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We study the phase diagram of two-dimensional, interacting bosons in the presence of a correlated disorder

in continuous space, using large-scale finite temperature quantum Monte Carlo simulations. We show that the

superfluid transition is strongly protected against disorder. It remains of the Berezinskii-Kosterlitz-Thouless type

up to disorder strengths comparable to the chemical potential. Moreover, we study the transport properties in the

strong disorder regime where a zero-temperature Bose-glass phase is expected. We show that the conductance

exhibits a thermally activated behavior and strictly vanishes only at zero temperature. Our results do not show

any evidence of a finite-temperature localization transition, and point towards the existence of Bose bad-metal

phase as a precursor of the Bose-glass phase.

PACS numbers: 05.30.Jp, 02.70.Ss, 67.25.dj, 72.15.Rn

Introduction – Transport properties in quantum materials

are governed by a complex interplay of disorder and interac-

tions. While disorder tends to localize particles, interactions

may strongly alter the over-idealized single-particle picture

by either reinforcing or suppressing localization. Dramatic

effects are expected in two dimensions (2D), such as metal-

insulator transitions [1–3], suppression of superfluidity [4–8],

and presumably high-Tc superconductivity [9]. Possible phase

transitions are however particularly elusive owing to absence

of true long-range order even in extended phases [10, 11],

and many questions remain open. For instance, resistance

measurements in Si-MOFSETs suggest a metal-insulator tran-

sition [1], which may be attributed to quantum localization

or classical percolation [2], but experiments on GaAs het-

erostructures point towards a crossover behavior [3]. Stud-

ies of the superfluid Berezinskii-Kosterlitz-Thouless (BKT)

transition [12, 13] have also been reported for 4He films ad-

sorbed on porous media [4, 5]. While the BKT transition

is unaffected in the weak disorder limit [14], the question

of its relevance for strong disorder is left open owing to the

difficulty to identify a universal jump of the superfluid den-

sity [6–8]. Moreover, a question that is attracting much de-

bate is whether many-body localization effects [15–19] can

drive a finite-temperature metal-insulator transition in two di-

mensions.

Ultracold quantum gases in controlled disorder offer a

unique tool to address these questions in a unified way [20]. In

clean or disordered quasi-2D geometries, direct consequences

of vortex pairing [21], superfluidity [22], quasi-long-range

phase coherence [23, 24], and resistance measurements [25]

have been reported. On the theoretical side, most knowl-

edge rely on lattice models with uncorrelated disorder [26–

30]. Conversely, little is known about the novel models of

disorder introduced by ultracold atoms, which are continuous,

correlated, and sustain classical percolation thresholds [31–

35].

In this Letter, we report on an ab-initio path-integral quan-

tum Monte Carlo study of the phase diagram of interacting

2D bosons in such a continuous model of disorder. We show

that, although the density profile exhibits large spatial mod-

ulations, the superfluid BKT transition is strongly protected

against disorder. This holds up to disorder strengths compa-

rable to the chemical potential, where the zero-temperature

Bose-glass transition is expected. The critical properties of the

dirty superfluid transition can be understood in terms of a uni-

versal description including a simple renormalization of the

critical parameters. In particular, we find that the superfluid

transition occurs while the fluid percolates with a density sig-

nificantly above the critical density of the clean system, which

allows us to rule out the classical percolation scenario. More-

over, we study the conductance by means of a novel quantum

Monte Carlo estimator. Deep in the strong disorder regime,

we find direct evidence of an insulating behavior, character-

ized by a conductance that decreases with the temperature.

Our data is consistent with a thermally-activated behavior of

the Arrhenius type, indicating that the conductance vanishes

only at zero temperature.

System and methods – We consider a two-dimensional

quantum fluid of interacting bosons at temperature T charac-

terized by short-range repulsive interactions of effective cou-

pling parameter g̃ = mg/h̄2, where m is the particle mass, and

subjected to a disordered potential V (r). The latter is a cor-

related, isotropic, and continuous speckle disorder, as real-

ized by laser light diffusion through a ground-glass plate [23–

25, 31]. Its average value coincides with its standard devia-

tion VR, and its two-point correlation function is a Gaussian

of r.m.s. radius σR. In the following, we use the chemical

potential µ and the disorder correlation radius σR as units of

energy and length, and the parameters g̃= 0.1 and σR =
√

5ξ0,

where ξ0 = h̄/
√

2mµ is the healing length in the absence of

disorder. They are typical values in ultracold-atom experi-

ments [23, 24]. For instance, for 87Rb atoms and the chemical

potential µ/kB ≃ 56nK, it corresponds to σR = 0.5 µm.

