

catena-Poly[[bis-[tetra-aqua-(2-hy-droxy-3,4-dioxocyclobut-1-en-1-olato- κ O)bariumstrontium(0.35/0.65)]di- μ aqua-bis-(μ -2-hy-droxy-4-oxocyclo-but-1-ene-1,3-diolato- κ O:O)] monohydrate].

Chahrazed Trifa, Amira Bouhali, Sofiane Bouacida, Chaouki Boudaren,

Thierry Bataille

▶ To cite this version:

Chahrazed Trifa, Amira Bouhali, Sofiane Bouacida, Chaouki Boudaren, Thierry Bataille. catena-Poly[[bis-[tetra-aqua-(2-hy-droxy-3,4-dioxocyclo-but-1-en-1-olato- κ O)bariumstrontium(0.35/0.65)]di- μ -aqua-bis-(μ -2-hy-droxy-4-oxocyclo-but-1-ene-1,3-diolato- κ O:O)] monohydrate].. Acta Crystallographica Section E: Structure Reports Online [2001-2014], 2011, 67 (Pt 2), pp.m275-6. 10.1107/S1600536811002996 . hal-00822094

HAL Id: hal-00822094 https://hal.science/hal-00822094

Submitted on 14 May 2013 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[{bis[tetraaqua(2-hydroxy-3.4-dioxocvclobut-1-en-1-olato- κO^{1})bariumstrontium(0.35/0.65)]di-*u*-aqua}bis(µ-2-hydroxy-4-oxocyclobut-1-ene-1,3-diolato- $\kappa^2 O^1:O^3$] monohydrate]

Chahrazed Trifa.^a Amira Bouhali.^a Sofiane Bouacida.^{a,b}* Chaouki Boudaren^a and Thierry Bataille^c

^aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000 Algeria, ^bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Larbi Ben M'hidi, Oum El Bouaghi, Algeria, and ^cSciences Chimiques de Rennes, UMR 6226 CNRS - Université de Rennes 1, Avenue du Général Leclerc, 35042 Rennes Cedex France

Correspondence e-mail: Bouacida_Sofiane@yahoo.fr

Received 9 January 2011; accepted 22 January 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.033; wR factor = 0.088; data-to-parameter ratio = 13.3.

The title structure, $\{[Ba_{0.71}Sr_{1.29}(C_4HO_4)_4(H_2O)_{10}]\cdot H_2O\}_n$, is built from dimers of edge-sharing monocapped square antiprisms $[(Ba/Sr)O_3(H_2O)_6]$, in which barium and strontium are statistically disordered [ratio 0.353 (8):0.647 (8)] on the same crystallographic site. Such dimers are connected via bidentate hydrogen squarate groups $[HC_4O_4]^-$, leading to chains that propagate along the b axis. Inter- and intramolecular O- $H \cdots O$ hydrogen bonds maintain the crystal packing through a three-dimensional network.

Related literature

For related transition metal squarate structures, see: West & Niu (1963); Lee et al. (1996); Haben-Schuss & Gerstein (1974). For related alkaline earth squarate structures, see: Robl & Weis (1986, 1987); Robl et al. (1987); Bouayad et al. (1995). For related rare earth squarate structures, see: Trombe et al. (1988, 1990, 1991); Bénard-Rocherullé & Akkari (2005). For the first synthesis of squaric acid (3,4-dihydroxycyclobut-3-ene-1,2dione), see: Cohen et al. (1959).

Experimental

Crystal data

[Ba_{0.71}Sr_{1.29}(C₄HO₄)₄(H₂O)₁₀]·H₂O $M_r = 860.70$ Monoclinic, C2/ca = 25.3592 (9) Å b = 8.8993 (3) Å c = 14.1286(5) Å $\beta = 119.974 \ (2)^{\circ}$

 $V = 2762.07 (18) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 3.62 \text{ mm}^{-1}$ T = 295 K $0.09 \times 0.08 \times 0.08 \ \mathrm{mm}$

2616 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.077$

 $Ba1 - O3^i$

 $Ba1 - O10W^{ii}$

Nonius KappaCCD diffractometer 18241 measured reflections 3173 independent reflections

Refinement

Data collection

$R[F^2 > 2\sigma(F^2)] = 0.033$ $vR(F^2) = 0.088$	H atoms treated by a mixture of independent and constrained
S = 1.06	refinement
173 reflections	$\Delta \rho_{\rm max} = 0.96 \ {\rm e} \ {\rm \AA}^{-3}$
39 parameters	$\Delta \rho_{\rm min} = -1.02 \text{ e} \text{ Å}^{-3}$
restraints	

Table 1 Se

Ba1 - O9W

Ba1-O10W

Ba1-O11W

Selected bolid is	enguis (A).	
Ba1-O1	2.728 (2)	Ba1-O12W
Ba1-O5	2.688 (2)	Ba1 - O13W

2.729 (3)

2.772 (3)

2.722 (3) Symmetry codes: (i) x, y - 1, z; (ii) -x + 1, -y, -z + 1.

Table 2		
Hydrogen-bond geometry	(Å.	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1W-H1W\cdots O2^{ii}$	0.82 (4)	2.55 (4)	2.874 (2)	105 (3)
$O1W - H1W \cdot \cdot \cdot O7^{iii}$	0.82 (4)	2.47 (4)	3.193 (3)	148 (4)
$O4-H4\cdots O5^{iv}$	0.82	1.79	2.603 (3)	171
O8−H8···O1	0.82	1.77	2.575 (3)	169
$O9W - H9A \cdots O1W^{iv}$	0.84 (3)	2.47 (3)	3.197 (5)	147 (4)
$O9W - H9B \cdot \cdot \cdot O3^{v}$	0.87 (4)	1.97 (4)	2.821 (3)	167 (5)
$O10W-H10A\cdots O11W^{vi}$	0.78 (5)	2.54 (4)	3.150 (4)	137 (4)
$O10W-H10B\cdots O2^{ii}$	0.86 (4)	1.88 (4)	2.711 (4)	164 (4)
$O11W - H11A \cdots O1W$	0.86 (3)	2.06 (4)	2.880 (5)	159 (4)
$O11W-H11B\cdots O6^{vii}$	0.87 (4)	1.91 (4)	2.777 (3)	176 (5)
$O12W - H12A \cdots O13W^{viii}$	0.83 (4)	2.00 (4)	2.803 (3)	164 (4)
$O12W - H12B \cdot \cdot \cdot O7^{ix}$	0.84(4)	1.87 (4)	2.711 (3)	178 (5)
$O13W-H13A\cdots O6^{x}$	0.86 (5)	2.00 (4)	2.736 (3)	143 (3)
$O13W - H13B \cdot \cdot \cdot O8^{xi}$	0.84 (4)	2.24 (4)	3.014 (3)	154 (4)

2.644(3)

2.782 (3)

2.786 (2)

2.6720 (19)

 $\begin{array}{ll} \text{Symmetry codes: (ii)} & -x+1, -y, -z+1; (iii) \ x+\frac{1}{2}, -y-\frac{1}{2}, z+\frac{1}{2}; (iv) \ x, y+1, z; (v) \\ & -x+1, -y+1, -z+1; \\ & (vi) \ -x+1, y, -z+\frac{1}{2}; \\ & (vii) \ -x+\frac{1}{2}, -y-\frac{1}{2}, -z; \\ & (viii) \\ & x, -y, z-\frac{1}{2}; \\ & (x) \ -x+\frac{1}{2}, y-\frac{1}{2}, -z+\frac{1}{2}; \\ & (xi) \ -x+\frac{1}{2}, y-\frac{1}{2}, -z+\frac{1}{2}; \\ \end{array}$

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2003); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Berndt, 2001); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri–Constantine, for financial support. SB thanks Dr Thierry Roisnel, Centre de Diffractométrie X (CDIFX) de Rennes, Université de Rennes 1, France, for his technical assistance in the data collection. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2274).

