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non-Newtonian fluid

Bikash Sahoo

Department of Mathematics, National Institute of Technology, Rourkela, Orissa,
INDIA - Tel. +91 661 246 2706
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Abstract

The steady flow arising due to the rotation of a non-Newtonian fluid at a larger
distance from a stationary disk is extended to the case where the disk surface admits
partial slip. The constitutive equation of the non-Newtonian fluid is modeled by that
for a Reiner-Rivlin fluid. The momentum equation gives rise to a highly nonlinear
boundary value problem. Numerical solution of the governing nonlinear equations
are obtained over the entire range of the physical parameters. The effects of slip and
non-Newtonian fluid characteristics on the momentum boundary layer are discussed
in details. It is observed that slip has prominent effect on the velocity field, whereas a
predominant influence of the non-Newtonian parameter is observed on the moment
coefficient.
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1 Introduction

The flow of non-Newtonian fluid due to a rotating disk has received much at-
tention during the last decades [1–3] due to its immense industrial applications
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such as for designing gaseous core nuclear reactor or power generators, increas-
ing storage density in hard-disk drives and some applications in rheology of
course. In previous works [4,5], we have discussed the steady Von Kármán flow
and heat transfer of an electrically conducting Reiner-Rivlin fluid with par-
tial slip boundary conditions. The twin problem arising when the fluid rotates
with an uniform angular velocity at a larger distance from a stationary disk
is one of the classical problems of fluid mechanics which has both theoretical
and practical value. In this case, the particles which rotate at a large distance
from the wall are in equilibrium under the influence of the centrifugal force
which is balanced by the radial pressure gradient. Those particles close to the
disk whose circumferential velocity is retarded under the same pressure gra-
dient directed inwards. However, the centrifugal force they are subjected to is
greatly decreased. This set of circumstances causes the particle near the disk
to flow radially inwards, and for reasons of continuity that motion must be
compensated by an axial flow upwards, as shown in Figure 1. A flow which
arises in the boundary layer in this manner such that its direction deviates
from that of the outer flow is generally called a secondary flow. Such type of
flow can be clearly observed in a teacup: after the rotation has been gener-
ated by vigorous stirring and again after the flow has been left to itself for a
short while. The radial inward flow field near the bottom will be formed. Its
existence can be inferred from the fact that tea leaves settle in a little heap
near the center at the bottom.

This problem was studied by Bödewadt [6] by making boundary layer approx-
imations. That is why the flow problem is widely known as the Bödewadt
flow. For this problem Ackroyed’s method [7] of expansion is not so suitable.
Bödewadt approached the solution through a very laborious method similar
to that used by Cochran [8] for the Von Kármán equations. The method con-
sists of a power series expansion at z = 0 and an asymptotic expansion for
z → ∞. Bödewadt’s solution shows that the boundary layer effects extend
out to about ζ = 8.0, where ζ is the non-dimensional distance measured along
the rotation axis. A correction to this problem is worked out by Browning
(unpublished, see in [9]). He noticed a much thicker boundary layer than in
the case of a disk rotating in a fluid at rest. Batchelor [10] generalized theses
analysis to include one parameter families of solutions having a mathemat-
ical structure very similar to that of Von Kármán’s. It corresponds to the
flow above an infinite disk rotating with certain angular velocity, with the
fluid in the far off region in solid body rotation. The general problem of an
infinite rotating fluid of which the above two problems are particular cases
has been later investigated by Hannah [11]. Subsequently, this case has been
treated by Stewartson [12]. Fettis [13] had been concerned largely with the
problem of Bödewadt. Rogers and Lance [14] studied numerically a similar
problem when the disk rotates with an angular velocity ω in a fluid rotating
with a different speed Ω. When Ω = 0, the system reduces to the free-disk
problem of Von Kármán; when ω = Ω, there is a solid-body rotation; and
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when ω = 0, the problem is the same as that discussed by Bödewadt. It was
pointed out by Schwiderski and Lugt [15] that the non-existence of a proper
solution to the boundary value problems for rotating flows of Von Kármán
and Bödewadt is an indication that in reality the flow is separated from the
surface of the disk. The simple ‘Tea cup experiment’ described above, displays
very clearly a separation of the fluid from the bottom of the cup. Applica-
tion of the suction is an effective device to reduce the chances of separation.
Later, the local boundary layer approximations of first order derived in [15]
have been generalized by Schwiderski and Lugt [16] to axisymmetric motions
which rotates over a rotating disk of infinite dimensions. Numerical results are
computed and discussed for a variety of Reynolds numbers and for cases for
which the disk is rotating in the same sense and in the opposite sense as the
fluid far away from the disk. The critical Reynolds numbers for steady lami-
nar motions which are attached to the surface of the disk are computed and
displayed. Nanda [17] studied the effects of uniform suction on the revolving
flow of a viscous liquid over a stationary disk. It was found that the presence
of suction introduces an axial inflow at infinity and the same increases with
an increase in suction. Nydahl [18] in his doctoral thesis has extended the
Bödewadt flow problem by incorporating the heat transfer phenomena. The
results obtained by Nydahl effectively confirm those of Bödewadt; those of
Rogers and Lance [19] give a significantly larger value of H∞. The momentum
and the displacement thickness decrease as the suction velocity increases. The
spin-up process in the Bödewadt flow of a viscous fluid has been studied by
Chawla and Purushothaman [20]. A comprehensive review of earlier works on
flow and heat transfer due to a single and two parallel rotating disks up to
1989 has been included in a monograph by Owen and Rogers [21]. Recently,
Chawla and Srivastava [22] have considered the physical situation in which
the disk is performing torsional oscillations in contact with a fluid in a state
of rigid-body rotation in the far field. Sharon and MacKerrel [23] have studied
the stability of Bödewadt flow. Kitchens and Chang [24] have considered the
Bödewadt flow for a non-Newtonian second-order fluid.

