
HAL Id: hal-00821901
https://hal.science/hal-00821901v1

Submitted on 13 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proceedings of the Spatial Computing Workshop (SCW
2013) colocated with AAMAS (W09)

Jean-Louis Giavitto, Stefan O. Dulman, Antoine Spicher, Mirko Viroli

To cite this version:
Jean-Louis Giavitto, Stefan O. Dulman, Antoine Spicher, Mirko Viroli. Proceedings of the Spatial
Computing Workshop (SCW 2013) colocated with AAMAS (W09). IFAMAAS (International Foun-
dation for Autonomous Agents and Multiagent Systems), pp.92, 2013. �hal-00821901�

https://hal.science/hal-00821901v1
https://hal.archives-ouvertes.fr

Spatial Computing 2013
colocated with AAMAS

Saint-Paul, 6 May 2013

Dr. Jean-Louis Giavitto (CNRS & IRCAM)
Dr. Stefan Dulman (Delft University)

Prof. Antoine Spicher (LACL - Univ. Paris-Est Créteil)
Prof. Mirko Viroli (University of Bologna)

Contents

Foreword . iv

Program Committee . vii

Schedule . ix

Regular Presentations . 1

Accelerating Approximate Consensus with Self-Organizing Overlays 3

Jacob Beal

Spatial Programming for Musical Transformations and Harmonization 9

Louis Bigo, Jean-Louis Giavitto and Antoine Spicher

Population Protocols on Graphs: A Hierarchy . 17

Olivier Bournez and Jonas Lefèvre

AREA: an Automatic Runtime Evolutionary Adaptation mechanism for Creating
Self-Adaptation Algorithms in Wireless Networks 23

Qingzhi Liu, Stefan Dulman and Martijn Warnier

Promoting Space-Aware Coordination: ReSpecT as a Spatial Computing Virtual
Machine . 29

Stefano Mariani and Andrea Omicini

Modeling Inertia in an Amorphous Computing Medium 35

Alyssa S. Morgan and Daniel N. Coore

Declarative Multidimensional Spatial Programming 41

John Plaice, Jarryd P. Beck and Blanca Mancilla

Computing Activity in Space . 47

Martin Potier, Antoine Spicher and Olivier Michel

ii

Application of Force-Directed Graphs on Character Positioning 53

Christine Talbot and G. Michael Youngblood

Engineering Confluent Computational Fields: from Functions to Rewrite Rules . . . 59

Mirko Viroli

Short Presentations . 65

Composing gradients for a context-aware navigation of users in a smart-city 67

Sara Montagna and Mirko Viroli

Teams to exploit spatial locality among agents . 73

James Parker and Maria Gini

Spatial Computing in an Orbital Environment: An Extrapolation of the Unique
Constraints of this Special Case to other Spatial Computing Environments 79

Jeremy Straub

Spatial Computation and Algorithmic Information content in Non-DNA based Molec-
ular Self-Assembly . 85

Germán Terrazas, Leong Ting Lui and Natalio Krasnogor

iii

Foreword

Many multiagent systems are spatial computers – collections of local computational devices
distributed through a physical space, in which:

• the interaction between localized agents is strongly dependent on the distance be-
tween them, and

• the “functional goals” of the system are generally defined in terms of the system’s
spatial structure.

For example, spatial relationships are often used to organize the interactions between
agents, at least in applications in which the problem and the space are intertwined. Fur-
thermore, multiagent-based systems and their behaviors can be specified and analyzed
relying on spatial notions like: location, region, frontier, neighborhood, obstruction, field,
basin, communication, diffusion, propagation, etc.

Systems that can be viewed as spatial computers are abundant, both natural and man-
made. For example, in wireless sensor networks and animal or robot swarms, inter-agent
communication network topologies are determined by the distance between devices, while
the agent collectives as a whole solve spatially-defined problems like “analyze and react
to spatial temperature variance” or “surround and destroy an enemy.”

On the other hand, not all spatially distributed systems are spatial computers. The
Internet and peer-to-peer overlay networks may not in general best be considered as spatial
computers, both because their communication graphs have little relation to the Euclidean
geometry in which the participating devices are embedded, and because most applications
for them are explicitly defined independent of the network structure. Spatial computers,
in contrast, tend to have more structure, with specific constraints and capabilities that
can be used in the design, analysis and optimization of algorithms.

The goal of the 6th Spatial Computing International Workshop is to serve
as an inclusive forum for the discussion of ongoing or completed work focusing on the
theoretical and practical issues of explicitly using space in the design process of multiagent
or multiactor systems.

