
HAL Id: hal-00821919
https://hal.science/hal-00821919

Submitted on 4 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The CLT for rotated ergodic sums and related processes
Guy Cohen, Jean-Pierre Conze

To cite this version:
Guy Cohen, Jean-Pierre Conze. The CLT for rotated ergodic sums and related processes. Discrete and
Continuous Dynamical Systems - Series A, 2013, 33 (9), pp.3981-4002. �10.3934/dcds.2013.33.3981�.
�hal-00821919�

https://hal.science/hal-00821919
https://hal.archives-ouvertes.fr


Manuscript submitted to Website: http://AIMsciences.org
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

Guy Cohen

Dept. of Electrical Engineering, Ben-Gurion University, Israel

Jean-Pierre Conze

IRMAR, CNRS UMR 6625, University of Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, France

(Communicated by the associate editor name)

THE CLT FOR ROTATED ERGODIC SUMS AND RELATED

PROCESSES

Abstract. Let (Ω,A, P, τ) be an ergodic dynamical system. The rotated er-

godic sums of a function f on Ω for θ ∈ R are Sθ
nf :=

P
n−1
k=0

e2πikθf◦τk, n ≥ 1.
Using Carleson’s theorem on Fourier series, Peligrad and Wu proved in [14] that
(Sθ

nf)n≥1 satisfies the CLT for a.e. θ when (f ◦ τn) is a regular process.
Our aim is to extend this result and give a simple proof based on the Fejèr-

Lebesgue theorem. The results are expressed in the framework of processes
generated by K-systems. We also consider the invariance principle for modified
rotated sums. In a last section, we extend the method to Z

d-dynamical systems.
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Introduction. Let (Ω,A,P, τ) be a dynamical system, i.e., a probability space
(Ω,A,P) and a measurable transformation τ : Ω → Ω which preserves P. The
rotated ergodic sums of a function f on Ω are defined for θ ∈ R by

Sθ
nf :=

n−1
∑

k=0

e2πikθf ◦ τk, n ≥ 1. (1)

Using Carleson’s theorem on Fourier series, Peligrad and Wu proved in [14] that
(Sθ

nf)n≥1 satisfies the CLT for a.e. θ when (f ◦ τn) is a regular process.
It is remarkable that this result does not require a rate of decorrelation or regu-

larity of the function f generating the stationary process (f ◦τn). Our aim is to give
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a simple proof based on the Fejèr-Lebesgue theorem of this result and to extend it.
The results are expressed in the framework of processes generated by K-systems.
We also consider the invariance principle for modified rotated sums like in [13].

As an application, we prove a recurrence property for a class of rotated stationary
processes. In the last section, the method is extended to Zd-dynamical systems.
Other extensions will be presented in a further paper.

The proofs are based on the approximation of the ergodic sums by a martingale
and lead to two separate questions: validity of a mean square approximation by a
martingale, limiting behavior of the approximating martingale.

1. Preliminaries.

1.1. Rotated ergodic sums, T -filtrations. Let T be a unitary operator on a
Hilbert space H. The spectral measure with respect to T of a vector f ∈ H is
the positive measure νf on the unit circle T

1 with Fourier coefficients ν̂f (n) =
〈T nf, f〉, n ∈ Z. The results in this section are purely spectral, although later T
will be the Koopman operator induced by an automorphism.

We denote by ϕf the density of the absolutely continuous part of the spectral
measure νf with respect to the Lebesgue measure λ on T1. Let Kn be the Fejèr
kernel. For the rotated ergodic sums Sθ

nf defined by (1), we have

1

n
‖Sθ

nf‖2
2 =

∫ 1

0

1

n

∣

∣

∣

∣

sinπn(t− θ)

sinπ(t− θ)

∣

∣

∣

∣

2

νf (dt) = (Kn ∗ νf )(θ). (2)

This formula implies by the Fejèr-Lebesgue theorem (cf. [19, Ch. III, Th. 8.1]):

Lemma 1.1. For every f ∈ L2
0(P), we have, for a.e. θ, limn→∞

1
n‖Sθ

nf‖2
2 = ϕf (θ).

It follows that the asymptotic variance of the rotated sums limn→∞
1
n‖Sθ

nf‖2
2

exists for a.e. θ. Therefore a question is the behavior of the normalized ergodic
sums in distribution, for a.e. θ.

Remark that ‖Sθ
nf‖2 = o(

√
n) for a.e. θ, if the spectral measure is singular.

T -filtrations

Definitions, notations 1.2. Let T be a unitary operator on a Hilbert space H.
A closed subspace H0 of H such that T−1H0 ⊂ H0 defines a Hilbertian T -filtration
F , i.e., an increasing family of closed subspaces Hn of H with Hn = T nH0, ∀n ∈ Z.

The closed subspace generated by
⋃

n∈Z
Hn is denoted by H∞ and the intersec-

tion
⋂

n∈Z
Hn by H−∞. We say that an element f ∈ H is F -regular (or simply

regular), if f belongs to H∞ and is orthogonal to H−∞.

Orthogonal decomposition Let Πn be the orthogonal projection on the subspace
Kn := Hn ⊖ Hn−1 of vectors in Hn which are orthogonal to Hn−1. We have the
orthogonal decomposition H∞ = H−∞ ⊕n∈Z Kn and for f ∈ H∞:

f = Π−∞f +
∑

n∈Z

Πnf, ‖f‖2
2 = ‖Π−∞f‖2

2 +
∑

n∈Z

‖Πnf‖2
2. (3)

Note that Kℓ = T ℓK0 and, for every g in K0, ΠℓT
kg = δk,ℓT

kg, ∀ k, ℓ ∈ Z, where
δk,ℓ is the Kronecker symbol.

Let (ψj)j∈J be an orthonormal basis of K0 = H0⊖H−1. It yields an orthonormal
basis (T kψj)j∈J,k∈Z of the subspace ⊕n∈ZKn generated by the filtration. Let f be
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a F -regular function in H∞. By restricting to the closed subspace generated by
(T nf)n∈Z, we can assume that J is countable. Setting

aj,n := 〈f, T nψj〉, (4)

we have Πnf =
∑

j∈J aj,nT
nψj and ‖f‖2

2 =
∑

n∈Z
‖Πnf‖2

2 =
∑

n∈Z

∑

j∈J |aj,n|2.

Notations 1.3. For each j ∈ J , let γj be an everywhere finite square integrable
function with Fourier coefficient aj,n, n ∈ Z, defined by (4), that is,

γj(t) =
∑

n∈Z

aj,ne2πint. (5)

A simple computation shows that |γj |2 is the spectral density of the orthogonal
projection fj of f on the subspace generated by (T kψj)k∈Z; hence

ϕf =
∑

j∈J

|γj |2 and

∫

∑

j∈J

|γj(θ)|2 dθ =
∑

j∈J

∞
∑

k=−∞
|aj,k|2 =

∫

ϕf (θ) dθ = ‖f‖2
2. (6)

By (6), the set Λ0 := {θ ∈ T :
∑

j∈J |γj(θ)|2 <∞} has full measure. For θ ∈ Λ0,
we define Mθf ∈ K0 by:

Mθf :=
∑

j

γj(θ)ψj .

The function θ → ‖Mθf‖2
2,P =

∑

j∈J |γj(θ)|2 is a version of the spectral density ϕf

of f .

1.2. Approximation of the rotated ergodic sums. Here we show that, for

almost every θ, the process with orthogonal increments (
∑n−1

0 e2πikθT kMθ)n≥1

approximates the rotated process in mean square.

Proposition 1.4. If f ∈ H∞ is F-regular, the set Λ(f) ⊂ Λ0 of θ ∈ T1, such that

1

n
‖

n−1
∑

k=0

e2πikθT k(f −Mθf)‖2
2 → 0,

has full Lebesgue measure in T1.

Proof. The spectral density of f −Mθf is

ϕf−Mθf (t) =
∑

j∈J

|γj(t)−γj(θ)|2 =
∑

j

|γj(t)|2+
∑

j

|γj(θ)|2−
∑

j

γj(t)γj(θ)−
∑

j

γj(t)γj(θ).

We have

1

n
‖Sθ

n(f −Mθf)‖2
2 =

∫ 1

0

1

n

∣

∣

∣

∣

n−1
∑

k=0

e2πik(t−θ)

∣

∣

∣

∣

2

ϕf−Mθf (t) dt (7)

=

∫ 1

0

Kn(t− θ) ϕf−Mθf (t) dt.

