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INTRODUCTION

1.1. Preliminaries. An n-uniform hypergraph is said to be n-partite if its vertex set is the disjoint union of n sets V 1 , . . . ,V n and each edge intersects each V i at exactly one vertex. Such an hypergraph is an (n + 1)-tuple (V 1 , . . . ,V n , E ) where E is the set of edges. An octahedral system Ω is an n-partite hypergraph (V 1 , . . . ,V n , E ) with |V i | ≥ 2 for i = 1, . . . , n and satisfying the following parity condition: the number of edges of Ω induced by X ⊆ n i =1 V i is even if |X ∩ V i | = 2 for i = 1, . . . , n.

A colourful point configuration in R d is a collection of d + 1 sets, or colours, S 1 , . . . , S d +1 . A colourful simplex is defined as the convex hull of a subset S of d +1 i =1 S i with |S ∩ S i | = 1 for i = 1, . . . , d + 1. The Octahedron Lemma [START_REF] Deza | Colourful simplicial depth[END_REF] states that, given a subset X ∈ d +1 i =1 S i of points such that |X ∩ S i | = 2 for i = 1, . . . , d + 1, there is an even number of colourful simplices generated by X and containing the origin 0. Therefore, the hypergraph Ω = (V 1 , . . . ,V d +1 , E ), with V i = S i for i = 1, . . . , d + 1 and where the edges in E correspond to the colourful simplices containing 0 forms an octahedral system. This property motivated Bárány to suggest octahedral systems as a combinatorial generalization of colourful point configurations, see [START_REF] Deza | More colourful simplices[END_REF].

Let µ(d ) denote the minimum number of colourful simplices containing 0 over all colourful point configurations satisfying 0 ∈ d +1 i =1 conv(S i ) and |S i | = d + 1 for i = 1, . . . , d + 1. Bárány's colourful Carathéodory theorem [START_REF] Imre Bárány | A generalization of Carathéodory's theorem[END_REF] states that µ(d ) ≥ 1. The quantity µ(d ) was investigated in [START_REF] Deza | Colourful simplicial depth[END_REF] where it is shown that 2d ≤ µ(d ) ≤ d 2 +1, that µ(d ) is even for odd d , and that µ(2) = 5. This paper also conjectures that µ(d ) = d 2 + 1 for all d ≥ 1. Subsequently, Bárány and Matoušek [START_REF] Matoušek | Quadratically many colorful simplices[END_REF] verified the conjecture for d = 3 and provided a lower bound of µ(d ) ≥ max(3d , d (d +1)
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) for d ≥ 3, while Stephen and Thomas [START_REF] Thomas | A quadratic lower bound for colourful simplicial depth[END_REF] independently proved that µ(d ) ≥ (d +2) We answer open questions raised in [START_REF] Custard | Small octahedral systems[END_REF] in Section 3 by determining in Theorem 3.2 the number of distinct octahedral systems with given |V i |'s, and by showing that the octahedral system given in Figure 3 cannot arise from a colourful point configuration.

Bárány's sufficient condition for the existence of a colourful simplex containing 0 has been recently generalized in [START_REF] Arocha | Very colorful theorems[END_REF][START_REF] Holmsen | Points surrounding the origin[END_REF][START_REF] Meunier | A further generalization of the colourful Carathéodory theorem[END_REF]. The related algorithmic question of finding a colourful simplex containing 0 is presented and studied in [START_REF] Onn | Colourful linear programming and its relatives[END_REF][START_REF]The colourful feasibility problem[END_REF]. For a recent breakthrough for a monocolour version [START_REF] Mikhail Gromov | Singularities, expanders and topology of maps. part 2: from combinatorics to topology via algebraic isoperimetry[END_REF][START_REF]A simpler proof of the Boros-Füredi-Bárány-Pach-Gromov theorem[END_REF].

1.2. Definitions. Let E [X ] denote the set of edges induced by a subset X of the vertex set n i =1 V i of an octahedral system Ω = (V 1 , . . . ,V n , E ). The degree of X , denoted by deg Ω (X ), is the number of edges containing X . An octahedral system Ω = (V 1 , . . . ,V n , E ) with |V i | = m i for i = 1, . . . , n is called a (m 1 , . . . , m n )-octahedral system. Given an octahedral system

Ω = (V 1 , . . . ,V n , E ), a subset T ⊆ n j =1 V j is a transversal of Ω if |T | = n -1 and |T ∩ V j | ≤ 1 for j = 1, . . . , n. The set T is called an i -transversal if i is the unique index such that |T ∩ V i | = 0. Let ν(m 1 , . . . , m n ) denote
the minimum number of edges over all (m 1 , . . . , m n )-octahedral systems without isolated vertex. The minimum number of edges over all (d +1, . . . , d +1)-octahedral systems has been considered by Deza et al. [START_REF] Custard | Small octahedral systems[END_REF] where this quantity is denoted by ν(d ). By a slight abuse of notation, we identify

ν(d ) with ν(d + 1, . . . , d + 1 d +1 times
). We have µ(d ) ≥ ν(d ), and the inequality is hypothesized to hold with equality.

Throughout the paper, given an octahedral system Ω = (V 1 , . . . ,V n , E ), the parity property refers to the evenness of

|E [X ]| if |X ∩ V i | = 2 for i = 1, . . . , n.
In a slightly weaker form, the parity property refers to the following observation: let e be an edge, T an i -transversal disjoint from e, and x vertex in V i \ e, then there is an edge distinct from e in e ∪ T ∪ {x}.

Let D(Ω) be the directed graph (V, A) associated to Ω = (V 1 , . . . ,V n , E ) with vertex set V := n i =1 V i and where (u, v) is an arc in A if, whenever v ∈ e ∈ E , we have u ∈ e. In other words, (u, v) is an arc of D(Ω) if any edge containing v contains u as well.

For an arc (u, v) ∈ A, v is an outneighbour of u, and u is an inneighbour of v. The set of all outneighbours of u is denoted by

N + D(Ω) (u). Let N + D(Ω) (X ) = u∈X N + D(Ω) (u) \ X ;
that is, the subset of vertices, not in X , being heads of arcs in A having tail in X . The outneighbours of a set X are the elements of N + D(Ω) (X ). Note that D(Ω) is a transitive directed graph: if (u, v) and (v, w) with w = u are arcs of D(Ω), then (u, w) is an arc of D(Ω). In particular, it implies that there is always a nonempty subset X of vertices without outneighbour inducing a complete subgraph in D(Ω). Moreover, a vertex of D(Ω) cannot have two distinct inneighbours in the same V i .

COMBINATORIAL PROPERTIES OF OCTAHEDRAL SYSTEMS

This section presents properties of octahedral systems generalizing earlier results holding for 

|V 1 | = . . . = |V d +1 | = d + 1. While Proposition 2.
= (V 1 , . . . ,V n , E ) with even |V i | for i = 1, . . .

