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Convergence in law implies convergence in total
variation for polynomials in independent Gaussian,

Gamma or Beta random variables

Ivan Nourdin∗ (Université de Lorraine)
Guillaume Poly (Université du Luxembourg)

Abstract: Consider a sequence of polynomials of bounded degree evaluated in independent Gaus-
sian, Gamma or Beta random variables. We show that, if this sequence converges in law to a
nonconstant distribution, then (i) the limit distribution is necessarily absolutely continuous with
respect to the Lebesgue measure and (ii) the convergence automatically takes place in the total
variation topology. Our proof, which relies on the Carbery-Wright inequality and makes use of a
diffusive Markov operator approach, extends the results of [9] to the Gamma and Beta cases.
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1 Introduction and main results

The Fortet-Mourier distance between (laws of) random variables, defined as

dFM (F,G) = sup
‖h‖∞61
‖h′‖∞61

∣

∣E[h(F )] − E[h(G)]
∣

∣ (1.1)

is well-known to metrize the convergence in law, see, e.g., [5, Theorem 11.3.3]. In other words,

as n → ∞ one has that Fn
law
→ F∞ if and only if dFM (Fn, F∞) → 0. But there is plenty of

other distances that allows one to measure the proximity between laws of random variables. For
instance, one may use the Kolmogorov distance:

dKol(F,G) = sup
x∈R

∣

∣P (F 6 x)− P (G 6 x)
∣

∣.

Of course, if dKol(Fn, F∞) → 0 then Fn
law
→ F∞. But the converse implication is wrong in general,

meaning that the Kolmogorov distance does not metrize the convergence in law. Nevertheless, it
becomes true when the target law is continuous (that is, when the law of F∞ has a density with
respect to the Lebesgue measure), a fact which can be easily checked by using (for instance) the
second Dini’s theorem. Yet another popular distance for measuring the distance between laws
of random variables, which is even stronger than the Kolmogorov distance, is the total variation
distance:

dTV (F,G) = sup
A∈B(R)

∣

∣P (F ∈ A)− P (G ∈ A)
∣

∣. (1.2)

∗supported in part by the (french) ANR grant ‘Malliavin, Stein and Stochastic Equations with Irregular
Coefficients’ [ANR-10-BLAN-0121].
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One may prove that

dTV (F,G) =
1

2
sup

‖h‖∞61

∣

∣E[h(F )] − E[h(G)]
∣

∣, (1.3)

or, whenever F and G both have a density (noted f and g respectively)

dTV (F,G) =
1

2

∫

R

|f(x)− g(x)|dx.

Unlike the Fortet-Mourier or Kolmogorov distances, it can happen that Fn
law
→ F∞ for continuous

Fn and F∞ without having that dTV (Fn, F∞) → 0. For an explicit counterexample, one may

consider Fn ∼ 2
π cos2(nx)1[0,π](x)dx; indeed, it is straightforward to check that Fn

law
→ F∞ ∼ U[0,π]

but dTV (Fn, F∞) 6→ 0 (it is indeed a strictly positive quantity that does not depend on n).

As we just saw, the convergence in total variation is very strong and therefore it cannot be expected
from the mere convergence in law without additional structure. Let us give three representative
results in this direction. Firstly, there is a celebrated theorem of Ibragimov (see, e.g., Reiss [10])
according to which, if Fn, F∞ are continuous random variables with densities fn,f∞ that that are

unimodal, then Fn
law
→ F∞ if and only if dTV (Fn, F∞) → 0. Secondly, let us quote the paper [11],

in which necessary and sufficient conditions are given (in term of the absolute continuity of the
laws) so that the classical Central Limit Theorem holds in total variation. Finally, let us mention
[1] or [6] for conditions ensuring the convergence in total variation for random variables in Sobolev
or Dirichlet spaces. Although all the above examples are related to very different frameworks,
they have in common the use of a particular structure of the involved variables; loosely speaking,
this structure allows to derive a kind of “non-degeneracy” in an appropriate sense which, in turn,
enables to reinforce the convergence, from the Fortet-Mourier distance to the total variation one.

Our goal in this short note is to exhibit yet another instance when convergence in law and in
total variation are equivalent. More precisely, we shall prove the following result, which may be
seen as an extension to the Gamma and Beta cases of our previous results in [9].