Indeed, the handling of space often remains implicit and elementary in general, reflected
also in its limited adoption in the myriad of domain-specific programming languages. We
believe that progress towards identifying common principles, techniques, and research

iv

directions—and consolidating the substantial progress that is already being made—will
benefit all of the fields in which spatial computing takes place. And, as the impact of
spatial computing is recognized in many areas, we hope to set up frameworks to ensure
portability and cross-fertilization between solutions in the various domains.

The Spatial Computing Workshop provides a premier forum for sharing both research
and engineering results, as well as potential challenges and prospects.

Workshop History

The domain of spatial computing is young but the last 6 years have shown a constant
interest of researchers from various communities: parallelism, self-organization, complex
systems, systems biology, swarm robotics, autonomic systems, amorphous computing, and
at last but not least, multiagent systems.

The Spatial Computing Workshop (SCW) series has been established in 2008 after an
initial Dagsthul seminar Computing Media and Languages for Space-Oriented Computa-
tion1 in 2006 and a followup in Paris in 2008 From Amorphous Computing to Spatial
Computing where the decision was made to begin the workshop. Since 2008 and until
20111, SCW has been a satellite workshop of the SASO conference2. From 2012, SCW is
colocated with AAMAS. The past SCW have been held in:

• Venice3 (2008)

• San Francisco4 (2009)

• Budapest5 (2010)

• Ann Arbor6 (2011)

• Valencia7 (2012)

In 2009, a special issue of the ACM Transactions on Autonomous and Adaptive Systems
(TAAS) were organized, where SCW participants and other researchers were invited to
contribute.

In 2011, a special issue of The Computer Journal has been launched following the same
open scheme.

1http://www.dagstuhl.de/06361/
2http://www.saso-conference.org/
3http://projects.csail.mit.edu/scw08/
4http://radlab.cs.berkeley.edu/saso2009/workshops.html

and http://scw09.spatial-computing.org/
5http://www.inf.u-szeged.hu/saso10/index.php?menu=workshop

and http://scw10.spatial-computing.org/
6http://www.cscs.umich.edu/SASO2011/index.php?menu=workshop

and http://scw11.spatial-computing.org/
7http://aamas2012.webs.upv.es/index.php?option=com_content&view=article&id=6&Itemid=6

and http://scw12.spatial-computing.org/

v

Current Trends in Spatial Computing

The papers presented at this workshop give a sampling of the current work in Spatial
Computing. In the past editions of SCW, the following topics were discussed:

• Relationships between agent interaction and spatial organizations, self-organization,
self-assemblies, collective motions;

• Characterization of spatial self-organization phenomena as algorithmic building blocks;

• Control theory approaches for designing dynamic spatial computing applications;

• Theoretical and practical limitations arising from spatial properties, understand-
ing and characterization of spatial computing specific errors, analysis of tradeoffs
between system parameters;

• Studies of the relationship between space and time - propagation of information
through the spatial computer, and computational complexity;

• Languages for programming spatial computers and describing spatial tasks and
space/time patterns;

• Methods for compiling global programs to local rules for specific platforms (so called
global-to-local compilers);

• Suitable design methodologies and tools, such as novel domain-specific languages,
for implementing, validating and evaluating spatial applications;

• Application of spatial computing principles to novel areas, or generalization of area-
specific techniques;

• Device motion and control in spatial computing algorithms (e.g. relationship be-
tween robot speed and gradient accuracy in robotic swarms);

• Novel spatial applications, emphasizing parallel, mobile, pervasive, P2P, amorphous
and autonomic systems;

• Testbeds and use-studies of spatial applications;

• . . .

This year also, the papers selected for SCW reflect the diversity of spatial computing.
They investigate a wide range of spatial programming features and applications, from
distributed computing to ambient computing, from robotic and artificial life to design and
music.

vi

Without the help of the program committee, the workshop would not have come about
and we would like to thank them for their involvement in SCW. Grateful acknowledgments
are also due to the efficient logistic of the AAMAS organizers and the AAMAS workshop
chair, and to our supporting institutions: CNRS, Delft University, Inria MuSync team, Ir-
cam and the RepMus team, University of Bologna, UPMC, University of Paris-Est Créteil
and the LACL lab.

We hope you will have as much fun and interest as us, in the reading of these proceed-
ings.

March 2013
Dr. Stefan Dulman (Delft University)
Dr. Jean-Louis Giavitto (CNRS & IRCAM)
Prof. Antoine Spicher (LACL - Univ. Paris-Est Créteil)
Prof. Mirko Viroli (University of Bologna)

vii

Program Committee

- Michel Banatre (Inria, France)

- Jacob Beal (BBN Technologies)

- Sven Brueckner (Jacobs Technology Inc.)

