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A fast method for solving microstructural problems defined by
digital images : a space-Lippmann-Schwinger scheme
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SUMMARY

A fast numerical method is proposed to solve thermomechanical problems over periodic
microstructures whose geometries are provided by experimental techniques, like X-ray micro
tomography images. In such configuration, the phase properties are defined over regular grids of
voxels. To overcome the limitations of calculations on such fine models, an iterative scheme is proposed,
avoiding the construction and storage of finite element matrices. Equilibrium equations are written in
the form of a Lippmann-Schwinger integral equation, which can be solved iteratively. Unlike previous
algorithms based on the Fourier transform, the present scheme strictly operates in the real space
domain and removes the numerical Fourier and inverse Fourier transforms at each iteration. For this
purpose, the linear operator related to the Lippmann-Schwinger equation is constructed numerically
by means of transformation tensors in the real space domain. The convergence and accuracy of the
method are evaluated through examples in both steady-state thermics and linear elasticity problems.
Computational times are found to scale linearly with the number of degrees of freedom and parallel
computations can be carried out straightforwardly. The method is also illustrated on many examples
involving complex microstructures, including a problem defined by a micro tomography image.
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1. Introduction

One recent progress in material science is the combination of high resolution imaging
techniques and computational methods. Nowadays, realistic three-dimensional geometry of
microstructures can be routinely obtained by experimental imagery techniques like X-ray
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2 J. YVONNET

microtomography [20, 22]. After an appropriate image treatment, the obtained data are in
the form of three-dimensional grids (voxels) which can be assigned to the properties of each
phase. To obtain either the macroscopic thermomechanical properties or the local fields, local
equations must be solved by a numerical method. According to the type of experimental
devices, the data can contain up to 10243 or 20483 points rendering the use of classical
approaches such as the finite element very costly regarding computational times and memory
requirements. On one hand, constructing a mesh matching the interfaces from a voxels grid is
a very delicate task. On the other hand, using directly the voxels as elements leads to a huge
number of degrees of freedom making the systems resolution highly inefficient.

In [16, 17], Moulinec and Suquet proposed an iterative scheme avoiding the construction and
decomposition of finite element matrices for periodic microstructures. The idea is to re-write
the equilibrium equation in the form of an integral equation which can be solved iteratively.
The convolution product and related Green operators are evaluated in the Fourier space.
Then an inverse Fourier transform is applied to evaluate the constitutive equations at each
iteration in the real space. A similar method has been proposed by Müller [19] to model phase
transformations. Improvements of Fast Fourier Transform method can be found in [11, 13, 18]
for dealing with nonlinear problems and arbitrary phase contrasts. See [2, 15, 24, 27] for
recent improvement of the convergence in the iterative schemes and [14, 1, 26, 21] for other
applications and recent extensions.

In the present work, a similar scheme is proposed, but which avoids the use of the Fourier
transform while maintaining the efficiency and convenience of iterative schemes over regular
grids. To solve the Lippmann-Schwinger equation in the real space domain, several difficulties
arise: (a) the convolution product in the real space domain is a O(N2) operation, with N
being the number of degrees of freedom of the system; (b) numerical integration of the Green
function is a delicate operation, as the operator is highly singular. In the proposed technique,
coined as Space Lippmann Schwinger (SLS), these issues are overcome by directly computing
the integral operator numerically. This operator is determined in the form of transformation
tensors computed by means of the finite element method on a reduced domain. For this
purpose, a constant eingenstress is prescribed in a voxel, and the resulting strain field serves to
construct the transformation tensors related to the integral operator. The method and resulting
algorithms are presented in section 2 for both steady-state thermal and linear elasticity
problems. Computational details are provided in section 3. In section 4 several numerical
examples are presented to evaluate the convergence, accuracy and efficiency of the method
over thermal and elasticity problems. Different examples involving complex microstructures
are presented to illustrate the potential of the technique.

2. Formulation and algorithms

The aims of the present method are to compute the effective properties of a heterogeneous
material or either obtaining a description of local fields in the microstructure. A representative
volume element (r.v.e) is assumed known and its physical (e.g. thermal, elastic) properties are
defined in a regular grid of voxels (we maintain the word voxel throughout this paper, even
though the term pixel would be more appropriate to the present 2D applications). The r.v.e. is
defined in a domain Ω ⊂ RD, D being the space dimension. The phases are assumed perfectly
bounded and the microstructure periodic.
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THE SLS METHOD 3

2.1. Thermal steady-state problem

For the sake of simplicity, we first provide the ideas of the method in the context of steady-
state thermal problems. Given a grid of voxels with assigned thermal conductivity and a
macroscopic thermal gradient G, the localization problem consists in finding the microscopic
gradient ∇T(x) and flux fields q(x) in the microstructure such that

∇ · (q(x)) = 0 in Ω, (1)

where ∇·(.) denotes the divergence operator and where q(x) is related to the gradient through
the Fourier’s constitutive equation:

q(x) = −k(x)∇T(x), (2)

k being a second-order conductivity tensor and ∇(.) the gradient operator. The gradient field
is such that

⟨∇T(x)⟩ = G, (3)

where ⟨.⟩ denotes the spatial average over Ω. Condition (3) is satisfied for

∇T(x) = G+∇T̃(x), (4)

where ∇T̃(x) is a periodic temperature gradient field over Ω. Introducing a reference medium
with conductivity k0 and splitting k(x) into

k(x) = k0 + k(x)− k0, (5)

the problem (1) can be written as

∇ ·
(
k0∇T(x)

)
= −∇ ·

([
k(x)− k0

]
∇T(x)

)
. (6)

Setting

q̂(x) =
[
k(x)− k0

]
∇T(x) (7)

Eq.(6) becomes

∇ ·
(
k0∇T(x)

)
= −∇ · (q̂ (∇T(x))) . (8)

Now using (4) we obtain

∇ ·
(
k0∇T̃(x)

)
= −∇ · (q̂ (∇T(x))) . (9)

As the problem (9) is linear, its solution can be expressed as

∇T̃i(x) = −Γ0
ij ∗ q̂j (∇T(x)) , (10)

or

∇T̃i(x) = −
∫
Ω

Γ0
ij(x− y)q̂j (∇T(y)) dΩ, (11)
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4 J. YVONNET

where Γ0
ij is the periodic Green function related to the linear operator in (9) (see Appendix

7).
Then we have, using (4) and (11):