Let Λ′
0 be the set of full measure of θ’s such that the convergence given by

the Fejèr-Lebesgue theorem holds at θ for the functions |γj |2, γj , ∀j ∈ J , and
∑

j∈J |γj |2.
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Take θ ∈ Λ0 ∩ Λ′
0. Let ε > 0 and let J0 = J0(ε, θ) be a finite subset of J such

that
∑

j 6∈J0
|γj(θ)|2 < ε. Since

lim
n

∫ 1

0

Kn(t− θ)
∑

j 6∈J0

∣

∣γj(t)|2 dt

= lim
n

∫ 1

0

Kn(t− θ)
∑

j∈J

|γj(t)|2 dt− lim
n

∫ 1

0

Kn(t− θ)
∑

j∈J0

|γj(t)|2 dt =
∑

j 6∈J0

|γj(θ)|2,

we have

lim sup
n

∫ 1

0

Kn(t− θ) ϕf−Mθf (t) dt

≤ lim
n

∫ 1

0

Kn(t− θ)
∑

j∈J0

[

|γj(t)|2 + |γj(θ)|2 − γj(t)γj(θ) − γj(t)γj(θ)
]

dt

+2 lim
n

∫ 1

0

Kn(t− θ)
∑

j 6∈J0

[

|γj(t)|2 + |γj(θ)|2
]

dt

=
∑

j∈J0

[

|γj(θ)|2 + |γj(θ)|2 − γj(θ)γj(θ) − γj(θ)γj(θ)
]

+ 4
∑

j 6∈J0

|γj(θ)|2 ≤ 0 + 4ε.

This shows that Λ0 ∩ Λ′
0 ⊂ Λ(f); hence Λ(f) has full measure.

Corollary 1.5. Let f−∞ be the orthogonal projection on H−∞ of a vector f ∈ H∞.
If the spectral measure of f−∞ is singular, then for a.e. θ

1

n
‖

n−1
∑

k=0

e2πikθT k(f −Mθ(f − f−∞))‖2
2 → 0.

Proof. By Lemma 1.1, lim 1
n‖

∑n−1
k=0 e

2πikθT kf−∞‖2
2 = 0 for a.e. θ. As f − f−∞ is

regular, Proposition 1.4 implies the result.

Remark 1.6. We may also deal with T isometry. For example, when τ is an endo-
morphism (i.e., non-invertible measure preserving), the induced Koopman operator
T is only an isometry. We may transfer some results which hold for automorphisms
to endomorphisms in the following way (cf. Nagy-Foiaş [12, Proposition 6.2]). If U
is the unitary dilation of T and h is a polynomial, by the construction of the dilation
we obtain ‖h(T )‖ ≤ ‖h(U)‖. In particular, Proposition 1.4 holds for an endomor-
phism and the associated decreasing filtration. The spectral measure that is used
in the proof is replaced by the spectral measure of f with respect to the unitary
dilation. Analogous results hold for any commuting finite family of endomorphisms.

The following result will be used later for the computation of the variance for
rotated processes.

Lemma 1.7. Let µ be an atomless finite complex measure on [− 1
2 ,

1
2 ] and denote

by (µ̂(n)) its Fourier-Stieltjes coefficients. Let θ1, θ2 ∈ [− 1
2 ,

1
2 [ with θ1 6= θ2. Then

lim
n→∞

1

n

n−1
∑

k=0

n−1
∑

p=0

e2πi(kθ1−pθ2)µ̂(k − p) = 0.
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Proof. It is enough to prove that lim
n→∞

1
n

∑n−1
ℓ=0 µ̂(ℓ)e2πiℓθ2

∑ℓ
k=0 e2πik(θ1−θ2) = 0.

From the inequality |∑ℓ
k=1 e2πik(θ1−θ2)| ≤ C

|θ1−θ2| and Cauchy-Schwarz inequality

we obtain
∣

∣

∣

∣

1

n

n−1
∑

ℓ=0

µ̂(ℓ)e2πiℓθ2

ℓ
∑

k=0

e2πik(θ1−θ2)

∣

∣

∣

∣

2

≤
( 1

n

n−1
∑

ℓ=0

|µ̂(ℓ)|2
) ( 1

n

n−1
∑

ℓ=0

∣

∣

ℓ
∑

k=0

e2πik(θ1−θ2)
∣

∣

2)

≤ Cθ1,θ2

n

n−1
∑

ℓ=0

|µ̂(ℓ)|2 → Cθ1,θ2

∑

x

|µ{x}|2 = 0.

For a unitary operator T and for f1, f2 ∈ L2(Ω), there is a complex spectral
measure µ1,2 on the torus (the cross spectral measure of (f1, f2) with respect to
T ) such that µ̂(k) := 〈T kf1, f2〉 =

∫

e−2πik tdµ1,2(t). The measure µ1,2 is a linear
combination of the spectral measures of f1 ± f2 and f1 ± if2 with respect to T . If
T is weakly mixing, then µ1,2 is continuous for every f1 and f2.

Proposition 1.8. Let T be a unitary operator on H and let f1, f2 ∈ H. Denote by
ϕfi

, i = 1, 2 the densities of the absolutely continuous part of the spectral measures
of fi with respect to T . Assume that (f1, f2) has an atomless cross spectral measure
with respect to T . Then for a.e. (θ1, θ2) ∈ T2

lim
n→∞

1

n

∥

∥

∥

∥

n−1
∑

k=0

(e2πikθ1T kf1 + e2πikθ2T kf2)

∥

∥

∥

∥

2

= ϕf1
(θ1) + ϕf2

(θ2).

Proof. We expand

1

n

∥

∥

∥

∥

n−1
∑

k=0

(e2πikθ1T kf1+e2πikθ2T kf2)

∥

∥

∥

∥

2

=
1

n

∥

∥

∥

∥

n−1
∑

k=0

e2πikθ1T kf1

∥

∥

∥

∥

2

+
1

n

∥

∥

∥

∥

n−1
∑

k=0

e2πikθ2T kf2

∥

∥

∥

∥

2

+

2

n
ℜe

〈

n−1
∑

k=0

e2πikθ1T kf1,

n−1
∑

k=0

e2πikθ2T kf2
〉

.

By the Fejér-Lebesgue theorem, for a.e. θ1, θ2 the first two terms tend respectively to
ϕf1

(θ1) and ϕf2
(θ2). The inner product term tends to 0 by the previous lemma.

The results of this section were of spectral nature and valid for general station-
ary processes of second order. Now we apply them to regular processes, with the
terminology of dynamical systems and specifically of K-systems.

2. CLT for rotated processes. Let (Ω,A,P, τ) be a dynamical system. If B ⊂ A
is a sub σ-algebra, then L2

0(B) is the subspace of centered B-measurable func-
tions in L2(Ω,A,P). Recall (cf. Rohlin [15]) that any dynamical system has
a largest zero entropy factor P(τ) (Pinsker factor) and a sub σ-algebra A0 of
A with the following properties: (i) (increasing) A0 ⊂ τ−1A0; (ii) (generating)
A∞ := σ

(

∪∞
n=−∞ τ−nA0

)

= A; (iii) A−∞ := ∩∞
n=−∞τ

−nA0 = P(τ).
The increasing sequence An := τ−nA0 defines a filtration with the corresponding

Hilbertian T -filtration:

L2
0(P(τ)) = L2

0(A−∞) ⊂ ... ⊂ L2
0(A−1) ⊂ L2

0(A0) ⊂ L2
0(A1) ⊂ ... ⊂ L2

0(A∞) = L2
0(A).

Every function in L2(A) which is orthogonal to L2(P(τ)) is regular for the associated
Hilbertian T -filtration.
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In particular, when the system is a K-system (equivalently has completely posi-
tive entropy, i.e., with a trivial Pinsker factor), there exists an increasing generating
sub σ-algebra A0 of A such that A−∞ is trivial. Every function in L2

0(P) is then
regular for the associated Hilbertian T -filtration. Therefore Proposition 1.4 applies
to K-systems.

If the Pinsker factor is not trivial but has a singular spectral type, i.e., if the
spectral measure νf is singular for every f ∈ L2

0(P(τ)), then Corollary 1.5 applies.