A literature survey indicates that there has been an extensive literature avail-
able regarding the boundary layer flow over a rotating disk (Kármán flow) in
various situations. Such studies include different fluid models, magnetohydro-
dynamic and hydrodynamic cases, with and without heat transfer analysis.
As can be seen from the literature, there has been relatively little information
regarding the Bödewadt type flow. The present study is an endeavor to fill this
gap. An important application of such flow arises from modelling atmospheric
flows. Besides the above reason, few other curious findings which motivated
for the present investigation are as follows.

First of all the steady Bödewadt flow of a viscous, incompressible fluid is one
of the few problems in fluid dynamics for which the Navier-Stokes equations
admit an exact solution. Again as reported by Owen and Rogers [21], there is
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a discrepancy in the numerical value of H∞ (axial flow velocity at sufficiently
large distance from the surface of the disk), which was found to be 1.3494
using the method of Rogers and Lance [14] on a VAX 8530 computer with
a typical precision of 16 significant figures. This depicts that the accuracy
achieved by Rogers and Lance [14] was not sufficient to give an accurate value
of H∞. Moreover, it has been pointed out by many authors that Bödewadt’s
solution implies that there is a flow out of the boundary layer everywhere
and no mechanism for supplying fluid to it! For an infinite disk, the problem
may be overcome by assuming an infinite reservoir of fluid from which the
boundary layer can draw in an unspecified way. For the more practical case of
a finite disk, it must be supposed that a similarity solution does not hold near
the edge of the disk. However, it is consistent with experience in other fields
that a similarity solution becomes valid as the boundary layer flow develops.
It may then be assumed that fluid enters the boundary layer near the edge of
the disk and that this fluid is available for continuity in the similarity solution.

This paper is divided as follows: in Section 2, the problem is mathematically
formulated to get a system of ordinary differential equations with appropriate
boundary conditions and is solved using an effective second order numerical
scheme in Section 3. The effects of the partial slip and the non-Newtonian
cross-viscous parameters on the momentum boundary layer are discussed in
details in Section 4 before some concluding remarks in Section 5.

2 Flow analysis

Fig. 1. Schematic representation of the Bödewadt flow after Schlichting [9].

In this case, we consider the non-Newtonian Reiner-Rivlin fluid where the
stress tensor τij is related to the rate of strain tensor eij [3] as:
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τij = −pδij + 2µeij + 2µceikekj (1)

ejj = 0 (2)

where p is denoting the pressure, µ is the coefficient of viscosity and µc is the
coefficient of cross-viscosity.