∇Ti(x) = G−
∫
Ω

Γ0
ij(x− y)q̂j (∇T(y)) dΩ. (12)

Eq. (12) is an integral equations, identified as a Fredholm equation of the second type, and
also called Lippmann-Schwinger equation (see e.g. [8]). The main interest of such form is that
it can be solved iteratively using a development of the linear operator into Neumann series [7].
Writing (12) as

∇T(x) = L (∇T(x)) +G, (13)

we have

∇T(x) = (I− L)−1
G. (14)

The operator (I− L)−1
can be approximated by a Neumann series. If r (L) < 1, r(.) being the

spectral radius of the linear operator L [7] we have

(I− L)−1
(.) ≃ I+ L(.) + L (L(.)) + ...+ Ln(.) (15)

where I is the identity operator and Ln(.) denotes the n − th application of the operator L.
From (14) an (15) an iterative scheme (fixed point) can be defined to solve (13) as

∇Tn+1(x) = L (∇Tn(x)) +G, (16)

where here n denotes the iteration index. In the present work, we propose a numerical method
to solve problems in form of Lippmann-Schwinger equation with an algorithm operating only
in the real space domain. Then to apply the iterative scheme (16), a fast method must be
provided to evaluate L efficiently. The Green function Γ0 can be defined exactly in the real
space for many linear partial differential equations (see e.g. [9, 3, 23]). However, its convolution
with an arbitrary function given in a discrete form is delicate, as Γ0(x− y) is highly singular
at x = y. Furthermore, the convolution product is a O(N2) operation, and its numerical
evaluation is prohibitive for large systems. To overcome these difficulty, the proposed Space
Lippmann-Schwinger (SLS) method is described as follows. In this framework, the Green’s
function is not integrated, i.e. the convolution product is not evaluated numerically. Instead,
the stress field is assumed constant in each voxel, as the voxel is the elementary unit for
image-based simulations. Then the problem of prescribing a unitary eigenstress in one voxel
is solved by the finite element method. The resulting solution corresponds to the convolution
product of the analytical Green’s function with a unitary stress field located in one voxel
(square domain in 2D). Using the superposition principle, the complete local strain field is a
linear combination of the obtained solutions with respect to actual values of the stress in each
voxel. With this procedure, the complicated integration procedure of the Green’s function is
avoided. We further restrict the presentation to the two-dimensional case, while extension to
3D is straightforward.

In the following, we will distinguish two different grids; (a) the material grid, related to the
r.v.e, containing the piece-wise information of phase properties in a Nx × Ny grid and (b) a

Copyright c⃝ 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 00:1–1
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Figure 1. (a) Mesh used to compute transformation tensors of a reference point xp; (b) Material grid
related to the r.v.e. and projection of the transformation tensors for points xm and xq.

smaller grid with Ns
x × Ns

y points, utilized to compute the transformation tensors related to
the integral operator in the Lippmann-Schwinger equation (see figure 1).

We first assume that the constitutive properties are piece-wise constant within each voxel of
the material grid. For the sake of simplicity we also assume here that each phase is isotropic
while this is not mandatory. In that context the thermal conductivity k(x) is expressed as:

k(x) ≃
∑
m

χm(x)km ∀x ∈ Ω, (17)

where χm is a characteristic function related to a voxel m in the material grid (see figure 1
(b)), such as χm(x) = 1 for x ∈ Ωm and zero otherwise, Ωm being a parallelepipedic domain
Ωm centered on the point xp and kp the conductivity in the voxel m.

Invoking the superposition principle we can write

∇T̃n+1
i (x) =

∑
p

ψp
ij(x)q̂

n
j (x

p) (18)

where

ψp
ij(x) = ∇ϕpji (x) (19)

are basis functions, or transformation tensors. The variable ϕpj(x) is defined as a temperature
field verifying

∇ ·
(
k0∇ϕpj(x)

)
= −∇ ·

(
Fpj(x)

)
for j = 1, ..., D (20)

Copyright c⃝ 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 00:1–1
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6 J. YVONNET

with the boundary conditions

ϕpj(x) = 0 on ∂Dp (21)

corresponding to ∇ϕpj(x) = 0 over ∂Dp. In (20) D is the problem dimension and Fpj(x) is a
prescribed constant flux in Ωp such that

Fpj(x) = χp(x)ej . (22)

Eq. (20) can be solved numerically, e.g. by means of the finite element method. Then
prescribing the step flux Fpj(x) for each component j independently gives a temperature
field solution ϕpj(x) which can be derived to obtain ∇ϕpji (x). At this stage two important
remarks can be drawn:

1. As ψp
ij(x) are associated to an homogeneous medium in an infinite domain, we have:

ψp
ij(x) = ψm

ij (x− a) , xm = xp − a, (23)

where a is an arbitrary translation vector. In other words, the temperature solution
produced by a step flux in a voxel centered at point xp is the same that the one produced
by a similar flux at a point xm, translated by a = xm − xp (see figure 2).

2. As ψp
ij(x) is related to a local step flux, we can assume that its value vanishes away from

xp from the properties of the Green function (see expressions in 2D and 3D elastostatics
in [3, 23]) and can truncate its support. In that case, zero Dirichlet conditions can be
prescribed over the boundary of Dp.

Considering remarks 1 and 2, computing the transformation tensors will only require:

• Solving P FEM problems over a small domain Dp implying Ns
x ×Ns

y nodes, where P is
the number of components of Fp and where Ns

x×Ns
y can be much smaller than Nx×Ny.

For example, in the thermal case, there are P = 2 independent components of Fp in 2D,
and P = 3 in 3D. In the elasticity case discussed in section 2.2, the step flux is replaced
by a step eigenstress, having P = 3 independent components in 2D, P = 6 in 3D.

• Evaluating ψm
ij (x), ∀m ̸= p will only require applying translation and periodicity

conditions in the actual domain Ω, by re-using the computed values of ϕpj(x). The
computational details will be discussed in section 3.