References

Bénard-Rocherullé, P. & Akkari, H. (2005). Acta Cryst. A61, c333-c334. Bouayad, A., Trombe, J.-C. & Gleizes, A. (1995). Inorg. Chim. Acta, 230, 1-7.

Brandenburg, K. & Berndt, M. (2001). *DIAMOND*. Crystal Impact, Bonn, Germany.

- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- Cohen, S., Lacher, J. R. & Park, J. D. (1959). J. Am. Chem. Soc. 81, 3480.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Haben-Schuss, M. & Gerstein, B. C. (1974). J. Chem. Phys. 61, 852-860.

Lee, C.-R., Wang, C.-C. & Wang, Y. (1996). Acta Cryst. B52, 966–975.

- Nonius (1998). COLLECT. Nonius BV. Delft. The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
- Robl, C. & Weis, Z. (1986). Z. Naturforsch. Teil B. 41, 1485–1489.
- Robl, C. & Weis, A. (1987). Mater. Res. Bull. 22, 373–380.
- Robl, C., Weis, A. & Gnutzmann, V. (1987). Z. Anorg. Allg. Chem. 549, 187–
- 194. 194.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Trombe, J. C., Petit, J. F. & Gleizes, A. (1988). New J. Chem. 12, 197-200.
- Trombe, J. C., Petit, J. F. & Gleizes, A. (1990). Inorg. Chim. Acta, 167, 96-81.
- Trombe, J. C., Petit, J. F. & Gleizes, A. (1991). *Eur. J. Solid State Inorg. Chem.* **28**, 669–681.
- West, R. & Niu, H. Y. (1963). Inorg. Chem. 85, 2589-2590.

Acta Cryst. (2011). E67, m275-m276 [doi:10.1107/S1600536811002996]

catena-Poly[[{bis[tetraaqua(2-hydroxy-3,4-dioxocyclobut-1-en-1-olato- κO^1)bariumstrontium(0.35/0.65)]di- μ -aqua}bis(μ -2-hydroxy-4-oxocyclobut-1-ene-1,3-diolato- $\kappa^2 O^1$: O^3)] monohydrate]

C. Trifa, A. Bouhali, S. Bouacida, C. Boudaren and T. Bataille

Comment

Squaric acid, (3,4-dihydroxycyclobut-3-ene-1,2-dione, H₂C₄O₄, H₂sq), synthesized for the first time by Cohen *et al.* (1959), has been of interest because of its cyclic structure and its possible aromaticity. (West *et al.*, 1963) have described the preparation from aqueous solutions of 'isostructural' divalent metal squarates of general formula MC₄O₄.2H₂O, and predicted a chelated linear polymer structure, the structure of Ni(C₄O₄).2H₂O being reported later by (Haben-schuss *et al.*, 1974). In the structurally well understood metal squarates $M(C_4O_4)(H_2O)_4$ (M = Mn, Fe,Co, Ni, Zn) (Lee *et al.*, 1996), the C₄O₄²⁻ entity serves as a bridging ligand between two metal ions (µ-2) in *trans* positions while it acts as a fourfold monodentate (µ-4) ligand between metals in the three-dimensional polymeric structures of $M(C_4O_4)(H_2O)_2$ (M = Mn, Fe, Co, Ni, Cu, Zn). However, the cyclic group only chelate the largest cations such as alkaline earth (Robl & Weis, 1986, 1987; Robl *et al.*, 1987; Bouayad *et al.*, 1995) or rare earth elements (Trombe *et al.*, 1988; Trombe *et al.*, 1990; Trombe *et al.*, 1991; Bérnard-Rocherullé & Akkari, 2005).

Surprisingly, the crystal structures of barium squarate hydrate and strontium squarate hydrate are rather different. It is of interest to explore the possibilities of mixing cations, to obtain new compounds or solid solutions. Here, we synthesized hemi hydrate barium strontium squarate, [Ba0.35 Sr0.65 (HC_4O_4)₂ (H_2O)₅] 0.5 H_2O , for which the Ba / Sr ratio has been determined from EDX and single-crystal diffraction data.

The asymmetric unit contains two metal atoms, two hydrogen squarate anions, five aqua ligands and half water molecule. The Barium and Strontium ions are disordered on the same site as well as a solvent water molecule situated on the twofold axis at (4 e; 0, y, 1/4).

The structure is formed from chains, bridged by the hydrogeno squarate group acting as a bidentate ligand in a *trans* position (Fig. 2). The three-dimensionality is ensured by a strong O—H…O hydrogen bond (Table 1. The free water molecule is sandwiched between these chains.

Experimental

All chemical were commercially available and used as received. For convenience, 3,4-dihydroxycyclobut-3-ene-1,2-dione $(H_2C_4O_4)$ is named squaric acid hereafter. Typically, Poly [pentaaqua di squarato barium strontium] hemi hydrate was synthesized by hydrothermal reaction starting from a mixture of barium chloride BaCl₂, 2H₂O (2 mmol), strontium chloride SrCl₂, 6H2O (2 mmol) squaric acid H₂C₄O₄, oxalic acid H₂C₂O₄, 2H2O (1 mmol) and water (4 ml). The whole was stirred for 30 minutes until homogeneous. The final mixture was sealed in a 23 ml Teflon-lined acid digestion bomb (Parr) and heated at 423 K for 48 h under autogeneous pressure and then cooled down to room temperature. The yellow crystalline product obtained were collected by filtration, thoroughly washed with distilled water and ethanol, and finally dried at room

temperature. The chemical formula was derived from the Ba/Sr ratio (1/2) obtained by energy dispersive X-ray spectrometry (EDX), and from the crystal structure determination reported below.

Refinement

All H atoms were localized on Fourier maps and refined isotropically, except for H atoms for hydroxy groups of hydrogenosquarate (H4 and H8) which were introduced in calculated positions and treated as riding on their parent O atom (with O-H = 0.82Å and $U_{iso}(H) = 1.5U_{eq}(O)$). Some distances (O-H)of coordinate water molecule are refined with soft constraints, the O-H distances is restrained to 0.85 Å. (O11W-H11A, O9W-H9A and O1W-H1W).

