
radation of polycyclic aromatic hydrocarbons (Terrat et al.,
2010).

Towards circumventing microarray limitations

Despite the emergence of new design strategies, such as
those presented above, the determination of a high-
quality probe set appears to be crucial, especially in an
environmental ecology context (Liebich et al., 2006;
Leparc et al., 2009). Although explorative potential repre-
sents a major criterion for fingerprint determination, other
parameters also impact considerably on probe sensitivity
and specificity, and, therefore, require particular attention
(Zhou, 2003; Wagner et al., 2007).

Optimization of probe size criterion

Generally, POAs employed for microbial community
analysis contain short probes (typically 24–25 mers)
(Brodie et al., 2006; Paliy et al., 2009; Rajilic-Stojanovic
et al., 2009), whereas FGAs are built either with short
(15–30 mers) (Bodrossy et al., 2003; Stralis-Pavese
et al., 2004) or long oligonucleotides (40–70 mers) (Kane
et al., 2000; Relogio et al., 2002; He et al., 2007). The
main limitation of microarrays based on short oligonucle-
otide probes, therefore, is the need to use, in most cases,
PCR-amplified targets to ensure enrichment and thereby
increase sensitivity, but this also introduces an inherent
PCR bias (Suzuki and Giovannoni, 1996; Peplies et al.,
2004; Vora et al., 2004).

An alternative approach to design oligonucleotide
probes, which combines excellent specificity with a poten-
tially high sensitivity, is the use of the GoArrays strategy
developed by Rimour and colleagues (2005) (software
available at http://g2im.u-clermont1.fr/serimour/goarrays.
html). In this approach, the oligonucleotide probe consists
of the concatenation of two short subsequences that are
complementary to disjoined regions of the target, with an
insertion of a short random linker (e.g. 3–6 mer) (Fig. 3).
This strategy has been shown to improve microarray effi-
ciency for a wide range of applications (Rimour et al.,
2005; Zhou et al., 2007; Pariset et al., 2009; Kang et al.,
2010).

Specificity improvement using large databases

Because only a small portion of the natural microbial
diversity has been identified, it is a major challenge to
design appropriate probes specific to unique markers that
do not cross-hybridize with similar unknown sequences
(Chandler and Jarrell, 2005). Most of the currently avail-
able probe design software have been developed for non-
environmental applications and performs specificity tests
only against a reduced set of sequences, such as whole-
genome data or specific sets of genes (Lemoine et al.,
2009). The study of microbial communities, however,
requires dedicated databases that are as representative
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as possible of all non-target sequences potentially
present in environmental samples. GenBank (Benson
et al., 2011), European Nucleotide Archive (ENA) (Leino-
nen et al., 2011) and the DNA Data Bank of Japan (DDBJ)
(Kaminuma et al., 2011) are the most complete nucleic
sequence databases publicly available to perform speci-
ficity tests. Dealing with such databases, however, is too
time-consuming for probe design task, and, in this
instance not really appropriate as some subsets of these
databases correspond to sequences from organisms
such as Metazoa, which are typically not considered in
microbial ecology. Furthermore, for studies focusing on
particular biomarkers, other sequence information need
not to be considered.

For example, within POAs, each probe must be specific
with respect to all small subunit (SSU) rRNA sequences,
which may be present in the sample during hybridization.
Curated and dedicated secondary databases have been
already constructed [RDP (Cole et al., 2009), Greengenes
(DeSantis et al., 2006) and SILVA (Pruesse et al., 2007)],
assembling all SSU rRNA sequences described on public
databases. The differences between these databases
come from the construction and update pipelines that lead
to distinct sizes: SILVA (Release 104) contains 1 304 069
16S rRNA sequences, RDP (Release 10) 1 545 680 and
Greengenes (03/22/2011) 855 446. These large data-
bases, therefore, are well adapted to phylogenetic probe
design. PhylArray software (Militon et al., 2007) was
developed before these databases were publicly avail-
able, and, therefore, uses its own highly curated (full
length and quality filtered) and automatically updated
prokaryotic SSU rRNA database (122 337 sequences for
the last release).

Because environmental FGAs target coding sequences
(CDS), the database used for specificity tests must
include all known CDSs that may be encountered in
natural environments. To the best of our knowledge,
EnvExBase (integrated in both HiSpOD and Metabolic
Design programmes) is the first CDSs database dedi-
cated to microbial ecology (Terrat et al., 2010; Dugat-
Bony et al., 2011). For its construction, all annotated
transcript sequences and their associated 5′ and 3′

untranslated regions in all classes of EMBL Prokaryotes
(PRO), Fungi (FUN) and Environmental (ENV) taxonomic
divisions, were extracted and curated to remove bad-
quality sequences. It represents a 9 129 323 sequence
database.

The rapid growth of datasets, particularly environmental
datasets, has led to an important increase in computa-
tional requirements coupled with a fundamental change in
the way algorithms are conceived and designed [e.g. mpi-
BLAST (Darling et al., 2003)]. Consequently, parallel com-
puting is essential, and algorithms must be deployed on
large cluster infrastructures or computing grids, if speci-
ficity tests and alignments are to be performed with rea-
sonable data processing times (Gardner et al., 2006;
Thorsen et al., 2007).