2.2. Elastostatic problem

In the case of elasticity, the localization problem reads as follows: given a macroscopic strain
ε, find the displacement field u(x) such that:

∇ · (C(x) : ε(x)) = 0 in Ω, (24)

where C(x) is the fourth-order tensor of elastic properties and

ε(u) =
1

2

(
∇u+∇uT

)
, (25)

Copyright c⃝ 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 00:1–1
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Figure 2. Translation of the function ψp
ij(x) and its compact support Dp.

verifying

⟨ε(x)⟩ = ε. (26)

Eq. (26) is satisfied for

ε(x) = ε+ ε̃, (27)

where ε̃ is a periodic fluctuation over Ω. Introducing a reference medium with elastic properties
C0 as

C(x) = C0 + C(x)− C0, (28)

equation (24) becomes

∇ ·
(
C0 : ε(x)

)
= −∇ ·

([
C(x)− C0

]
: ε(x)

)
in Ω. (29)

Using (27) we obtain

∇ ·
(
C0 : ε̃(x)

)
= −∇ · (τ̂ (ε(x))) in Ω, (30)

with τ̂ (x) =
[
C(x)− C0

]
: ε(x). Then the Lippmann-Schwinger equation writes:

ε(x) = ε− Γ0 ∗ τ̂ (ε(x)) (31)

where Γ0 is the periodic Green function related to the linear operator in (30) (see Appendix
7).

We apply the same methodology as in the previous section and propose a discrete form of
the convolution operator as:

ε̃n+1
ij (x) =

∑
p

ψp
ijkl(x)τ̂

n
kl(x

p), (32)

where

ψp
ijkl(x) = εij

(
ϕp,kl(x)

)
≡ εp,klij (x). (33)

Copyright c⃝ 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 00:1–1
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8 J. YVONNET

In Eq. (33), ϕp,kl(x) is the displacement vector solution obtained by prescribing a constant
unitary eigenstress Sp

kl(x) in a voxel centered on a point xp with

Sp,kl
ij (x) = χp(x)Jkl

ij (x), (34)

the second-order tensor J being defined in Appendix 7, Eq. (81).

In practice, for a 2D problem, 3 elementary eigenstress are prescribed at the point xp:

Sp,11(x) = χp(x)

 1 0 0
0 0 0
0 0 0

 , Sp,22(x) = χp(x)

 0 0 0
0 1 0
0 0 0

 (35)

and

Sp,12(x) = χp(x)

 0 1 0
1 0 0
0 0 0

 . (36)

The problem to be solved for computing ψp
ijkl(x) ≡ εp,klij (x) is given by

∇ ·
(
C0 : εp,kl(x)

)
= −∇ ·

(
Sp,kl(x)

)
(37)

with boundary conditions

ϕp,kl(x) = 0 on ∂Dp (38)

and where the indices k, l are chosen to correspond to the elementary cases. Problem (37) can
be easily solved by a finite element method, as described in section 3.2.

2.3. Choice of the reference medium

To ensure convergence of the iterative algorithm, Michel et al. [13] have shown that for an
isotropic linear elastic medium, a sufficient condition is that

κ0 > max {κ(x)} /2 , µ0 > max {µ(x)} /2, (39)

where κ and µ denote bulk and shear parameters. A similar condition for isotropic, linear,
steady-state thermal problems can be derived as

k0 > max {k(x)} /2. (40)

Another interesting discussion on the convergence rate of iterative schemes can be found in
[15]. A case of locally anisotropic materials has been treated in the context of FFT in Willot
[25] for dealing with voids embedded in an anisotropic elastic matrix.

Copyright c⃝ 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 00:1–1
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THE SLS METHOD 9

3. Computational details

3.1. Thermal problems

3.1.1. Computation of transformation tensors by FEM: weak form In the present work, (20)-
(21) is solved by means of the Finite element method. The grid Ns

x × Ns
y related to Dp is

used, and quadrilateral bilinear elements are constructed such as one element corresponds to
a voxel in the material grid (see figure 1). The weak form associated to (20)-(21) is provided
as follows. Multiplying (20) by a test function δϕ and integrating over Dp gives:∫

Dp

k0
(
∇ ·

(
∇ϕpj(x)

))
δϕ(x)dΩ = −

∫
Dp

(
∇ ·

(
Fjp(x)

))
δϕ(x)dΩ. (41)

Given a vector field v and a scalar field u the property:

u∇ · (v) = ∇ · (uv)− v · ∇u (42)

is applied to (41) yielding∫
Dp

k0∇ ·
(
∇ϕpj(x)δϕ(x)

)
dΩ−

∫
Dp

k0∇ϕpj(x) · ∇δϕ(x)dΩ

= −
∫
Dp

∇ ·
(
Fpj(x)δϕ(x)

)
dΩ+

∫
Dp

Fpj(x) · ∇δϕ(x)dΩ. (43)

Using the divergence theorem we obtain:∫
Dp

k0∇ϕpj(x) · ∇δϕ(x)dΩ = −
∫
Dp

Fpj(x) · ∇δϕ(x)dΩ

+

∫
∂Dp

k0∇ϕpj(x) · nδϕ(x)dΓ +

∫
∂Dp

Fpj(x) · nδϕ(x)dΓ, (44)

where ∂Dp denotes the boundary of Dp. Taking δϕ(x) ∈ H1
0 (Dp) and as ϕpj(x) also vanishes

on ∂Dp we obtain the following weak form: find ϕpj(x) ∈ H1
0 (Ω) such that∫

Dp

k0∇ϕpj(x) · ∇δϕ(x)dΩ = −
∫
Dp

Fpj(x) · ∇δϕ(x)dΩ ∀δϕ(x) ∈ H1
0 (Ω). (45)

A classical FEM discretization of (45) leads to a linear system of equations in the form

KTpj = Gpj . (46)

As a results, the temperature field ϕpj(x) is found at the nodes of the mesh (see figure 1 (a))
and is provided in vector Tpj . The derivatives ∇iϕ

pj(x) ≡ ψp
ij(x) are evaluated at the center

of elements to match the material grid using the FEM shape functions derivatives. To evaluate
ψm
ij (x) for m ̸= p on the material grid, we simply translate the values of the discrete solution

ψp
ij and apply some periodic conditions on the boundary of Ω, as illustrated in figure 3. Figure

3 (a) provides the plot of the function ψp
11(x) in Eq. (18) for a FEM nodal grid Ns

x × Ns
y

= 20 × 20, resulting from solving the problem (46) with k0 = 1 W.m−1. K−1 and G = e1.
Figures 3 (b) illustrates the mapping of ψp

11(x) on the material grid, containing more voxels.
The different images correspond to the cases where periodic conditions are applied near the
boundaries.