Figures

Fig. 1. An *ORTEP-3* (Farrugia, 1997) drawing of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. A packing diagram of (I), showing the chains.

catena-Poly[[{bis[tetraaqua(2-hydroxy-3,4-dioxocyclobut-1-en- 1-olato- κO^1)bariumstrontium(0.35/0.65)]di- μ -aqua}bis(μ -2- hydroxy-4-oxocyclobut-1-ene-1,3-diolato- $\kappa^2 O^1$: O^3)] monohydrate]

Crystal data

$[Ba_{0.71}Sr_{1.29}(C_4HO_4)_4(H_2O)_{10}]\cdot H_2O$	F(000) = 1706.4
$M_r = 860.70$	$D_{\rm x} = 2.070 {\rm ~Mg~m}^{-3}$
Monoclinic, $C2/c$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 18241 reflections
a = 25.3592 (9) Å	$\theta = 2.9 - 27.5^{\circ}$
b = 8.8993 (3) Å	$\mu = 3.62 \text{ mm}^{-1}$
c = 14.1286(5) Å	T = 295 K
$\beta = 119.974 \ (2)^{\circ}$	Cube, yellow
$V = 2762.07 (18) \text{ Å}^3$	$0.09 \times 0.08 \times 0.08 \text{ mm}$
Z = 4	

Data collection

Nonius KappaCCD	$P_{\rm e} = 0.077$
diffractometer	$n_{\rm int} = 0.077$

CCD rotation images, thick slices scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$
18241 measured reflections	$h = -32 \rightarrow 32$
3173 independent reflections	$k = -10 \rightarrow 11$
2616 reflections with $I > 2\sigma(I)$	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0418P)^{2} + 2.6738P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$R[F^2 > 2\sigma(F^2)] = 0.033$	$(\Delta/\sigma)_{\rm max} = 0.004$
$wR(F^2) = 0.088$	$\Delta \rho_{max} = 0.96 \text{ e} \text{ Å}^{-3}$
<i>S</i> = 1.06	$\Delta \rho_{min} = -1.02 \text{ e } \text{\AA}^{-3}$
3173 reflections	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(20)] ^{-1/4}
239 parameters	Extinction coefficient: 0.0016 (2)
4 restraints	

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
C1	0.36573 (13)	0.3970 (3)	0.3325 (2)	0.0289 (6)	
C2	0.41697 (13)	0.4566 (3)	0.4371 (2)	0.0316 (6)	
C3	0.39687 (13)	0.6124 (3)	0.3940 (2)	0.0306 (6)	
C4	0.34755 (13)	0.5476 (3)	0.2960 (2)	0.0283 (6)	
C5	0.25484 (12)	-0.0504 (3)	0.1164 (2)	0.0271 (6)	
C6	0.20204 (13)	-0.1154 (3)	0.0196 (2)	0.0285 (6)	
C7	0.17992 (13)	0.0393 (3)	-0.0209 (2)	0.0306 (6)	
C8	0.23261 (13)	0.0965 (3)	0.0768 (2)	0.0292 (6)	
01	0.34685 (9)	0.2666 (2)	0.29723 (16)	0.0340 (5)	
O2	0.45673 (10)	0.4025 (2)	0.52317 (17)	0.0443 (6)	
O1W	0.5	-0.4640 (6)	0.25	0.089	
O3	0.41410 (10)	0.7405 (2)	0.42950 (17)	0.0382 (5)	
O4	0.30067 (9)	0.6011 (2)	0.20752 (16)	0.0363 (5)	
H4	0.3002	0.6929	0.2116	0.055*	
O5	0.29950 (9)	-0.1065 (2)	0.20118 (15)	0.0338 (5)	
O6	0.18250 (10)	-0.2429 (2)	-0.01205 (16)	0.0360 (5)	
O7	0.13455 (10)	0.0922 (2)	-0.10122 (17)	0.0414 (5)	
O8	0.24809 (10)	0.2349 (2)	0.11254 (17)	0.0382 (5)	
H8	0.2789	0.2336	0.1729	0.057*	
O9W	0.48959 (13)	0.2259 (3)	0.3538 (2)	0.0565 (7)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

O10W	0.52933 (11)	-0.1012 (3)	0.4460 (2)	0.0431 (6)	
O11W	0.42281 (12)	-0.2067 (3)	0.2105 (2)	0.0590 (8)	
O12W	0.38389 (14)	0.1093 (3)	0.1430 (2)	0.0563 (7)	
O13W	0.33586 (12)	-0.0026 (2)	0.4289 (2)	0.0374 (6)	
Sr1	0.410752 (9)	0.005151 (19)	0.337327 (15)	0.02353 (12)).647 (8)
Ba1	0.410752 (9)	0.005151 (19)	0.337327 (15)	0.02353 (12)).353 (8)
H1W	0.5265 (15)	-0.516 (3)	0.298 (3)	0.05*	
H9A	0.4765 (16)	0.306 (3)	0.319 (3)	0.05*	
H9B	0.5230 (19)	0.233 (4)	0.416 (3)	0.05*	
H10A	0.5449 (18)	-0.078 (5)	0.413 (3)	0.05*	
H10B	0.5316 (18)	-0.197 (5)	0.443 (3)	0.05*	
H11A	0.4449 (16)	-0.286 (3)	0.237 (3)	0.05*	
H11B	0.3907 (19)	-0.220 (5)	0.147 (3)	0.05*	
H12A	0.3669 (18)	0.064 (5)	0.084 (3)	0.05*	
H12B	0.3786 (18)	0.202 (5)	0.132 (3)	0.05*	
H13A	0.3201 (18)	0.084 (5)	0.424 (3)	0.05*	
H13B	0.3087 (19)	-0.067 (4)	0.396 (3)	0.05*	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0338 (15)	0.0260 (14)	0.0249 (13)	-0.0003 (11)	0.0131 (12)	-0.0017 (10)
C2	0.0354 (16)	0.0259 (13)	0.0279 (14)	0.0017 (12)	0.0116 (13)	-0.0019 (11)
C3	0.0335 (15)	0.0255 (14)	0.0290 (14)	-0.0012 (11)	0.0127 (13)	-0.0016 (11)
C4	0.0318 (14)	0.0242 (13)	0.0263 (13)	0.0012 (11)	0.0126 (12)	0.0012 (11)
C5	0.0287 (14)	0.0253 (13)	0.0256 (13)	-0.0012 (11)	0.0124 (11)	-0.0019 (10)
C6	0.0313 (15)	0.0276 (14)	0.0229 (13)	-0.0020 (11)	0.0107 (12)	0.0016 (10)
C7	0.0313 (15)	0.0304 (13)	0.0263 (14)	0.0006 (12)	0.0115 (12)	0.0037 (11)
C8	0.0307 (15)	0.0278 (14)	0.0268 (13)	-0.0021 (11)	0.0126 (12)	0.0001 (11)
01	0.0396 (12)	0.0240 (10)	0.0297 (11)	-0.0027 (8)	0.0109 (9)	-0.0018 (7)
02	0.0470 (13)	0.0351 (12)	0.0297 (11)	0.0089 (10)	0.0033 (10)	0.0010 (9)
O1W	0.147	0.056	0.032	0	0.02	0
03	0.0419 (13)	0.0241 (10)	0.0354 (11)	0.0001 (8)	0.0093 (10)	-0.0042 (8)
04	0.0363 (11)	0.0258 (10)	0.0313 (11)	0.0007 (9)	0.0051 (9)	0.0007 (8)
05	0.0336 (11)	0.0275 (10)	0.0259 (10)	0.0022 (8)	0.0040 (9)	0.0023 (8)
O6	0.0433 (13)	0.0274 (10)	0.0287 (11)	-0.0059 (8)	0.0114 (10)	-0.0003 (8)
07	0.0369 (12)	0.0364 (12)	0.0314 (11)	0.0010 (9)	0.0023 (10)	0.0061 (9)
08	0.0370 (12)	0.0254 (10)	0.0350 (12)	0.0009 (8)	0.0050 (10)	-0.0017 (8)
O9W	0.0461 (15)	0.073 (2)	0.0362 (14)	-0.0110 (14)	0.0100 (12)	0.0038 (12)
O10W	0.0410 (13)	0.0407 (13)	0.0470 (14)	0.0010 (10)	0.0215 (11)	-0.0042 (11)
O11W	0.0410 (14)	0.073 (2)	0.0435 (15)	0.0081 (13)	0.0068 (12)	-0.0231 (14)
O12W	0.083 (2)	0.0384 (14)	0.0344 (13)	-0.0009 (13)	0.0191 (14)	0.0022 (10)
O13W	0.0392 (13)	0.0308 (13)	0.0392 (13)	-0.0006 (8)	0.0174 (11)	-0.0031 (8)
Sr1	0.02376 (16)	0.02152 (16)	0.01978 (15)	0.00041 (7)	0.00672 (10)	-0.00061 (7)
Ba1	0.02376 (16)	0.02152 (16)	0.01978 (15)	0.00041 (7)	0.00672 (10)	-0.00061 (7)
-						