, n has an even number of edges.

This proposition provides an alternate definition for octahedral systems where the condition

"|X ∩ V i | = 2" is replaced by "|X ∩ V i | is even" for i = 1, . . . , n. Proof. Let Ξ be the set {X ⊆ n i =1 V i : |X ∩ V i | = 2}. Since Ω satisfies the parity property, |E [X ]| is even for any X ∈ Ξ, and X ∈Ξ |E [X ]| is even. Each edge of Ω being counted (|V 1 | -1)(|V 2 | - 1) . . . (|V n |-1) times in the sum, we have X ∈Ξ |E [X ]| = (|V 1 |-1) . . . (|V n |-1)|E |. As (|V 1 |-1) . . . (|V n |- 1) is odd, the number |E | of edges in Ω is even.

Proposition 2.2. A non-trivial octahedral system has at least min

i |V i | edges.
Proof. Assume without loss of generality that V 1 has the smallest cardinality. If no vertex of V 1 is isolated, the octahedral system has at least |V 1 | edges. Otherwise, at least one vertex x of V 1 is isolated and the parity property applied to an edge, (|V 1 |-1) disjoint 1-transversals, and x gives at least |V 1 | edges. The bound is tight as a 1-transversal forming an edge with each vertex of V 1 is an octahedral system with |V 1 | edges.

Setting |V 1 | = . . . = |V d +1 | = d + 1 in Proposition 2.
1 and Proposition 2.2 yields results given in [START_REF] Custard | Small octahedral systems[END_REF].

Proposition 2.3. An octahedral system without isolated vertex has at least max

i = j (|V i | + |V j |) -2 edges.
The special case for octahedral systems arising from colourful point configurations, i.e. µ(d ) ≥ 2d , has be proven in [START_REF] Deza | Colourful simplicial depth[END_REF].

Proof. Assume without loss of generality that 2

≤ |V 1 | ≤ . . . ≤ |V n-1 | ≤ |V n |. Let v * be the vertex minimizing the degree in Ω over V n . If deg(v * ) ≥ 2, then there are at least 2|V n | ≥ |V n |+|V n-1 |-2 edges.
Otherwise, deg(v * ) = 1 and we note e(v * ) the unique edge containing v * . Pick w i in V i \ e(v * ) for all i < n. Applying the octahedral property to the transversal {w 1 , . . . , w n-1 }, e(v * ), and any w ∈ V n \{v * } yields at least |V n | edges not intersecting with V n-1 \(e(v * ) ∪ {w n-1 }). Additional |V n-1 | -2 edges are needed to cover the vertices in V n-1 \ (e(v * ) ∪ {w n-1 }). In total we have at least

|V n | + |V n-1 | -2 edges. Proposition 2.4. ν(m 1 , . . . , m n ) ≤ 2 + n i =1 (m i -2).
Proof. For all (m 1 , . . . , m n ), we construct an octahedral system Ω (m 1 ,...,m n ) = (V 1 , . . . ,V n , E (m 1 ,...,m n ) ) without isolated vertex and with |V i | = m i , such that

|E (m 1 ,...,m n ) | = 2 + n i =1 (m i -2).
Starting from Ω (m 1 ) , we inductively build Ω (m 1 ,...,m n+1 ) from Ω (m 1 ,...,m n ) . The unique octahedral system without isolated vertex with n = 1 and

|V 1 | = m 1 is Ω (m 1 ) = (V 1 , E (m 1 ) ) where E (m 1 ) = {{v} : v ∈ V 1 }. Assuming that Ω (m 1 ,...,m n ) = (V 1 , . . . ,V n , E (m 1 ,...,m n ) ) with |E (m 1 ,...,m n ) | = 2 + n i =1 (m i -2)
has been built, we build the octahedral system Ω (m 1 ,...,m n+1 ) = (V 1 , . . . ,V n ,V n+1 , E (m 1 ,...,m n+1 ) ) by picking an edge e 1 in E (m 1 ,...,m n ) and setting

E (m 1 ,...,m n+1 ) = {e 1 ∪ {u i } : i = 1, . . . , m n+1 -1} ∪ {e ∪ {u m n+1 } : e ∈ E (m 1 ,...,m n ) \ {e 1 }}
where u 1 , . . . , u m n+1 are the vertices of V n+1 . Clearly,

|E (m 1 ,...,m n+1 ) | = m n+1 -1 + |E (m 1 ,...,m n ) | -1; that is, |E (m 1 ,...,m n+1 ) | = 2 + n+1 i =1 (m i -2)
.Each vertex of Ω (m 1 ,...,m n+1 ) belongs to at least one edge by construction and we need to check the parity condition. Let X ⊆ n i =1 V i such that |X ∩V i | = 2 for i = 1, . . . , n + 1 and consider the following four cases: Case (a): X ∩ V n+1 = {u j , u k } with j = m n+1 and k = m n+1 , and e 1 ⊆ X . Then, e 1 ∪ {u j } and e 1 ∪ {u k } are the only 2 edges induced by X in Ω (m 1 ,...,m n+1 ) .

Case (b): X ∩V n+1 = {u j , u k } with j = m n+1 and k = m n+1 , and e 1 ⊆ X . Then, no edge are induced by X in Ω (m 1 ,...,m n+1 ) .

Case (c): X ∩ V n+1 = {u j , u m n+1 } and e 1 ⊆ X . Then, the number of edges in E (m 1 ,...,m n ) \ {e 1 } induced by X in Ω (m 1 ,...,m n ) is odd by the parity property. Hence, the number of edges in {e ∪ {u m n+1 } : e ∈ E (m 1 ,...,m n )) \ {e 1 }} induced by X in Ω (m 1 ,...,m n+1 ) is odd as well. These edges, along with the edge e 1 ∪ {u j }, are the only edges induced by X in Ω (m 1 ,...,m n+1 ) , i.e. the parity condition holds.

Case (d ): X ∩ V n+1 = {u j , u m n+1 } and e 1 ⊆ X . Then, the number of edges in E (m 1 ,...,m n ) \ {e 1 } induced by X in Ω (m 1 ,...,m n ) is even by the parity property. Hence, the number of edges in {e ∪ {u m n+1 } : e ∈ E (m 1 ,...,m n ) \ {e 1 }} induced by X in Ω (m 1 ,...,m n+1 ) is even as well. These edges are the only edges induced by X in Ω (m 1 ,...,m n+1 ) , i.e. the parity condition holds. 

-1 = m 1 = m 2 = m 3 = m 4 = 3.
Proposition 2.4 combined with Proposition 2.3 directly implies Proposition 2.5 given without proof.

Proposition 2.5. ν(2, . . . , 2, m n-1 , m n ) = m n-1 + m n -2 for m n-1 , m n ≥ 2.
When all m i are equal, the bound given in Proposition 2.4 can be improved.