- Nikolaus Correll, Dpt of Computer Science, University of Colorado at Boulder

- Ferruccio Damiani, Dipartimento di Informatica, UniversitÃ di Torino

- Rene Doursat, Complex Systems Institute, Paris Ile-de-France

- Alexis Drogoul, UMI UMMISCO 209, IRD & UPMC and Can Tho University

- Matt Duckham, University of Melbourne

- Jérôme Durand-Lose, LIFO - University of OrlÃ c©ans

- Nazim Fates, LORIA - INRIA Nancy

- Fred Gruau, LRI U. of Paris South

- Guillaume Hutzler, IBISC Evry University

- Taras Kowaliw, ISC-PIF, CNRS

- Luidnel Maignan, LACL University Paris Est

- Olivier Michel, LACL University Paris Est

- Ulrik Schultz, University of Southern Denmark

- Susan Stepney, Dept. of Computer Science, University of York

- Christof Teuscher, Portland State University

- Kyle Usbeck, BBN Technologies

- Danny Weyns, Linnaeus University

- Dr. Eiko Yoneki (University of Cambridge, UK)

- Franco Zambonelli, University of Modena and Reggio Emilia

Organizing Committee

- Dr. Stefan Dulman (Delft University)

- Dr. Jean-Louis Giavitto (CNRS & IRCAM)

- Prof. Antoine Spicher (LACL - Univ. Paris-Est, Créteil)

- Prof. Mirko Viroli (University of Bologna)

viii

Schedule

09:00 – 10.30 Models I

• Engineering Confluent Computational Fields: from Functions to Rewrite Rules
Mirko Viroli

• Declarative Multidimensional Spatial Programming
John Plaice, Jarryd P. Beck and Blanca Mancilla

• Promoting Space-Aware Coordination: ReSpecT as a Spatial Computing Virtual
Machine Stefano Mariani and Andrea Omicini

10:30 – 11:00 coffee break

11:00 – 12:30 Algorithms I

• Modeling Inertia in an Amorphous Computing Medium
Alyssa S. Morgan and Daniel N. Coore

• Computing Activity in Space
Martin Potier, Antoine Spicher and Olivier Michel

• Accelerating Approximate Consensus with Self-Organizing Overlays
Jacob Beal

12:30 – 1:30 lunch break

1:30 – 2:00 Algorithms II

• AREA: an Automatic Runtime Evolutionary Adaptation mechanism for Creat-
ing Self-Adaptation Algorithms in Wireless Networks
Qingzhi Liu, Stefan Dulman and Martijn Warnier

2:00 – 3:30 Applications

• Application of Force-Directed Graphs on Character Positioning
Christine Talbot and G. Michael Youngblood

• Spatial Programming for Musical Transformations and Harmonization
Louis Bigo, Jean-Louis Giavitto and Antoine Spicher

• Spatial Computing in an Orbital Environment: An Extrapolation of the Unique
Constraints of this Special Case to other Spatial Computing Environments
Jeremy Straub

ix

3:30 – 4:00 coffee break

4:00 – 5:00 Models II

• Population Protocols on Graphs: A Hierarchy
Olivier Bournez and Jonas Lefèvre

• Spatial Computation and Algorithmic Information content in Non-DNA based
Molecular Self-Assembly
Germán Terrazas, Leong Ting Lui and Natalio Krasnogor

5:00 – 6:00 Coordination

• Teams to exploit spatial locality among agents
James Parker and Maria Gini

• Composing gradients for a context-aware navigation of users in a smart-city
Sara Montagna and Mirko Viroli

6:00 – 6:30 Demonstration, Discussion, Farewell

x

xi

Regular Presentations

1

2

Accelerating Approximate Consensus with
Self-Organizing Overlays

Jacob Beal
Raytheon BBN Technologies

Cambridge, MA 02138
Email: jakebeal@bbn.com

Abstract—Laplacian-based approximate consensus algorithms
are an important and frequently used building block in many
distributed applications, including formation control, sensor fu-
sion, and synchronization. These algorithms, however, converge
extremely slowly on networks that are more than a few hops
in diameter and where values are spatially correlated. This
paper presents a new algorithm, Power Law Driven Consensus,
which uses a self-organizing virtual overlay network to accelerate
convergence, at a cost of decreasing the predictability of the final
converged value. Experimental comparison with the Laplacian
approach confirms that PLD-consensus allows for drastically
faster convergence in spatial networks.