The fluid occupies the space z > 0 over an infinite stationary disk (Fig. 1),
which coincides with z = 0. The motion is due to the rotation of the fluid like
a rigid body with constant angular velocity Ω at large distance from the disk.

The flow is described in the cylindrical polar coordinates (r, φ, z). In view
of the rotational symmetry ∂

∂φ
≡ 0. The no-slip boundary conditions for the

velocity field are given as

z = 0, u = 0, v = 0, w = 0,

z → ∞, u → 0, v → rΩ, p → p∞. (3)

The Von Kármán transformations [25]

u = rΩF (ζ), v = rΩG(ζ), w =
√

ΩνH(ζ), z =

√

ν

Ω
ζ, p−p∞ = −ρνΩP

(4)
reduce the Navier-Stokes equations for a Newtonian fluid to a set of ordinary
differential equations. The same is also true for a non-Newtonian Reiner-Rivlin
fluid. We define the non-Newtonian cross-viscous parameter L = µcΩ

µ
. With

these definitions and by considering the usual boundary layer approximations,
the equations of continuity and motion take the form,

dH

dζ
+ 2F = 0, (5)

d2F

dζ2
− H

dF

dζ
− F 2 + G2 − F − 1

2
L

[(

dF

dζ

)2

− 3
(

dG

dζ

)2

− 2F
d2F

dζ2

]

= 1, (6)

d2G

dζ2
− H

dG

dζ
− 2FG − G + L

(

dF

dζ

dG

dζ
+ F

d2G

dζ2

)

= 0, (7)

d2H

dζ2
− H

dH

dζ
− 7

2
L

dH

dζ

d2H

dζ2
+

dP

dζ
= 0. (8)

and the boundary conditions (3) become,

ζ = 0 : F = 0, G = 0, H = 0,

ζ → ∞ : F → 0, G → 1. (9)

The fluid adheres to the surface partially and the motion of the fluid exhibits
partial slip conditions. A generalization of Navier’s partial slip condition gives,
in the radial direction,

u|z=0 = λ1Trz|z=0, (10)
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and in the azimuthal direction

v|z=0 = λ2Tφz|z=0, (11)

where λ1, λ2 are respectively the slip coefficients, and Trz, Tφz are the physical
components of the stress tensor. Let

λ = λ1

√

Ω

ν
µ, η = λ2

√

Ω

ν
µ. (12)

With the help of the transformations (4) the corresponding partial slip bound-
ary conditions (10)- (11) become

F (0) = λ[F ′(0) − LF (0)F ′(0)], G(0) = η[G′(0) − 2LF (0)G′(0)], H(0) = 0,

F (∞) → 0, G(∞) → 1. (13)

The governing equations are still equations (5)- (7). The boundary condi-
tions (9) are replaced by the partial slip boundary conditions (13). It is clear
that the boundary conditions at infinity remain unaltered.

3 Numerical solution of the problem

We solve the system of nonlinear differential Eqns. (5)- (7) under the boundary
conditions (13) by adopting the same second order numerical scheme described
in our previous works[4,5,26]. The semi-infinite integration domain ζ ∈ [0,∞)
is replaced by a finite domain ζ ∈ [0, ζ∞). In practice, ζ∞ should be chosen suf-
ficiently large so that the numerical solution closely approximates the terminal
boundary conditions.

Now, suppose we introduce a mesh defined by

ζi = ih (i = 0, 1, . . . n), (14)

h = 0.05 being the mesh size, and discretize equations (5)- (7) using the central
difference approximations for the derivatives, then the following equations are
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obtained.

