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ENVY-FREE TWO-PLAYER m-CAKE AND THREE-PLAYER TWO-CAKE

DIVISIONS

NICOLAS LEBERT, FRÉDÉRIC MEUNIER, AND QUENTIN CARBONNEAUX

Abstract. Cloutier, Nyman, and Su (Mathematical Social Sciences 59 (2005), 26–37) initiated
the study of envy-free cake-cutting problems involving several cakes. The classical result in this
area is that when there are q players and one cake, an envy-free cake-division requiring only q − 1
cuts exists under weak and natural assumptions. Among other results, Cloutier, Nyman, and Su
showed that when there are two players and two or three cakes it is again possible to find envy-free
cake-divisions requiring few cuts, under same assumptions.

In the present note, we prove that such a result also exists when there are two players and any
number of cakes and when there are three players and two cakes. The proof relies on a theorem by
Gyárfás linking the matching number and the fractional matching number in m-partite hypergraphs.

1. Introduction

1.1. Context. Cake-cutting problems ask whether it is possible to divide a cake among players
in such a way each of them believes the division is fair. These problems go back to Steinhaus [6]
and have received a lot of attention. Many variations are possible depending on whether the pieces
may be disconnected or not and on how “fair” is understood. In this note, we consider a division
to be fair if all players consider their own pieces to be at least as valuable as any of the others.
Dubins and Spanier [3] were able to prove that such a division exists provided that each player’s
preference are defined by a nonatomic measure over the cake. Unfortunately, a piece of cake in their
result may be a collection of many (possibly infinite) disjoint connected subsets. Stromquist [7]
improved their result by showing that such a division can be obtained by cutting the cake by q− 1
planes, each parallel to a given plane, where q is the number of player. Moreover, he showed that
such divisions exist for a larger class of “preferences”. Unformally, given a partition of the cake
into pieces, we require simply that each player is able to say which pieces he prefers. We consider
this kind of preferences in the present note and there are formally defined hereafter. Su [8] found
then a constructive proof of Stromquist’s theorem based on Sperner’s lemma [5], the combinatorial
counterpart of Brouwer’s fixed point theorem.

In 2010, Cloutier, Nyman, and Su [1] asked whether extensions of this theorem are possible when
there are more than one cake. Given m cakes, is it possible to divide each cake into a given number
of connected pieces and assign one piece from each cake to each player in such a way that each
player believes his assignment at least as good as any other assignment?

1.2. Model. Each cake is identified with the interval [0, 1]. A division of the cake i into ri pieces
is an ri-tuple xi = (xi1, . . . , xiri), with xij ≥ 0 for all j ∈ [ri] and

∑ri
j=1 xij = 1, where xij is

the size of the jth piece (ordered from left to right) of the cake i. Given a division x1, . . . ,xm
of the m cakes, a piece selection is the selection of one piece in each cake, i.e. it is an m-tuple
(j1, . . . , jm) ∈ [r1] × . . . × [rm]. A player prefers a certain piece selection if that player does not
think that any other piece selection is strictly better. For some divisions a player may be indifferent
to two or more “preferred” piece selections.
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We make the following assumptions on the preferences, which are the ones considered by Stromquist
in the one-cake case.

(1) Independence of preferences: The preferences of one player do not depend of the choices
made by the other players.

(2) The players are hungry: A player will never choose an empty piece.
(3) Preference sets are closed: If one player prefer the same piece selection for a convergent

sequence of division, then that piece selection will be preferred at the limit.

A division of m cakes between q players is envy-free if there exist q disjoint piece selections and an
assignment of the piece selections to the players such that each player prefers the piece selection he
gets to any other piece selection among all possible piece selections for this division. The question
studied by Cloutier, Nyman, and Su is whether there exists an integer r(q,m), independent of the
preferences, such that there exists an envy-free division of the m cakes not requiring to divide each
cake into more than r(q,m) pieces. Note that Stromquist’s theorem asserts the existence of r(q, 1)
for any q and that r(q, 1) = q. Using a polytopal version of Sperner’s lemma [2], Cloutier, Nyman,
and Su proved the existence of r(2, 2) and r(2, 3) and that r(2, 2) = 3 and r(2, 3) ≤ 4. They asked
moreover whether r(2,m) ≤ m+ 1.

1.3. Main results. We contribute to the questions by proving the following theorem.

Theorem 1. The integer r(2,m) exists for any m ≥ 2 and is such that r(2,m) ≤ m(m− 1) + 1.

In addition to the polytopal version of Sperner’s lemma, the proof uses an inequality (Gyárfás’s
theorem) between the matching number and the fractionnal matching number in m-graphs.