Theorem 1.1 Assume that one of the following three conditions is satisfied:

(1) X ∼ N(0, 1);

(2) X ∼ Γ(r, 1) with r > 1;

(3) X ∼ β(a, b) with a, b > 1.

Let X1,X2, . . . be independent copies of X. Fix an integer d > 1 and, for each n, let mn be a
positive integer and let Qn ∈ R[x1, ..., xmn ] be a multilinear polynomial of degree at most d; assume
further that mn → ∞ as n → ∞. Finally, suppose that Fn has the form

Fn = Qn(X1, . . . ,Xmn), n > 1,

and that it converges in law as n → ∞ to a non-constant random variable F∞. Then the law of
F∞ is absolutely continuous with respect to the Lebesgue measure and Fn actually converges to F∞
in total variation.
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In the statement of Theorem 1.1, by ‘multilinear polynomial of degree at most d’ we mean a
polynomial Q ∈ R[x1, . . . , xm] of the form

Q(x1, . . . , xm) =
∑

S⊂{1,...,m}, |S|6d

aS
∏

i∈S
xi,

for some real coefficients aS and with the usual convention that
∏

i∈∅ xi = 1.
Before providing the proof of Theorem 1.1, let us comment a little bit why we are ‘only’

considering the three cases (1), (2) and (3). This is actually due to our method of proof. Indeed,
the two main ingredients we are using for showing Theorem 1.1 are the following.

(a) We will make use of a Markov semigroup approach. More specifically, our strategy rely to
the use of orthogonal polynomials which are also eigenvectors of diffusion operators. And in
dimension 1, up to affine transformations only the Hermite (case (1)), Laguerre (case (2))
and Jacobi (case (3)) polynomials are of this form, see [7].

(b) We will make use of the Carbery-Wright inequality (Theorem 2.1). The main assumption
for this inequality to hold is the log-concavity property. This impose some further (weak)
restrictions on the parameters in the cases (2) and (3).

The rest of the paper is organized as follows. In Section 2, we gather some useful preliminary
results. Theorem 1.1 is shown in Section 3.

2 Preliminaries

From now on, we shall write m instead of mn for the sake of simplicity.

2.1 Markov semigroup

In this section, we introduce the framework we shall need along the proof of Theorem 1.1. We
refer the reader to [2] for the details and missing proofs. Fix an integer m and let µ denote the
distribution of the random vector (X1, . . . ,Xm), with X1, . . . ,Xm independent copies of X, for
X satisfying either (1), (2) or (3). In these three cases, there exists a reversible Markov process
on R

m, with semigroup Pt, equilibrium measure µ and generator L. The operator L is selfadjoint
and negative semidefinite. We define the Dirichlet form E associated to L:

E(f, g) = −

∫

fLgdµ = −

∫

gLfdµ.

When f = g, we simply write E(f) instead of E(f, f). The carré du champ operator Γ will be also
of interest; it is the operator defined as

Γ(f, g) =
1

2

(

L(fg)− fLg − gLf
)

.

Similarly to E , when f = g we simply write Γ(f) instead of Γ(f, f). Since
∫

Lf dµ = 0, we observe
the following link between the Dirichlet form E and the carré du champ operator Γ:

∫

Γ(f, g)dµ = E(f, g).
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An important property which is satisfied in the three cases (1), (2) and (3) is that Γ is diffusive
in the following sense:

Γ(φ(f), g) = φ′(f)Γ(f, g). (2.4)

Besides, and it is another important property shared by (1), (2), (3), the eigenvalues of −L
may be ordered as a countable sequence like 0 = λ0 < λ1 < λ2 < · · · , with a corresponding
sequence of orthonormal eigenfunctions u0, u1, u2, · · · where u0 = 1; in addition, this sequence
of eigenfunctions forms a complete orthogonal basis of L2(µ). For completeness, let us give more
details in each of our three cases (1), (2), (3) of interest.

(1) The case where X ∼ N(0, 1). We have

Lf(x) = ∆f(x)− x · ∇f(x), x ∈ R
m, (2.5)

where ∆ is the Laplacian operator and ∇ is the gradient. As a result,

Γ(f, g) = ∇f · ∇g. (2.6)

We can compute that Sp(−L) = N and that Ker(L + k I) (with I the identity operator) is
composed of those polynomial functions R(x1, . . . , xm) having the form

R(x1, . . . , xm) =
∑

i1+i2+···+im=k

α(i1, · · · , im)

m
∏

j=1

Hij(xj).