Copyright c⃝ 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 00:1–1
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Figure 3. (a) Plot of the transformation tensor ψp
11(x) of a reference point xp computed on a

Ns
x ×Ns

y = 20 × 20 grid; (b) projection of ψp
11(x) on the Nx ×Ny material grid for arbitrary points

xm, illustrating the periodicity conditions to apply when points of the reference grid fall out of the
material grid.

3.1.2. Algorithm The integral equation (12) can be solved iteratively using the scheme:

∇Tn+1
i (x) = G− Γ0

ij ∗ q̂j (∇Tn) . (47)

Replacing the convolution operator by its discrete counterpart in the form of spatial
transformation tensors we obtain:

∇Tn+1
i (x) = G+

∑
p

ψp
ij(x)q̂

n
j (x

p). (48)

Eq. (48) can be re-written in an alternative form by noting that for every compatible gradient
field ∇T (i.e. a vector field deriving from a temperature field), one has [13]:

Γ0 ∗
(
k0∇T

)
= ∇T−G. (49)

Introducing (49) in (47) yields the expression

∇Tn+1
i (x) = ∇Tn

i (x)− Γ0
ij ∗ (k(x)∇Tn(x)). (50)

Replacing the convolution operator by its discrete form yields the following algorithm. Given
G, C a convergence criterion (see section 3.3) and δ a tolerance parameter:

1. Initialize ∇T0(x) = G.
2. WHILE C(∇Tn+1) > δ

Compute ∇Tn+1
i (x) = ∇Tn

i (x) +
∑

p ∇ψ
p
ij(x)

[
k(xp)∇Tn

j (x
p)
]
.

3. Compute the new flux qn+1
i (x) = −k(x)∇Tn+1

i (x).
4. Compute C(∇Tn+1).
5. Go to (2).

Copyright c⃝ 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 00:1–1
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3.2. Elasticity

3.2.1. Computation of transformation tensors by FEM: weak form Here we provide the
weak form of the FEM problem used to compute the transformation tensors related to the
convolution operator in the Lippmann-Schwinger equation for elastic problem. Multiplying (37)
by a test function δϕ ∈ H1

0 (Ω), integrating over Ω and carrying out an integration by parts,
the weak form related to (37)-(38) is given as follows. Find the displacements ϕp,kl ∈ H1

0 (Ω)
such that:∫

Dp

ε (δϕ(x)) : C0 : ε
(
ϕp,kl(x)

)
dΩ = −

∫
Dp

ε (δϕ(x)) : Sp,kl(x)dΩ ∀δϕ ∈ H1
0 (Ω). (51)

Introducing a FEM discretization of (51) leads to a discrete linear system in the form:

Kup,kl = F
(
Sp,kl(x)

)
, (52)

where up,kl is the solution vector containing the nodal values of ϕp,kl(x). The first step of
the algorithm is then to solve (52) for the indices k, l corresponding to the elementary cases
defined in section 2.2. Then the functions ψp

ijkl are computed according to (33) at the center
of elements and stored.

3.2.2. Algorithm Considering similar arguments than in the thermal case and using the
property of the Green operator [13]:

Γ0 ∗
(
C0 : ε

)
= ε− ε (53)

we obtain the following algorithm, given ε:

1. Initialize ε0(x) = ε , σ0(x) = C(x) : ε.

2. WHILE C(εn+1) > δ
Compute

εn+1
ij (x) = εnij(x) +

∑
p

ψp
ijkl(x)σ

n
kl(x

p). (54)

3. Compute the stress σn+1(x) = C(x) : εn+1(x).
4. Compute C(εn+1).
5. Go to (2).

3.3. Convergence criteria

The following criteria have been investigated

C1 =

∥∥σn+1(x)− σn(x)
∥∥

∥σn+1(x)∥
, (55)

C2 =

∥∥C0 :
(
εn+1(x)− εn(x)

)∥∥
∥σn+1(x)∥

=

∥∥C0 : Γ0 ∗ σn
∥∥

∥σn+1(x)∥
, (56)
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and

C3 =

∥∥⟨σn+1(x)
⟩
− ⟨σn(x)⟩

∥∥
∥⟨σn+1(x)⟩∥

. (57)

Criteria C1 and C2 are based on local quantities, while C3 is based on macroscopic ones. In
the above, Γ0 ∗ σn is understood as its discrete counterpart

∑
p ψ

p
ijklσ

n
kl. In the thermal case,

the strain and stress are simply replaced by the temperature gradient and flux, respectively.

3.4. Remarks

1. It is worth noting that the Green functions presented in Eqs (71) and (82) are not
used directly in the present work. Instead, the functions ψ defined in Eqs. (18) and
(32) are approximations of the convolution of these Green functions with a unitary
flux/eigenstress localized in one voxel. The result are provided directly by means of
solving the finite element problems defined in Eqs. (45) and (52).

2. The structure and implementation of the algorithm are very simple. Furthermore, as all
sums involved in Eq. (54) are independent, distributing them over many processors is
direct. This point will be tested in the numerical examples of section 4.8.

3. The present algorithm employs the same basic scheme as in [10] but only operates in the
real space domain. Then, any other variant could be investigated, like a stress approach
accelerated schemes or algorithms for handling infinite contrasts or nonlinear problems
[17, 13, 15]. These points would deserve future separated studies.

4. Memory requirements are very low, as no global rigidity matrix needs to be constructed
neither stored, and scale linearly with the number of voxels.

5. The computational time for each iteration is linear with the number of voxels, and
proportional to Ns

x ×Ns
y × V , V being the number of voxels. A deeper analysis on the

computational times will be performed in section 4.8.

4. Numerical examples

4.1. Thermal problem: Influence of the reference medium and phase contrast on convergence

In this first test the influence of the reference medium on the convergence is examined for the
case of thermal conductivity. A 2D r.v.e composed of a square cell with a centered cylindrical
inclusion is considered. The volume fraction is f = 0.3. The conductivity of the matrix is kmat=
1W.m−1.K−1 and several values of inclusion’s conductivity are investigated according to figure
4. A macroscopic gradient G = e1 is prescribed. The grid for computing the transformation
tensors is chosen as Ns

x × Ns
y = 80 × 80. For this first test, we also chose for the material

grid Nx ×Ny = 80 × 80. The influence of Ns
x on the convergence will be discussed in section

4.5. the functions ψp
ij(x) are computed according to the procedure described in section 3.1.