Geometric parameters (Å, °)

Ba1—O1	2.728 (2)	O7—C7	1.236 (4)

Ba1—O5	2.688 (2)	O8—C8	1.315 (3)	
Ba1—O9W	2.729 (3)	O4—H4 0.82		
Ba1—O10W	2.772 (3)	O8—H8 0.8		
Ba1—O11W	2.722 (3)	O9W—H9A 0.8		
Ba1—O12W	2.644 (3)	O9W—H9B		
Ba1—O13W	2.782 (3)	O10W—H10B	0.86 (4)	
Ba1—O3 ⁱ	2.6720 (19)	O10W—H10A		
Ba1—O10W ⁱⁱ	2.786 (2)	O11W—H11B	0.87 (4)	
Sr1—O1	2.728 (2)	O11W—H11A	0.86 (3)	
Sr1—O5	2.688 (2)	O12W—H12A	0.83 (4)	
Sr1—O9W	2.729 (3)	O12W—H12B	0.84 (4)	
Sr1—O10W	2.772 (3)	O13W—H13A	0.86 (5)	
Sr1—O11W	2.722 (3)	O13W—H13B	0.84 (4)	
Sr1—O12W	2.644 (3)	O1W—H1W	0.82 (4)	
Sr1—013W	2.782 (3)	O1W—H1W ⁱⁱⁱ	0.82 (3)	
Sr1—O3 ⁱ	2.6720 (19)	C1—C2	1.495 (4)	
Sr1—O10W ⁱⁱ	2.786 (2)	C1—C4	1.427 (4)	
01—C1	1.259 (3)	C2—C3	1.498 (4)	
O2—C2	1.226 (3)	C3—C4	1.444 (4)	
O3—C3	1.234 (3)	C5—C8	1.423 (4)	
O4—C4	1.311 (3)	C5—C6	1.473 (4)	
O5—C5	1.269 (3)	C6—C7	1.490 (4)	
O6—C6	1.230 (3)	C7—C8	1.451 (4)	
01…04	3.218 (3)	O3…H9B ^{viii}	1.97 (4)	
01…08	2.575 (3)	O4···H13B ^{xii}	2.83 (5)	
01…012W	3.104 (4)	O4…H13A ^{xii}	2.68 (5)	
01…013W	3.130 (3)	O5…H4 ⁱ	1.7900	
O1…C8	3.372 (3)	O5…H13B	2.67 (4)	
O1W…O11W ⁱⁱⁱ	2.880 (5)	O6…H13A ^{xiii}	2.00 (4)	
O1W···O9W ^{iv}	3.197 (5)	O6…H11B ^{vi}	1.91 (4)	
O1W···O2 ⁱⁱ	2.874 (2)	O7…H1W ^{xiv}	2.47 (4)	
O1W···O2 ^v	2.874 (2)	O7…H12B ^{xi}	1.87 (4)	
O1W···O7 ^{vi}	3.193 (3)	O8…H13B ^{xii}	2.24 (4)	
O1W····O7 ^{vii}	3.193 (3)	O9W…H1W ^x 2.7		
01W…011W	2.880 (5)	O11W···H10A ⁱⁱⁱ	2.54 (5)	
O1W···O9W ⁱ	3.197 (5)	O11W···H12A	2.91 (4)	
O2···C3 ^{viii}	3.291 (4)	O12W…H10A ⁱⁱⁱ	2.85 (5)	
O2…C2 ^{viii}	3.217 (4)	O13W…H12A ^{ix}	2.00 (4)	
O2…O1W ^{ix}	2.874 (2)	O13W…H10A ⁱⁱ	2.81 (4)	
O2…O10W ⁱⁱ	2.711 (4)	C1…O8	3.373 (3)	
O2…O1W ⁱⁱ	2.874 (2)	C1···C5 ^{xii}	3.506 (5)	
O2…O2 ^{viii}	3.113 (4)	C1···O7 ^{xi}	3.266 (4)	
$O3 \cdots O13W^{x}$	3.024 (3)	C1···C6 ^{xii}	3.305 (5)	
O3…O10W ^x	3.146 (4)	C2…O2 ^{viii}	3.217 (4)	

O3…O9W ^{viii}	2.821 (3)	C2···C6 ^{xii}	3.426 (5)
O4…O1	3.218 (3)	C2…O9W	3.340 (4)
$O4 \cdots O5^{x}$	2.603 (3)	C2···O7 ^{xii}	
O4···C6 ^{xi}	3.178 (3)	C2···C7 ^{xii}	
$O4 \cdots C5^{x}$	3.336 (3)	C3···C7 ^{xii}	3.304 (5)
O4…O13W ^{xii}	3.144 (4)	C3···C8 ^{xii}	3.511 (5)
O4…C7 ^{xi}	3.171 (4)	C3···O7 ^{xii}	
O4…O7 ^{xi}	3.222 (3)	C3···O2 ^{viii}	3.291 (4)
O5…C4 ⁱ	3.335 (3)	C4…O7 ^{xi}	3.252 (4)
O5…O6	3.228 (3)	C4···C5 ^{xii}	3.499 (5)
O5…O4 ⁱ	2.603 (3)	C4···C8 ^{xii}	3.347 (5)
O5…O6 ^{vi}	3.219 (3)	C4····C7 ^{xii}	3.578 (4)
O5…O11W	3.191 (4)	C4…O5 ^x	3.335 (3)
O5…O13W	3.015 (3)	C5···O4 ⁱ	3.336 (3)
O6…O13W ^{xiii}	2.736 (3)	C5····C4 ^{xiii}	3.499 (5)
O6····C5 ^{vi}	3.229 (4)	C5···O6 ^{vi}	3.229 (4)
O6…O11W ^{vi}	2.777 (3)	C5…C1 ^{xiii}	3.506 (5)
O6…O5	3.228 (3)	C6…O6 ^{vi}	3.238 (4)
O6····C6 ^{vi}	3.238 (4)	C6…O4 ^{xi}	3.178 (3)
O6…O5 ^{vi}	3.219 (3)	C6…C1 ^{xiii}	3.305 (5)
O6…O7	3.229 (3)	C6····C2 ^{xiii}	
O7···C4 ^{xi}	3.252 (4)	C7···C2 ^{xiii}	3.300 (5)
O7…O1W ^{vi}	3.193 (3)	C7···C4 ^{xiii}	3.578 (4)
O7…O12W ^{xi}	2.711 (3)	C7···O8 ^{xi}	3.377 (4)
O7····C3 ^{xiii}	3.401 (4)	C7···C3 ^{xiii}	3.304 (5)
O7…O6	3.229 (3)	C7···O4 ^{xi}	3.171 (4)
O7…O1W ^{xiv}	3.193 (3)	C8…O1	3.372 (3)
O7····O4 ^{xi}	3.222 (3)	C8····O8 ^{xi}	3.310 (4)
O7···C2 ^{xiii}	3.401 (4)	C8····C3 ^{xiii}	3.511 (5)
O7····C1 ^{xi}	3.266 (4)	C8····C4 ^{xiii}	3.347 (5)
O7…O8	3.215 (3)	С1…Н9А	3.02 (4)
O8…C1	3.373 (3)	C1…H8	2.6600
O8…O7	3.215 (3)	С2…Н9А	3.06 (4)
O8…O13W ^{xii}	3.014 (3)	C2···H10B ⁱⁱ	2.78 (4)
O8…O1	2.575 (3)	C3···H9B ^{viii}	2.78 (4)
O8····C7 ^{xi}	3.377 (4)	C5…H4 ⁱ	2.6100
O8…C8 ^{xi}	3.310 (4)	C6…H13A ^{xiii}	2.93 (4)
O9W···O3 ^{viii}	2.821 (3)	C6…H11B ^{vi}	2.77 (4)
O9W…C2	3.340 (4)	C7…H12B ^{xi}	2.76 (4)
O9W…O9W ⁱⁱⁱ	3.229 (4)	H1W…H9A ^{iv}	2.26 (5)
O9W…O10W	3.142 (4)	H1W…O9W ⁱ	2.74 (3)