When τ is an endomorphism we have a decreasing filtration An = τ−nA, n ≥ 0.
Here A∞ = A and A−∞ is replaced by ∩∞

n=0An. This induces a one-sided Hilbertian
T -filtration. Every function in L2(A) orthogonal to L2(A−∞) is regular. If the
system is exact, that is, A−∞ is trivial, every function in L2

0(A) is regular. Using the
unitary dilation (see Remark 1.6) and reversing the filtration order, Proposition 1.4
holds for endomorphisms.

2.1. CLT. In this section we show a Central Limit Theorem (CLT) for “rotated”
processes.

Let (Ω,A,P, τ) be a K-system. Let A0 be an increasing and generating sub-σ
algebra of A as in the beginning of Section 2 and An = τ−nA0. With the notations
of Subsection 1.1, we put K0 := L2

0(A0) ⊖ L2
0(A−1).

For θ ∈ R, we consider the product system (T1 × Ω, λ⊗ P, τθ), where

τθ : (x, ω) → (x+ θ mod 1, τω).

The Pinsker factor of τθ is isomorphic to the rotation by θ on the circle. Let (ψj)
be an orthonormal family of real functions which is a basis of K0.

Let us consider a function F ∈ L2(T1×Ω) orthogonal to the functions depending
only on ω,

F (x, ω) =
∑

ℓ∈Z\{0}
e2πiℓxfℓ(ω), (8)

and its L2-norm:

‖F‖2
2 =

∑

ℓ 6=0

‖fℓ‖2
2 =

∑

j

∑

ℓ 6=0

∑

k

|〈fℓ, T
kψj〉|2 <∞.

We investigate the question of the CLT for
∑n−1

0 F (x+kθ, τkω) for a.e. θ. When
F (x, ω) = e2πixf(ω), we will obtain the CLT for“rotated ergodic sums” of Peligrad
and Wu mentioned in the introduction.

We always assume
∫

fℓ dP = 0. Let ϕfℓ
be the density of the spectral measure

of fℓ for the action of τ .
For each j ∈ J , let γj,ℓ be an everywhere finite square integrable function with

Fourier series γj,ℓ(t) =
∑

n〈fℓ, T
nψj〉 e2πint (cf. (5)). Let f̃ℓ(x, ω) := e2πiℓx fℓ(ω).

The spectral density of f̃ℓ for τθ is ϕfℓ
(t+ ℓθ) =

∑

j |γj,ℓ(t+ ℓθ)|2 and we have

∑

j

∫

|γj,ℓ(t+ ℓθ)|2 dt =
∑

j

∫

|γj,ℓ(t)|2 dt =
∑

j

∑

k

|〈fℓ, T
kψj〉|2.

The spectral density of F in the dynamical system (T1 × Ω, τθ) is

ϕF (t) =
∑

ℓ 6=0

∑

j

|γj,ℓ(t+ ℓθ)|2.
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The above formula defines for every θ a nonnegative function in L1(T1) with integral
∫

T1 ϕF dt = ‖F‖2
2. The variance at time n is

1

n

∫

T1×Ω

|
n−1
∑

k=0

F (x+ kθ, τkω)|2 dxP(dω) =

∑

ℓ∈Z\{0}

1

n

∫

Ω

|
n−1
∑

k=0

e2πiℓkθfℓ(τ
kω)|2 P(dω) =

∑

ℓ∈Z\{0}
(Kn ∗ ϕfℓ

)(ℓθ).

The asymptotic variance σ2
θ(F ) for the action of τθ exists whenever the limit

limn

∑

ℓ∈Z\{0}(Kn ∗ ϕfℓ
)(ℓθ) exists and is finite.

Definition of the approximating martingale The functions
∑

j γℓ,j(ℓθ)ψj are

in K0. Let Mθf (or simply Mθ) be defined by:

Mθ(x, ω) :=
∑

ℓ 6=0

e2πiℓx
∑

j

γℓ,j(ℓθ)ψj . (9)

We have
∫

T1×Ω

|Mθ(x, ω)|2 dxP(dω) =
∑

ℓ 6=0

∑

j∈J

|γj,ℓ(ℓθ)|2 =
∑

ℓ 6=0

ϕfℓ
(ℓθ). (10)

Since
∑

ℓ 6=0

∑

j∈J

∫

|γj,ℓ(ℓθ)|2 dθ =
∑

ℓ 6=0

∑

j∈J

∫

|γj,ℓ(θ)|2 dθ = ‖F‖2
2 < ∞, Mθ

is well defined for θ in the set of full measure

Λ0(F ) := {θ ∈ T :
∑

ℓ 6=0

∑

j∈J

|γj,ℓ(ℓθ)|2 <∞}.

Denote by B the Borel σ-algebra of T. With respect to the filtration (B × An),
(Mθ(x+nθ, τ

nω))n∈Z is a τθ-stationary ergodic sequence of differences of martingale,
with variance given by (10). Notice that Mθ is real valued if F is a real valued
function. The following two propositions are the main steps in the proof of the CLT
for rotated sums.

Proposition 2.1. Let F be a real function in L2(T1 × Ω) represented as in (8).
For θ ∈ Λ0(F ), the asymptotic distribution with respect to the measure λ ⊗ P on

T1 ×Ω of 1√
n

∑n−1
k=0 Mθ(x+ kθ, τkω) is the normal law with variance

∑

ℓ 6=0 ϕfℓ
(ℓθ).

Proof. The result follows from Billingsley-Ibragimov theorem on stationary ergodic
martingale differences (cf. [9]).

Proposition 2.2. Suppose
∑

ℓ ‖fℓ‖2 <∞.
1) Then we have

∑

ℓ

sup
n

(Kn ∗ ϕfℓ
)(ℓθ) <∞, for a.e. θ. (11)

2) The asymptotic variance σ2
θ(F ) =

∑

ℓ ϕfℓ
(ℓθ) exists for a.e. θ. The set Λ(F )

of elements θ in Λ0 such that

δθ
n(F ) :=

1

n

∫

T1×Ω

|
n−1
∑

k=0

[F (x+ kθ, τkω) −Mθ(x+ kθ, τkω)]|2 dxP(dω) → 0 (12)

has full measure.
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Proof. 1) By the maximal inequality for the convolution by the Fejèr kernels Kn

(see Zygmund [19, Th. 8.1] and Garsia [7, p. 7]), there is C such that, for every
ϕ ∈ L1(T1), λ(supn |(Kn ∗ ϕ)| > α) ≤ C

α ‖ϕ‖1.

Recall that ‖ϕfℓ
‖L1(dt) = ‖fℓ‖2

2. Using the invariance of the Lebesgue measure

on T1 by the map θ → ℓθ mod 1, ℓ 6= 0, and the maximal inequality, we obtain
(implicitly we restrict the sum to indices ℓ such that ‖fℓ‖2 6= 0) for s > 0 the
following maximal inequality which implies (11):

λ
(

θ :
∑

ℓ

sup
n

(Kn ∗ ϕfℓ
)(ℓθ) ≥ s

∑

ℓ

‖fℓ‖2

)

≤
∑

ℓ

λ
(

θ : sup
n

(Kn ∗ ϕfℓ
)(ℓθ) ≥ s‖fℓ‖2

)

≤
∑

ℓ

λ
(

θ : sup
n

(Kn ∗ ϕfℓ
)(θ) ≥ s‖fℓ‖2

)

≤ C

s

∑

ℓ

‖fℓ‖−1
2 ‖ϕfℓ

‖1 ≤ C

s

∑

ℓ

‖fℓ‖2.

2) The existence of the asymptotic variance σ2
θ(F ) for a.e. θ follows from (11).

We have
∫

T1×Ω

|
n−1
∑

k=0

[F (x + kθ, τkω) −Mθ(x+ kθ, τkω)]|2 dxP(dω)

=

∫

T1×Ω

|
n−1
∑

k=0

∑

ℓ 6=0

e2πiℓ(x+kθ)
(

fℓ(τ
kω) −

∑

j

γj,ℓ(ℓθ)ψj(τ
kω)

)

|2 dxP(dω)

=

∫

T1×Ω

|
∑

ℓ 6=0

e2πiℓx
n−1
∑

k=0

e2πikℓθ
(

fℓ(τ
kω) −

∑

j

γj,ℓ(ℓθ)ψj(τ
kω)

)

|2 dxP(dω)

=
∑

ℓ 6=0

∫

Ω

|
n−1
∑

k=0

e2πikℓθ
(

fℓ(τ
kω) −

∑

j

γj,ℓ(ℓθ)ψj(τ
kω)

)

|2 P(dω),

hence (cf. (7)):

δθ
n(F ) =

∑

ℓ 6=0

1

n
‖Sℓθ

n (fℓ −Mℓθ,ℓfℓ)‖2
2 =

∑

ℓ 6=0

∫ 1

0

1

n

∣

∣

∣

∣

n−1
∑

k=0

e2πik(t−ℓθ)

∣

∣

∣

∣

2

ϕfℓ−Mℓθ,ℓfℓ
(t) dt

=
∑

ℓ 6=0

∫ 1

0

Kn(t− ℓθ) ϕfℓ−Mℓθ,ℓfℓ
(t) dt, (13)

where the spectral density (for τ) of fℓ −Mℓθ,ℓ is ϕfℓ−Mℓθ,ℓfℓ
(t) =

∑

j∈J |γj,ℓ(t) −
γj,ℓ(ℓθ)|2.