Proposition 2.6. ν(

n times m, . . . , m) ≤ min(m 2 , n(m -2) + 2) for all m, n ≥ 1.
Proof. We construct an (m, . . . , m)-octahedral system without isolated vertex and with m 2 edges. Consider m disjoint n-transversals, and form m edges from each of these n-transversals by e 1 FIGURE 1. Ω (3,3) : a (3, 3, 3)-octahedral system matching the upper bound given in Proposition 2.4 (3,4) : a (3, 3, 3, 3)-octahedral system matching the upper bound given in Proposition 2.4 adding a distinct vertex of V n . We obtain an octahedral system without isolated vertex with m 2 edges. The other inequality is a corollary of Proposition 2.4. Propositions 2.4 and 2.6 can be seen as combinatorial counterparts and generalizations of µ(d ) ≤ d 2 + 1 proven in [START_REF] Deza | Colourful simplicial depth[END_REF].

u 1 u 2 u 3 FIGURE 2. Ω
An approach similar to the one developed in Section 5 shows that In other words, the inequality given in Proposition 2.4 holds with equality for small m i 's and n at most 5. While this inequality also holds with equality for any n when m 1 = . . . = m n-2 = 2 by Proposition 2.5, the inequality can be strict as, for example, ν(3, . . . , 3) < 2 + n for n ≥ 8 by Proposition 2.6.

ADDITIONAL RESULTS

This section provides answers to open questions raised in [START_REF] Custard | Small octahedral systems[END_REF] by determining the number of distinct octahedral systems, and by showing that some octahedral systems cannot arise from a colourful point configuration. Proposition 3.1 shows that the set of all octahedral systems defined on the same V i 's equipped with the symmetric difference as addition is a F 2 vector space.

Proposition 3.1. Let Ω 1 = (V 1 , . . . ,V n , E 1 ) and Ω 2 = (V 1 , . . . ,V n , E 2 )

be two octahedral systems on the same sets of vertices, the symmetric difference

Ω 1 △Ω 2 = (V 1 , . . . ,V n , E 1 △E 2 ) is an octahedral system. Proof. Consider X ⊆ n i =1 V i such that |X ∩ V i | = 2 for i = 1, . . . , n. We have |(E 1 △E 2 )[X ]| = |E 1 [X ]| + |E 2 [X ]| -2|(E 1 ∩ E 2 )[X ]|,
and therefore the parity condition holds for Ω 1 △Ω 2 . Proposition 3.1 can be used to build octahedral systems or to prove the non-existence of others. For instance, Proposition 3.1 implies that there is a (3, 3, 3)-octahedral system without isolated vertex with exactly 22 edges by setting Ω 1 to be the complete (3, 3, 3)-octahedral system with 27 edges, and Ω 2 to be the (3, 3, 3)-octahedral system with exactly 5 edges given in Figure 3. The octahedral system Ω 1 △Ω 2 is without isolated vertex since each vertex in Ω 1 is of degree 9. Similarly, Proposition 3.1 shows that no (3, 3, 3)-octahedral system with exactly 25 or 26 edges exists. Otherwise a (3, 3, 3)-octahedral system with exactly 1 or 2 edges would exist, contradicting Proposition 2.2.

Theorem 3.2. Given n disjoint finite vertex sets

V 1 , . . . ,V n , the number of octahedral systems on V 1 , . . . ,V n is 2 Π n i =1 |V i |-Π n i =1 (|V i |-1) .
Proof. We denote by F i the binary vector space F V i 2 and by G i its subspace whose vectors have an even number of 1. Let H be the tensor product F 1 ⊗. . .⊗F n and X its subspace G 1 ⊗. . .⊗G n . Note that there is a bijection between the elements of H and the n-partite hypergraphs on vertex sets V 1 , . . . ,V n : each edge {v 1 , . . . , v n } of such an hypergraph H , with v i ∈ V i for all i , is identified with the vector x 1 ⊗ . . . ⊗ x n , where x i is the unit vector of F i having a 1 uniquely at position v i .Define now ψ as follows.

ψ : H → X * H → 〈H , •〉
By the above identification and according to the alternate definition of an octahedral system given by Proposition 2.1, the subspace ker ψ of H is the set of all octahedral systems on vertex sets V 1 , . . . ,V n . Note that by definition ψ is surjective. Therefore, we have dim ker ψ + dim X * = dim H which implies dim ker ψ = dim Hdim X using the isomorphism between a vector space and its dual. The dimension of H is

Π n i =1 |V i | and the dimension of X is Π n i =1 (|V i | -1)
. This leads to the desired conclusion.

The vector space structure of the kernel of ψ gives another proof of Proposition 3.1. Karasev [12] noted that the set of all colourful simplices in a colourful point configuration forms a d -dimensional coboundary of the join S 1 * . . . * S d +1 with mod 2 coefficients. We further note that the octahedral systems form precisely the (n -1)-coboundaries of the join V 1 * . . . * V n with mod 2 coefficients. Indeed, with mod 2 coefficients and with the notations of the proof of Theorem 3.2, the coboundaries of V 1 * . . . * V n are generated by the vectors of the form x 1 ⊗ . . . ⊗ x j -1 ⊗ e ⊗ x j +1 ⊗ . . . ⊗ x n , with j ∈ {1, . . . , n} and e = (1, . . . , 1) ∈ F V j 2 . With the identification given in Proposition 3.1, each of these vectors forms an octahedral system. Moreover, they generate the set of all octahedral systems seen as a vector space: given an octahedral system and one of his vertex v of nonzero degree, we can add vectors of the above form in order to make v isolated; repeating this argument for each V i , we get an octahedral system with an isolated vertex in each V i ; such an octahedral system is empty, i.e. the zero vector of the space of octahedral systems.

A natural question is whether there is a non-labelled version of Theorem 3.2, that is whether it is possible to compute, or to bound, the number of non-isomorphic octahedral systems. Two isomorphic octahedral systems; that is, identical up to a permutation of the V i 's, or of the vertices in one of the V i 's, are considered distinct in Theorem 3.2. Answering this question would fully answer Question 7 of [START_REF] Custard | Small octahedral systems[END_REF]. While Polya's theory might be helpful, we were not able to address the question.

Finally, Question 6 of [START_REF] Custard | Small octahedral systems[END_REF] asks whether any octahedral system This statement is also true for octahedral systems without isolated vertex.