I. INTRODUCTION

Approximate consensus algorithms are an important build-
ing block for many distributed algorithms, including robot
formation control [1], flocking and swarming [2], sensor
fusion [3], modular robotics [4] and synchronization [5].
The dominant algorithmic approach to distributed approximate
consensus is a Laplacian-based approach in which each device
finds a weighted local average of its own current value with
the values held by its neighbors. In effect, this approach is
operating like particle diffusion, such that as the differences
between devices eventually equalize, the network is brought
into consensus. Although this approach supports a number of
elegant mathematical results [6], [7], including an exponential
rate of convergence derived from the graph Laplacian, the
bounds on the rate of convergence are extremely loose, and
may actually indicate a very slow rate of convergence indeed.

Spatial computers, which tend to have mesh-like net-
work structure many hops across, are an example of where
Laplacian-based consensus performs poorly. As demonstrated
in [8], on spatial computers, the expected convergence time
is actually O(diameter2) with a high constant factor, such
that Laplacian-based approximate consensus is expected to
converge extremely slowly whenever there is both significant
diameter and also a spatial correlation in the initial values of
devices. Since many applications of approximate consensus,
including those mentioned above, are commonly executed on
spatial computers with spatially correlated values, this can
severely limit the efficacy and applicability of consensus-based
applications.

This paper introduces a new algorithm, Power Law Driven
Consensus, which uses a self-organizing virtual overlay net-
work to accelerate convergence, at a cost of decreasing the
predictability of the final converged value. Following a brief

review and specification of problem context in Section II, I
present the new PLD-consensus algorithm in Section III. Sec-
tion IV then compares the new algorithm with the Laplacian
approach in simulation, confirming that PLD-consensus allows
for drastically faster convergence in spatial networks.

II. APPROXIMATE CONSENSUS ON SPATIAL COMPUTERS

A spatial computer is generally defined as any collection of
devices in which the difficulty of moving information between
any two devices is strongly dependent on the distance between
them, and where the functional goals of the system are linked
to its spatial structure. Examples include ad-hoc communica-
tion networks, swarms of unmanned aerial vehicles (UAVs),
sensor networks, and colonies of engineered biological cells.

For purposes of this paper, we will consider a more re-
stricted class of spatial computer, in which a set of n devices
are arranged in a graph G = {V,E} and also embedded by
a function p : V → M into a Riemannian manifold M with
distance function d. Edges are assumed to be bidirectional, to
have equal weight, and not to exist between two vertexes i
and j if d(p(i), p(j)) is greater than some threshold.

Laplacian-based average consensus algorithms [7] solve a
specific class of distributed consensus problem: given a real-
number initial local value li(0) for each device i, Laplacian-
based consensus computes the approximate mean of li(0) by
iterative applying the transformation:

li(t+ 1) = li(t) + ε
∑

j∈N (i,t)

lj(t)− li(t) (1)

where N (i, t) is the set of graph neighbors of device i at time
t and the constant ε > 0 is the step size of the algorithm.
For simplicity, we give only the synchronous specification;
only minor modification is required for a more general non-
synchronized algorithm.

Laplacian-based consensus has been proven [7] to converge
exponentially toward the mean value of li(0), but the rate
of convergence is set by the second eigenvalue of the graph
Laplacian, which is very small for high-diameter mesh net-
works. In fact, as shown in [8], Laplacian-based consensus
performs badly on spatial computers, with a convergence time
that is O(diameter2) and a high constant factor due to the
generally large potential number of neighbors.

When there is no correlation in the distribution of values on
devices, this does not matter as much, since a rough estimate of

3

global values can be made from locally sampled information.
When values are correlated by their location in the network,
however, no reasonable estimate of consensus can be made
without moving information over long distances. Since spatial
computers often have a large diameter and values are often
highly correlated with location, a faster algorithm is clearly
needed.

III. POWER LAW DRIVEN CONSENSUS

If the problems with Laplacian-based consensus come from
the high diameter of the network, then one clear approach
to accelerating consensus would be to reduce the effective
network diameter through construction of an overlay network
containing long-distance links.

Power Law Driven Consensus is a simple implementation
of such an approach, where the overlay network self-organizes
using a 1/f distribution to break symmetry, selecting certain
devices to have their values spread over a longer distance.
Under PLD-consensus, devices compete to become “domi-
nant” over one another, drawing their bids for dominance from
the scale-free 1/f distribution. The value of using a scale-
free distribution of this sort is that, no matter the size or
arrangement of the network, the expected distribution contains
one device that receives a value large enough to dominate the
network. Note that this is an initial version, and the process
can likely be optimized significantly through modulation of
this distribution.