0)11 01211	3.026 (4)	H1W…H9A ⁱ	2.14 (5)
O9W…O1W ^{xv}	3.197 (5)	H1W…O2 ⁱⁱ	2.55 (4)
O9W…O1W ^x	3.197 (5)	H1W…O7 ^{vii}	2.47 (4)
O9W…C1	3.366 (5)	H1W…H11A ⁱⁱⁱ	2.31 (4)
O10W····O3 ⁱ	3.146 (4)	$H4 \cdots C5^{x}$	2.6100
O10W…O10W ⁱⁱ	3.171 (4)	H4···O5 ^x	1.7900
O10W…O13W ⁱⁱ	3.103 (4)	H8…O1	1.7700
O10W…O9W	3.142 (4)	H8…C1	2.6600
O10W…O11W	3.204 (4)	H9A…O1W ^x	2.47 (3)
O10W…O2 ⁱⁱ	2.711 (4)	H9A…C1	3.02 (4)
O10W…O11W ⁱⁱⁱ	3.150 (4)	H9A…O1W ^{xv}	2.47 (3)
O11W…O10W ⁱⁱⁱ	3.150 (4)	$H9A$ ··· $H1W^{xv}$	2.26 (5)
O11W…O12W	2.975 (4)	H9A…C2	3.06 (4)
O11W···C3 ⁱ	3.384 (4)	H9A…H1W ^x	2.14 (5)
O11W···O1W	2.880 (5)	H9B···O3 ^{viii}	1.97 (4)
O11W…O5	3.191 (4)	H9B···C3 ^{viii}	2.78 (4)
O11W···O6 ^{vi}	2.777 (3)	H10A…O12W ⁱⁱⁱ	2.85 (5)
O11W…O1W	2.880 (5)	H10A…O11W ⁱⁱⁱ	2.54 (4)
O11W…O10W	3.204 (4)	H10A…H12A ⁱⁱⁱ	2.55 (7)
O12W····O7 ^{xi}	2.711 (3)	H10A…H11B ⁱⁱⁱ	2.52 (7)
O12W…O11W	2.975 (4)	H10B…C2 ⁱⁱ	2.78 (4)
O12W…O9W	3.026 (4)	H10B…O2 ⁱⁱ	1.88 (4)
O12W…O1	3.104 (4)	H11A…H1W ⁱⁱⁱ	2.31 (4)
O12W···O13W ^v	2.803 (3)	H11A…O1W	2.06 (4)
O12W…C5	3.412 (5)	H11A…O1W	2.06 (4)
O13W···O3 ⁱ	3.024 (3)	H11B····C6 ^{vi}	2.77 (4)
O13W…O10W ⁱⁱ	3.103 (4)	H11B····O6 ^{vi}	1.91 (4)
O13W…O6 ^{xii}	2.736 (3)	H11B…H10A ⁱⁱⁱ	2.52 (7)
O13W…O12W ^{ix}	2.803 (3)	H12A…H13A ^v	2.36 (6)
O13W…O4 ^{xiii}	3.144 (4)	$H12A$ ···O13 W^{v}	2.00 (4)
O13W…O8 ^{xiii}	3.014 (3)	H12A…H10A ⁱⁱⁱ	2.55 (7)
O13W…O1	3.130 (3)	H12A…H13B ^v	2.31 (5)
O13W…O5	3.015 (3)	H12B…O7 ^{xi}	1.87 (4)
O1…H8	1.7700	H12B…C7 ^{xi}	2.76 (4)
01…H13A	2.74 (4)	H13A…C6 ^{xii}	2.93 (4)
O1…H12B	2.88 (4)	H13A…H12A ^{ix}	2.36 (6)
O1W…H9A ⁱ	2.47 (3)	H13A…O4 ^{xiii}	2.68 (5)
O1W…H9A ^{iv}	2.47 (3)	H13A…O6 ^{xii}	2.00 (4)
O1W…H11A ⁱⁱⁱ	2.06 (4)	H13B…H12A ^{ix}	2.31 (5)
O1W…H11A	2.06 (4)	H13B…O4 ^{xiii}	2.83 (5)
O2…H10B ⁱⁱ	1.88 (4)	H13B…O8 ^{xiii}	2.24 (4)