When the value of k0 is changed the basis functions ψp
ij(x) are simply scaled according to

ψp
ij(k

0,x) = ψp
ij(1,x)/k

0. We then run the algorithm described in section 3.1. Here the criterion

C1 (Eq. (55)) is chosen. The number of iterations until convergence (δ = 10−3 in all following
example) is plotted in figure 4 as a function of the ratio k0/max(k(x)). We can note that
the theoretical limit for convergence k0/max(k(x)) > 1/2 is verified numerically. The optimal
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Figure 4. Influence of the reference medium on the convergence for the thermal problem (units in
W.m−1.K−1).
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Figure 5. Thermal problem: Influence of the contrast of phase properties on the convergence of the
algorithm.

value of k0/max(k(x)) is found to be nearly above 0.5. We will then chose in the next examples
k0/max(k(x)) = 0.6.

In this next test, the convergence is examined with respect to the contrast between phase
properties in figure 5. The r.v.e., macroscopic gradient and grid sizes are the same as in the
previous test. The different criteria (55), (56) and (57) are compared.

We can notice that according to the chosen criterion, the convergence can be strongly
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Figure 6. Effective conductivity versus volume fraction.

influenced by the contrast of the phases, which is a classical results in such iterative schemes
[17, 13]. We can note that when inclusions are perfectly conducting (kinc/kmat = 1010), both
criteria C1 and C3 lead to a reasonable number of iterations (102 and 103, respectively), while
criterion C2 leads to divergence of the iterative scheme.

4.2. Effective thermal conductivity

The aim of this example is to evaluate the accuracy of the method for computing the effective
thermal properties of a composite material. The r.v.e is the same as in the previous example.
Assuming that the equivalent homogeneous material is transversally isotropic, the effective
conductivity can be obtained by prescribing a macroscopic gradientG = e1+e2 and computing

keff = ⟨k(x)∇T1(x)⟩ . (58)

where∇T1(x) is the x− component of the temperature gradient solution at equilibrium. Firstly,
the volume fraction f is varied for a fixed contrast of phase properties kinc = 10 W.K−1.m−1,
kmat = 1 W.K−1.m−1. We chose Ns

x ×Ns
y = 80× 80 and Nx ×Ny = 80× 80. We compare the

obtained results with an analytical solution provided by a generalized self consistent model:

keff = kmat +
D.kmat.f [kinc − kmat]

D.kmat + (1− f) [kinc − kmat]
, (59)

where D is the space dimension, in figure 6. We can note a good accuracy for all the range of
volume fractions. We also note that the different criteria are quantitatively equivalent in this
case.

Secondly, the volume fraction is kept constant to f = 0.4 while the contrast changes, fixing
kmat as 1 W.K−1.m−1. Here again, a very good accuracy is appreciated for all the considered
contrast ranges, as shown in figure 7, and for all criteria. We compare in table I the number of
iterations required to achieve convergence for each criterion and the corresponding numerical
values. It appears that for all contrasts, using criterion C3 based on the macroscopic values of
stress is much faster and leads to a comparable accuracy regarding effective properties.
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Figure 7. Effective conductivity versus contrast of phase properties for a fixed volume fraction.

Table I. Thermal effective properties: comparison of results obtained by the different criteria with
respect to the number of iterations.

Contrast C1 C2 C3

keff Nb. iter keff Nb. iter keff Nb. iter GSCM FEM
10−4 0.442 13 0.434 12 0.434 6 0.439 0.424
10−3 0.434 13 0.434 12 0.435 6 0.440 0.425
10−2 0.442 13 0.442 12 0.442 6 0.447 0.4331
10−1 0.513 13 0.513 11 0.514 6 0.516 0.505
1 1 1 1 1 1 1 1 1
10 1.951 8 1.950 10 1.954 10 1.937 2.00
102 2.266 31 2.266 154 2.278 26 2.238 2.395
103 2.309 88 2.305 1258 2.325 26 2.275 2.400

4.3. Thermal problem: local fields in a microstructure with 1000 inclusions

An example involving 1000 inclusions is carried out. The r.v.e. consists in a square unit cell
containing 1000 cylindrical inclusions whose positions are provided by an uniform probability
distribution. Penetration between inclusions is tolerated. The volume fraction of inclusions is
chosen as f = 0.2 which gives a radius R = 7.9788 voxels. The phase properties are kinc = 10
W.K−1.m−1, kmat = 1 W.K−1.m−1. A macroscopic gradient G = e1 + e2 is prescribed. We
chose Ns

x×Ns
y = 80×80. In that case, the size of the grid used to compute the transformation

tensors is much smaller than the material grid, chosen as Nx×Ny = 1000×1000. The algorithm
converges in 7 iterations. Local field distribution is plotted in figure 9. Discussion on CPU times
and parallel computing is further developed in section 4.8.
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Figure 8. Microstructure with 1000 inclusions, 1000 × 1000 grid. The zoom zone refers to a 80 × 80
grid.

Figure 9. Microstructure with 1000 inclusions, 1000× 1000 grid, ∇T1(x) field.

4.4. Elasticity: Influence of the reference medium and phase contrast

The next series of tests concerns elasticity problems. In all further elasticity examples, plane
strain is assumed and the phases are supposed to be characterized by an isotropic linear
elastic behavior. We first test the influence of the reference medium on the convergence of the
algorithm. The r.v.e. is a unit cell with a centered cylindrical inclusion. The volume fraction
is chosen as f = 0.3. The Lamé’s parameters of the matrix are taken as µmat = 1 MPa and
λmat = 1 MPa, corresponding respectively to a Poisson’s coefficient νmat = 0.25 and a Young’s
modulus E = 2.5 MPa. The parameters of the inclusions µinc and λinc vary. We took for all
cases λ = µ corresponding to ν = 0.25 and E = 2.5λ. A macroscopic strain ε11 = 1, ε22 = 0,
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Figure 10. Elasticity: influence of the reference medium parameters on the convergence of the
algorithm.

ε12 = 0 is prescribed. A grid with Ns
x = Ns

y = 80 is chosen to compute the transformation
tensors. The material grid is also taken as 80×80 in this test. We first analyze the influence of
the choice of the reference medium characterized by λ0/max(λ(x)) on the convergence. When
λ0 = µ0 the functions can be simply scaled from ψp

ijkl(λ
0) = ψp

ijkl(λ = 1)/λ0. Otherwise, the

functions ψp
ijkl must be re-computed for each new set of λ0, µ0, which is not penalizing as the

transformation tensors are computed on a small grid. The criterion C1 was chosen. Results are
presented in figure 10. As in the thermal case, the optimal value of λ0/max(λ(x)) is slightly
above 0.5, the theoretical limit for convergence predicted by (39) is numerically verified.