Ω = (V 1 , . . . ,V n , E ) with n = |V 1 | = . . . = |V n | = d + 1 can
Proof. We provide an example of a non-realisable octahedral system without isolated vertex in Figure 3. Indeed, suppose by contradiction that this octahedral system can be realized as a colourful point configuration S 1 , S 2 , S 3 . Without loss of generality, we can assume that all the points lie on a circle centred at 0. Take x 3 ∈ S 3 , and consider the line ℓ going through x 3 and 0. There are at least two points x 1 and x ′ 1 of S 1 on the same side of ℓ. There is a point

x 2 ∈ S 2 , respectively x ′ 2 ∈ S 2 , on the other side of the line ℓ such that 0 ∈ conv(x 1 , x 2 , x 3 ), respectively 0 ∈ conv(x ′ 1 , x ′ 2 , x 3 )
. Assume without loss of generality that x ′ 2 is further away from x 3 than x 2 . Then, conv(x 1 , x ′ 2 , x 3 ) contains 0 as well, contradicting the definition of the octahedral system given in Figure 3. We conclude the section with a question to which the intuitive answer is yes but we are unable to settle. 

z times k -1, . . . , k -1, k-z times k, . . . , k , m k+1 , . . . , m n )-octahedral system Ω = (V 1 , . . . ,V n , E ) without isolated vertex, with 3 ≤ k ≤ m k+1 ≤ . . . ≤ m n and 0 ≤ z < k ≤ n. If there is a subset X ⊆ n i =z+1 V i of
cardinality at least 2 inducing in D(Ω) a complete subgraph without outneighbour, then Ω has at least (k -1) 2 + 2 edges, unless Ω is a (2, 2, 3, 3)-octahedral system, in which case Ω has at least 5 edges under the same condition on X .

Proof. Any edge intersecting X contains X since X induces a complete subgraph in

D(Ω), im- plying deg Ω (X ) ≥ 1. Moreover, we have |X ∩ V i | ≤ 1 for i = 1, . . . , n. Case (a): deg Ω (X ) ≥ 2. Choose i * such that |X ∩ V i * | = 0. We first note that the degree of each w in V i * \ X is at least k -1.
Indeed, take an edge e containing w and a i * -transversal T disjoint from e and X . Note that e does not contain any vertex of X as underlined in the first sentence of the proof. Apply the weak form of the parity property to e, T , and the unique vertex x in X ∩ V i * . There is an edge distinct from e in e ∪T ∪{x}. Note that this edge contains w, otherwise it would contain x and any other vertex in X . It also contains at least one vertex in T . For a fixed e, we can actually choose k -2 disjoint i * -transversals T of that kind and apply the weak form of the parity property to each of them. Thus, there are k -2 distinct edges containing w in addition to e.

Therefore, we have in total at least (k -1) 2 edges, in addition to deg Ω (X ) ≥ 2 edges.

Case (b): deg Ω (X ) = 1. Let e(X ) denote the unique edge containing X . For each i such that |X ∩ V i | = 0, pick a vertex w i in V i \ e(X ). Applying the parity property to e(X ), the w i 's, and any colourful selection of u i ∈ V i \ X such that |X ∩V i | = 0 shows that there is at least one additional edge containing all u i 's. We can actually choose (k -1) |X | +1 distinct colourful selections of u i 's.

With e(X ), there are in total (k -1) While Lemma 4.3 is similar to Lemma 4.2, we were not able to find a common generalization.

|X | + 1 edges. If |X | ≥ 3, then (k -1) |X | + 1 ≥ (k -1) 2 + 2. If |X | = 2 we consider j maximum such that |V j ∩ X | = 0,
Lemma 4.3. Consider a ( z times k -1, . . . , k -1, k-z times k, . . . , k , m k+1 , . . . , m n )-octahedral system Ω = (V 1 , . . . ,V n , E ) without isolated vertex, with 3 ≤ k ≤ m k+1 ≤ . . . ≤ m n and 0 ≤ z < k ≤ n. If there is a subset X ⊆ n i =z+1 V i of

cardinality at least 2 inducing in D(Ω) a complete subgraph without outneighbour, then Ω has at least

(k -1) 2 + |V n-1 | + |V n | -2k + 1 edges. Proof. Choose i * such that X ∩V i * = . Choose W i * ⊆ V i * \ X of cardinality k -1.
For each vertex w ∈ W i * , choose an edge e(w) containing w. We can assume that there is a vertex w * ∈ W i * such that e(w * ) contains a vertex v * minimizing the degree in Ω over

V n \X . Choose W i ⊆ V i for i = i * such that |W i | = k -1 and w∈W i * e(w) ⊆ W = n i =1 W i .
Case (a): the degree of v * in Ω is at most k -2. For all w ∈ W i * , applying the parity property to e(w), the unique vertex of V i * ∩ X , and k -2 disjoint i * -transversals in W yields (k -1) 2 distinct edges. Applying the parity property applied to e(w * ), any n-transversal in W not intersecting the neighbourhood of v * in Ω, and each vertex in

V n \ W n gives |V n | -k + 1 additional edges not intersecting V n-1 \ W n-1 . Additional |V n-1 | -k + 1 edges are needed to cover the vertices of V n-1 \ W n-1 . In total we have at least (k -1) 2 + |V n | + |V n-1 | -2(k -1) edges. Case (b): the degree of v * in Ω is at least k -1. We have then at least (k -1)(|V n | -1) + 1 ≥ (k -1) 2 + (k -1)(|V n | -k) + 1 ≥ (k -1) 2 + |V n-1 | + |V n | -2k + 1 edges. Lemma 4.4. Consider a ( z times k -1, . . . , k -1, k-z times k, . . . , k , m k+1 , . . . , m n )-octahedral system Ω = (V 1 , . . . ,V n , E ) without isolated vertex, with 3 ≤ k ≤ m k+1 ≤ . . . ≤ m n and 0 ≤ z < k ≤ n.
If there are at least two vertices v and v ′ of V n having outneighbours in D(Ω) in the same V i * with i * < k, then the octahedral system has at least

|V i * |(k -1) + |V n-1 | + |V n | -2k edges.
Proof. Let u and u ′ be the two vertices in V i * with (v, u) and (v ′ , u ′ ) forming arcs in D(Ω). Note that according to the basic properties of D(Ω), we have u = u ′ . Case (a): |V i * | = k. For each vertex w ∈ V i * , choose an edge e(w) containing w. We can assume that there is a vertex w * ∈ V i * such that e(w * ) contains a vertex v * in V n of minimal degree in

Ω. Choose W i ⊆ V i such that |W i | = k -1 for i = 1, . . . , z, |W i | = k for i = z + 1, . . .

, n, and

w∈V i * e(w) ⊆ W = n i =1 W i .
We first show that the degree of any vertex in V i * is at least k -1 in the hypergraph induced by W . Pick w ∈ V i * and consider e(w). If v ∈ e(w), take k -2 disjoint i * -transversals in W not containing v ′ and not intersecting with e(w). Applying the parity property to e(w), u ′ and each of those i * -transversals yields, in addition to e(w), at least k -2 edges containing w. Otherwise, take k -2 disjoint i * -transversals in W not containing v and not intersecting with e(w), and apply the parity property to e(w), u and each of those i * -transversals. Therefore, in both cases, the degree of w in the hypergraph induced by W is at least k -1.