Our study is based on a fully ab-initio path-integral quan-

tum Monte Carlo (QMC) approach, which allows for unbiased

calculations of equilibrium, finite-temperature properties of
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interacting bosons [36] in terms of a discretized path-integral

representation using M time slices. We use the worm algo-

rithm [37] to sample the grand-canonical partition function at

inverse temperature β = 1/kBT . Whereas disorder is taken

into account at the level of the primitive-approximation, the

two-body interaction is treated in the the pair-product approx-

imation [36, 38]. The two-particle propagator is derived by

solving the s-wave scattering problem at high temperatures,

ε−1 = MkBT , which yields

〈r|e−εH2 |r′〉 ≃ m

4π h̄2ε
e−m|r−r′|2/4h̄2ε

+
g̃

8π

ˆ ∞

0

dk ke−ε h̄2k2

m
[

J0(kr)Y0(kr′)+ J0(kr′)Y0(kr)
]

, (1)

where H2 is the Hamiltonian of the relative motion of two par-

ticles, r and r′ are the relative coordinates at different times,

whereas J0 and Y0 are Bessel functions of the first and second

kind, respectively. Here, we report results from simulations

of up to N = 105 particles in a box of linear extension L with

periodic boundary conditions, averaged over≈ 40 disorder re-

alizations.

Superfluid transition – We first study the superfluid to

normal fluid transition in the presence of disorder. To eluci-

date the critical properties of this transition, we calculate the

static superfluid susceptibility, χs =
1

L2

´

drdr′
〈

Ψ†(r)Ψ(r′)
〉

,

and the field correlation function, g1(r) =
〈

Ψ†(r)Ψ(0)
〉

,

where Ψ is the field operator, and 〈. . .〉 denotes thermal and

disorder average. In the superfluid phase of the clean sys-

tem the decay of field correlations is algebraic, g1(r) ∼ r−η ,

and the superfluid susceptibility diverges as χs ∼ L2−η . The

exponent η is directly related to the superfluid density ns as

η = mkBT

2π h̄2ns
. In the normal phase, field correlations are ex-

ponentially suppressed, g1(r) ∼ e−r/γ , and the susceptibility

remains finite in the thermodynamic limit.

Analysis of our QMC data allows us to study both qualita-

tively and quantitatively the superfluid to normal transition in

the presence of disorder (Fig. 1). The inset of Fig. 1 shows the

superfluid susceptibility, χs, as a function of the system size

for various temperatures at intermediate disorder amplitude,

VR/µ = 0.3. For high temperatures (curves in the light-orange

zone), χs converges to a finite value, characteristic for the nor-

mal fluid phase. Above the critical temperature (curves in the

blue zone), χs shows an algebraic divergence. At the criti-

cal point, our QMC results are compatible with the scaling

χs ∼ L7/4, i.e. η ≃ 1/4, as expected for the BKT transition

in the clean system [12, 13]. It is confirmed by the behavior

of the rescaled superfluid susceptibility χs/L7/4, plotted in the

main panel of Fig. 1 as a function of temperature for various

values of L, where all curves cross at a single point. Further,

our data for the superfluid density calculated from the wind-

ing number estimator [36] (not shown) is consistent with the

universal jump at the transition temperature in the thermody-

namic limit, expected for a BKT transition. We conclude that

the superfluid transition of dirty bosons remains in the uni-

versality class of the clean BKT transition. To some extent,

Figure 1: Scaled superfluid susceptibility against temperature for

system sizes ranging from LR = L/σR = 5−40 at disorder strength

VR/µ = 0.3 and interaction strength g̃ = 0.1. Darker curves mark

increasingly large size. In the inset, the susceptibility is shown

as a function of LR (temperature increases from top to bottom).

The divergence predicted by the BKT transition for clean systems

(η = 1/4) is indicated by the dashed line.

this result is expected for weak disorder. According to Harris

argument [14], local fluctuations of the disorder potential are

smoothed out at the scale of the diverging correlation length

at the Kosterlitz-Thouless transition, thus introducing only a

renormalization of the effective parameters. Our calculations

show that it holds also for strong disorder (up to VR ≃ µ).