Here, Hi stands for the Hermite polynomial of degree i.

(2) The case where X ∼ Γ(r, 1). The density of X is fX(t) = tr−1 e−t

Γ(r) , t > 0, with Γ the Euler
Gamma function; it is log-concave for r > 1. Besides, we have

Lf(x) =

m
∑

i=1

(

xi∂iif + (r + 1− xi)∂if
)

, x ∈ R
m. (2.7)

As a result,

Γ(f, g)(x) =

m
∑

i=1

xi∂if(x)∂ig(x), x ∈ R
m. (2.8)

We can compute that Sp(−L) = N and that Ker(L+ k I) is composed of those polynomial
functions R(x1, . . . , xm) having the form

R(x1, . . . , xm) =
∑

i1+i2+···+im=k

α(i1, · · · , im)

m
∏

j=1

Lij (xj).

Here Li(X) stands for the ith Laguerre polynomial of parameter r defined as

Li(x) =
x−rex

i!

di

dxi

{

e−xxi+r
}

, x ∈ R.
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(3) The case where X ∼ β(a, b). In this case, X is continuous with density

fX(t) =











ta−1(1− t)b−1

∫ 1
0 ua−1(1− u)b−1 du

if t ∈ [0, 1]

0 otherwise

.

The density fX is log-concave when a, b > 1. Moreover, we have

Lf(x) =
m
∑

i=1

(

(1− x2i )∂iif + (b− a− (b+ a)xi)∂if
)

, x ∈ R
m. (2.9)

As a result,

Γ(f, g)(x) =
m
∑

i=1

(1− x2i )∂if(x)∂ig(x), x ∈ R
m. (2.10)

Here, the structure of the spectrum turns out to be a little bit more complicated than in
the two previous cases (1) and (2). Indeed, we have that

Sp(−L) = {i1(i1 + a+ b− 1) + · · ·+ im(im + a+ b− 1) | i1, . . . , im ∈ N}.

Note in particular that the first nonzero element of Sp(−L) is λ1 = a+ b− 1 > 0. Also, one
can compute that, when λ ∈ Sp(−L), then Ker(L + λ I) is composed of those polynomial
functions R(x1, . . . , xm) having the form

R(x1, . . . , xm) =
∑

i1(i1+a+b−1)+···+im(im+a+b−1)=λ

α(i1, · · · , inm)Ji1(x1) · · · Jim(xm).

Here Ji(X) is the ith Jacobi polynomial, defined as

Ji(x) =
(−1)i

2ii!
(1− x)1−a(1 + x)1−b di

dxi

{

(1− x)a−1(1 + x)b−1(1− x2)i
}

, x ∈ R.

To end up with this quick summary, we stress that a Poincaré inequality holds true in the three
cases (1), (2) and (3). This is well-known and easy to prove, by using the previous facts together
with the decomposition

L2(µ) =
⊕

λ∈Sp(−L)
Ker(L+ λ I).

Namely, with λ1 > 0 the first nonzero eigenvalue of −L, we have

Varµ(f) 6
1

λ1
E(f). (2.11)
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2.2 Carbery-Wright inequality

The proof of Theorem 1.1 will rely, among others, on the following crucial inequality due to
Carbery and Wright ([4, Theorem 8]). We state it here for convenience.

Theorem 2.1 (Carbery-Wright) There exists an absolute constant c > 0 such that, if Q :
R
m → R is a polynomial of degree at most k and µ is a log-concave probability measure on R

m

then, for all α > 0,

(
∫

Q2dµ

)
1

2k

× µ{x ∈ R
m : |Q(x)| 6 α} 6 c k α

1

k . (2.12)

2.3 Absolute continuity

There is a celebrated result of Borell [3] according to which, if X1, X2, ... are independent,
identically distributed and X1 has an absolute continuous law, then any nonconstant polynomial
in the Xi’s has an absolute continuous law, too. In the particular case where the common law
satisfies either (1), or (2) or (3) in Theorem 1.1, one can recover Borell’s theorem as a consequence
of the previous Carbery-Wright inequality. We provide the proof of this fact here, since it may be
seen as a first step towards the proof of Theorem 1.1.