Dominance decays over both time and space, so this com-
petition results in a partition of the network into “dominance
regions” that shift over time. Values then spread outward from
dominant devices through the regions that they dominate, and
each device blends the local dominant value with its own
value.

Since this distribution is scale-free, the regions of domi-
nance begin small, allowing local blending of values, much
like Laplacian-based consensus. The regions then expand
rapidly until the entire network is dominated by a single
device, effectively reducing diameter and allowing for rapid
convergence. Finally, because dominance decays over time,
any dominant device that fails will eventually be replaced by
other dominant devices.

A. Formal Algorithm Specification

Having giving some intuitions for how PLD-consensus will
function, we will now provide a formal specification of the
algorithm. For simplicity, this specification will be stated in
terms of synchronous rounds. In fact, however, there is no
requirement for synchrony, both the overlay construction and
blending operations are relaxation methods, meaning that any
local updates (within the stable range) is expected to move the
system as a whole closer to a converged state. The algorithm
is thus expected to operate well under a wide range of non-
synchronous conditions as well (indeed, the simulations in
Section IV are non-synchronous).

Let us begin the specification by considering the computa-
tion of the dominance overlay. This sub-algorithm serves two

functions: first, determining the relative dominance level of
each device and second, flowing values down the dominance
gradient from more dominant to less dominant devices.

The dominant value state for each device i at each round t
is a tuple (di(t), ui(t), vi(t)) of the current dominance level
di(t), a tie-breaker unique identifier ui(t), and a dominant
value vi(t). In addition, each device i has a local value li(t),
which is its current candidate for a consensus value.

At each round, the algorithm considers three sources for the
new dominant value state. The driven state Sd is:

Sd = (b 1

u(0, 1)
c, ui(t), li(t)) (2)

where u(0, 1) is a uniform random distribution over the inter-
val (0, 1). Taking the inverse of u(0, 1) produces 1/f -noise,
giving a power-law distribution of candidate new dominance
levels being injected into the network at each round.

For each neighbor n ∈ N (i, t), where N (i, t) is the set of
neighbors of device i at time t, the neighbor-derived state Sn

is:
Sn = (dn(t)− 1, un(t), vn(t)) (3)

which takes the neighbor’s value at a decremented dominance
level.

Finally, if no neighbor has a higher dominance level, the
leader state Sl is:

Sl = (Li, ui(t), li(t)) (4)

where the leader dominance Li is

Li =

{
di(t)− 1 if ∀n ∈ N (i, t), di(t) > dn(t)

0 else
(5)

which decrements the old dominance level but inserts the new
local value.

The new state is then set to whichever of these three sources
has the highest dominance level:

(di(t+ 1), ui(t+ 1), vi(t+ 1)) =

Lmax(Sd ∪ Sl ∪ {Sn|n ∈ N (i, t)}) (6)

where Lmax is a lexicographic maximum, such that the first
elements of a tuple are compared, then if they are equal the
second elements are compared, etc.

Figure 1 shows an example of the regions of dominance
produced by this computation. Initially, no devices are domi-
nant over their neighbors, but as dominance levels are injected
via the 1/f -noise, regions of dominance grow rapidly until
eventually some device is able to dominate the entire network.

Once the dominance overlay has been established, computa-
tion of consensus is relatively straightforward. Given an initial
local value of li(0) at each device i, the value at round t may
be computed as a simple proportional blend:

li(t) = α · vi(t) + (1− α) · li(t− 1) (7)

where vi(t) is the dominant value as provided from the
overlay, and α is the proportional blending constant. Note,

4

(a) Initial (b) 10 rounds (c) 30 rounds (d) 100 rounds

Fig. 1. Visualization of dominance competition driven by 1/f -noise, by having each device spread a unique RGB color computed from its UID. From an
initial state where no devices are dominant (a), regions of dominance are expected to grow rapidly (b,c) until eventually some device is able to dominate the
entire network.