The intersection point of the rescaled superfluid suscep-

tibility (curves as in Fig. 1) precisely determines the crit-

ical temperature at fixed disorder amplitude. In Fig. 2,

we show the resulting critical temperatures versus disorder

strength and draw the superfluid to normal fluid phase dia-

gram of dirty 2D bosons. Within numerical accuracy, the crit-

ical line is described by Tc(VR) ≃ T 0
c (µ −VR), where T 0

c ≃
πµ h̄2

mg̃kB
/ log(13.2/g̃) is the critical temperature for the disorder-

free system [39]. The shift of the critical temperature can be

understood in terms of the leading order renormalization of

the chemical potential, µc(VR)−VR = µc(0). Similar to Tc,

the critical density also decreases approximately linear from

the disorder-free value ncσ2
R ≃ 21.1 to ncσ2

R ≈ 9 for VR ≃ µ .

For lower densities, the system remains normal for any of our

temperatures, kBT & µ , consistent with a Bose-glass phase at

zero temperature, as indicated in Fig. 2.

In our analysis we find that the BKT scaling regime is at-

tained for increasingly large system sizes, upon increasing the

disorder strength. For the lowest reported transition tempera-

ture, we find that systems of linear size L/σR ∼ 40− 80 are

needed to attain the scaling regime. This should be contrasted

with the typically (much) smaller sizes of the inner critical

regions probed in experiments [6–8, 23, 24] and in some nu-

merical simulations [40].

Let us compare our results to the possibility of a percolation

driven transition. In the superfluid phase, the Bose gas den-
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Figure 2: Phase diagram of two-dimensional interacting bosons at

fixed chemical potential and interaction strength g̃ = 0.1. The dark

dashed line is the critical temperature of the clean system with a

renormalized chemical potential; the lighter dashed line is the pre-

diction of a combination of LDA and percolation theory (see text).

For strong disorder, the normal system goes to the Bose-glass phase

in the zero-T limit.

sity for each realization of the disorder may be approximated

using the local density approximation (LDA), nLDA(r,VR) =
n0 [µ −V(r)], where n0(µ) is the density of the clean sys-

tem at chemical potential µ . The quantitative agreement be-

tween this approximation and our QMC results is reasonably

good in the superfluid phase. We consider percolating clus-

ters in which the local density stays everywhere higher than

the critical density of the clean system, i.e. nLDA(r,VR) &
mkBT

2π h̄2 log(380/g̃) [39]. The occurrence of such percolating

superfluid clusters yields the orange line reported in Fig. 2,

which shows that the percolation scenario strongly overesti-

mates the critical disorder strength. Superfluidity disappears

while there still exist large percolating clusters above the crit-

ical density of clean system. Notice that we have disregarded

the weak penetration of the density into the disorder poten-

tial barriers due to the finite healing length in the superfluid

phase [41]. However, this effect does not alter the above con-

clusions since it would further raise the percolation line in

Fig. 2.

Transport Properties – We now address the strongly dis-

ordered regime, where superfluid coherence is lost and dis-

order substantially affects mass transport. A long-debated

issue is to understand whether interacting systems preserve

Anderson-like localization properties, as found in the single

particle case [15–19]. At zero temperature, the conditions for

a localized (Bose glass) phase to exist have been established

in seminal works [42, 43]. At finite temperature, however,

the existence of a perfectly insulating state, characterized by

an exactly vanishing conductance (GDC = 0) is instrinsically

more complex and theoretically plausible scenarios have been

put forward only recently. The many-body localization transi-

tion scenario [15, 19] implies the existence of a critical tem-

perature, Tloc, separating the perfect insulator behavior at low

energies where GDC(T < Tloc) = 0, from a delocalized, diffu-

sive phase with GDC(T > Tloc) 6= 0. This transition, however,

has not been directly observed in experiments and remains at

the center of intense theoretical activity, for instance in out-

of-equilibrium phenomena [44–46].

In order to identify possible signatures of many-body lo-

calization at finite temperature, we have computed transport

properties in the strongly disordered region. Such transport

properties are traditionally addressed in disordered materials

subjected to an external electric bias. They were recently

shown to be also accessible in a new generation of ultracold-

atoms experiments [25].

To obtain the zero-frequency (DC) conductance within

QMC, we compute the imaginary-time correlations of the den-

sity current operator along a given direction α , Λα(τ,q) =
〈Jα(τ,q)Jα(0,−q)〉. It allows us to reconstruct the associated

longitudinal conductance Greg(ω) [57] from numerical ana-

lytical continuation [47–49] of the Laplace transform [50]

Λα(τ,0) = 2h̄

ˆ +∞

−∞
dω

exp(−ωτ)ω

1− exp(−β h̄ω)
Greg(ω). (2)