We are also able to prove a first result involving three players.

Theorem 2. The integer r(3, 2) exists and is such that r(3, 2) ≤ 5.

1.4. Plan. In Section 2, we give the main tools used in the proofs, such as a polytopal version
Sperner’s lemma or Gyárfás’s theorem. Section 3 is devoted to the proof of Theorem 1 and Section 4
to the proof of Theorem 2.

2. Tools

2.1. Sperner’s labeling. Given a triangulation T of a polytope P , a Sperner labeling is a map
λ : V (T)→ V (P ), where V (T) and V (P ) are respectively the vertex sets of T and P , such that λ(v)
is a vertex of the minimal face of P containing v. The following theorem is proved in [2]. Given
a simplex σ, we denote its vertex set V (σ). The polytopal version of Sperner’s lemma already
mentioned is the following theorem.

Theorem 3. Let T be a triangulation of a polytope P . If λ is a Sperner labeling of T, then⋃
σ∈T conv(λ(V (σ))) = P .

Note that this theorem implies that for any point x of P , there is a σ ∈ T with dimσ = dimP
such that x ∈ conv(λ(V (σ))) and such that conv(λ(V (σ))) is non-degenerate, i.e. of dimension
dimP .

2.2. Divisions, polytopes, owner-labeling, and preference-labeling. The divisions of the m
cakes with ri pieces in cake i are exactly the points of the polytope P = 41 × . . .×4m, where 4i

is the (ri − 1)-simplex {(xi1, . . . , xiri) ∈ Rri+ :
∑ri

j=1 xij = 1}. The polytope P – called the polytope

of divisions – has Πm
i=1ri vertices and is of dimension

∑m
i=1 ri −m.

Following [1], we explain how to locate the envy-free divisions on P . We assume given a trian-
gulation T of P . We label the vertices of T with an owner-labeling, which is a map o : V (T)→ [q]
assigning a player to each vertex of the triangulation. We require moreover this owner-labeling to

2



be uniform: on each simplex, the number of times each player appears as a label differs by at most
one from any other player. In other words, given any simplex σ ∈ T and its vertex set V (σ), we
have

∣∣|o−1(k) ∩ V (σ)| − |o−1(k′) ∩ V (σ)|
∣∣ ≤ 1 for all k, k′ ∈ [q].

The following proposition is proved in [1]. The mesh-size of a triangulation is the maximum
diameter of its simplices.

Proposition 1. There exists a triangulation T admitting a uniform owner-labeling for any polytope,
any number q of players, and of arbitrary small mesh-size.

Given a triangulation T of P with a uniform owner-labeling o, we define a new labeling λ :
V (T) → V (P ) of the vertices of T with the vertices of P : the preference-labeling. Each vertex v
of T is a point in P and as such corresponds to a division of the m cakes. The player o(v) prefers
some piece selection (j1, . . . , jm) for this division (in case of a tie, make an arbitrary choice). We
define then λ(v) to be the vertex of P with coordinates (λij(v)) with λij(v) = 0 except for the pairs
(i, ji) for which λiji(v) = 1. Since “the players are hungry”, the map λ is a Sperner labeling.

2.3. m-graphs and matchings. A hypergraph is a pair H = (V,E) where V is a finite set and E
a family of subsets of V . The elements of V are called the vertices and the elements of E are called
the edges. We denote by δ(v) the set of edges containing a vertex v. A matching is a collection
of pairwise disjoint edges. A fractional matching is a vector w ∈ RE+ such that

∑
e∈δ(v)we ≤ 1 for

all v ∈ V . Note that a matching is a fractional matching with we ∈ {0, 1} for all edges e ∈ E.
The maximum cardinality of a matching, called the matching number, is denoted ν(H) and the
maximum possible value of

∑
e∈E we for a fractional matching w, called the fractional matching

number, is denoted ν∗(H). Since a matching is a fractional matching, we have ν∗(H) ≥ ν(H).
An m-partite hypergraph, or m-graph, is a hypergraph H = (V,E) whose vertex set is the disjoint

union of m sets V1, . . . , Vm and such that each edge intersects each Vi in exactly one vertex. The
following theorem, proved by Gyárfás (according to Füredi [4]), shows that the gap between the
fractional matching number and the matching number is not too large for m-graphs.

Theorem 4 (Gyárfás’s theorem). If H is an m-graph, then ν∗(H) ≤ (m− 1)ν(H).