In a second test, we vary the contrast between phases λinc/λmat for λ
0 = 0.6max(λ(x)) and

for the different criteria C1, C2 and C3. All other parameters are the same as in the previous
case. Results are presented in figure 11. We can note a similar dependence to the contrast as
in FFT algorithms [17] for all criteria. We note that the criterion C3, based on macroscopic
quantities, leads to a fastest convergence, as expected. The criterion C2 leads to the highest
number of iterations.

4.5. Influence of Ns
x on the convergence

To maintain the computation of the transformation tensors in a reduced domain as compared
to the size of the material grid, the numerical functions are truncated at a given distance from
the reference point xp, where it is assumed that they vanish. In this test, we evaluate the
influence of the size of the reduced domain, in other words Ns

x if a square grid Ns
x × Ns

x is
employed. We use different r.v.e. containing cylindrical inclusions whose centers are located
on a square lattice. We define the characteristic fluctuation length (in voxels) Lfluct as the
number of voxels along one spatial direction in one pattern. When Lfluct > Ns

x, the r.v.e.
contains a single inclusion. The volume fraction is f = 0.3 and the material properties are
λinc = µinc = 10 MPa, λmat = µmat = 1 MPa. A macroscopic strain ε11 = 1, ε22 = 0, ε12 = 0
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Figure 11. Elasticity: influence of the contrast of phase properties on the convergence of the algorithm.

is prescribed. We present in figure 12 the number of iterations to convergence for the different
values of Ns

x with respect to Lfluct. What appears is that if Lfluct ≤ Ns
x, the convergence

is not much affected by the choice of Ns
x. However, when Lfluct > Ns

x, the convergence is
slower. This can be explained by the compact support of the transformation tensors. Even
though their values are very small away from the reference voxel p, they are not zero. Then
a knowledge of the characteristic fluctuation length (in voxel) might be useful to adapt Ns

x

using e.g. an estimated correlation length. Furthermore, it is worth noting that in the present
work, the resolution for the transformation grids matches the ones of the microstructure grid.
It could be possible to consider a transformation grid with a different resolution than the
material grid. However, in that case the projection of the transformation data on the material
grid would imply additional modifications of the algorithm that have not been considered here.
These points should be investigated in future works.

4.6. Elasticity: effective properties

In this example we evaluate the accuracy of the method for computing the effective elastic
properties of the composite. The considered r.v.e is a rectangular cell containing cylindrical
inclusions whose centers are positioned on the vertices of a hexagonal lattice. An illustration
of the corresponding voxel grid is depicted in figure 13. It has been shown in He and Zheng [5]
that if the r.v.e. possesses a C3 symmetry, then the effective behavior is transversally isotropic
with in-plane properties characterized by elastic parameters µeff and λeff . These values are
computed numerically as follows. Prescribing a macroscopic strain ε11 = 0, ε22 = 0, ε12 = 1/2,
the effective shear coefficient is given by

µeff = ⟨σ12(x)⟩ . (60)
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Figure 12. Influence of truncating the support of the transformation tensors on the convergence. The
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x are given in voxels.

Figure 13. r.v.e. model corresponding to a hexagonal lattice, f = 0.2

In the context of 2D plane strains, the transverse bulk modulus is found numerically by
prescribing a strain ε̄11 = 1/2, ε̄22 = 1/2, ε̄12 = 0 and by computing

κeff =
1

3
⟨σ11(x) + σ22(x) + σ33(x)⟩ , (61)

where σ33(x) = λ(x)(ε11(x) + ε22(x)). In both case, we compute the effective parameters and
compare them with a FEM solution based on the same grid of voxels, where 4 nodes elements
corresponding to each voxel are employed. Firstly, a fixed contrast of material properties within
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Figure 14. Comparison of effective elastic parameters computed with SLS and FEM for different
volume fractions: (a) Effective shear coefficient µeff and (b) Effective transverse bulk modulus κeff .

Table II. Effective shear modulus µeff : comparison of results obtained by SLS and FEM.

Contrast SLS (C1) Nb. iter. (C1) SLS (C3) Nb. iter. (C3) FEM
10−4 0.271 32 0.273 12 0.296
10−3 0.272 31 0.274 12 0.298
10−2 0.285 31 0.287 11 0.310
10−1 0.400 19 0.401 9 0.418
1 1.000 1 1.000 1 1.000
10 1.770 18 1.776 8 1.817
102 1.988 54 2.011 21 2.047
103 2.021 193 2.055 51 2.065
104 2.029 476 2.071 85 2.065

the different phases is chosen as λinc = 10 MPa, µinc = 10 MPa, λmat = 1 MPa, µmat = 1
MPa while the volume fraction is changed. To show that the method is accurate even for
small grids, we chose Ns

x = Ns
y = 40 while the material grid is composed of 40 × 69 voxels.

Results are provided in figure 14 (a)-(b) for criteria C1 and C3. We can note a good accuracy
of the results with respect to the FEM solution. We also note that both C3 and C1 criteria
give comparable results regarding the accuracy, while the C3 criterion greatly alleviates the
number of iterations. This point will be further detailed in the following.

Next the volume fraction is kept fixed to f = 0.4 and the contrast is changed, keeping λmat

= 1 MPa, µmat = 1 MPa. Results are provided in figures 15 (a) - (b). Here again, a good
agreement is observed with the FEM reference solution, even though the material grid was
very coarse.

Next we indicate in Tables II and III the number of iterations used for both convergence
criteria C1 and C3 and the corresponding values of effective parameters. We can note that
regarding effective properties, the criterion C3 gives a reasonable accuracy at much lower cost.
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Figure 15. Comparison of effective elastic parameters computed with SLS and FEM for fixed volume
fractions and varying contrast: (a) Effective shear coefficient µeff and (b) Effective transverse bulk

modulus κeff .

Table III. Effective bulk modulus κeff : comparison of results obtained by SLS and FEM.