Imaginary-time correlations of high statistical quality are es-

sential for a reliable reconstruction of the dynamical response

Greg(ω). Direct estimators of current correlations success-

fully used for lattice simulations [51, 52] present a diverging

statistical error in the small imaginary-time step limit in con-

tinuum systems, preventing its use for numerical analytical

continuation for our purposes. To overcome this serious prob-

lem, we introduce a novel estimator that significantly reduces

Figure 3: Finite-temperature, zero-frequency longitudinal conduc-

tance for an intensity of the disorder VR = 2.4 µ . Error bars refer

to averages over disorder and the dashed line is a fit to a simple ex-

ponential Arrhenius law GDC(T ) ∝ e
− ∆E

kBT . In the upper inset, the

complete frequency dependence of the conductance is exemplified

for kBT = 2µ . In the lower inset, the conductance at constant tem-

perature (kBT = µ) and varying disorder strength is also shown. In

all cases darker curves mark increasingly large sizes, in the range

L/σR = 20−40.
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the statistical error making possible a reliable determination of

the conductance. The key observation is that the imaginary-

time derivatives of the correlations are well-behaved in the

small time-step limit ε → 0, whereas the imaginary-time in-

tegral of the correlation function is itself well-behaved and

directly related to the superfluid density ns [53]. We can there-

fore express the current-current correlations by means of the

integral expression

Λα(τ,0) =
1

β m
(n− ns)+

ˆ β

0

dτ1Λ′
α(τ1,0)+

− 1

β

ˆ β

0

dτ1

ˆ τ1

0

dτ2Λ′
α(τ2,0), (3)

where the imaginary-time derivative of the correlation func-

tion reads

εΛ′
α(τ,0) =

1

mL2 ∑
i

〈[∇α
i V (τ)]×Dα(0)〉+

− 1

2mL2 ∑
i, j,β

〈

D
β
j (τ)×

[

∇α
i ∇

β
j V (τ)

]

×Dα(0)
〉

+O(ε
3
2 ).

(4)

In the latter expression ∇α
i is the derivative with respect

to the position of the i-th particle, Dα(τ) = ∑N
j Dα

j (τ) =

∑N
j

[

Rα
j (τ)−Rα

j (τ − ε)
]

is proportional to the imaginary-

time displacement of the center of mass and V (τ) is a generic

one-body potential which in our specific case is the disordered

speckle potential.

We first study the behavior of the DC longitudinal conduc-

tance GDC = Greg(ω = 0) versus the temperature deep in the

strong disorder regime. The outcome is shown in the main

panel of Fig. 3 for a fixed disorder strength, VR = 2.4 µ . The

conductance monotonously decreases with temperature, a be-

havior which is typically observed in related experiments with

disordered materials. Extrapolating to zero temperature, the

longitudinal conductance vanishes, as expected for the Bose-

glass phase [43]. The overall behavior of GDC, however, points

towards a thermally activated transport (see fit in Fig. 3),

at variance with a perfectly insulating, many-body localized

phase. The energy broadening of the reconstructed dynamical

conductances (see upper inset of Fig. 3) remains finite and

does not show any indication for a finite-temperature mobility

edge.

In the lower inset of Fig. 3 we further show the behavior of

the longitudinal conductance at fixed temperature versus the

disorder strength VR, ranging from the edge of the superfluid

transition VR ∼ µ to the strong disorder regime, with VR ∼ 4µ .

Compatibly with the thermally activated scenario, we find that

the transport is exponentially suppressed with increasing dis-

order, but never vanishes, in agreement with experimental re-

sults [25]. Size effects, though present, do not indicate any

phase transition, at least for mesoscopic samples. Therefore,

our ab-initio analysis hints to a delocalized bad Bose-metal

phase at finite-temperature.

Conclusions – We have studied two-dimensional inter-

acting bosons in the presence of a correlated disordered po-

tential using ab-initio quantum Monte Carlo calculations. We

have found that the disorder renormalizes the low-energy

Hamiltonian in the neighborhood of the superfluid transition,

but the critical line remains in the universality class of the

Berezinkii-Kosterlitz-Thouless transition. It holds for arbi-

trary strong disorder up the zero-temperature Bose-glass tran-

sition. Moreover, we have developed a new estimator for the

conductance, which does not suffer from diverging statistical

errors. Deep in the strong disorder regime, the mass trans-

port exhibits a thermally activated behavior and it is strictly

suppressed only at zero temperature. It points towards the ex-

istence of a Bose bad-metal phase, as the finite-temperature

precursor of the Bose-glass insulator. We have found no indi-

cation of a finite-temperature many-body localization transi-

tion. Our results provide new theoretical insights both in the

general understanding of disordered interacting systems and

in the interpretation of experiments with both ultracold atoms

and disordered materials.
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