From Proposition 1.4, for a.e. θ and for each ℓ, limn

∫ 1

0
Kn(t−ℓθ) ϕfℓ−Mℓθ,ℓfℓ

(t) dt =
0. By (11), for a.e. θ we can permute the limit and the sum in (13):

lim
n

∑

ℓ 6=0

∫ 1

0

Kn(t− ℓθ) ϕfℓ−Mℓθ,ℓfℓ
(t) dt =

∑

ℓ 6=0

lim
n

∫ 1

0

Kn(t− ℓθ) ϕfℓ−Mℓθ,ℓfℓ
(t) dt = 0.

Theorem 2.3. Let (Ω,A,P, τ) be a K-system. Let F be a real function in L2(T1×
Ω) orthogonal to the functions depending only on ω with Fourier expansion (8) such
that

∑ ‖fℓ‖2 < +∞. Then for a.e. θ we have with respect to the measure dx⊗P(dω)

1√
n

n−1
∑

k=0

F (x+ kθ, τkω)
distr−→
n→∞

N (0, σ2
θ(F )),
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with asymptotic variance σ2
θ(F ) =

∑

ℓ ϕfℓ
(ℓθ).

Proof. The result follows from the CLT for the martingale defined by (9) (Propo-
sition 2.1) and the approximation (12) valid for a.e. θ, as shown in Proposition
2.2).

Corollary 2.4. Let f be a real function in L2
0(P). For a.e. θ, the CLT holds for

the rotated sums:

1√
n

n−1
∑

k=0

e2πikθf(τkω)
distr−→
n→∞

N (0,Γθ)

with respect to the measure P(dω), with covariance matrix

Γθ =

(

1
2ϕf (θ) 0

0 1
2ϕf (θ)

)

.

Proof. Theorem 2.3 implies the CLT for the sums e2πix
∑n−1

k=0 e2πikθf(τkω) with
respect to dx ⊗ P(dω). An easy computation gives the covariance matrix for the
(complex valued) martingale Mθ associated to e2πixf(ω). Using the lemma below,
this implies the result.

Lemma 2.5. For a.e. θ ∈ T1, the asymptotic distribution of 1√
n
e2πix

∑n−1
k=0 e2πikθf(τkω)

with respect to λ ⊗ P is the same as that of 1√
n

∑n−1
k=0 e2πikθf(τkω) with respect to

P.

Proof. Let Zθ
n(ω) := 1√

n

∑n−1
k=0 e2πikθf(τkω). By Theorem 2.3 for a.e. θ, e2πixZθ

n(ω)

satisfies the CLT with respect to λ⊗P. Fix θ in this set of full measure. By Theorem
4 of Eagleson [5] (see also [18]), if we replace λ ⊗ P by an absolutely continuous
probability measure with respect to λ⊗P, the asymptotic distribution of e2πixZθ

n(ω)
is unchanged (i.e., the limit is mixing).

For ε > 0 let Jε be an interval neighborhood of 0 of length ε. Put ζε := ε−11Jε
.

We consider the probability measure ζε(x)λ(dx)⊗P(dω). If Φ is a Lipschitz function
defined on C with Lipschitz constant C, then for x ∈ Jε we have |Φ(e2πixY ) −
Φ(Y )| ≤ Cε|Y |, for every Y ∈ C. Hence using the Cauchy-Schwarz inequality, we
have

∣

∣

∫

(Φ(e2πixZθ
n) − Φ(Zθ

n)) ζε(x) dx dP(dω)
∣

∣ ≤ Cε
(

∫

|Zθ
n|2 dP

)
1

2 .

Since supn

∫

|Zθ
n|2 dP < +∞, it shows that:

lim
ε→0

sup
n

∣

∣

∫

(Φ(e2πixZθ
n) − Φ(Zθ

n)) ζε(x) dxP(dω)
∣

∣ = 0.

We obtain the result by applying what precedes to the family Φt(Y ) = eiℜe(tY ),
for t and Y ∈ C.

Remarks 2.6. 1) The CLT for the sums
∑n−1

k=0 e2πikθf(τkω) with respect to (θ, ω)
under the measure dθ ⊗ P(dω) follows from Corollary 2.4.

2) A variant of the proof of Corollary 2.4 consists in using a CLT for martingales
with the weights cos(2πkθ). For this, we use the ergodic theorem to prove the
convergence of the conditional variance and apply Brown’s Central Limit Theorem
for martingale which extends Billingsley-Ibragimov theorem or Corollary 3.4 in [9].
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Extensions For θ = (θ1, ..., θd) ∈ Rd, let us consider the system defined on Td×Ω,
by τθ : (x, ω) → (x+ θ mod 1, τω). We denote by λ the Lebesgue measure on Td.

Let F be a function in L2(Td × Ω) orthogonal to the functions depending only
on ω, i.e.,

F (x, ω) =
∑

ℓ∈Zd\{0}
e2πi〈ℓ,x〉fℓ(ω). (14)

Its L2-norm is

‖F‖2
2 =

∑

ℓ∈Zd\{0}
‖fℓ‖2

2 =
∑

j

∑

ℓ∈Zd\{0}

∑

k

|〈fℓ, T
kψj〉|2 <∞.

Observe that the push forward of the Lebesgue measure on Td by the map θ ∈
Td → 〈ℓ, θ〉 ∈ T1 is the Lebesgue measure on T1 if ℓ ∈ Zd \ {0}. Therefore the
previous method applies. Now the martingale Mθ is defined by

Mθ(x, ω) :=
∑

ℓ∈Zd\{0}
e2πi〈ℓ,x〉M〈ℓ,θ〉,ℓ(ω), where M〈ℓ,θ〉,ℓ :=

∑

j

γℓ,j(〈ℓ, θ〉)ψj .

Its variance is
∫

Td×Ω

|Mθ(x, ω)|2 dxP(dω) =
∑

ℓ∈Zd\{0}

∑

j∈J

|γj,ℓ(〈ℓ, θ〉)|2 < +∞, for a.e. θ. (15)

The same proof as in Theorem 2.3 shows:

Theorem 2.7. Let (Ω,A,P, τ) be a K-system. Let F be a real function in L2(Td ×
Ω) orthogonal to the functions depending only on ω with Fourier expansion (14)

satisfying
∑ ‖fℓ‖2 < +∞. Then for a.e. θ ∈ Td the CLT holds for 1√

n

∑n−1
k=0 F (x+

kθ, τkω) with respect to the measure λ⊗ P.

Remark that the proof applies if we replace T
d by any compact abelian connected

group G, since for any character on G the map g ∈ G → χ(g) ∈ T1 is a surjective
homomorphism and the push forward of the Haar measure on G is the Lebesgue
measure on T1.

Now, as in Corollary 2.4, we consider the distribution with respect to the mea-
sure P. Note that, with the condition

∑ ‖fℓ‖2 < +∞, the function F (θ, ω) :=
∑

ℓ∈Zd\{0} e2πi〈ℓ,θ〉fℓ(ω) is defined for every θ.

Theorem 2.8. Let (Ω,A,P, τ) be a K-system. If
∑ ‖fℓ‖

2

3

2 < +∞, then for a.e.

θ ∈ Td the CLT holds for 1√
n

∑n−1
k=0 F (kθ, τkω) with respect to the measure P and

limn
1
n‖

∑n−1
k=0 F (kθ, τk·)‖2 =

∑

ℓ∈Zd\{0} ϕfℓ
(〈ℓ, θ〉).