Contrast SLS (C1) Nb. iter. (C1) SLS (C3) Nb. iter. (C3) FEM
10−4 0.586 20 0.590 8 0.544
10−3 0.588 19 0.591 8 0.545
10−2 0.604 17 0.607 7 0.563
10−1 0.756 13 0.756 6 0.722
1 1.667 1 1.667 1 1.667
10 3.061 12 3.064 7 2.992
102 3.457 33 3.480 15 3.336
103 3.507 121 3.565 37 3.376
104 3.511 333 3.595 67 3.381

4.7. Elasticity: local fields

We examine the accuracy of the local field distribution obtained by the SLS method in an
elastic r.v.e.. Firstly, the r.v.e used in the previous example is considered with volume fraction
f = 0.2. The material parameters of phases are λinc = 10 MPa, µinc = 10 MPa, λmat = 1 MPa,
µmat = 1 MPa. The macroscopic strain is ε11 = 1, ε22 = 0, ε12 = 0. We chose Ns

x = Ns
y = 80.

The material grid is composed of 80 × 138 voxels and the C3 criterion is chosen to stop
the iterative scheme, which converges in 8 iterations for δ = 10−3 in that case. The local
strain and stress fields are computed for both SLS and a FEM solution utilizing a mesh of 4
nodes elements matching the voxels. Results are presented in figures 16-23. Let H denotes the
dimension of the r.v.e. along y. Figures 16 and 17 depict the strain and stress solutions along
a line (x, y = H/2) (passing through the central inclusion) and a line (x, y = 3H/4) passing
between the inclusions. We can note that the local fields are accurately captured, even though
a macroscopic criterion C3 has been chosen.

Next, the microstructure is characterized by a more complex r.v.e. composed of 200 randomly
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Figure 16. Strain solution in the hexagonal r.v.e. along a line (a) y = H/2 and (b) y = 3H/4.
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Figure 17. Stress solution in the hexagonal r.v.e. along a line (a) y = H/2 and (b) y = 3H/4.

(a) (b)

Figure 18. Strain distribution (ε11-component) in the r.v.e. based on hexagonal lattice: (a) SLS and
(b) FEM solutions.
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(a) (b)

Figure 19. Strain distribution (ε22-component) in the r.v.e. based on hexagonal lattice: (a) SLS and
(b) FEM solutions.

(a) (b)

Figure 20. Strain distribution (ε12-component) in the r.v.e. based on hexagonal lattice: (a) SLS and
(b) FEM solutions.

(a) (b)

Figure 21. Stress distribution (σ11-component) in the r.v.e. based on hexagonal lattice: (a) SLS and
(b) FEM solutions.
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(a) (b)

Figure 22. Stress distribution (σ22-component) in the r.v.e. based on hexagonal lattice: (a) SLS and
(b) FEM solutions.

(a) (b)

Figure 23. Stress distribution (σ12-component) in the r.v.e. based on hexagonal lattice: (a) SLS and
(b) FEM solutions.

distributed cylindrical pores and a volume fraction f = 0.4. The material properties are chosen
as λinc = µinc = 10−6 MPa, λmat = µmat = 1 MPa. A macroscopic strain ε11 = 1/2, ε22 = 1/2,
ε12 = 0 is prescribed. The material grid contains 300 × 300 voxels. The criterion C3 is used
to stop the computations. Comparison of von Mises stress fields obtained by SLS and FEM
is provided in figures 24 and 25. Due to high stress concentrations, the contrast plot is low
in figure 24. By thresholding the maximum value in the color scale to 4 MPa, the local fields
appear more clearly and can be compared between both methods in figure 25. Here again, we
can note that even though the macroscopic C3 criterion was used, the local fields are in very
good agreement with the reference (FEM) solution.

4.8. Computational times

In this example, we test the efficiency of the SLS algorithm for a problem involving a large
number of degrees of freedom. A domain is defined in a 200002 voxels grid, containing 400000
circular inclusions, whose centers coordinates are defined by a uniform probability law. The
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(a) (b)

Figure 24. von Mises stress distribution in the r.v.e. with porous microstructure: (a) SLS and (b)
FEM.

(a) (b)

Figure 25. von Mises stress distribution in the r.v.e. with porous microstructure: (a) SLS and (b)
FEM; the maximum stress is threshold to 4 MPa.

target volume fraction is f = 0.4, which leads to an inclusion diameter equal to D = 22.5676
voxels. As penetration between inclusions is tolerated, the actual volume fraction is lower
than the prescribed one and depends on realizations. Pictures of different zooms in the whole
domain are shown in figures 26 (a), 27 (a) and 28 (a), corresponding respectively to 50002,
10002 and 2502 voxels grids. The macroscopic load is defined as ε11 = 1, ε22 = 1, ε12 = 0. We
chose Ns

x = Ns
y = 80. The C3 criterion was selected to stop iterations. The main objective is

to analyze the complexity of the computational times with respect to the number of voxels.
Several subdomains with increasing sizes are extracted from the whole domain to carry out the
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(a) (b)

Figure 26. (a) Random microstructure (1/16) of the whole model, 50002 voxel grids; (b) σ11 stress
field.

computations. Stress fields (σ11-component) are depicted for the 50002, 10002 and 2502 voxels
grids in figures 26 (b), 27 (b) and 28 (b), respectively. Per-iteration and total computational
times are plotted in figure 29, using parallel computations with 32 threads. In this example,
the number of iteration depends on the number of voxels, because the problem is different in
each case, inclusions being randomly distributed. However, this number stabilizes to 11 and 13
for the largest models. We can note the linear increases of computational times with respect to
number of voxels in the domain. The largest problem involves 4.108 voxels, corresponding to
8.108 degrees of freedom. Such very fine models might be useful for validating future advanced
multiscale models. Finally, the evolution of computational times with respect to the number of
threads (cores) is plotted in figure 30, for a 1000× 1000 grid extracted from the whole model.

4.9. Microstructure obtained from micro tomography

Finally, we present an example where the phases’ geometry is provided from X-ray micro
tomography images. The data were kindly provided by prof. Sylvain Meille and Dr. Ing.
Jerome Adrien, University of Lyon, CNRS INSA-Lyon, France. As in the present work we
only implemented the method in 2D, a single slice of the full 3d image is used. We chose
Ns

x = Ns
y = 80. The grid contains 500 × 600 voxels, as depicted in figure 31. In this figure,

the green, blue and brown colors refer to the matrix, inclusions and pores, respectively. The
material is a mortar composed of a cement paste (matrix) and sand (inclusions). The material
properties of each phases are: Einc = 3 MPa, νinc = 0.4, Emat = 1 MPa, νmat = 0.1. The
properties of the pores are set to 10−6 MPa. The properties of the reference medium were
chosen as λ0 = µ0 = 2.5714 MPa = 0.6.max(λ(x)). The macroscopic strain was chosen as
ε11 = 1, ε22 = 0, ε12 = 0. The computation was run using 32 processors in 105 s and took 21
iterations using the C3 criterion. plots of the von Mises stress fields are depicted in figure 32
and 33 corresponding to direct and modified color scales.
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(a) (b)

Figure 27. (a) Random microstructure (1/400) of the whole model, 10002 voxel grids; (b) σ11 stress
field.