Adaptation of the microarray format to the
design strategy

Explorative design strategies targeting unknown
sequences involve the use of degenerate probes (Bon-
temps et al., 2005; Militon et al., 2007; Terrat et al., 2010;
Dugat-Bony et al., 2011). Consequently, the selected
strategy will greatly influence the choice between the two
major DNA microarray types (ex situ or in situ), the plat-
form and the density (Dufva, 2005; Ehrenreich, 2006;
Kawasaki, 2006). When using in situ synthesis microar-
rays, such as the Agilent, Affymetrix and NimbleGen plat-
forms, all combinations resulting from a degenerate probe
must be independently synthesized. This will exponen-
tially increase the final number of probes for the array
production (density). For instance, concerning the CODE-
HMOP (Bontemps et al., 2005) and Metabolic Design
strategies (Terrat et al., 2010), because the genetic code
often involves degeneracy at the third position of each
codon, a 24 mer probe (targeting a seven amino acid
conserved motif) will generate at least 128 combinations
(assuming a minimal degeneracy rate of two for each
codon). This value will reach at least 131 072 for a 51 mer
probe containing 17 degenerate positions. Conversely, ex
situ platforms allow the degenerate probes (all combina-
tions mixed together) to be spotted in the same location

Fig. 3. Representation of the GoArrays
strategy. In this strategy, two short
oligonucleotide probes are concatenated with
a random linker. Depending on the probes’
positions, the target can form two kinds of
stable loops during hybridization (A and B).
(For the color version of this figure, please
refer to the Web version of this article.)

Explorative probes for environmental microarrays 365

© 2011 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 14, 356–371



on the array and consequently reduce the total amount of
features.

Other user choices may also affect the final number of
probes per array. Replication is crucial to achieve reliable
data for microarrays (Spruill et al., 2002). Multiple repli-
cates of the same probe provide some back-up in case a
feature cannot be evaluated due to technical artefacts,
such as dye precipitations or dust particles. A statistical
estimation has deduced that at least three replicates
should be made (Lee et al., 2000). Second, multiple
probes per gene could be designed in order to increase
confidence in the results (Loy et al., 2002; Chou et al.,
2004) and to mask misleading signal variations whose
causes (e.g. target secondary structure, probe folding,
etc.) are not yet fully understood (Pozhitkov et al., 2007).
Third, some platforms, such as Affymetrix GeneChips,
determine probe pairs where each probe (‘match’) is
accompanied by a negative control with a single differing
base in the middle of the probe (‘mismatch probe’) in
order to discriminate between real signals and those due
to non-specific hybridizations (Lipshutz et al., 1999).

To address this problem of probe number, several com-
mercial companies have proposed two major types of
high-density microarrays whose main characteristics are
described in Table 3: (i) in situ synthesized microarrays,
distributed by Agilent (http://www.chem.agilent.com),
NimbleGen (http://www.nimblegen.com) and Affymetrix
(http://www.affymetrix.com), which can attain billions of
probes and be physically divided into multi-arrays per
slide (up to 12) to perform simultaneous analyses of
several samples on a single experiment; and (ii) spotted
microarrays [e.g. Arrayit (http://www.arrayit.com)] with a
current printing capacity close to 100 000 features per
microarray.

Concluding remarks and future directions

Assessing the extreme microbial diversity encountered in
environmental samples represents an exciting challenge
that could create a better understanding of microbial com-
munity functioning. Environmental DNA microarrays, with
the opportunity to survey both known and unknown micro-
organisms through explorative probe design, are one of
the most powerful approaches for achieving this goal.
Future perspectives in this domain will be to systemati-
cally integrate this innovative concept into probe design

workflows, especially by offering the possibility to design
degenerate probes targeting sequence clusters. Further-
more, to efficiently recognize signals due to unknown
targets, it will be particularly useful to develop automatic
procedures to analyse microarray data. In addition, using
explorative probe design in sequence capture
approaches that couple with NGS, such as those origi-
nally developed for direct selection of human genomic loci
(Albert et al., 2007), could also improve this gene charac-
terization. Indeed, sequence capture elution products
should allow the full identification and characterization of
new taxa when using POAs or new protein coding genes
with FGAs.

The constant increase in available sequences
(Cochrane et al., 2009) means that databases for speci-
ficity tests must be regularly updated. As a result, probe
datasets must be re-computed as frequently as possible
in order to take into account all deposited data. Neverthe-
less, assessing probe specificity against large databases
is a time-consuming task. To overcome this problem, two
complementary strategies could be employed: (i) Creation
of databases specific to each ecological compartment.
Usually, specificity tests are not performed against a suit-
able subset of sequences mainly due to lack of databases
for microbial ecology. Depending on the environment
studied it would be more relevant to perform these tests
against reduced databanks dedicated to specific ecosys-
tems (soil, marine, freshwater, gut, etc.).

(ii) Parallelization of probe design algorithms. Perspec-
tives to limit computation time are based on exploiting
the computational resources available using specialized
frameworks such as Message Passing Interface (MPI)
or heterogeneous systems including General-purpose
Processing on Graphics Processing Units (GPGPU). With
the recent development of extremely fast broadband
networks, it has become possible to distribute the calcu-
lations at larger and larger scales over different geo-
graphical locations (Schadt et al., 2010). Cluster, grid or
emerging cloud computing are all examples of shared
computing resources where probe design algorithms can
be deployed. Being able to improve the bioinformatics
tools applied to environmental microbiology through
algorithm deployment on such shared computational
resources, and combining them with automatic update
pipelines, are two important challenges and strategies for
the future of the field of molecular ecology.

Table 3. Characteristics of the main commercially distributed high-density microarrays.

Type of array Technology Probe length Max features Max plex

Spotted Arrays Robot spotting Pre-made DNA Any ~100 000 1
Affymetrix Photolithography in situ <100 mer (generally 25 mer) ~6 000 000 1
NimbleGen Micro-mirrors in situ <100 mer (generally 50–75 mer) 4 200 000 12
Agilent Inkjet in situ <100 mer (generally 25–60 mer) 1 000 000 8
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