Proof. It follows from the hypothesis (cf. proof of Proposition 2.2):

λ(θ :
∑

ℓ

sup
n

[Kn ∗ ϕfℓ
(〈ℓ, θ〉)] 1

2 ≥ s
∑

ℓ

‖fℓ‖
2

3

2 ) ≤
∑

ℓ

λ(t : sup
n

[Kn ∗ ϕfℓ
(t)]

1

2 ≥ s‖fℓ‖
2

3

2 )

≤ C

s2

∑

ℓ

‖fℓ‖2
2/‖fℓ‖

4

3

2 =
C

s2

∑

ℓ

‖fℓ‖
2

3

2 < +∞.
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With the notation Sθ
ℓ,n(ω) :=

∑n−1
k=0 e2πi〈ℓ,kθ〉fℓ(τ

kω), using the triangular inequality
this implies:

λ(θ : sup
n

1√
n
‖

n−1
∑

k=0

∑

ℓ∈Zd

e2πi〈ℓ,kθ〉fℓ ◦ τk‖2 ≥ s
∑

ℓ∈Zd

‖fℓ‖
2

3

2 )

≤ λ

(

θ :
∑

ℓ

sup
n

1√
n
‖Sθ

ℓ,n‖2 ≥ s
∑

ℓ

‖fℓ‖
2

3

2

)

≤
∑

ℓ

λ

(

θ : sup
n

(Kn ∗ ϕfℓ
)(〈ℓ, θ〉) ≥ s2‖fℓ‖

4

3

2

)

≤ C

s2

∑

ℓ

‖fℓ‖
2

3

2 < +∞. (16)

If L is a finite set of indices in Zd, we have by the preceding inequalities:

λ(θ : sup
n

1√
n
‖

n−1
∑

k=0

∑

ℓ∈Zd\L

e2πi〈ℓ,kθ〉fℓ ◦ τk‖2 ≥ s
∑

ℓ∈Zd\L

‖fℓ‖
2

3

2 ) ≤ C

s2

∑

ℓ∈Zd\L

‖fℓ‖
2

3

2 .

Therefore, for an increasing sequence of finite sets (Lp) in Z
d with union Z

d \{0}
and with

Zθ,p
n :=

1√
n

n−1
∑

k=0

∑

ℓ∈Lp

e2πi〈ℓ,kθ〉fℓ ◦ τk, Zθ
n :=

1√
n

n−1
∑

k=0

∑

ℓ∈Zd\{0}
e2πi〈ℓ,kθ〉fℓ ◦ τk,

we have limp supn ‖Zθ
n−Zθ,p

n ‖2 = 0 for a.e. θ. Now, if we prove that Zθ,p
n

distr−→
n→∞

N (0, σp(θ))

for every p, then we may use Theorem 3.2 in Billingsley [1] to conclude that

Zθ
n

distr−→
n→∞

N (0, σ(θ)), with σ(θ) := limp σp(θ) ∈ [0,+∞[.

Let Yℓ = Sθ
ℓ,n(ω) and let γℓ ∈ C be any family complex numbers. We have

|eiℜe(t
P

ℓ∈Lp
γℓYℓ)−e

iℜe(t
P

ℓ∈Lp
Yℓ)| ≤

∑

ℓ∈Lp

|eiℜe(tγℓYℓ)−eiℜe(tYℓ)| ≤ |t|
∑

ℓ∈Lp

|γℓ−1||Yℓ|.

Therefore we can use the argument of Lemma 2.5. We obtain the CLT for Zp
n

for a fixed p with respect to P with the same variance for the limit law as for the
process 1√

n

∑

ℓ∈Lp
e2πi〈ℓ,x〉 ∑n−1

k=0 e2πi〈ℓ,kθ〉fℓ ◦ τk with respect to λ× P.

Hence we obtain Zθ,p
n ⇒n N (0, σp(θ)), with for a.e. θ (cf. (15))

σ2
p(θ) =

∑

ℓ∈Lp

∑

j∈J

|γj,ℓ(〈ℓ, θ〉)|2.

Since σ2(θ) = limp σ
2
p(θ) =

∑

ℓ∈Zd\{0}
∑

j∈J |γj,ℓ(〈ℓ, θ〉)|2, we obtain the result. The

convergence of the variance will be proved below.

Corollary 2.9. Let h be a continuous function on Td with 0 integral such that
∑

ℓ∈Zd |ĥ(ℓ)| 23 < ∞. Let f be in L2(Ω). Then, for a.e. θ ∈ T, the CLT holds

for
∑n−1

k=0 h(kθ) f ◦ τk with respect to P(dω) and limn→∞
1
n‖

∑n−1
k=0 h(kθ)T

kf‖2 =
∑

ℓ 6=0 |ĥ(ℓ)|2 ϕf (ℓθ).

Proof. We apply Theorem 2.8 to F (θ, ω) =
∑

ℓ∈Zd\{0} e2πiℓθ ĥ(ℓ) f(ω).

Remark 2.10. 1) The previous results extend to vector valued functions.
2) Let P(τ) be the Pinsker factor of a dynamical systems (Ω,A,P, τ). The

previous results extend to functions F in L2(Td×Ω) with fℓ orthogonal to L2(P(τ))

for every ℓ ∈ Zd \ {0}, under the condition
∑ ‖fℓ‖

2

3

2 < +∞.
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They are valid for dynamical systems such that P(τ) has a singular spectrum
(with a possibly degenerated limit law, see Corollary 1.5).

Computation of the variance Here we give a proof of the convergence of the
variance as stated in Theorem 2.8. For this result we need only to assume that τ is
weakly mixing in order that the cross spectral measures with respect to the unitary
operator T induced by τ are without atoms.

Theorem 2.11. If Fwith Fourier series F (x, ω) =
∑

ℓ∈Zd\{0} e2πi〈ℓ,x〉fℓ(ω) is such

that
∑

ℓ∈Zd\{0} ‖fℓ‖
2

3

2 < +∞, then for a.e. θ ∈ Td

lim
n→∞

1

n

∥

∥

∥

∥

n−1
∑

k=0

F (kθ, τkω)

∥

∥

∥

∥

2

P(dω)

=
∑

ℓ∈Zd\{0}
ϕfℓ

(〈ℓ, θ〉).

Proof. From Proposition 1.8 applied with distinct θ1 = ℓθ and θ2 = ℓ̃θ, we obtain
the result when F is trigonometric polynomial. We consider now the general case.

We put as above Sθ
ℓ,n(ω) :=

∑n−1
k=0 e2πik〈ℓ,θ〉fℓ(τ

kω). The assumption of the

theorem and Inequality (16) in Theorem 2.8 imply
∑

ℓ 6=0

sup
n

∥

∥

1√
n
Sθ

ℓ,n

∥

∥ < +∞, for a.e. θ. (17)

It follows

1

n

∥

∥

n−1
∑

k=0

F (kθ, τk·)
∥

∥

2
=

∥

∥ lim
L

∑

06=ℓ∈[−L,L]d

1√
n
Sθ

ℓ,n

∥

∥

2
= lim

L

∥

∥

∑

06=ℓ∈[−L,L]d

1√
n
Sθ

ℓ,n

∥

∥

2
.

So, actually we need to compute limn limL

∥

∥

∑

06=ℓ∈[−L,L]d
1√
n
Sθ

ℓ,nf
∥

∥

2
. After ex-

panding the square of the norm, we have to compute the following two limits:

lim
n

∑

ℓ 6=0

1

n
‖Sθ

ℓ,n‖2 and ℜe
{

lim
n

∑

ℓ>ℓ̃

〈 1√
n
Sθ

ℓ,n,
1√
n
Sθ

ℓ̃,n
〉
}

. (18)

By (17)
∑

ℓ 6=0 supn
1
n‖Sθ

ℓ,n‖2 < +∞ and we may use Lebesgue dominated conver-

gence theorem to permute limn with the sum in the first expression of (18). This
expression converges to the desired limit of the theorem. For the second term, by
Lemma 1.7 we have that limn〈 1√

n
Sθ

ℓ,n,
1√
n
Sθ

ℓ̃,n
〉 = 0 for ℓ 6= ℓ̃ and for every θ ∈ T

d

with rationally independent components. Since
∑

ℓ 6=ℓ̃

sup
n

|〈 1√
n
Sθ

ℓ,n,
1√
n
Sθ

ℓ̃,n
〉| ≤

(

∑

ℓ

sup
n

‖ 1√
n
Sθ

ℓ,n‖
)2
,

we may use (17) and Lebesgue’s dominated convergence theorem to invert limn with
the sum in the second expression of (18) to conclude that the limit for n tending to
∞ of the mixed terms is 0.