Then, we add edges not contained in W . If the degree of v * in Ω is at least 2, there are at least 2(|V n | -k) distinct edges intersecting V n \ W n . Otherwise, the parity property applied to e(w * ), any n-transversal in W , and each vertex in

V n \ W n provides |V n | -k additional edges not inter- secting V n-1 \W n-1 . Therefore, an additional |V n-1 | -k edges are needed to cover these vertices of V n-1 \ W n-1 .
In total, we have at least k(k -1) 

+ |V n-1 | + |V n | -2k edges.
|V i * | = k -1.
For each vertex w ∈ V i * , choose an edge e(w) containing w. We can assume that there is a vertex

w * ∈ V i * such that e(w * ) contains a vertex v * in V n of minimal degree in Ω. Choose W i ⊆ V i such that |W i | = k -1 for i = 1, . . . , n -1, |W n | = k,
and
w∈V i * e(w) ⊆ W = n i =1 W i .
Similarly, we show that the degree of any vertex in V i * is at least k -1 in the hypergraph induced by W . Pick w ∈ V i * and consider e(w). If v ∈ e(w), take k -2 disjoint i -transversals in W not containing v ′ and not intersecting with e(w). Applying the parity property to e(w), u ′ and each of those i -transversals yields, in addition to e(w), at least k -2 edges containing w. Otherwise, take k -2 disjoint i -transversals in W not containing v and not intersecting with e(w), and apply the parity property to e(w), u and each of those i -transversals. Therefore, in both cases, the degree of w in the hypergraph induced by W is at least k -1.

Then, we add edges not contained in W . If the degree of v * in Ω is at least 2, there are at least 2(|V n | -k) distinct edges intersecting V n \ W n . Otherwise, the parity property applied to e(w * ), any n-transversal in W , and each vertex in

V n \ W n provides |V n | -k additional edges not in- tersecting V n-1 \ W n-1 . Therefore, an additional |V n-1 | -k + 1 edges are needed to cover these vertices of V n-1 \ W n-1 .
In total, we have at least (k -

1) 2 + |V n-1 | + |V n | -2k edges.
4.2. Proof of the main result. Theorem 1.1 is obtained by setting (k, z) = (m, 0) in Proposition 4.5. This proposition is proven by induction on the cardinality of octahedral systems of the form illustrated in Figure 4. Either the deletion of a vertex results in an octahedral system satisfying the conditions of Proposition 4.5 and then we can apply induction, or we apply Lemma 4.3 or Lemma 4.4 to bound the number of edges of the system. Lemma 4.1 is a key tool to determine if the deletion of a vertex results in an octahedral system satisfying Proposition 4.5.

Proposition 4.5. A (

z times k -1, . . . , k -1, k-z times k, . . . , k , m k+1 , . . . , m n )-octahedral system Ω = (V 1 , . . . ,V n , E ) without isolated vertex, with 2 ≤ k ≤ m k+1 ≤ . . . ≤ m n and 0 ≤ z < k ≤ n, has at least 1 2 k 2 + 1 2 k -8 + |V n-1 | + |V n | -z edges if k ≤ n -2, 1 2 n 2 + 1 2 n -10 + |V n | -z edges if k = n -1, 1 2 n 2 + 5 2 n -11 -z edges if k = n.
Proof. The proof works by induction on

n i =1 |V i |. The base case is n i =1 |V i | = 2n, which implies z = 0, k = |V n-1 | = |V n | = 2.
The three inequalities trivially hold in this case.

Suppose that

n i =1 |V i | > 2n. If k = 2, Proposition 2.
3 proves the inequality. We can thus assume that k ≥ 3. We choose a pair (k, z) compatible with Ω, note that (k, z) is not necessarily unique, and consider the two possible cases for the associated D(Ω).

If there are at least two vertices v and v ′ of V n having an outneighbour in the same V i * , with i * < k, we can apply Lemma 4.4. If k ≤ n -2, the inequality follows by a straightforward computation; if k = n -1, we use the fact that |V n-1 | = n -1; and if k = n, we use the fact that

|V n-1 | ≥ n -1 and |V n | = n.
Otherwise, for each i < k, there is at most one vertex of V n having an outneighbour in

V i . Since k -1 < |V n |, there is a vertex x of V n having no outneighbour in k-1 i =1 V i . Start from x in D(Ω) till reaching a set X inducing a complete subgraph of D(Ω) without outneighbour. Since D(Ω) is transitive, we have X ⊆ n i =k V i . If |X | ≥ 2,
we apply Lemma 4.3. Thus, we can assume that |X | = 1.

The hypergraph Ω ′ induced by Ω\ X is an octahedral system without isolated vertex since X is a single vertex without outneighbour in D(Ω), see Lemma 4.1. Recall that the vertex in X belongs to n i =k V i . Let (k ′ , z ′ ) be possible parameters associated to Ω ′ . Let i 0 be such that X ⊆ V i 0 . The induction argument is applied to the different values of |V i 0 |.

If |V i 0 | ≥ k + 1, we have (k ′ , z ′ ) = (k, z)
and we can apply the induction hypothesis with |V n | + |V n-1 | decreasing by at most one (in case i 0 = n -1 or n) which is compensated by the edge containing X .

If |V i 0 | = k, z < k -1, and k < n, we have (k ′ , z ′ ) = (k, z + 1)
and we can apply the induction hypothesis with same |V n-1 | and |V n | since z < n -2, while z ′ replacing z takes away 1 which is compensated by the edge containing X .

If |V i 0 | = k, z = k -1, and k < n -1, we have (k ′ , z ′ ) = (k -1, 0)

and we can apply the induction hypothesis with same |V

n-1 | + |V n | since z < n -2. We get therefore 1 2 (k -1) 2 + 1 2 (k -1) -8 + |V n-1 | + |V n | edges at least in Ω ′ , plus at least one containing X . In total, we have 1 2 k 2 + 1 2 k -8 + |V n-1 | + |V n | -k + 1 in Ω, as required. If |V i 0 | = k, z = k -1, and k = n -1, we have (k ′ , z ′ ) = (n -2, 0
) and we can apply the induction hypothesis with |V n-1 | + |V n | decreasing by at most one. We get therefore 1 2 (n -2

) 2 + 1 2 (n -2) - 8 + |V n-1 | + |V n | -1 edges at least in Ω ′ , plus at least one containing X . Since |V n-1 | = n -1, we have in total 1 2 n 2 + 1 2 n -10 + |V n | -(n -2) in Ω, as required. If |V i 0 | = k, z = k -1
, and k = n, we have then necessarily i 0 = n and (k ′ , z ′ ) = (n -1, 0). We can apply the induction hypothesis and get therefore 1 2 n 2 + 1 2 n -10 + (n -1) at least in Ω ′ , plus at least one containing X . In total, we have 1 2 n 2 + 5 2 n -11 -(n -1) in Ω, as required.