2.4. A hypergraphic condition of existence of disjoint envy-free piece selections. We
consider a triangulation T of the polytope of division P and assume that we have for T an owner-
labeling o and a preference-labeling λ. As in [1], we will use Theorem 3 to get the existence of a
simplex σ ∈ T with special features to obtain eventually the existence of an envy-free division of the
cakes with no more than ri pieces per cake i. However, we introduce an additional combinatorial
criterion based on some hypergraph properties in an attempt to systematize the reasoning.

Given a simplex σ ∈ T, we define H(σ) to be the m-graph with Vi = {(i, j) : j ∈ [ri]} for
i = 1, . . . ,m. The edges of H(σ) are given by the vertices of σ as follows. For a vertex v of
σ, the piece selection (j1, . . . , jm) preferred by o(v) and corresponding to λ(v) gives the edge
{(1, j1), . . . , (m, jm)}, which we denote ev. In other words, the edge {(1, j1), . . . , (m, jm)} exists
in H(σ) if and only if a vertex v of σ is such that λij(v) = 1 if j = ji and λij(v) = 0 otherwise.
Note that it implies that H(σ) has |V (σ)| edges.

The following lemma is a key tool. A coloring of the edges on a hypergraph is said to be balanced
if the number of times a color appears differs by at most one from any other color. A rainbow
matching in a hypergraph is a matching in which each color is present exactly once. If we see each
player as a color, we get a natural balanced edge coloring of H(σ): for each edge ev of H(σ), we
color it with o(v). The coloring is balanced because o is an owner-labeling. In this framework, a
rainbow matching provides “almost disjoint envy-free piece selections”: each player selects distincts
pieces in the cakes and each of them prefer his selection to any other. However, the cuts used for
each player are not identical: each player considers cuts given by distinct vertices of σ.
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Lemma 1. If every triangulation T admitting a uniform owner-labeling has a simplex σ such that
every balanced edge coloring of H(σ) with q colors gets a rainbow matching, then there exists an
envy-free division of the cakes with no more than ri pieces per cake i.

We denote by diamσ the diameter of a simplex σ.

Proof of Lemma 1. We consider a sequence of triangulations admitting an owner-labeling with a
mesh-size tending towards zero. This sequence exists according to Proposition 1. By compactness,
there is a sequence of simplices (σ(n))n∈Z+ with limn→+∞ diamσ(n) = 0 such that every balanced

edge coloring of H(σ(n)) for n = 0, 1, . . . gets the same rainbow matching. With the colors defined
as in the paragraph above, the rainbow matching provides distinct piece-selections for the players.
For the division given by the limit point, we can therefore find disjoint envy-free piece-selections
(here, we use the closedness of the preference sets). �

The following lemma helps for finding a σ such that every balanced edge coloring of H(σ) gets
a rainbow matching.

Lemma 2. Let σ be a simplex of T. If conv(λ(V (σ))) contains the central point of P , that is the
point (x1, . . . ,xm) with xij = 1/ri for i ∈ [m] and j ∈ [ri], then H(σ) contains a matching of size
at least dr/(m− 1)e, where r = mini∈[m] ri.

Proof. Assume that conv(λ(V (σ))) contains the central point. Denote λ(v) = (λij(v)). Note that
λij(v) ∈ {0, 1} and λij(v) = 1 exactly when (i, j) ∈ ev (with the notation of Section 2.4). We
have then αv ∈ R+ for each v ∈ V (σ) such that

∑
v∈V (σ) αvλij(v) = 1/ri for all i and j, and∑

v∈V (σ) αv = 1. For a vertex v of σ, we consider the edge ev of H(σ) and we define wev to be rαv.

Now, take i ∈ [m] and consider a vertex (i, j) in Vi. We have
∑

v∈V (σ)wevλij(v) = r/ri, i.e.∑
v∈V (σ) and (i,j)∈ev

wev =
r

r i
,

which can finally be rewritten ∑
e∈δ(i,j)

we ≤ 1,

with equality when ri = r. It shows that w is a fractional matching of H(σ).
Moreover, we have

∑
e∈E(H(σ))we =

∑
j∈[ri]

∑
e∈δ(i,j)we for any i. In particular, using i such

that ri = r, we get that
∑

e∈E(H(σ))we = r. Using Gyárfás’s theorem (Theorem 4), we get that

ν(H(σ)) ≥ r/(m− 1). The integrality of the matching number allows to conclude. �

We have an additional property for H(σ). A hypergraph is simple if it has no parallel edges, that
is no two edges have the same vertex set.

Lemma 3. Let σ be a simplex of T. If conv(λ(V (σ))) is non-degenerate, i.e. of dimension |V (σ)|−
1, then H(σ) is simple.