2.2. Invariance principle for a.e. θ for modified sums. Let (Ω,P, τ) be a
K-system and (T nf) a process generated by f ∈ L2

0(Ω,P) where Tf = f ◦ τ . Let
us consider for a parameter α in ]0, 1] the modified rotated sums

Sθ
n,αf =

n−1
∑

k=0

e2πik θ (1 − (
k

n
)α)T kf
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and the interpolated normalized continuous time process defined for t ∈ [0, 1] (with

the convention
∑−1

k=0 = 0) by

W θ
n,t,αf =

tα√
n

[nt]−1
∑

k=0

e2πik θ (1 − (
k

[nt]
)α)T kf.

For α ∈]0, 1], we have limn
1
n

∑n−1
k=1

(

1 − ( k
n )α

)2
= 2α2

(1+α)(1+2α) . A computation

analogous to that in [13] gives the following result:

Proposition 2.12. Let α be in ]0, 1]. We have for a.e. θ

‖ sup
0≤t≤1

|W θ
n,t,αf −W θ

n,t,αMθf | ‖2 → 0. (19)

Proof. The inequalities
∑n

j=k

∫ j+1

j
dt

t1−α ≤ ∑n
j=k

1
j1−α ≤ ∑n

j=k

∫ j

j−1
dt

t1−α imply

n
∑

j=k

1

j1−α
=

1

α
(nα − kα) + ρ(k, n),

with 0 ≤ ρ(k, n) ≤
∫ n

k−1

dt

t1−α
−

∫ n

k

dt

t1−α
=
kα − (k − 1)α

α
. (20)

We have the following relation,

1

n
1

2
+α

[nt]
∑

k=1

Sθ
kf

k1−α
=

1

n
1

2
+α

[nt]
∑

k=1

e2πi(k−1)θ (
1

k1−α
+ ...+

1

[nt]1−α
)T k−1f

=
1

α

1

n
1

2
+α

[nt]
∑

k=1

e2πi(k−1)θ ([nt]α − kα + ρ(k, [nt])T k−1f

=
1

α
(
[nt]

nt
)α tα

n
1

2

[nt]
∑

k=1

e2πi(k−1)θ (1 − (
k

[nt]
)α)T k−1f +

1

n
1

2
+α

[nt]
∑

k=1

e2πi(k−1)θρ(k, [nt])T k−1f ;

hence:

W θ
n,t,αf = (

nt

[nt]
)α α

n
1

2
+α

[

[nt]
∑

k=1

Sθ
kf

k1−α
− (

nt

[nt]
)α α

n
1

2
+α

[nt]
∑

k=1

e2πi(k−1)θρ(k, [nt])T k−1f.

Since nt
[nt] ≤ 2 for 1

n ≤ t ≤ 1, putting θ(n, t) = ( nt
[nt] )

αα, we have from the

previous relation:

sup
1

n
≤t≤1

|W θ
n,t,αf | ≤ sup

1

n
≤t≤1

[
θ(n, t)

n
1

2
+α

[nt]
∑

k=1

|Sθ
kf |

k1−α
] + sup

1

n
≤t≤1

[
θ(n, t)

n
1

2
+α

[nt]
∑

k=1

|ρ(k, [nt])|T k−1|f |]

≤ sup
1

n
≤t≤1

[
2

n
1

2
+α

[nt]
∑

k=1

|Sθ
kf |

k1−α
] + sup

1

n
≤t≤1

[
2

n
1

2
+α

[nt]
∑

k=1

[kα − (k − 1)α]T k−1|f |]

≤ 2

n
1

2
+α

n
∑

k=1

|Sθ
kf |

k1−α
+

2

n
1

2
+α

n
∑

k=1

[kα − (k − 1)α]T k−1|f |.



14 GUY COHEN AND JEAN-PIERRE CONZE

We use the previous inequality with f − Mθf instead of f . By the triangle
inequality, Cauchy-Schwarz inequality and (20) it follows:

‖ sup
0≤t≤1

|W θ
n,t,αf −W θ

n,t,αMθf |‖2 ≤ 1

n
1

2
+α

n
∑

k=1

‖Sθ
kf − Sθ

kMθf‖2

k1−α

+
1

n
1

2
+α

n
∑

k=1

[kα − (k − 1)α] (‖T k−1f‖2 + ‖T k−1Mθf‖2)

≤ 1

n
1

2
+α

(

n

n
∑

k=1

‖Sθ
kf − Sθ

kMθf‖2
2

k2(1−α)

)
1

2 +
nα

n
1

2
+α

(‖f‖2 + ‖Mθf‖2)

=
( 1

n2α

n
∑

k=1

‖Sθ
kf − Sθ

kMθf‖2
2

k2(1−α)

)
1

2 +
1

n
1

2

(‖f‖2 + ‖Mθf‖2).

As ‖Sθ
kf − Sθ

kMθf‖2
2 = o(k) for a.e. θ, this implies (19).

Theorem 2.13. For a.e. θ ∈ T, the real and imaginary parts of the process
(

W θ
n,t,αf

)

are asymptotically independent and satisfy the invariance principle with

convergence to 1
2ϕf (θ)Zα(t), where Zα(t) is a Gaussian continuous process with

covariance for s ≤ t,

2α2

(1 + α)(1 + 2α)

s2−α

(1 − α)(2 − α)

[

t1−α − 1

3 − 2α
s1−α

]

.

Proof. By Proposition 2.12 it is enough to prove the statement for the process
(W θ

n,t,αMθf). We use the Cramér-Wold device [3] to identify the 2-d limit. Then
the proof goes along the same lines as in Peligrad-Peligrad [13]. Since the system
is weakly mixing the factor 1

2ϕf (θ) comes from the following limit, for a.e. θ

lim
n→∞

1

n

n−1
∑

k=0

cos2(2πkθ)T k|Mθf |2 =
1

2
ϕf (θ), a.e. and in L1(P)

and the same with sin2(2πkθ). The asymptotic independence follows from the fact
that for a.e. θ the asymptotic correlation between the real and imaginary parts of
the process is zero a.e. and in L1(P)-norm.

The above result is an a.e. result, but for modified sums. In [14] an invariance
principle for the usual rotated sums is shown for the product measure. We present
below their result (and include a proof for the sake of completeness) which is valid
also in our setting. The key step is the following lemma, where Carleson’s result on
Fourier series is used:

Lemma 2.14. For every regular function f , the family ( 1
n sup1≤k≤n |Sθ

kf |2)n≥1 is
uniformly integrable for the product measure dθ × P(dω).

Proof. For every m ≥ 1, we have:

Sθ
kf =

k−1
∑

ℓ=0

e2πiℓ θ T ℓf =

k−1
∑

ℓ=0

e2πiℓ θ T ℓ
∞
∑

j=−∞
Πjf

=

m
∑

j=−m

k−1
∑

ℓ=0

e2πiℓ θ T ℓΠjf +

k−1
∑

ℓ=0

e2πiℓ θ T ℓ
∑

j 6∈[−m,m]

Πjf. (21)
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First, let us consider the second term in (21). By Carleson-Hunt’s inequality,
there is a constant C such that:

∫

T1

max
1≤k≤n

|
k−1
∑

ℓ=0

e2πiℓ θ T ℓ
∑

j 6∈[−m,m]

Πjf(ω)|2dθ ≤ C

n−1
∑

l=0

|T ℓ
∑

j 6∈[−m,m]

Πjf(ω)|2;

hence:
∫

Ω

∫

T1

1

n
max

1≤k≤n
|
k−1
∑

ℓ=0

e2πiℓ θ T ℓ
∑

j 6∈[−m,m]

Πjf(ω)|2dθ P(dω)

≤ C
1

n

∫

Ω

n−1
∑

l=0

|
∑

j 6∈[−m,m]

T ℓΠjf(ω)|2 P(dω) = C
∑

j 6∈[−m,m]

‖Πjf‖2 →
m→∞

0. (22)

In particular, we obtain that 1
n max1≤k≤n |∑k−1

ℓ=0 e2πiℓ θ T ℓ
∑

j 6∈[−m,m] Πjf(ω)|2
is uniformly integrable for the product measure dθ × P(dω). Now we consider
the first term in (21). For each j ∈ [−m,m] and θ ∈ T, the sequence Mθ

j (k, ω) :=
∑k−1

ℓ=0 e2πiℓ θ T ℓΠjf(ω) is a square integrable martingale with respect to (Aj+k−1)k≥1.