Fi+1 − 2Fi + Fi−1

h2
−Hi

(

Fi+1 − Fi−1

2h

)

− F 2
i + G2

i − Fi −
1

2
L

[(

Fi+1 − Fi−1

2h

)2

− 3
(

Gi+1 − Gi−1

2h

)2

− 2Fi

(

Fi+1 − 2Fi + Fi−1

h2

)]

− 1 = 0,

(15)

Gi+1 − 2Gi + Gi−1

h2
− Hi

(

Gi+1 − Gi−1

2h

)

− 2FiGi − Gi

+ L
[(

Fi+1 − Fi−1

2h

)(

Gi+1 − Gi−1

2h

)

+ Fi

(

Gi+1 − 2Gi + Gi−1

h2

)]

= 0,

(16)

Hi+1 = Hi − h(Fi + Fi+1). (17)

Note that Equations (15) and (16), which are written at the ith mesh point,
the first and second derivatives are approximated by the central differences
centered at the ith mesh point, while in Equation (17), which is written at the
(i + 1/2)th mesh point, the first derivative is approximated by the difference
quotient at the ith and (i + 1)th mesh points and the right hand sides are
approximated by the respective averages at the same two mesh points. This
scheme ensures to preserve the second order accuracy of the spatial discretiza-
tion.

Equations (15) and (16) are three term recurrence relations in F and G re-
spectively. Hence, in order to start the recursion, besides the values of F0 and
G0 the values of F1 and G1 are also required. These values can be obtained
by Taylor series expansion near ζ = 0 for F and G.

If
F ′(0) = s1, G′(0) = s2, (18)

we have

F1 = F (0) + hF ′(0) +
h2

2
F ′′(0) + O(h2)

G1 = G(0) + hG′(0) +
h2

2
G′′(0) + O(h2)

The values H(0) and G(0) are given as boundary conditions in Equation (13).
The values F ′′(0) and G′′(0) can be obtained directly from Equations (6)
and (7). After obtaining the values of F1 and G1 the integration can now be
performed as follows. H1 can be obtained from Equation (17). Using the values
of H1 in Equations (15) and (16), the values of F2 and G2 are obtained. At the
next cycle, H2 is computed from Equation (17) and is used in Equations (15)
and (16)to obtain F3 and G3 respectively. The order indicated above is followed
for the subsequent cycles. The integration is carried out until the values of F ,
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G and H are obtained at all the mesh points. Note that we need to satisfy the
two asymptotic boundary conditions (Eq. (13)). In fact, s1 and s2 are found
by shooting method along with fourth order Runge-Kutta method so as to
fulfil the free boundary conditions at ζ = ζ∞ in Equation (9).

A noteworthy fact is that for the same values of the flow parameters, the value
of the numerical infinity should be chosen larger (ζ∞ = 27) as compared to the
previously studied Karman flow problem (ζ∞ = 10) [5], so that the numerical
solution closely approximates the terminal boundary conditions at ζ∞.

4 Results and discussions

The value of ζ∞ = 27, the numerical infinity has been taken larger as compared
to the previous problem [5] (ζ∞ = 10) and kept invariant through out the run
of the program. Although, the results are shown only from the disk surface
ζ = 0 to ζ = 14, the numerical integrations were performed over a substan-
tially larger domain in order to assure that the outer asymptotic boundary
conditions are satisfied. To validate our approach, the values of F , G and H
for no-slip condition (λ = 0) are compared with those reported by Owen and
Rogers [21] for a viscous fluid (L = 0) and reported in Table-1. The present
numerical results presented herein confirm the earlier calculations of Owen
and Rogers [21] for the three velocity components.

0 2 4 6 8 10 12 14
−0.5

0

0.5

1

1.5

2

ζ

H

G

F

Fig. 2. Velocity profile for the Newtonian flow for λ(= η) = 0.

Figure 2 depicts that near the disk, the radial component of the velocity F
is radially inwards. It may be of interest to note that this radially inward
flow is the cause of the accumulation of the tea leaves at the center of a
stirred cup of tea. The behaviors of the three velocity components confirm
the sketch shown in Figure 1. From the profile of G, we can deduce the value
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of the boundary layer thickness ζ99, which is defined as the axial coordinate
for which the tangential velocity of the fluid is equal to the tangential fluid
velocity at infinity within 1%. For L = 0 and λ = 0, the classical value ζ99 = 8
is recovered by the present approach [21].
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−0.25
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−0.1

−0.05

0

0.05

ζ

F
(ζ
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L=2.0
L=3.0

Fig. 3. Variation of F with L at
λ(= η) = 1.0.
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0
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ζ
F

(ζ
)

λ(=η)=1.0
=2.0
=3.0
=4.0

Fig. 4. Variation of F with λ(= η)
at L = 2.0.