O2…H1W ⁱⁱ	2.55 (4)		
O1—Ba1—O5	82.21 (6)	O12W—Sr1—O13W	127.59 (10)
O1—Ba1—O9W	74.79 (8)	O3 ⁱ —Sr1—O12W	138.07 (7)
O1—Ba1—O10W	140.69 (7)	O10W ⁱⁱ —Sr1—O12W	138.54 (8)
O1—Ba1—O11W	134.79 (7)	O3 ⁱ —Sr1—O13W	67.32 (7)
O1—Ba1—O12W	70.57 (8)	$O10W^{ii}$ —Sr1—O13W	67.73 (8)
O1—Ba1—O13W	69.21 (6)	$O3^{i}$ —Sr1—O10W ⁱⁱ	82.41 (7)
01 —Ba1— 03^{i}	136.38 (8)	Bal—O1—C1	129.4 (2)
$O1 - Ba1 - O10W^{ii}$	84 71 (7)	Sr1	129.4 (2)
O_{1} Ba1 O_{1} OW	142 14 (7)	$Be1^X$ $O2$ $C2$	$134\ 23\ (18)$
O5 Bal $O10W$	142.14(7) 136.04(7)	Ba1 = 05 = 05	139.23 (18)
05 = Ba1 = 010 W	72 29 (8)	Sr1-05-05	130.74 (18)
05 Ba1 011W	75.68 (8)	$P_{01} = 0.10W = P_{01}^{11}$	110 43 (10)
05 Ba1 012W 05 Ba1 013W	66 88 (7)	$C_{A} = O_{A} = H_{A}$	109.00
O_{3}^{i} D 1 O_{5}^{i}	77.84(6)	$C_{4} = O_{4} = H_{4}$	109.00
03 ⁻ Bal-05	124 51 (0)		109.00
O5—Ba1—O10W ⁿ	134.51 (8)	Bal—O9W—H9A	120 (3)
O9W—Ba1—O10W	69.68 (9)	H9A—O9W—H9B	115 (4)
09W—Bal—OllW	103.67 (9)	Sr1—O9W—H9B	117(3)
O9W = Ba1 = O12W	68.52 (9) 128 28 (8)	Bal—O9W—H9B	11/(3)
09w—Bal—O13w	128.28 (8)	SrI—O9W—H9A	120 (3)
O3 ¹ —Ba1—O9W	138.55 (8)	Ba1—O10W—H10B	113 (3)
O9W—Ba1—O10W ¹¹	73.22 (8)	Ba1—O10W—H10A	108 (3)
O10W—Ba1—O11W	71.37 (8)	Sr1—O10W—H10A	108 (3)
O10W—Ba1—O12W	109.89 (10)	Sr1—O10W—H10B	113 (3)
O10W—Ba1—O13W	122.53 (8)	H10A—O10W—H10B	100 (5)
O3 ⁱ —Ba1—O10W	70.58 (8)	Ba1 ⁱⁱ —O10W—H10A	115 (3)
O10W—Ba1—O10W ⁱⁱ	69.57 (8)	Ba1 ⁱⁱ —O10W—H10B	110 (2)
O11W—Ba1—O12W	67.33 (8)	Ba1—O11W—H11A	123 (2)
O11W—Ba1—O13W	128.05 (8)	Ba1—O11W—H11B	115 (3)
O3 ⁱ —Ba1—O11W	73.96 (7)	H11A—O11W—H11B	114 (4)
O10W ⁱⁱ —Ba1—O11W	139.20 (8)	Sr1—O11W—H11A	123 (2)
O12W—Ba1—O13W	127.59 (10)	Sr1—O11W—H11B	115 (3)
O3 ⁱ —Ba1—O12W	138.07 (7)	H12A—O12W—H12B	110 (4)
O10W ⁱⁱ —Ba1—O12W	138.54 (8)	Ba1—O12W—H12A	128 (3)
O3 ⁱ —Ba1—O13W	67.32 (7)	Ba1—O12W—H12B	118 (3)
O10W ⁱⁱ —Ba1—O13W	67.73 (8)	Sr1—O12W—H12A	128 (3)
O3 ⁱ —Ba1—O10W ⁱⁱ	82.41 (7)	Sr1—O12W—H12B	118 (3)
01—Sr1—O5	82.21 (6)	Ba1—O13W—H13A	110 (3)
O1—Sr1—O9W	74.79 (8)	Ba1—O13W—H13B	109 (3)
O1-Sr1-O10W	140.69 (7)	Sr1—O13W—H13A	110 (3)
O1—Sr1—O11W	134.79 (7)	Sr1—O13W—H13B	109 (3)
01—Sr1—O12W	70.57 (8)	H13A—O13W—H13B	111 (4)
O1—Sr1—O13W	69.21 (6)	H1W—O1W—H1W ⁱⁱⁱ	111 (3)
01—Sr1—O3 ⁱ	136.38 (8)	C2—C1—C4	89.3 (2)