Proposition 2.2 Assume that one of the three conditions (1), (2) or (3) of Theorem 1.1 is
satisfied. Let X1,X2, . . . be independent copies of X. Consider two integers m,d > 1 and let
Q ∈ R[x1, ..., xm] be a polynomial of degree d. Then the law of Q(X1, . . . ,Xm) is absolutely
continuous with respect to the Lebesgue measure if and only if its variance is not zero.

Proof. Write µ for the distribution of (X1, . . . ,Xm) and assume that Var(Q(X1, . . . ,Xm)) > 0.
We shall prove that, if A is a Borel set of R with Lebesgue measure zero, then P (Q(X1, . . . ,Xm) ∈
A) = 0. This will be done in three steps.

Step 1. Let ε > 0 and let B be a bounded Borel set. We shall prove that
∫

1{Q∈B}
Γ(Q)

ε+ Γ(Q)
dµ =

∫
(
∫ Q

−∞
1B(u)du ×

{

−LQ

Γ(Q) + ε
+ 2

Γ(Γ(Q))

(Γ(Q) + ε)2

})

dµ. (2.13)

Indeed, let h : R → [0, 1] be C∞ with compact support. We can write, using among other (2.4),
∫

(
∫ Q

−∞
h(u)du ×

−LQ

Γ(Q) + ε

)

dµ = E

(
∫ Q

−∞
h(u)du ×

1

Γ(Q) + ε
,Q

)

=

∫
(

h(Q)
Γ(Q)

Γ(Q) + ε
− 2

∫ Q

−∞
h(u)du

Γ(Γ(Q))

(Γ(Q) + ε)2

)

dµ.

Applying Lusin’s theorem allows one, by dominated convergence, to pass from h to 1B in the
previous identity; this leads to the desired conclusion (2.13).

Step 2. Let us apply (2.13) to B = A∩[−n, n]. Since
∫ ·
−∞ 1B(u)du is zero almost everywhere,

one deduces that, for all ε > 0 and all n ∈ N
∗,

∫

1{Q∈A∩[−n,n]}
Γ(Q)

ε+ Γ(Q)
dµ = 0.
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By monotone convergence (n → ∞) it comes that, for all ε > 0,

∫

1{Q∈A}
Γ(Q)

ε+ Γ(Q)
dµ = 0. (2.14)

Step 3. Observe that Γ(Q) is a polynomial of degree at most 2d, see indeed (2.6), (2.8)
or (2.10). We deduce from the Carbery-Wright inequality (2.12), together with the Poincaré in-
equality (2.11), that Γ(Q) is strictly positive almost everywhere. Thus, by dominated convergence
(ε → 0) in (2.14) we finally get that µ{Q ∈ A} = P (Q(X1, . . . ,Xm) ∈ A) = 0.

3 Proof of Theorem 1.1

We are now in a position to show Theorem 1.1. We will split its proof in several steps.

Step 1. For any p ∈ [1,∞) we shall prove that

sup
n

∫

|Qn|
pdµm < ∞. (3.15)

(Let us recall our convention about m from the beginning of Section 2.) Indeed, using (for
instance) Propositions 3.11, 3.12 and 3.16 of [8] (namely, a hypercontractivity property), one first
observes that, for any p ∈ [2,∞), there exists a constant cp > 0 such that, for all n,

∫

|Qn|
pdµm 6 cp

(
∫

Q2
ndµm

)p/2

. (3.16)

(This is for obtaining (3.16) that we need Qn to be multilinear.) On the other hand, one can write

∫

Q2
ndµm =

∫

Q2
n 1{Q2

n>
1

2

∫
Q2

ndµm}dµm +

∫

Q2
n 1{Q2

n<
1

2

∫
Q2

ndµm}dµm

6

√

∫

Q4
ndµm

√

µm

{

x : Qn(x)2 >
1

2

∫

Q2
ndµm

}

+
1

2

∫

Q2
ndµm,

so that, using (3.16) with p = 4,

µm

{

x : Qn(x)
2
>

1

2

∫

Q2
ndµm

}

>

(∫

Q2
ndµm

)2

4
∫

Q4
ndµm

>
1

4c4
.