In order to have an insight of the flow characteristics, results are plotted
graphically for the uniform roughness (λ = η), and different values of the flow
parameters. The variations of the radial component of the velocity, F with
the non-Newtonian cross-viscous parameter L and the slip parameter λ(= η)
are shown in Figures 3 and 4 respectively, when the other flow parameters
are kept constant. Figure 3 reveals that L has a prominent effect on F , near
the disk. The magnitude of the radial inflow, near the disk, decreases with an
increase in L. The radial component of velocity, near the disk remains negative
for all values of the non-Newtonian parameter L, reverses the direction away
from the disk, and finally approaches its asymptotic value. Thus, cross-overs
are found in the velocity profile. Figure 4 shows the variation of F with the
slip parameter λ(= η), when other flow parameters are kept constant. It is
clear that the effect of slip on F is also prominent near the disk. The velocity
profiles reverse the direction away from the disk and approach the asymptotic
value at a shorter distance from the disk as compared to the former case.

Figures 5 and 6 depict the variations of the azimuthal component of the ve-
locity with L and λ(= η) respectively. The non-Newtonian parameter L has
a spectacular effect on G, away from the disk (near ζ = 2.0), as is clear from
Figure 5. An increase in L decreases the velocity profile G near the disk. The
velocity component increases (see Figure 6) near the disk with an increase in
λ(= η). Thus, it is interesting to find that the slip has an opposite effect to
that of the cross-viscous parameter on G. From these profiles, the boundary
layer thickness ζ99 can be calculated for all flow parameters. The variations of
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Fig. 5. Variation of G with L at
λ(= η) = 1.0.
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Fig. 6. Variation of G with λ(= η)
at L = 2.0.

ζ99 with the slip parameter λ and the non-Newtonian parameter L are shown
in Figures 7 and 8 respectively and compared with the classical value ζ99 = 8
obtained for a Newtonian fluid L = 0 and no slip condition λ = 0. For L = 2,
ζ99 slightly increases with increasing values of the slip parameter λ, following
the quadratical fitting law:

ζ99 = 0.098λ2 − 0.061λ + 2.8 (19)

For a given value of the slip parameter λ = 1, ζ99 slightly increases also
with increasing values of the non-Newtonian parameter L, following also a
quadratical law:

ζ99 = 0.055L2 − 0.027L + 3.9 (20)

It is noteworthy that the values of ζ99 are much weaker than the one obtained
for no slip condition (λ = 0) in the case of a Newtonian fluid (L = 0): ζ99 = 8
[21].

Another interesting quantity, which can be deduced from the profiles of F and
G, is the turning moment for the disk with fluid on both sides. The expression
of the dimensionless moment coefficient CM is given by:

CM =
−2πG′(0)[1 − 2LF (0)]√

Re
(21)

with Re = ΩR2/ν the rotational Reynolds number based on the disk radius R
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Fig. 7. Variation of the boundary
layer thickness ζ99 with λ for L = 2.

Fig. 8. Variation of the boundary
layer thickness ζ99 with L for λ = 1.
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Fig. 9. Variation of the moment co-
efficient CM with λ for L = 1 and
Re = 1.
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Fig. 10. Variation of the moment co-
efficient CM with L for λ = 1 and
Re = 1.

and the maximum velocity (ΩR). This definition of CM is the extension to the
finite disk problem, which supposes that the disk radius is large enough. For
L = 0, Equation (21) reduces to CM = −2πG′(0). In that case, the moment
coefficient depends only on G′(0). Note that the present value of G′(0) for a
Newtonian fluid and no slip condition (L = λ = 0) is in excellent agreement
with the value G′(0) = 0.77289 obtained by Owen and Rogers [21]. Thus, we
got the classical value CM = −4.86 in that basic case.