(def dominant-value (value)
(3rd
(rep ;; Declare three state variables; only third will be returned
(tup dominance id spread-value)
;; Initialize to no dominance, local ID and value
(tup 0 (mid) value)
(let* ;; Three options for finding dominant value:

;; 1: Drive new dominance with 1/f noise
((local (floor (/ 1 (rnd 0 1))))

;; 2: Take a decremented dominance from a neighbor
(hoodmax (max-hood

(nbr (tup (- dominance 1)
id spread-value))))

;; 3: Decrement old dominance, but use new value
(leader (= (2nd hoodmax) (mid))))

;; Use whichever option has greater dominance
(if (or leader (> local (1st hoodmax)))
(tup (max local (1st hoodmax)) (mid) value)
hoodmax)))))

Fig. 2. Proto code for computing dominant value. Comments are in blue,
state variables in green.

however, that updating in this way uses only overlay values
and no neighbor values at all.

To soften this non-locality, PLD-consensus mixes overlay
blending and the local blending of Laplacian-based consensus
by the simple expedient of adding the standard Laplacian
differential term:

li(t) = α · vi(t) + (1− α) · li(t− 1) +

β
∑

n∈N (i,t)

w(ei,n) · (ln(t− 1)− li(t− 1)) (8)

where β is the step size for Laplacian-based consensus. PLD-
consensus thus makes use of both neighbor values and values
delivered through the overlay, and reduces to pure overlay
blending when β = 0 and to Laplacian-based consensus when
α = 0.

IV. EXPERIMENTAL VALIDATION

In this section, I present experimental validation of the PLD-
consensus algorithm in simulation. These experiments have
two aims: first, to quantitatively compare the performance

(def PLD-consensus (initial alpha beta)
(rep
value ;; Declare one state variable: current consensus value
initial ;; Initialize consensus with local initial value
;; Find regionally-dominant value . . .
(let ((dominant (dominant-value value)))

;; . . . and blend incrementally with local value . . .
(+ (+ (* alpha dominant) (* (- 1 alpha) value))

;; . . . and add Laplacian differential
(* beta (sum-hood (- (nbr value) value)))))))

Fig. 3. Proto code for PLD-consensus algorithm. Comments are in blue, state
variables in green.

of PLD-consensus against Laplacian-based consensus, and
second, to gain an initial understanding of the behavior of
PLD-consensus under different configurations and conditions
of execution.

For these experiments, I implemented the PLD-consensus
algorithm in Proto [9], [10]. The code for creating and
propagating values through the dominance overlay is listed in
Figure 2, and the code for the full PLD-consensus algorithm
is listed in Figure 3. Proto was a desirable language for
implementation and experimental validation for two reasons:
first, Proto’s programming model allows a concise and di-
rect implementation of the mathematical specification given
in the previous section, and, second, the network simulator
distributed with MIT Proto made it simple to run and analyze
experiments on large spatial networks.

Except where otherwise noted, all experiments are run with
the following parameters: the network consists of 1000 devices
distributed uniformly randomly in a 100 meter by 100 meter
rectangle. Devices use a unit disk model of communication,
communicating with all other devices within r meters, where
r is computed to give an expected 10 neighbors per de-
vice. The algorithms are run for 1000 rounds of partially
synchronous execution (equal frequency, random phase), and
PLD-consensus is run with α = 0.02 and β = 0, while
Laplacian-based consensus is run with a step size of ε = 0.02.
For each experimental condition, 10 trials are run. When
analyzing the convergence statistics of a network, the devices

5

with the top and bottom 2.5% of values are ignored, to ensure
that any devices that may be disconnected due to the random
distribution are excluded. A network is then considered to
have converged if the difference between the minimum and
maximum value within the median 95% of devices is less than
1% of the initial difference (e.g., less than 0.01 if all devices
start with values between 0 and 1).

A. Illustrative Comparison of Algorithms

Let us begin with an illustrative comparison of Laplacian-
based consensus and PLD-consensus, to provide an initial
intuition of the difference between these two approaches. For
this experiment, we use a set of 1000 devices distributed
uniformly randomly in a 100 meter by 100 meter rectangle.
Devices can communicate via broadcast to all other devices
within 7 meters, giving approximately 15 expected neighbors
per device. Devices are initialized to one of two values based
on their spatial location, with devices in the left hand side
of the plane given an initial value li(0) = 10, and on the
right hand side li(0) = 30, producing a highly spatially
correlated distribution. To have the purest comparison of PLD-
consensus and Laplacian-based consensus, we consider the
case of α = 0.01 and β = 0 for PLD-consensus, meaning
that only dominance overlay values are used, and compare
against a step size of ε = 0.01 for Laplacian-based consensus.

Figure 4 shows the evolution of values held by the various
devices over time during a single trial run. Although both cases
begin the same, PLD-consensus converges rapidly, within a
few hundred rounds, while even after 5000 rounds of com-
putation Laplacian-based consensus has not converged, with
a difference of 1.87 between the minimum and maximum of
the median 95%—nearly 10% of the initial value difference.