Proof. If H(σ) is not simple, then it means that we have two edges eu = ev with distinct vertices
u and v from σ. It means then that λ(u) = λ(v) which prevents conv(λ(V (σ))) of being non-
degenerate. �

3. Proof of Theorem 1

Proof of Theorem 1. We have m cakes. Each cake is cut into m(m − 1) + 1 pieces, which means
ri = r for all i = 1, . . . ,m, with r = m(m− 1) + 1.

For a triangulation T of the polytope of divisions P admitting a uniform owner-labeling, we
consider a preference-labeling λ : V (T) → V (P ) defined according to Section 2.2. Theorem 3
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ensures that a simplex σ of T is such that conv(λ(V (σ))) contains the central point of P , that is
the point (x1, . . . ,xm) with xij = 1/r for i ∈ [m] and j ∈ [r]. We prove now that every balanced
coloring of the hypergraph H(σ) with two colors has a rainbow matching, i.e. H(σ) has two disjoint
edges of distinct colors. The conclusion follows from Lemma 1.

We consider H(σ) and assume that it gets a balanced edge coloring with two colors, say blue
and red. According to Lemma 2, the hypergraph H(σ) contains a matching of size at least m+ 1.
If both colors are present in the matching, we have our rainbow matching. If not, suppose w.l.o.g.
that all edges of the matching are blue. Consider some red edge (which exists because the coloring
is balanced). This edge cannot intersect all m + 1 disjoint blue edges of the matching, since each
edge of H(σ) has m vertices. Thus there are disjoint red and blue edges. �

4. Proof of Theorem 2

Proof of Theorem 2. We have m = 2 cakes. Each cake is cut into 5 pieces, which means ri = r = 5
for i = 1, 2.

For a triangulation T of the polytope of divisions P admitting a uniform owner-labeling, we
consider a preference-labeling λ : V (T) → V (P ) defined according to Section 2.2. Theorem 3
ensures that a simplex σ of T is such that conv(λ(V (σ))) contains the central point of P , that
is the point (x1,x2) with xij = 1/5 for i = 1, 2 and j = 1, . . . , 5. We can require moreover that
conv(λ(V (σ))) is non-degenerate and of dimension dimP = 8. We prove now that every balanced
coloring of the hypergraph H(σ) with three colors (there are three players) has a rainbow matching,
i.e. H(σ) has three disjoint edges of distinct colors. The conclusion follows again from Lemma 1.

We consider H(σ). Note that it is a bipartite graph since m = 2. Assume that it gets a balanced
edge coloring with three colors, say blue, red, and yellow. Since H(σ) has 9 edges, there are three
edges of each color. According to Lemma 2, the graph H(σ) contains a matching of dr/(m−1)e = 5
edges, that is, a perfect matching. If the three colors are present in the matching, we have our
rainbow matching. If not, suppose w.l.o.g. that there are three blues edges and two red edges in
the matching. Consider a yellow edge. If it intersects one of these blue edges, it misses at least one
of the red edges and one of the blue edges of the matching, and we are done. Thus, we have to deal
with the case when all three yellow edges intersect the two red edges of the matching. But in this
case, we would have two parallel edges in H(σ), which is impossible according to Lemma 3. �

This proof does not seem to extend to more general cases.
As an example, we may consider the case m = 2 cakes, q = 4 players, and r pieces for each cake.

We would try to find a rainbow matching in a bipartite graph with r vertices on each side, 2r − 1
distinct edges colored in 4 colors, ' r/2 edges of each color, and with a perfect matching. It is easy
to see that unfortunately such a bipartite graph does not contain necessarily a rainbow matching.
For instance, the edges of two colors can provide the edges of the perfect matching whereas the
other edges share all a same vertex.

Another example is with m = 3 cakes, q = 3 players, and r pieces for each cake. We would try
to find a rainbow matching in a 3-graph with r vertices on each side, 3r − 1 distinct edges colored
in 3 colors, ' r edges of each color, and with a matching of size r/2. Again, we can force all edges
of two colors to intersect at the same vertex.

References

[1] J. Cloutier, K. L. Nyman, and F. E. Su. Two-player envy-free multi-cake division. Math. Social.
Sci., 59:26–37, 2010.

[2] J. De Loera, E. Peterson, and F. E. Su. A polytopal generalization of Sperner’s lemma. Journal
of Combinatorial Theory, Series A, 100:1–26, 2003.

5



[3] L. E. Dubins and E. H. Spanier. How to cut a cake fairly. The American Mathematical Monthly,
68:1–17, 1961.
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