But {Qn}n>1 is tight as {Fn}n>1 converges in law. As a result, there exists M > 0 such that, for
all n,

µm

{

x : Qn(x)
2
> M

}

<
1

4c4
.

We deduce that
∫

Q2
ndµm 6 2M which, together with (3.16), leads to the claim (3.15).
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Step 2. We shall prove the existence of a constant c > 0 such that, for any u > 0 and any
n ∈ N

∗,

µm {x : Γ(Qn) 6 u} 6 c
u

1

2d

Varµm(Qn)
1

2d

. (3.17)

Observe first that Γ(Qn) is a polynomial of degree at most 2d, see indeed (2.6), (2.8) or (2.10).
On the other hand, since X has a log-concave density, the probability µm is absolutely continuous
with a log-concave density as well. As a consequence, Carbery-Wright inequality (2.12) applies
and yields the existence of a constant c > 0 such that

µm {x : Γ(Qn) 6 u} 6 c u
1

2d

(
∫

Γ(Qn)dµm

)− 1

2d

.

To get the claim (3.17), it remains one to apply the Poincaré inequality (2.11).

Step 3. We shall prove the existence of n0 ∈ N
∗ and κ > 0 such that, for any ε > 0,

sup
n>n0

∫

ε

Γ(Qn) + ε
dµm 6 κ ε

1

2d+1 . (3.18)

Indeed, thanks to the result shown in Step 2 one can write
∫

ε

Γ(Qn) + ε
dµm 6

ε

u
+ µm {x : Γ(Qn) 6 u}

6
ε

u
+ c

u
1

2d

Varµm
(Qn)

1

2d

.

But, by Step 1 and since µm ◦ Q−1
n converges to some probability measure η, one has that

Varµm(Qn) converges to the variance of η as n → ∞. Moreover this variance is strictly posi-
tive by assumption. We deduce the existence of n0 ∈ N

∗ and δ > 0 such that

sup
n>n0

∫

ε

Γ(Qn) + ε
dµm 6

ε

u
+ δ u

1

2d .

Choosing u = ε
2d

2d+1 leads to the desired conclusion (3.18).

Step 4. Let m′ be shorthand for mn′ and recall the Fortet-Mourier distance (1.1) as well as
the total variation distance (1.3) from the Introduction. We shall prove that, for any n, n′ > n0

(with n0 and κ given by Step 3), any 0 < α 6 1 and any ε > 0,

dTV (Fn, Fn′) 6
1

α
dFM (Fn, Fn′)+4κ ε

1

2d+1 +2

√

2

π

α

ε
sup
n>n0

(
∫

Γ(Γ(Qn))dµm +

∫

∣

∣LQn

∣

∣dµm

)

.

(3.19)

Indeed, set pα(x) = 1
α
√
2π
e
− x2

2α2 , x ∈ R, 0 < α 6 1, and let g ∈ C∞
c be bounded by 1. It is

immediately checked that

‖g ∗ pα‖∞ 6 1 6
1

α
and ‖(g ∗ pα)

′‖∞ 6
1

α
. (3.20)
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Let n, n′ > n0 be given integers. Using Step 3 and (3.20) we can write
∣

∣

∣

∣

∫

g d(µm ◦Q−1
n )−

∫

g d(µm′ ◦Q−1
n′ )

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

g ◦Qn dµm −

∫

g ◦Qn′ dµm′

∣

∣

∣

∣

6

∣

∣

∣

∣

∫

(g ∗ pα) ◦Qndµm −

∫

(g ∗ pα) ◦Qn′dµm′

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

(g − g ∗ pα) ◦Qn ×

(

Γ(Qn)

Γ(Qn) + ε
+

ε

Γ(Qn) + ε

)

dµm

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

(g − g ∗ pα) ◦Qn′ ×

(

Γ(Qn′)

Γ(Qn′) + ε
+

ε

Γ(Qn′) + ε

)

dµm′

∣

∣

∣

∣

6
1

α
dFM (Fn, Fn′) + 2

∫

ε

Γ(Qn) + ε
dµm + 2

∫

ε

Γ(Qn′) + ε
dµm′

+

∣

∣

∣

∣

∫

(g − g ∗ pα) ◦Qn ×
Γ(Qn)

Γ(Qn) + ε
dµm

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

(g − g ∗ pα) ◦Qn′ ×
Γ(Qn′)

Γ(Qn′) + ε
dµm′

∣

∣

∣

∣

6
1

α
dFM (Fn, Fn′) + 4κ ε

1

2d+1 + 2 sup
n>n0

∣

∣

∣

∣

∫

(g − g ∗ pα) ◦Qn ×
Γ(Qn)

Γ(Qn) + ε
dµm

∣

∣

∣

∣

.