The trade-off for the faster convergence of PLD-consensus,
however, is a decreased accuracy in finding the overall mean
value. In this case, the Laplacian consensus values at t = 5000
have a mean of 19.56, which is quite close to the true mean
of 20. The converged value of PLD-consensus, on the other
hand, is somewhat farther off at 14.35.

B. Convergence Rate

For a more thorough comparison of convergence rate, let us
compare the evolution of value distributions in PLD-consensus
and Laplacian-based consensus. For this experiment, trials
were run for two initial distribution conditions: a homogeneous
condition in which each device’s initial value li(t) is drawn
uniformly randomly from the interval [0, 1], and a spatially-
correlated condition in which devices in the left half of the
distribution start with li(t) = 0 and devices in the right half
start with value li(t) = 1. Values were then recorded every 10
rounds for 1000 rounds.

Figure 5 plots the difference between highest and low-
est value in the median 95% against time. In both cases,
PLD-consensus clearly greatly outperforms Laplacian-based
consensus. Under the homogeneous condition, Laplacian-
based consensus initially converges more quickly than PLD-
consensus, but greatly slows when further convergence re-

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rounds

M
in

/M
ax

 D
iff

er
en

tia
l

Homogeneous Driven
Homogeneous Laplacian
Spatially Correlated Driven
Spatially Correlated Laplacian
±2 std. dev.

Fig. 5. PLD-consensus progresses toward convergence much faster than
Laplacian-based consensus, though Laplacian-based consensus initially pro-
gresses more quickly when initial values are homogeneously distributed.

50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600

Width

C
on

ve
rg

en
ce

 T
im

e

Spatially Correlated Driven
±2 std. dev.

Fig. 6. Convergence time for PLD-consensus increases linearly with the width
of the network.

quires equalization of values over many hops. PLD-consensus
converges rapidly in both the homogeneous and spatially-
correlated conditions. With spatially-correlated initial values,
however, Laplacian-based consensus has barely even begun to
converge by t = 1000, and will not complete its convergence
for many thousands of rounds more, as seen in the prior
illustrative comparison.

C. Scaling with Diameter and Mobility

The poor scaling of Laplacian-based consensus as network
diameter increases has already been demonstrated in [8]. Since
the 1/f -noise driving PLD-consensus is scale-free, however,
the limiting factor should instead be communication time, and
thus the algorithm should scale in O(diameter). To test this,
I ran the PLD-consensus algorithm with spatially-correlated
initial values on networks with dimensions of X meters width
by 50 meters, where the width X ranged from 50 to 500 meters

6

(a) Initial Values (b) 50 rounds

(c) 500 rounds (d) 5000 rounds

Fig. 4. PLD-consensus vs. Laplacian-based consensus on a mesh network of 1000 devices with approximately 15 neighbors each. The devices are shown
as blue dots distributed in a plane, viewed at an angle, with their current values for consensus showed as the height of red (PLD-consensus) and green
(Laplacian-based) dots above the plane. From an initial spatially-correlated distribution (a), PLD-consensus begins to converge rapidly (b), arriving at an
approximation of the mean value within a few hundred rounds (c), while Laplacian-based consensus is eventually closer to the true mean, but even after 5000
rounds still retains nearly 10% of the initial value difference (d).

in steps of 50, and with a constant density of devices (thus
ranging in number from 250 to 2500).

For this experiment, convergence is nearly universal, the
only exceptions being one trial for X = 50 and one for
X = 100, in which the random distribution contained too
many disconnected devices. Figure 6 shows the scaling of con-
vergence time width respect to network width X: as expected
the convergence time increases approximately linearly with
the diameter, atop an approximately constant base convergence
time determined by the blending rate.

In many consensus applications, the participating devices
are not stationary. This could both be helpful, in lowering
the effective diameter of the network, and problematic, in
scrambling the structure of the overlay. To investigate the
effect of mobility, I ran the PLD-consensus algorithm with
spatially-correlated initial values with devices moving at a
velocity v varying geometrically from 0.01 to 1.0. Each device
moves towards a randomly chosen point in space at velocity
v, and upon reaching it (within quantization error) chooses a
new point to move towards.

Figure 7 shows the results of this experiment: PLD-
consensus converges for every trial, which is unsurprising
since mobility means that no devices will remain disconnected.
Perhaps more surprisingly, device movement does not appear
to have any significant effect on convergence rate. It is likely
that mobility does have some effect, but it is small enough
to not be observable under these experimental conditions.
Laplacian-based consensus, on the other hand, only converges

10 2 10 1 100
0

50

100

150

200

250

300

350

400

Device Velocity

C
on

ve
rg

en
ce

 T
im

e

Spatially Correlated Driven
±2 std. dev.