We conclude that
(

Mθ
j (k, ω)

)

k≥1
is a square integrable martingale with respect

to (B(T) ⊗ Aj+k−1)k≥1. Proposition 1(a) in Dedecker and Rio [4] yields that
(

1
n max1≤k≤n |Mθ

j (k, ω)|2
)

n≥1
is uniformly integrable for dθ × P(dω).

As a finite sum of uniformly integrable sequences is a uniformly integrable se-
quence, the sequence

∑

j∈[−m,m]
1
n max1≤k≤n |Mθ

j (k, ω)|2 is uniformly integrable.

This observation and (22) imply the assertion for 1
n max1≤k≤n |Sθ

k|2.

As a consequence of standard results from Billingley [1] now it follows:

Theorem 2.15 ([14]). Under the product measure dθ×P(dω), the process
(

1√
n
Sθ

[nt]f
)

is tight in D(0, 1) and

(

ℜe{ 1√
n
Sθ

[nt]f},ℑe{
1√
n
Sθ

[nt]f}
)

⇒
√

1

2
ϕf (U)

(

W ′(t),W ′′(t)
)

,

where U is a random variable uniformly distributed on [0, 2π] and W ′(t) and W ′′(t)
are two independent standard Brownian motions independent of U .

2.3. Application to recurrence of rotated stationary walks in C. Let (Ω,A,P, τ)
be an ergodic dynamical system and ϕ be measurable function on Ω with values
in Rd, d ≥ 1. The skew product τϕ : (ω, y) → (τω, y + ϕ(ω)) leaves invariant the
σ-finite measure P×dy. It is known that it is either dissipative or conservative with
respect to this measure. The latter case occurs if and only if the “stationary walk”

(or “cocycle”) Snϕ(ω) :=
∑n−1

k=0 ϕ(τkω) is recurrent, i.e., for a.e. ω, Snk(ω)ϕ(ω)
belongs to an arbitrary neighborhood of 0 for an infinite sequence of times nk(ω).

For d = 1, when ϕ is integrable, the condition
∫

ϕdP = 0 is necessary and suf-
ficient for recurrence. The construction of 2-dimensional stationary walks deserves
attention, since, as shown by the i.i.d. case, the dimension d = 2 is critical for the
recurrence property. We use the following sufficient recurrence criterion:

Recurrence criterion (K. Schmidt [16]) Let B(η) be the ball of radius η > 0
centered at the origin in R2. If there exists δ > 0 such that, for every η > 0, we
have limn P(n−1/2Snϕ ∈ B(η)) ≥ δη2, then (Snϕ) is recurrent in R2.
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We apply the preceding results to rotated 2-dimensional walks, by modifying the
increments of the cocycle at each step by a rotation.

Theorem 2.16. Let (Ω,P, τ) be a K-system or an exact system. Let ϕ ∈ L2(P)

with values in C. For a.e. θ ∈ R, the process
∑n−1

k=0 e2πikθϕ(τkω) is recurrent and
the map τθ,ϕ : (ω, z) → (τω, e2πiθz + ϕ(ω)) from Ω × C into itself is conservative.

Proof. We consider the system (T1 × Ω, λ⊗ P, τθ), where τθ : (x, ω) → (x+θ mod 1, τω).
Let F (x, ω) := e2πixϕ(ω).

Since F satisfies the CLT by Theorem 2.3 (see Remark 2.10), the recurrence

criterion implies that for a.e. θ, for a.e. (x, ω), the process
∑n−1

k=0 F (x+ kθ, τkω) is

recurrent in any neighborhood of 0. Hence for a.e. θ the process
∑n−1

k=0 e2πikθϕ(τkω)
is also recurrent.

The map τθ,ϕ defines a measure preserving transformation on (Ω × C,P ×m),
where m is the Lebesgue measure on R2. By iteration of this map, we get: τn

θ,ϕ =

(τnω, e2πinθz+ϕn(θ, ω)), with ϕn(θ, ω) =
∑n−1

k=0 e2πi(n−1−k) θϕ(τkω) which behaves

in modulus like the rotated ergodic sums
∑n−1

k=0 e−2πikθϕ(τkω). By a standard
argument on recurrent cocycles, this implies the conservativity of τθ,ϕ.

Another situation is provided by isometric extensions.

Theorem 2.17. Let (Ω,A,P, τ) be a K-system or an exact system. Let ϕ be a
measurable real function on Ω and ϕk(ω) := ϕ(ω) + ϕ(τω) + ... + ϕ(τk−1ω). For

a.e. θ the asymptotic distribution of n−1/2
∑n−1

0 e2πikθe2πiϕk with respect to P is

a normal law. For a.e. θ, for P-a.e. ω the process
∑n−1

0 e2πikθe2πiϕk(ω) visits
infinitely often every neighborhood of 0.

Proof. The isometric extension τϕ : (ω, y) → (τω, y+ϕ(ω) mod 1) defines a measure
preserving dynamical system on Ω × T1. Its Pinsker factor P(τϕ) is invariant for
the circle action on Ω × T1 on the second coordinate. The sets which are invariant
by this action belong to the Pinsker factor of τ , hence are trivial. Therefore the
circle action on P(τϕ) is ergodic. Since it has a discrete spectrum, the map τϕ,
which commutes with this action, has also a discrete (hence singular) spectrum in
restriction to P(τϕ).

Let F ∈ L2(P× dy). By Corollary 2.4 and Remark 1.6, the CLT (with a limiting
law which can be degenerated) is satisfied for a.e. θ for the rotated ergodic sums

Sθ
nF :=

∑n−1
k=0 e2πikθF ◦ τk

ϕ , n ≥ 1.

In particular consider the function F (ω, y) := e2πiy on Ω × T1. Its ergodic sums

for the action of τϕ read e2πiy
∑n−1

k=0 e2πikθe2πiϕk(ω). The result follows from the
previous theorem.

Example: The map τ : x → 2x mod 1 is exact for the Lebesgue measure on T1.
For ϕ on the circle, let ϕk(x) := ϕ(x) + ϕ(2x) + ... + ϕ(2k−1x). It is known

that, if ϕ is Hölderian, the process (
∑n−1

0 e2πiϕk) is recurrent in C (cf. [8]).
The previous theorem shows that for any measurable real function ϕ the process

(
∑n−1

0 e2πikθe2πiϕk)n≥1 is recurrent in C for a.e. θ.

3. CLT for rotated Zd-actions. The above results for rotated ergodic sums rely
on the duality between Z, the group action corresponding to 1-dimensional discrete
time dynamical systems, and the group of the circle. In higher dimension this
suggests that the same method applies to multidimensional abelian actions. In this
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section, we show how to obtain a CLT for rotated ergodic sums of L2-functions
on Zd dynamical systems (d > 1) with K-property which allows to use martingale
methods as in the previous section. For simplicity we take d = 2.

We write n = (n1, n2) for an element of Z2 and we put on Z2 the lexicographic
order n ≤ p ⇔ (n1 < p1) or (n1 = p1 and n2 ≤ p2).

Spectral properties Part of the spectral considerations of section 1.1 extends to
a unitary action of a discrete abelian group on a Hilbert space. We explicit them
briefly for Z2. First let us recall some classical facts about Fourier series in two
variables.

Using the usual one-dimensional Fejèr kernel, the two-dimensional Fejèr kernel
on T2 corresponding to rectangles is defined as KN,P (θ1, θ2) = KN (θ1) · KP (θ2).
For an integrable function ϕ on T

2 with Fourier coefficients(ϕ̂k,ℓ)k,ℓ∈Z, the Fejèr
kernel applied to ϕ gives

KN,P (ϕ)(θ1, θ2) := (KN,P∗ϕ)(θ1, θ2) =
1

NP

N
∑

n=1

P
∑

p=1

(

n−1
∑

k=−n+1

p−1
∑

ℓ=−p+1

ϕ̂k,ℓ e2πi(kθ1+ℓθ2)).

We have the following results (cf. Zygmund [19, Ch. XVII], Th. 2.14, Th. 3.1):

Proposition 3.1. (i) If ϕ is integrable, then lim
N→∞

KN,N(ϕ) = ϕ a.e.