(a) (b)

Figure 28. (a) Random microstructure (1/6400) of the whole model, 2502 voxel grids; (b) σ11 stress
field.

It is worth noting that data obtained by experimental images of random materials are in
general not periodic. If local fields are the aim of the computation, inclusions cut by the
boundary will induce artificial singularities in their neighborhood as the resulting periodic
phases will involve cut inclusions. This issue might be addressed by extending the model
with mirror images of the microstructure. However this process inescapably induces a huge
computational effort increase, as the number of voxels must be multiplied by 4 in 2D and
by 8 in 3D. Another possibility is to consider a subdomain which does not contain voxels in
the neighborhood of the boundary, to estimate e.g. statistical quantities. If the objective is to
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Figure 31. Microtomography image, 500 × 600 grid; the gray, black and white phases refer to the
matrix, inclusions and pores, respectively.

compute the effective properties, it has been shown (see e.g. [6]) that even if microstructures are
non periodic, the periodic boundary conditions lead to the better results regarding convergence
of the effective properties with respect to the size of the domain.

5. Conclusion

In the proposed work, a new method was proposed, coined as Space Lippmann Schwinger
(SLS) technique, avoiding the use of the Fourier transform while maintaining the efficiency and
convenience of iterative scheme. In the following approach, no mesh is needed, computations
can be carried out in parallel without special modification of the code and the CPU time as
well as the memory requirements (which are very low) scale linearly with the number of voxels
in the grid. The main ideas have been formulated both in the context of 2D linear steady-state
thermal and elastostatics problems. The technique is restricted to periodic microstructures.
The different analyses have shown similar dependence to contrast between phases than in
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Figure 32. von Mises stress fields computed on the micro tomography image data.

the basic scheme of FFT algorithms. Implementation is very simple, only involving classical
FEM computations and loops with sums of matrices. The method is fast and requires low
memory, authorizing to solve problems that are not tractable with the finite element method.
The method can be extended to nonlinear problems, this will be the aim of a future work.

6. Aknowledgements
Fruitful discussions with Professors Guy Bonnet and Vincent Monchiet, University Paris-Est
are greatly acknowledged. The author is also grateful to prof. Sylvain Meille and Dr. Ing.
Jerome Adrien, University of Lyon, CNRS INSA-Lyon, France, who kindly provided the micro
tomography data used for the simulations of this article.

Copyright c⃝ 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 00:1–1
Prepared using nmeauth.cls



THE SLS METHOD 31

Figure 33. von Mises stress fields computed on the micro tomography image data; the maximum stress
is threshold to 6 MPa.

7. Appendix: Green functions for thermal and elastostatic problems

7.1. Thermal steady-state problem

Let us consider the problem

∇ ·
(
k0∇T(x)

)
= −r(x) in Ω, (62)

where r(x) is a scalar source term. We can write (62) in index notation as

k0ijT,ij = −r. (63)

Then we have

T (x) = −
∫
Ω

G(x− y)r(y)dΩ, (64)
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where G(x,y) is the Green function such that

k0ijG,ij(x− y) = −δ(x− y). (65)

where δ(x− y) is the Dirac’s delta function. It yields

∇Ti(x) =
∫
Ω

G,i(x− y)r(y)dΩ. (66)

An explicit expression of the Green function in the case of isotropic conduction can be found
e.g. in [9]. Now let us consider the case where we seek at a direct linear relationship between
the temperature solution and the components of a vector flux field q(x) such as

∇ ·
(
k0∇T(x)

)
= −∇ · (q(x)) in Ω, (67)

arising for example from Eq. (9). In index notation we obtain

k0ijT,ij = −qi,i. (68)

Then the solution can be expressed as

T (x) = −
∫
Ω

Gi(x− y)qi(y)dΩ (69)

where G(x,y) is such that

k0ijGm,ij(x− y) = −δ,i(x− y)δim (70)

where δij = 1 if i = j and zero otherwise, and

∇Ti(x) =
∫
Ω

Gi,j(x− y)qj(y)dΩ =

∫
Ω

Γ0
ij(x− y)qj(y)dΩ. (71)

7.2. Linear elasticity

Let us consider the equilibrium equation for small strain elasticity:

∇ ·
(
C0 : ε(x)

)
= −f(x) in Ω, (72)

where f is a vector body force. Eq. (72) can be rewritten as

C0
ijkluk,lj = −fi. (73)

The displacement solution can be expressed by means of a Green function as

ui(x) =

∫
Ω

Gij(x− y)fj(y)dΩ (74)

where Gij(x,y) is such that

CijklGkm,lj = −δ(x− y)δim. (75)
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Then

εij(x) =

∫
Ω

Gik,j(x− y)fk(y)dΩ. (76)

An explicit expression of the elastic isotropic Green function in 2D and 3D can be found e.g.
in [9], [3]. In the case where we seek a linear relation between the displacements and the effects
of a symmetric, second-order eigenstress tensor field τ (x), arising for example from Eq. (30),
we have

∇ ·
(
C0 : ε(x)

)
= −∇ · (τ (x)) in Ω, (77)

or

Cijkluk,lj = −τij,j . (78)

Then the displacements field is expressed by

ui(x) =

∫
Ω

Gijk(x− y)τjk(y)dΩ (79)

where Gijk(x,y) is such that

CijklGkmp,lj = −Jmp
ij δ,j(x− y) (80)

and where the second-order tensor Jmp is defined by

Jmp =
2− δmp

2
(em ⊗ ep + ep ⊗ em). (81)

The form of Jmp is due to the fact that that τ is assumed symmetric. Then we obtain:

εij(x) =

∫
Ω

Gikl,j(x− y)τkl(y)dΩ =

∫
Ω

Γ0
ijkl(x− y)τkl(y)dΩ. (82)
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