O1—Sr1—O10W ⁱⁱ	84.71 (7)	O1—C1—C2	133.6 (2)
O5—Sr1—O9W	142.14 (7)	O1—C1—C4	137.1 (3)
O5—Sr1—O10W	136.94 (7)	C1—C2—C3	88.6 (2)
O5—Sr1—O11W	72.29 (8)	O2—C2—C1	136.0 (3)
O5—Sr1—O12W	75.68 (8)	O2—C2—C3	135.3 (3)
O5—Sr1—O13W	66.88 (7)	O3—C3—C4	136.1 (3)
03 ⁱ —Sr1—O5	77.84 (6)	O3—C3—C2	135.3 (3)
O5—Sr1—O10W ⁱⁱ	134.51 (8)	C2—C3—C4	88.6 (2)
O9W—Sr1—O10W	69.68 (9)	O4—C4—C3	135.1 (2)
O9W—Sr1—O11W	103.67 (9)	O4—C4—C1	131.4 (2)
O9W—Sr1—O12W	68.52 (9)	C1—C4—C3	93.4 (2)
O9W—Sr1—O13W	128.28 (8)	C6—C5—C8	89.9 (2)
O3 ⁱ —Sr1—O9W	138.55 (8)	O5—C5—C6	133.7 (2)
O9W—Sr1—O10W ⁱⁱ	73.22 (8)	O5—C5—C8	136.4 (3)
O10W—Sr1—O11W	71.37 (8)	C5—C6—C7	89.2 (2)
O10W—Sr1—O12W	109.89 (10)	O6—C6—C5	135.6 (3)
O10W—Sr1—O13W	122.53 (8)	O6—C6—C7	135.1 (3)
O3 ⁱ —Sr1—O10W	70.58 (8)	C6—C7—C8	88.1 (2)
O10W—Sr1—O10W ⁱⁱ	69.57 (8)	O7—C7—C6	134.7 (3)
O11W—Sr1—O12W	67.33 (8)	O7—C7—C8	137.1 (3)
O11W—Sr1—O13W	128.05 (8)	C5—C8—C7	92.8 (2)
O3 ⁱ —Sr1—O11W	73.96 (7)	O8—C8—C5	136.6 (3)
O10W ⁱⁱ —Sr1—O11W	139.20 (8)	O8—C8—C7	130.5 (3)
O5—Sr1—O1—C1	-179.3 (2)	O1—C1—C2—C3	-178.6 (4)
O9W—Sr1—O1—C1	-29.6 (2)	C4—C1—C2—O2	176.0 (4)
O10W—Sr1—O1—C1	-3.8 (3)	O2—C2—C3—O3	1.7 (7)
O11W—Sr1—O1—C1	-123.9 (2)	C1—C2—C3—C4	1.2 (3)
O12W—Sr1—O1—C1	-101.8 (3)	O2—C2—C3—C4	-176.0 (4)
O13W—Sr1—O1—C1	112.6 (2)	C1—C2—C3—O3	178.8 (4)
O3 ⁱ —Sr1—O1—C1	117.6 (2)	O3—C3—C4—O4	-2.4 (7)
O10W ⁱⁱ —Sr1—O1—C1			
~ ~ ~ ~ ~	44.4 (2)	C2—C3—C4—C1	-1.2 (3)
OI - SrI - O5 - C5	44.4 (2) 36.9 (2)	C2—C3—C4—C1 O3—C3—C4—C1	-1.2 (3) -178.9 (4)
01—Sr1—O5—C5 O9W—Sr1—O5—C5	44.4 (2) 36.9 (2) -15.7 (3)	C2-C3-C4-C1 O3-C3-C4-C1 C2-C3-C4-O4	-1.2 (3) -178.9 (4) 175.3 (4)
01—Sr1—05—C5 09W—Sr1—05—C5 010W—Sr1—05—C5	44.4 (2) 36.9 (2) -15.7 (3) -138.9 (2)	C2-C3-C4-C1 O3-C3-C4-C1 C2-C3-C4-O4 O5-C5-C6-O6	-1.2 (3) -178.9 (4) 175.3 (4) 1.2 (7)
01—Sr1—05—C5 09W—Sr1—05—C5 010W—Sr1—05—C5 011W—Sr1—05—C5	44.4 (2) 36.9 (2) -15.7 (3) -138.9 (2) -105.3 (3)	C2-C3-C4-C1 O3-C3-C4-C1 C2-C3-C4-O4 O5-C5-C6-O6 O5-C5-C6-C7	-1.2 (3) -178.9 (4) 175.3 (4) 1.2 (7) 177.8 (4)
01—Sr1—05—C5 09W—Sr1—05—C5 010W—Sr1—05—C5 011W—Sr1—05—C5 012W—Sr1—05—C5	44.4 (2) 36.9 (2) -15.7 (3) -138.9 (2) -105.3 (3) -34.9 (3)	C2-C3-C4-C1 O3-C3-C4-C1 C2-C3-C4-O4 O5-C5-C6-O6 O5-C5-C6-C7 C8-C5-C6-O6	-1.2 (3) -178.9 (4) 175.3 (4) 1.2 (7) 177.8 (4) -176.1 (4)
01—Sr1—05—C5 09W—Sr1—05—C5 010W—Sr1—05—C5 011W—Sr1—05—C5 012W—Sr1—05—C5 013W—Sr1—05—C5	44.4 (2) 36.9 (2) -15.7 (3) -138.9 (2) -105.3 (3) -34.9 (3) 107.6 (3)	C2-C3-C4-C1 O3-C3-C4-C1 C2-C3-C4-O4 O5-C5-C6-O6 O5-C5-C6-C7 C8-C5-C6-O6 C8-C5-C6-C7	-1.2 (3) -178.9 (4) 175.3 (4) 1.2 (7) 177.8 (4) -176.1 (4) 0.5 (3)
01—Sr1—05—C5 09W—Sr1—05—C5 010W—Sr1—05—C5 011W—Sr1—05—C5 012W—Sr1—05—C5 013W—Sr1—05—C5 03 ⁱ —Sr1—05—C5	44.4 (2) 36.9 (2) -15.7 (3) -138.9 (2) -105.3 (3) -34.9 (3) 107.6 (3) 177.9 (3)	C2-C3-C4-C1 O3-C3-C4-C1 C2-C3-C4-O4 O5-C5-C6-O6 O5-C5-C6-C7 C8-C5-C6-O6 C8-C5-C6-C7 O5-C5-C6-C7	-1.2 (3) -178.9 (4) 175.3 (4) 1.2 (7) 177.8 (4) -176.1 (4) 0.5 (3) -2.2 (7)
$\begin{array}{c} O1 - Sr1 - O5 - C5 \\ O9W - Sr1 - O5 - C5 \\ O10W - Sr1 - O5 - C5 \\ O11W - Sr1 - O5 - C5 \\ O12W - Sr1 - O5 - C5 \\ O13W - Sr1 - O5 - C5 \\ O3^{i} - Sr1 - O5 - C5 \\ O10W^{ii} - Sr1 - O5 - C5 \end{array}$	44.4 (2) 36.9 (2) -15.7 (3) -138.9 (2) -105.3 (3) -34.9 (3) 107.6 (3) 177.9 (3) 111.5 (3)	C2-C3-C4-C1 O3-C3-C4-C1 C2-C3-C4-O4 O5-C5-C6-O6 O5-C5-C6-C7 C8-C5-C6-C7 O5-C5-C6-C7 O5-C5-C8-O8 O5-C5-C8-O8	-1.2 (3) -178.9 (4) 175.3 (4) 1.2 (7) 177.8 (4) -176.1 (4) 0.5 (3) -2.2 (7) -177.7 (4)
$\begin{array}{c} 01 - Sr1 - 05 - C5 \\ 09W - Sr1 - 05 - C5 \\ 010W - Sr1 - 05 - C5 \\ 011W - Sr1 - 05 - C5 \\ 012W - Sr1 - 05 - C5 \\ 013W - Sr1 - 05 - C5 \\ 03^{i} - Sr1 - 05 - C5 \\ 010W^{ii} - Sr1 - 05 - C5 \\ Sr1 - 01 - C1 - C2 \end{array}$	44.4 (2) 36.9 (2) -15.7 (3) -138.9 (2) -105.3 (3) -34.9 (3) 107.6 (3) 177.9 (3) 111.5 (3) -32.4 (5)	C2-C3-C4-C1 $O3-C3-C4-C1$ $C2-C3-C4-O4$ $O5-C5-C6-O6$ $O5-C5-C6-C7$ $C8-C5-C6-C7$ $O5-C5-C6-C7$ $O5-C5-C8-O8$ $O5-C5-C8-O8$	-1.2 (3) -178.9 (4) 175.3 (4) 1.2 (7) 177.8 (4) -176.1 (4) 0.5 (3) -2.2 (7) -177.7 (4) 174.9 (4)
$\begin{array}{c} 01 - Sr1 - 05 - C5 \\ 09W - Sr1 - 05 - C5 \\ 010W - Sr1 - 05 - C5 \\ 011W - Sr1 - 05 - C5 \\ 012W - Sr1 - 05 - C5 \\ 013W - Sr1 - 05 - C5 \\ 03^{i} - Sr1 - 05 - C5 \\ 010W^{ii} - Sr1 - 05 - C5 \\ Sr1 - 01 - C1 - C2 \\ Sr1 - 01 - C1 - C4 \end{array}$	44.4 (2) 36.9 (2) -15.7 (3) -138.9 (2) -105.3 (3) -34.9 (3) 107.6 (3) 177.9 (3) 111.5 (3) -32.4 (5) 151.4 (3)	C2-C3-C4-C1 $O3-C3-C4-C1$ $C2-C3-C4-O4$ $O5-C5-C6-O6$ $O5-C5-C6-C7$ $C8-C5-C6-C7$ $O5-C5-C8-O8$ $O5-C5-C8-O8$ $O5-C5-C8-O8$ $C6-C5-C8-O8$	-1.2 (3) -178.9 (4) 175.3 (4) 1.2 (7) 177.8 (4) -176.1 (4) 0.5 (3) -2.2 (7) -177.7 (4) 174.9 (4) -0.6 (3)
$\begin{array}{c} 01 - Sr1 - 05 - C5 \\ 09W - Sr1 - 05 - C5 \\ 010W - Sr1 - 05 - C5 \\ 011W - Sr1 - 05 - C5 \\ 012W - Sr1 - 05 - C5 \\ 013W - Sr1 - 05 - C5 \\ 03^{i} - Sr1 - 05 - C5 \\ 010W^{ii} - Sr1 - 05 - C5 \\ Sr1 - 01 - C1 - C2 \\ Sr1 - 01 - C1 - C4 \\ Sr1 - 05 - C5 - C6 \end{array}$	44.4 (2) 36.9 (2) -15.7 (3) -138.9 (2) -105.3 (3) -34.9 (3) 107.6 (3) 177.9 (3) 111.5 (3) -32.4 (5) 151.4 (3) 156.2 (3)	C2-C3-C4-C1 $O3-C3-C4-C1$ $C2-C3-C4-O4$ $O5-C5-C6-O6$ $O5-C5-C6-C7$ $C8-C5-C6-C7$ $O5-C5-C8-O8$ $O5-C5-C8-O8$ $O5-C5-C8-O8$ $C6-C5-C8-O8$ $C6-C5-C8-O7$ $O6-C6-C7-O7$	-1.2 (3) -178.9 (4) 175.3 (4) 1.2 (7) 177.8 (4) -176.1 (4) 0.5 (3) -2.2 (7) -177.7 (4) 174.9 (4) -0.6 (3) -1.1 (7)
$\begin{array}{c} 01 - Sr1 - 05 - C5 \\ 09W - Sr1 - 05 - C5 \\ 010W - Sr1 - 05 - C5 \\ 011W - Sr1 - 05 - C5 \\ 012W - Sr1 - 05 - C5 \\ 013W - Sr1 - 05 - C5 \\ 03^{i} - Sr1 - 05 - C5 \\ 010W^{ii} - Sr1 - 05 - C5 \\ Sr1 - 01 - C1 - C2 \\ Sr1 - 01 - C1 - C4 \\ Sr1 - 05 - C5 - C6 \\ Sr1 - 05 - C5 - C8 \end{array}$	44.4 (2) 36.9 (2) -15.7 (3) -138.9 (2) -105.3 (3) -34.9 (3) 107.6 (3) 177.9 (3) 111.5 (3) -32.4 (5) 151.4 (3) 156.2 (3) -27.8 (6)	C2-C3-C4-C1 $O3-C3-C4-C1$ $C2-C3-C4-O4$ $O5-C5-C6-O6$ $O5-C5-C6-C7$ $C8-C5-C6-C7$ $O5-C5-C8-O8$ $O5-C5-C8-O8$ $C6-C5-C8-O8$ $C6-C5-C8-C7$ $O6-C6-C7-O7$ $O6-C6-C7-C8$	$\begin{array}{c} -1.2 (3) \\ -178.9 (4) \\ 175.3 (4) \\ 1.2 (7) \\ 177.8 (4) \\ -176.1 (4) \\ 0.5 (3) \\ -2.2 (7) \\ -177.7 (4) \\ 174.9 (4) \\ -0.6 (3) \\ -1.1 (7) \\ 176.1 (4) \end{array}$
$\begin{array}{c} 01-sr1-05-c5\\ 09W-sr1-05-c5\\ 010W-sr1-05-c5\\ 011W-sr1-05-c5\\ 012W-sr1-05-c5\\ 012W-sr1-05-c5\\ 013W-sr1-05-c5\\ 010W^{ii}-sr1-05-c5\\ 010W^{ii}-sr1-05-c5\\ sr1-01-c1-c2\\ sr1-01-c1-c4\\ sr1-05-c5-c6\\ sr1-05-c5-c8\\ 01-c1-c2-02\\ \end{array}$	44.4 (2) 36.9 (2) -15.7 (3) -138.9 (2) -105.3 (3) -34.9 (3) 107.6 (3) 177.9 (3) 111.5 (3) -32.4 (5) 151.4 (3) 156.2 (3) -27.8 (6) -1.4 (7)	C2-C3-C4-C1 $O3-C3-C4-C1$ $C2-C3-C4-O4$ $O5-C5-C6-O6$ $O5-C5-C6-C7$ $C8-C5-C6-C7$ $O5-C5-C8-O8$ $O5-C5-C8-O8$ $C6-C5-C8-O8$ $C6-C5-C8-C7$ $O6-C6-C7-O7$ $O6-C6-C7-C8$ $C5-C6-C7-O7$	-1.2 (3) -178.9 (4) 175.3 (4) 1.2 (7) 177.8 (4) -176.1 (4) 0.5 (3) -2.2 (7) -177.7 (4) 174.9 (4) -0.6 (3) -1.1 (7) 176.1 (4) -177.8 (4)
$\begin{array}{c} 01-sr1-05-c5\\ 09W-sr1-05-c5\\ 010W-sr1-05-c5\\ 011W-sr1-05-c5\\ 012W-sr1-05-c5\\ 012W-sr1-05-c5\\ 013W-sr1-05-c5\\ 013W-sr1-05-c5\\ 010W^{ii}-sr1-05-c5\\ sr1-01-c1-c2\\ sr1-01-c1-c4\\ sr1-05-c5-c6\\ sr1-05-c5-c8\\ 01-c1-c2-02\\ c4-c1-c2-c3\\ \end{array}$	44.4 (2) 36.9 (2) -15.7 (3) -138.9 (2) -105.3 (3) -34.9 (3) 107.6 (3) 177.9 (3) 111.5 (3) -32.4 (5) 151.4 (3) 156.2 (3) -27.8 (6) -1.4 (7) -1.2 (3)	C2-C3-C4-C1 $O3-C3-C4-C1$ $C2-C3-C4-O4$ $O5-C5-C6-O6$ $O5-C5-C6-C7$ $C8-C5-C6-C7$ $O5-C5-C8-O8$ $O5-C5-C8-O8$ $C6-C5-C8-O8$ $C6-C5-C8-O7$ $O6-C6-C7-O7$ $O6-C6-C7-O7$ $O6-C6-C7-C8$ $C5-C6-C7-O7$ $C5-C6-C7-C8$	-1.2 (3) -178.9 (4) 175.3 (4) 1.2 (7) 177.8 (4) -176.1 (4) 0.5 (3) -2.2 (7) -177.7 (4) 174.9 (4) -0.6 (3) -1.1 (7) 176.1 (4) -177.8 (4) -0.5 (3)