If |V i 0 | = k, z ≤ k -2
, and k = n, we can assume i 0 = n -1 and (k ′ , z ′ ) = (n, z + 1). We can apply the induction hypothesis and get therefore 1 2 n 2 + 5 2 n -11-z -1 edges at least in Ω ′ , plus at least one containing X . In total, we have 1 2 n 2 + 5 2 n -11 -z in Ω, as required. Remark. A similar analysis, with |V i | = n for all i as a base case, shows that an octahedral system without isolated vertex and with

|V 1 | = |V 2 | = . . . = |V n | = m has at least nm -1 2 n 2 + 5 2 n -11 edges for 4 ≤ n ≤ m.

SMALL INSTANCES AND µ(4) = 17

This section focuses on octahedral systems with m i 's and n at most 5. Proof. We first prove that ν(2, 3, 3, 3) = 5. Let Ω = (V 1 ,V 2 ,V 3 ,V 4 , E ) be a (2, 3, 3, 3)-octahedral system. In D(Ω) there is at most one vertex of V 4 having an outneighbour in V 1 , otherwise one vertex of V 4 would be isolated. Thus, there is a subset

X ⊆ V 2 ∪ V 3 ∪ V 4 inducing in D(Ω) a com- plete subgraph without outneighbour. If |X | ≥ 2, applying Lemma 4.2 with (k, z) = (3, 1)
gives at least 5 edges in that case. If |X | = 1, deleting X yields a (2, 2, 3, 3)-octahedral system without isolated vertex since X has no outneighbour in D(Ω). As ν(2, 2, 3, 3) = 4 by Proposition 2.5, we have at least 4 + 1 = 5 edges. Thus, the equality holds since ν(2, 3, 3, 3) ≤ 5 by Proposition 2.4.

We then prove that ν(3, 3, 3, 3) = 6. Let Ω = (V 1 ,V 2 ,V 3 ,V 4 , E ) be a (3, 3, 3, 3)-octahedral system. There is a subset X inducing in D(Ω) a complete subgraph without outneighbour. If |X | ≥ 2, apply Lemma 4.2 with (k, z) = (3, 0) gives at least 6 edges in that case. If |X | = 1, deleting X yields a (2, 3, 3, 3)-octahedral system without isolated vertex since X has no outneighbour in D(Ω). As ν(2, 3, 3, 3) = 5, we have at least 5 + 1 = 6 edges. Thus, the equality holds since ν(3, 3, 3, 3) ≤ 6 by Proposition 2.4.

The main result this section, namely ν(5, 5, 5, 5, 5) = 17, is proven via a series of claims dealing with octahedral systems of increasing sizes. We first determine the values of ν(2, 2, 3, 3, 3), ν [START_REF] Imre Bárány | A generalization of Carathéodory's theorem[END_REF][START_REF] Matoušek | Quadratically many colorful simplices[END_REF][START_REF] Matoušek | Quadratically many colorful simplices[END_REF][START_REF] Matoušek | Quadratically many colorful simplices[END_REF][START_REF] Matoušek | Quadratically many colorful simplices[END_REF], and ν [START_REF] Matoušek | Quadratically many colorful simplices[END_REF][START_REF] Matoušek | Quadratically many colorful simplices[END_REF][START_REF] Matoušek | Quadratically many colorful simplices[END_REF][START_REF] Matoušek | Quadratically many colorful simplices[END_REF][START_REF] Matoušek | Quadratically many colorful simplices[END_REF] in Claims 1, 2, and 3.

Claim 1. ν(2, 2, 3, 3, 3) = 5.
Proof. For i = 1 and 2, there is at most one vertex of V 5 having an outneighbour in V i as otherwise one vertex of V 5 would be isolated. Since |V 5 | = 3, there is a vertex of V 5 having no outneighbour in V 1 ∪V 2 . Thus, there is a subset X ⊆ V 3 ∪V 4 ∪V Case (b): there is at most one vertex of V 5 having an outneighbour in V i for i = 1 and 2 in D(Ω). Since |V 5 | = 3, there is a vertex of V 5 having no outneighbour in V 1 ∪ V 2 . Thus, there is a subset 3, pick a vertex w i in V i \ e(X ). Applying the parity property to e(X ), w 1 , w 2 , w 3 , and any u 4 ∈ V 4 \e(X ), u 5 ∈ V 5 \e(X ) yields at least 5 edges in e(X )∪{w 1 , w 2 , w 3 }∪V 4 ∪V 5 . At least 2 additional edges are needed to cover the 3 remaining vertices of V 1 , V 2 , and V 3 since a unique edge containing them would contradict the maximality of X . Thus, we have at least 7 edges. • If |X | = 3 and deg Ω (X ) ≥ 3, deleting X yields a (2, 2, 2, 3, 3)-octahedral system without isolated vertex. As ν(2, 2, 2, 3, 3) = 4 by Proposition 2.5, we have at least 4 + 3 = 7 edges.

X ⊆ V 3 ∪V 4 ∪V
• If |X | = 3 and deg Ω (X ) ≤ 2, let e(X ) be an edge containing X . Pick w 1 ∈ V 1 \ N Ω (X )
and w 2 ∈ V 2 \ N Ω (X ) where N Ω (X ) denotes the vertices not in X contained in the edges intersecting X . Applying the parity property to e(X ), w 1 , w 2 , and any u i ∈ V i \ e(X ) for i = 3, 4, and 5 yields at least 9 edges in e(X ) ∪ {w 1 ,

w 2 } ∪ V 3 ∪ V 4 ∪ V 5 . • If |X | = 4 and deg Ω (X ) ≥ 3, take any vertex v in V 2 \ X .

Applying the parity property to

an edge e(v) containing v, V 2 ∩ X , and any 2-transversal disjoint from e(v) and X shows that v is of degree at least 2. Since there are 2 vertices in V 2 \ X , we get, with 3 edges containing X , at least 7 edges.

• If |X | = 4 and deg Ω (X ) ≤ 2, let e(X ) be an edge containing X . Pick w 1 ∈ V 1 \ N Ω (X ).
Applying the parity property to e(X ), w 1 , and any u i ∈ V i \e(X ) for i = 2, 3, 4, and 5 yields at least 17 edges in e(X )

∪ {w 1 } ∪ V 2 ∪ V 3 ∪ V 4 ∪ V 5 .
• If |X | = 5, the parity property applied to the edge e(X ) containing X , and any u i ∈ V i \ e(X ) for i = 1, 2, 3, 4, and 5 yields at least 33 edges. Thus, the equality holds since ν(3, 3, 3, 3, 3) ≤ 7 by Proposition 2.4.

To complete the proof of ν( 5 Proof. We first prove ν(2, 3, 3, 3, 4) ≥ 6 which in turn leads to ν(3, 3, 3, 3, 4) ≥ 7. The proof of these two inequalities are quite similar with the main difference being that, while the first inequality relies partially on Proposition 2.3, the second inequality relies on the first one.