Now, set Ψ(x) =
∫ x
−∞ g(s)ds and let us apply (2.4). We obtain

∣

∣

∣

∣

∫

(g − g ∗ pα) ◦Qn ×
Γ(Qn)

Γ(Qn) + ε
dµm

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

1

Γ(Qn) + ε
Γ
(

(Ψ −Ψ ∗ pα) ◦Qn, Qn

)

dµm

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

(Ψ−Ψ ∗ pα) ◦Qn ×

(

Γ
(

Qn,
1

Γ(Qn) + ε

)

+
LQn

Γ(Qn) + ε

)

dµm

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

(Ψ−Ψ ∗ pα) ◦Qn ×

(

−
Γ(Qn,Γ(Qn))

(Γ(Qn) + ε)2
+

LQn

Γ(Qn) + ε

)

dµm

∣

∣

∣

∣

6
1

ε

∫

|(Ψ −Ψ ∗ pα) ◦Qn| ×
(

Γ(Γ(Qn)) +
∣

∣LQn

∣

∣

)

dµmn . (3.21)

On the other hand, we have

|Ψ(x)−Ψ ∗ pα(x)| =

∣

∣

∣

∣

∫

R

pα(y)

(
∫ x

−∞
(g(u)− g(u− y)) du

)

dy

∣

∣

∣

∣

6

∫

R

pα(y)

∣

∣

∣

∣

∫ x

−∞
g(u)du −

∫ x

−∞
g(u − y)du

∣

∣

∣

∣

dy

6

∫

R

pα(y)

∣

∣

∣

∣

∫ x

x−y
g(u)du

∣

∣

∣

∣

dy 6

∫

R

pα(y) |y| dy 6

√

2

π
α. (3.22)

The desired conclusion (3.19) now follows easily.

Step 5. We shall prove that

sup
n>n0

(
∫

Γ(Γ(Qn))dµm +

∫

∣

∣LQn

∣

∣dµm

)

< ∞. (3.23)

9



First, relying on the results of Section 2.1 we have that

Qn ∈
⊕

α6λ2d

Ker(L + αI).

Since L is a bounded operator on the space
⊕

α6λ2d
Ker(L+αI) and Qn is bounded in the space

L2(µm), we deduce immediately that supn
∫

L(Qn)
2dµm < ∞, implying in turn that

sup
n

∫

|L(Qn)|dµm < ∞.

Besides, one has Γ = 1
2(L + 2λI) on Ker(L + λI) and one deduces for the same reason as above

that

sup
n

∫

Γ(Γ(Qn))dµm < ∞.

The proof of (3.23) is complete.

Step 6: conclusion. The Fortet-Mourier distance dFM metrizing the convergence in dis-
tribution, our assumption ensures that dFM (Fn, Fn′) → 0 as n, n′ → ∞. Therefore, combin-
ing (3.23) with (3.19), letting n, n′ → ∞, then α → 0 and then ε → 0, we conclude that
limn,n′→∞ dTV (Fn, Fn′) = 0, meaning that Fn is a Cauchy sequence in the total variation topol-
ogy. But the space of bounded measures is complete for the total variation distance, so the
distribution of Fn must converge to some distribution, say η, in the total variation distance. Of
course, η must coincide with the law of F∞. Moreover, let A be a Borel set of Lebesgue measure
zero. By Proposition 2.2, we have P (Fn ∈ A) = 0 when n is large enough. Since dTV (Fn, F∞) → 0
as n → ∞, we deduce that P (F∞ ∈ A) = 0 as well, thus proving that the law of F∞ is absolutely
continuous with respect to the Lebesgue measure by the Radon-Nikodym theorem. The proof of
Theorem 1.1 is now complete.
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