(ii) If ϕ log+ |ϕ| is integrable, then lim
min{N,P}→∞

KN,P (ϕ) = ϕ a.e.

Rotated ergodic sums and approximation Let H be a Hilbert space. If T1, T2

are two commuting unitary operators on H, they define a Z2-unitary action on H
by f ∈ H → T k1

1 T k2

2 f , k ∈ Z2.
The rotated ergodic sum corresponding to a rectangle RN,L = [0, N [×[0, L[ is,

for f in H,

Sθ1,θ2

N,L f =
∑

k∈RN,L

e2πi(k1θ1+k2θ2) T k1

1 T k2

2 f.

For L = N we simply write RN for RN,N and Sθ1,θ2

N f . The variance of the

rotated 2-dimensional process (for squares), when it exists, is limN
1

N2 ‖Sθ1,θ2

N f‖2
2.

Suppose that K0 is a closed subspace of H such that the subspaces T k1

1 T k2

2 K0

are pairwise orthogonal. If (ψj)j∈J is an orthonormal basis of K0, the family

(T l1
1 T

l2
2 ψj , j ∈ J, l ∈ Z2) is an orthonormal basis of the closed subspace H∞ gener-

ated by these subspaces.

Notations 3.2. For f ∈ H∞, we set aj, n := 〈f, T n1

1 T n2

2 ψj〉. For j ∈ J , let γj be
an everywhere finite square integrable function on T2 with Fourier coefficients aj, n.
The density of the spectral measure for the Z2 action is ϕf =

∑

j∈J |γj |2.

Since
∫

T2

∑

j∈J |γj(θ1, θ2)|2 dθ1dθ2 =
∑

j∈J

∑

n∈Z2 |aj,n|2 =
∫

ϕf (θ1, θ2) dθ1dθ2 =

‖f‖2 < ∞, the set Λ0 := {θ ∈ T
2 :

∑

j∈J |γj(θ)|2 < ∞} has full measure. For
θ ∈ Λ0, let

Mθf :=
∑

j

γj(θ)ψj ∈ K0. (23)

With a proof analogous to that of Proposition 1.4, Proposition 3.1 implies:
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Proposition 3.3. For f ∈ H∞, the set Λ(f) of elements θ = (θ1, θ2) in Λ0 such
that

lim
N

1

N2

∥

∥

∥

∥

∑

k∈RN

e2πi(k1θ1+k2θ2) T k1

1 T k2

2 (f −Mθf)

∥

∥

∥

∥

2

2

= 0.

has full measure in T2.

K-systems Now we consider two commuting automorphisms τ1 and τ2 of a prob-
ability space (Ω,A,P). They define a measure preserving action of Z2. We write
T1f (resp. T2f) for f ◦ τ1 (resp. f ◦ τ2). Recall that the entropy of such an action
can be defined, as well as the Pinsker factor which is the largest factor with zero
entropy. The action has a completely positive entropy if every non trivial factor has
positive entropy (equivalently its Pinsker factor is trivial). The notion of K-system
can be extended to a Z2-action in the following way:

For a sub σ-algebra B of A, we denote by Bτi , i = 1, 2, the σ-algebra generated

by (
⋃N

n=−N τn
i B, N ≥ 1).

A sub-σ-algebra A0 is increasing if (n′, p′) ≤ (n, p) ⇒ τn′

1 τp′

2 A0 ⊂ τn
1 τ

p
2A0. An

increasing sub-σ-algebra A0 of A has the property K if
(i) it is generating: the sub σ-algebra is generated by ∪n,pτ

n
1 τ

p
2A0 is A;

(ii) its remote past is trivial, i.e.,
⋂

ℓ τ
ℓ
2A0 = τ−1

1 Aτ2

0 and
⋂

ℓ τ
ℓ
1Aτ2

0 is trivial.
The system is a K-system if there exists an increasing sub σ-algebra with the

property K. In that case, the system has completely positive entropy. Conversely
B. Kamiński ([11]) proved the existence of a sub σ-algebra with the K-property,
when the action has completely positive entropy.

Examples 1) The simplest examples of K-systems for a Z2-action are the Z2-
Bernoulli schemes (full 2-shift) defined as the shift action on the coordinates on

the product Ω = IZ
2

endowed with a product probability measure p⊗Z
2

, where p is
a probability vector on a finite space I.

2) For K-systems of algebraic origin see the book of K. Schmidt ([17]).
3) Examples are also provided by statistical mechanics (for instance, see [10] for

examples of Z
2-systems which are K but not Bernoulli).

Rotated ergodic sums and martingale approximation Let A0 be a sub
σ-algebra and K0 be a subspace in L2(A0) of functions which satisfy

E(Mθf ◦ τk1

1 τk2

2 |τ−k′

1

1 τ
−k′

2

2 A0) = 0, ∀k > k′, (24)

Let f be in L2
0(P). Let M(θ1,θ2) ∈ K0 be associated to f for a.e. (θ1, θ2) by (23).

Theorem 3.4.

1

n

∑

k∈Rn

Mθ(τ
k1

1 τk2

2 ω)
distr−→ N (0,Γ(θ))

with respect to P, where Γ(θ) is the covariance matrix

Γ(θ) =

(

1
2ϕf (θ1, θ2) 0

0 1
2ϕf (θ1, θ2)

)

.

Proof. Although we consider the 2-dimensional case, as long as we deal with finite
sums, by ordering, we may consider them as 1-dimensional sums. Using the ergodic
theorem for the ergodic means on squares to prove the convergence of the conditional
variance, we can apply Theorem 3.2 in [9] for martingales (cf. Remark 2.6).
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Now we can apply the martingale approximation to the 2-dimensional rotated
ergodic sums.

Theorem 3.5. Let (Ω,A,P, (τ1, τ2)) be a 2-d K-system. Let f be in L2
0(P) with

spectral density ϕf . Then for Lebesgue-a.e. θ the asymptotic distribution (with
respect to P) of
(

1

n

∑

k∈Rn

cos(2π(k1θ1 + k2θ2)) f(τk1

1 τk2

2 .),
1

n

∑

k∈Rn

sin(2π(k1θ1 + k2θ2)) f(τk1

1 τk2

2 .)

)

is the centered normal law in R2 with covariance matrix 1
2

(

ϕf (θ1, θ2) 0
0 ϕf (θ1, θ2)

)

.

If the spectral density ϕf is in L1 logL1, then the result is valid for ergodic sums
on rectangles.

Proof. By Proposition 3.3, the mean square approximation of the bi-dimensional
process by a bi-dimensional array satisfying a martingale property holds. The result
then follows from the previous theorem. The asymptotic covariance computation
follows from the same argument as in the proof of Theorem 2.13.

If ϕf is in L1 logL1, ii) of Proposition 3.1 allows to extend the result to ergodic
sums on sequences of rectangles RN,L and take the limit when min{N,L} → ∞.

Examples of commuting endomorphisms

Let us consider the commuting (non invertible) endomorphisms on T1 given
by τ1x = 2x mod 1 and τ2x = 3x mod 1 (2 and 3 can be replaced by any pair of
coprime integers> 1). They generate an action of the semi-group N2. The invertible
extension of this action has a Lebesgue spectrum.

Let J be the subset of all non-zero integers which are not divisible by 2 or 3.
Every non-zero integer n ∈ N can be written in a unique way as n = 2k13k2j, for
some non-negative integers k1, k2 and j ∈ J .

We define K0 as the closed subspace of L2
0(T

1) generated by e2πijx for j ∈ J .

The subspaces T k1

1 T k2

2 K0 are pairwise orthogonal and with the previous notations
H∞ = L2

0(T
1).

Let f be a function if L2
0(T

1) with Fourier series
∑

n∈Z
f̂ne2πinx. Let

γj(θ1, θ2) =
∑

k1,k2≥0

f̂2k13k2 j e2πi(k1θ1+k2θ2).

As j ∈ J is not divisible by 2 and by 3, for any f in K0 and any g in L2
0, T

k1

1 T k2

2 f

is orthogonal to T
k′

1

1 T
k′

2

2 g if k < k′. Let Mθf(x) :=
∑

j∈J γj(θ) e2πijx.

A Central limit Theorem like Theorem 3.5 can be shown ([2]). The main step is

the result analogous to Theorem 3.4 for the sums
∑

k∈Rn
Mθ(τ

k1

1 τk2

2 x). This can

be done by using the properties of the set of integers (2k13k2 , (k1, k2) ∈ N2) as in
[6].
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