Let Ω = (V 1 , . . . ,V 5 , E ) be a (2, 3, 3, 3, 4)-or a (3, 3, 3, 3, 4)-octahedral system. We consider the three possible cases for the associated D(Ω).

Case (a): there is a vertex of V 5 having no outneighbour. Deleting this vertex yields a (2, 3, 3, 3, 3)or a (3, 3, 3, 3, 3)-octahedral system without isolated vertex. In both cases, we have at least 7 edges since ν( 2 Pick w ∈ V i * and consider e(w). If v ∈ e(w), take 2 disjoint i * -transversals in W not containing v ′ and not intersecting with e(w). Applying the parity property to e(w), u ′ , and each of those i * -transversals yields, in addition to e(w), at least 2 edges containing w. Otherwise, take 2 disjoint i * -transversals in W not containing v and not intersecting with e(w), and apply the parity property to e(w), u, and each of those i * -transversals. In both cases, the degree of w in the hypergraph induced by W is at least 3. Then, we add edges not contained in W . Since V 4 \ W = , there is at least one additional edge. In total, we have at least 10 ≥ 11 -z edges.

Case (b): there is at most one vertex of V 5 having an outneighbour in V i for i ≤ z. Since |V 5 | = 4, there is at least one vertex of V 5 having no outneighbour in z i =1 V i . Thus, there is a subset X ⊆ Proof. The proof works by induction on z using the inequality ν(4, 4, 4, 4, 4) ≥ 12 which holds by Claim 6. We consider the two possible cases for the associated D(Ω). Case (a): there are at least two vertices v and v ′ of V 5 having outneighbours in the same V i * with i * ≤ z. We can apply Lemma 4.4 with (k, z) = (5, z), we have at least 4×4+|V 4 |+|V 5 |-10 ≥ 17z edges.

Case (b): there is at most one vertex of V 5 having an outneighbour in V i for 1 ≤ i ≤ z. Since |V 5 | = 5, there is a vertex of V 5 having no outneighbour in z i =1 V i . Thus, there is a subset X ⊆ 
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4 , before Deza, Theorem 1 . 1 .

 411 An octahedral system without isolated vertex and with |V 1 | = |V 2 | = . . . = |V n | = m has at least1 2 m 2 + 5 2 m -11 edges for 4 ≤ m ≤ n . Setting m = n = d +1 in Theorem 1.1 yields a strengthening of the lower bound for µ(d ) given in Corollary 1.2. Corollary 1.2. µ(d ) ≥ 1 2 d 2 + 7 2 d -8 for d ≥ 4. Corollary 1.2 improves the known lower bounds for µ(d ) for all d ≥ 5. Refining the combinatorial approach for small instances in Section 5, we show that µ(4) = 17, i.e. the conjectured equality µ(d ) = d 2 + 1 holds in dimension 4, see Proposition 5.2. Properties of octahedral systems generalizing earlier results on colourful point configurations are presented in Section 2.

Figures 1 and 2

 2 Figures 1 and 2 illustrate the construction in the proof of Proposition 2.4 for n = m 1 = m 2 = m 3 = 3, and for n -1 = m 1 = m 2 = m 3 = m 4 = 3. Proposition 2.4 combined with Proposition 2.3 directly implies Proposition 2.5 given without proof.

  . . , 4 ) = 12 -z for z = 0, . . . , 4.

FIGURE 3 .

 3 FIGURE 3. A non realisable (3, 3, 3)-octahedral system with 9 edges

Question.

  Is ν(m 1 , . . . , m n ) increasing with each of the m i ? 4. PROOF OF THE MAIN RESULT 4.1. Technical lemmas. While Lemma 4.1 allows induction within octahedral systems, Lemmas 4.2, 4.3, and 4.4 are used in the subsequent sections to bound the number of edges of an octahedral system without isolated vertex.

Lemma 4 . 1 .Lemma 4 . 2 .

 4142 Consider an octahedral system Ω without isolated vertex. If X induces a complete subgraph in D(Ω) and N + D(Ω) (X ) = , then Ω \ X is an octahedral system without isolated vertex. Proof. The parity condition is clearly satisfied for Ω \ X , and each vertex of Ω \ X is contained in at least one edge. For n ≥ 4, consider a (

  it exists as n ≥ 4. If |V j | ≥ 3, then at least |V j | -2 ≥ 1 edges are needed to cover the vertices of V j not belonging to these (k -1) |X | + 1 edges. Else we have necessarily k = 3 and 2 = |X | = nz, which is the special case where Ω is a (2, 2, 3, 3)-octahedral system. In this case (k -1) |X | + 1 ≥ 5.

FIGURE 4 .

 4 FIGURE 4. The vertex set of the (k -1, . . . , k -1, k, . . . , k, m k+1 , . . . , m n )-octahedral system Ω = (V 1 , . . . ,V n , E ) used for the proof of Proposition 4.5

Proposition 5 . 1 .

 51 ν(3, 3, 3, 3) = 6.

  5 of cardinality 1, 2, or 3 inducing a complete subgraph in D(Ω) without outneighbour. If |X | ≥ 2, applying Lemma 4.2 with (k, z) = (3, 2) gives at least 5 edges. If |X | = 1, deleting X yields a (2, 2, 2, 3, 3)-octahedral system without isolated vertex since X has no outneighbour in D(Ω). As ν(2, 2, 2, 3, 3) = 4 by Proposition 2.5, we have at least 4 + 1 = 5 edges. Thus, the equality holds since ν(2, 2, 3, 3, 3) ≤ 5 by Proposition 2.4.

Claim 2 .

 2 ν(2, 3, 3, 3, 3) = 6.Proof. We consider the two possible cases for the associated D(Ω). Case (a): there are at least two vertices v and v ′ of V 5 having outneighbours in the same V i * in D(Ω) with i * = 1 or 2. Note that actually i * = 2 since otherwise V 5 \ {v, v ′ } would be isolated. Applying Lemma 4.4 with (k, z) = (3, 1) gives at least 3 × 2 + |V 4 | + |V 5 | -6 = 6 edges.