The variations of CM with the slip λ and non-Newtonian L parameters are
shown in Figures 9 and 10 respectively. Whatever the flow parameters, CM

exhibits negative values. It may be attributed to the flow problem: a rotating
fluid at infinity over a stationary disk. Thus, the axial gradient of the tan-
gential velocity G′ is still positive and CM is then always negative. The Von
Kármán flow considered by Sahoo [5] is precisely the inverse problem, which
explains the different signs. For L = 1 and Re = 1 (see Fig.9), the moment
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coefficient CM in absolute values strongly increases (resp. decreases) with in-
creasing values of the slip parameter λ for λ < 0.6 (resp. λ > 0.6). It tends
rapidly to zero for high values of λ, which means that the torque required to
maintain the disk at its original speed is almost zero when the slip parameter is
high. Omitting the different boundary conditions between the two problems,
the present results confirm the previous ones of Sahoo [5] for Von Kármán
flows and comparable values are obtained.

The slip parameter λ is now fixed to unity and the non-Newtonian parameter
L varies between 0 and 100 for Re = 1 (Fig.10). CM increases in magnitude
with the parameter L. In that case, the torque required to maintain the disk
at rest is much higher than those necessary to maintain the disk at Ω for the
Von Kármán flow considered by Sahoo [5].

The variations of the axial component of the velocity H with L and λ(= η)
have been plotted in Figures 11 and 12 respectively. The figures show that
both parameters have a similar effect on H. It is clear that the axial velocity
becomes flatter with an increase in L and λ(= η). The axial velocity at infinity
H∞ in both cases is strongly reduced compared to the basic case L = 0 and
λ = 0, for which H∞ ≃ 1.3494.
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Fig. 11. Variation of H with L at
λ(= η) = 1.0.
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Fig. 12. Variation of H with λ(= η)
at L = 2.0.
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Table 1
Variations of F , G, H for L = 0 and λ(= η) = 0.

F G H

ζ Current result Owen & Rogers [21] Current result Owen & Rogers [21] Current result Owen & Rogers [21]

0.0 0.000000 0.0000 0.000000 0.0000 0.000000 0.0000

0.5 -0.348650 -0.3487 0.383430 0.3834 0.194373 0.1944

1.0 -0.478766 -0.4788 0.735429 0.7354 0.624103 0.6241

1.5 -0.449633 -0.4496 1.013401 1.0134 1.098743 1.0987

2.0 -0.328745 -0.3287 1.192367 1.1924 1.492875 1.4929

2.5 -0.176206 -0.1762 1.272136 1.2721 1.745869 1.7459

3.0 -0.036086 -0.0361 1.271405 1.2714 1.849641 1.8496

3.5 0.066310 0.0663 1.218219 1.2182 1.830807 1.8308

9.5 -0.010216 -0.0102 1.011849 1.0118 1.361698 1.3617

10.0 -0.003282 -0.0033 1.012120 1.0121 1.368328 1.3683

10.5 0.001819 0.0018 1.009906 1.0099 1.368882 1.3689

11.0 0.004738 0.0047 1.006537 1.0065 1.365423 1.3654

11.5 0.005681 0.0057 1.003090 1.0031 1.360067 1.3601

12.0 0.005170 0.0052 1.000271 1.0003 1.354546 1.3545

12.5 0.003827 0.0038 0.998411 0.9984 1.350003 1.3500

20.0 0.000102 - 0.999893 - 1.349325 -

25.0 0.000009 - 1.000014 - 1.349457 -

25.5 0.000011 - 1.000007 - 1.349447 -

26.0 0.000010 - 1.000001 - 1.349437 -

26.5 0.000008 - 0.999997 - 1.349428 -

∞ 0.000000 0.0000 1.000000 1.0000 1.349424 1.3494
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5 Conclusions

In this work, the slip flow due to the rotation of a non-Newtonian Reiner-Rivlin
fluid near a stationary disk have been examined precisely for the first time.
The resulting highly nonlinear differential equations are solved by adopting a
second order numerical scheme. The combined effects of the slip (λ = η) and
the non-Newtonian parameter (L) on the velocity field are studied in detail. It
is interesting to find that λ(= η) and L have similar effects on the radial and
axial velocity components. For increasing values of λ or L, a slight thicknening
of the boundary layer on the stationary disk is observed. On the other hand,
both the parameters have opposite effects on the azimuthal component of the
velocity and the moment coefficient. Thus, the torque required to maintain
the disk at rest tends to zero for increasing values of λ and increases (in
absolute values) with L showing a predominant influence of the non-Newtonian
parameter.
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