O1—C1—C4—C3	178.4 (4)	O7—C7—C8—C5	1	77.7 (4)
C2—C1—C4—O4	-175.5 (4)	C6—C7—C8—O8	-	-175.4 (4)
C2-C1-C4-C3	1.2 (3)	C6—C7—C8—C5	0	0.6 (3)
Symmetry codes: (i) <i>x</i> , <i>y</i> -1, <i>z</i> ; (ii) 2, - <i>z</i> ; (vii) <i>x</i> +1/2, - <i>y</i> -1/2, <i>z</i> +1/2; - <i>z</i> +1/2; (xiii) - <i>x</i> +1/2, <i>y</i> -1/2, - <i>z</i> +		y, -z+1/2; (iv) -x+1, y-1,) x, -y, z+1/2; (x) x, y+1, z; 1/2; (xv) -x+1, y+1, -z+1/2	-z+1/2; (v) x, $-y$, $z-1(xi) -x+1/2, -y+1/2,2.$	/2; (vi) $-x+1/2$, $-y-1/$ -z; (xii) $-x+1/2$, $y+1/2$,
Hydrogen-bond geometry (Å, ')			
D—H…A	<i>D</i> —H	H···A	$D \cdots A$	D—H··· A
O1W—H1W···O2 ⁱⁱ	0.82 (4	4) 2.55 (4)	2.874 (2)	105 (3)
O1W—H1W…O7 ^{vii}	0.82 (4	4) 2.47 (4)	3.193 (3)	148 (4)
O4—H4···O5 ^x	0.82	1.79	2.603 (3)	171.
O8—H8…O1	0.82	1.77	2.575 (3)	169.
O9W—H9A…O1W ^x	0.84 (3	3) 2.47 (3)	3.197 (5)	147 (4)
O9W—H9B···O3 ^{viii}	0.87 (4	4) 1.97 (4)	2.821 (3)	167 (5)
O10W—H10A…O11W ⁱⁱⁱ	0.78 (5) 2.54 (4)	3.150 (4)	137 (4)
O10W—H10B…O2 ⁱⁱ	0.86 (4	4) 1.88 (4)	2.711 (4)	164 (4)
O11W—H11A…O1W	0.86 (3	3) 2.06 (4)	2.880 (5)	159 (4)
O11W—H11B…O6 ^{vi}	0.87 (4	4) 1.91 (4)	2.777 (3)	176 (5)
O12W—H12A…O13W ^v	0.83 (4	4) 2.00 (4)	2.803 (3)	164 (4)
O12W—H12B····O7 ^{xi}	0.84 (4	4) 1.87 (4)	2.711 (3)	178 (5)
O13W—H13A…O6 ^{xii}	0.86 (:	5) 2.00 (4)	2.736 (3)	143 (3)
O13W—H13B···O8 ^{xiii}	0.84 (4	4) 2.24 (4)	3.014 (3)	154 (4)

Symmetry codes: (ii) -*x*+1, -*y*, -*z*+1; (vii) *x*+1/2, -*y*-1/2, *z*+1/2; (x) *x*, *y*+1, *z*; (viii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*+1, *y*, -*z*+1/2; (vi) -*x*+1/2, -*y*-1/2, -*z*; (vi) *x*, -*y*, *z*-1/2; (xi) -*x*+1/2, -*y*+1/2, -*z*; (xii) -*x*+1/2, *y*+1/2, -*z*+1/2; (xiii) -*x*+1/2, *y*-1/2, -*z*+1/2.