  5 inducing in D(Ω) a complete subgraph without outneighbour. If |X | ≥ 2, applying Lemma 4.2 with (k, z) = (3, 1) and j = 2 gives at least 6 edges. If |X | = 1, deleting X yields a (2, 2, 3, 3, 3)-octahedral system without isolated vertex since X has no outneighbour in D(Ω). As ν(2, 2, 3, 3, 3) = 5 by Claim 1, we have at least 5 + 1 = 6 edges. Thus, the equality holds since ν(2, 3, 3, 3, 3) ≤ 6 by Proposition 2.4. Claim 3. ν(3, 3, 3, 3, 3) = 7. Proof. There is a subset X inducing a complete subgraph in D(Ω) without outneighbour. Choose such an X of maximal cardinality. Without loss of generality, we assume that the indices i such that |X ∩ V i | = 0 are n -|X | + 1, n -|X | + 2, . . . , n. Consider the different values for |X |. • If |X | = 1, deleting X yields a (2, 3, 3, 3, 3)-octahedral system without isolated vertex since X has no outneighbour in D(Ω). As ν(2, 3, 3, 3, 3) = 6 by Claim 2, we have at least 6+1 = 7 edges. • If |X | = 2 and deg Ω (X ) ≥ 2, deleting X yields a (2, 2, 3, 3, 3)-octahedral system without isolated vertex. As ν(2, 2, 3, 3, 3) = 5 by Claim 1, we have at least 5 + 2 = 7 edges. • If |X | = 2 and deg Ω (X ) = 1, denote e(X ) the unique edge containing X . For i = 1, 2, and

  , 5, 5, 5, 5) = 17, we sequentially show ν(3, 3, 3, 3, 4) ≥ 7, ν(4, 4, 4, 4, 4) = 12, and finally ν(5, 5, 5, 5, 5) = 17. A key step consists in proving ν(4, 4, 4, 4, 4) ≥ 11 by induction using ν(3, 3, 3, 3, 4) ≥ 7 as a base case. We obtain then ν(4, 4, 4, 4, 4) = 12 by Propositions 2.1 and 2.4. The equality ν(5, 5, 5, 5, 5) = 17 is obtained by induction using ν(4, 4, 4, 4, 4) = 12 as a base case.

Claim 4 .

 4 ν(3, 3, 3, 3, 4) ≥ 7.

) ≥ 11 -

 11 , 3, . . . , 3) = 6 by Claim 2, and ν(3, 3, 3, 3, 3) = 7 by Claim 3. Case (b): each vertex of V 5 has an outneighbour and there are at least two vertices v and v ′ of V 5 having outneighbours in the same V i * in D(Ω) with i * = 1, 2, or 3. Note that |V i * | = 3 since otherwise V 5 \ {v, v ′ } would be isolated. Applying Lemma 4.4 with either (k, z) = (3, 1) or (k, z) = (3, 0) gives at least 3 × 2 + |V 4 | + |V 5 | -6 = 7 edges.Case (c): each vertex of V 5 has an outneighbour and there is at most one vertex of V 5 having an outneighbour in V i for i = 1, 2, and 3. Since |V 5 | = 4, there is a subset X ⊆ V 4 ∪ V 5 inducing in D(Ω) a complete subgraph of cardinality 1 or 2 without outneighbour.• If |X | = 1, we have X ⊆ V 4 sinceeach vertex of V 5 has an outneighbour. Deleting X yields a (2, 2, 3, 3, 4)-or a (2, 3, 3, 3, 4)-octahedral system without isolated vertex. We obtain ν(2, 3, 3, 3, 4) ≥ 6 since ν(2, 2, 3, 3, 4) ≥ 5 by Proposition 2.3, and then ν(3, 3, 3, 3, 4) ≥ 7 since ν(2, 3, 3, 3, 4) ≥ 6. • If |X | = 2, deleting X yields a (2, 2, 3, 3, 3)-or a (2, 3, 3, 3, 3)-octahedral system without isolated vertex. Since one additional edge is needed to cover X , we obtain ν(2, 3, 3, 3, 4) ≥ 6 since ν(2, 2, 3, 3, 3) = 5 by Claim 1, and ν(3, 3, 3, 3, 4) ≥ 7 since ν(2, 3, 3, 3, 3) = 6 by Claim 2. z for z = 1, 2, 3. Proof. The proof works by induction on z using the inequality ν(3, 3, 3, 3, 4) ≥ 7 which holds by Claim 4. We consider the two possible cases for the associated D(Ω). Case (a): there are at least two vertices v and v ′ of V 5 having outneighbours in the same V i * with i * ≤ z. Let u and u ′ be the two vertices in V i * with (v, u) and (v ′ , u ′ ) forming arcs in D(Ω). For each vertex w ∈ V i * , choose an edge e(w) containing w. Choose W i ⊆ V i such that |W i | = 3 for i = 1, . . . , 4, |W 5 | = 4, and w∈V i * e(w) ⊆ W =

5 i

 5 =z+1 V i inducing in D(Ω) a complete subgraph without outneighbour. If |X | = 1, deleting X yields a ( 3, . . . , 3 z+1 times , 4, . . . , 4 4-z times )-octahedral system without isolated vertex. As ν( 3, . . . , 3 z+1 times , 4, . . . , 4 4-z times ) ≥ 11-(z +1) we obtain 11z edges. If |X | ≥ 2, we have at least 9+2 = 11 edges by Lemma 4.2 with (k, z) = (4, z).

Claim 6 .)

 6 ν(4, 4, 4, 4, 4) = 12. Proof. There is a subset X inducing a complete subgraph in D(Ω) without outneighbour. If |X | = 1, deleting X yields a (3, 4, . . . , 4)-octahedral system without isolated vertex. As ν(3, 4, . . . , 4) ≥ 10, we obtain 11 edges. If |X | ≥ 2, we have at least 11 edges by Lemma 4.2 with (k, z) = (4, 0). Thus, ν(4, 4, 4, 4, 4) ≥ 12 by Proposition 2.1, and then ν(4, 4, 4, 4, 4) = 12 by Proposition 2.4. = 17 -z for z = 1, 2, 3, 4.

5 i)

 5 =z+1 V i inducing in D(Ω) a complete subgraph without outneighbour. If |X | = 1, deleting X yields a ( 4, . . . ≥ 16 -z, we obtain at least 17 -z edges. If |X | ≥ 2, we have at least 18 edges by Lemma 4.2. Thus, the equality holds since ν(4, . . . , 4 z times , 5, . . . , 5 5-z times ) ≤ 17 -z by Proposition 2.4. Claim 8. ν(5, 5, 5, 5, 5) = 17. Proof. There is a subset X inducing a complete subgraph in D(Ω) without outneighbour. If |X | = 1, deleting X yields a (4, 5, 5, 5, 5)-octahedral system without isolated vertex. As ν(4, 5, 5, 5, 5) ≥ 16, we have at least 17 edges. If |X | ≥ 2, we can apply Lemma 4.2, and we have at least 18 edges. Thus, the equality holds since ν(5, 5, 5, 5, 5) ≤ 17 by Proposition 2.4. As ν(5, 5, 5, 5, 5) = ν(4), Claim 8 and the relation µ(4) ≥ ν(4) directly imply that the conjectured equality µ(d ) = d 2 + 1 holds for d = 4. Proposition 5.2. µ(4) = 17.

  1 and Proposition 2.2 deal with octahedral systems possibly with isolated vertices, Propositions 2.3, 2.4, 2.5, and 2.6 deal with octahedral systems without isolated vertex.

Proposition 2.1. An octahedral system Ω

  arise from a colourful point configuration S 1 , . . . , S d +1 in R d ? That is, are all octahedral systems realisable? We answer negatively this question in Proposition 3.3.

	Proposition 3.3. Not all octahedral systems are realisable.