Fig. 7. Device movement does have any significant effect on the rate at which
PLD-consensus converges within the range of parameters studied.

at all for v = 1, when 3 of the 10 trials converge just barely
before t = 1000.

D. Effect of α and β Parameters

Finally, we consider the effects of the blending parameters α
and β. For both of these parameters, there is a tension between
speed and stability: the higher they are, the faster the network
moves towards convergence, but if they are too high then it
may become unstable.

7

10 3 10 2 10 1 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overlay blend rate ()

Fr
ac

tio
n

co
nv

er
ge

d

Homogeneous Driven
Homogeneous Laplacian
Spatially Correlated Driven
Spatially Correlated Laplacian

(a) Percentage Converging

10 2 10 1 100
0

100

200

300

400

500

600

700

800

900

1000

Overlay blend rate ()

Co
nv

er
ge

nc
e

Ti
m

e

Homogeneous Driven
Spatially Correlated Driven
±2 std. dev.

(b) Time of Convergence

Fig. 8. PLD-consensus converges reliably for all α ≥ 0.01, while Laplacian-
based consensus nearly never converges (a). When PLD-consensus converges,
the convergence time appears to be dominated by blend rate for low α and
by overlay construction for high α (b).

To study the effect of varying α, I ran the PLD-consensus
algorithm with spatially-correlated initial values, holding β =
0 while ranging α geometrically from 0.001 to 0.5. The
experiment for β is the same, except that α = 0.02, and β
ranges from 0.001 to 0.5. For comparison with α variation,
Laplacian-based consensus is run with a step size ε that is
varied identically.

Figure 8 shows the results of varying α. PLD-consensus
converges reliably for all α ≥ 0.01. For those trials that
converge, the convergence time for low α is close to inversely
proportional to α, indicating that convergence is likely domi-
nated by blend rate. For high α, convergence time is nearly flat,
indicating that convergence convergence is likely dominated
by overlay construction. Laplacian-based consensus, on the
other hand only converges at all for two moderate-alpha trials:
with low α it converges too slowly and with high α it becomes
unstable and values diverge rapidly.

Variation of β, on the other hand, produces no significant
effect on either the convergence time or on the converged
value, until β = 0.1, where the Laplacian component becomes
unstable and values diverge. These results indicate that the
Laplacian component is likely to be operating so slowly on
spatially-correlated distributions as to have no measurable
effect at the diameter studied by this experiment; only at lower
α or diameter is there likely to be a significant effect.

V. CONTRIBUTIONS AND FUTURE WORK

This paper has presented a new approximate consensus
algorithm, PLD-consensus, which uses a self-organizing over-
lay network to accelerate consensus. This allows much faster
convergence, at a cost of higher expected deviation from the
mean of the network’s initial values.

This new algorithm has the potential for a major improve-
ments across a wide class of consensus-based applications.
Further study is required, however, before such applications
can be made. For example, some applications may depend
more on obtaining an accurate mean of initial values, while
others may be able to tolerate more inaccuracy in exchange
for speed. Likewise, this paper considered only the problem
of one-shot approximate consensus, while applications such
as flocking depend on tracking of a changing consensus over
time. Similarly, PLD-consensus only considers the simplest
overlay structure and means of combining Laplacian- and
overlay-based consensus approaches; more sophisticated ap-
proaches may be able to produce greatly improved perfor-
mance.

REFERENCES

[1] M. Egerstedt and X. Hu, “Formation constrained multi-agent control,”
IEEE Trans. on Robotics and Automation, vol. 17, no. 6, pp. 947–951,
2001.

[2] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms
and theory,” IEEE Trans. on Automatic Control, vol. 51, no. 3, March
2006.

[3] L. Xiao, S. Boyd, and S. Lall, “A scheme for asynchronuous distributed
sensor fusion based on average consensus,” in Fourth International
Symposium on Information Processing in Sensor Networks, 2005.

[4] C.-H. Yu and R. Nagpal, “Self-adapting modular robotics: A general-
ized distributed consensus framework,” in International Conference on
Robotics and Automation (ICRA), 2009.

[5] J.-J. Slotine and W. Wang, “A study of synchronization and group
cooperation using partial contraction theory,” Cooperative Control, pp.
443–446, 2005.

[6] R. Olfati-Saber and R. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” Automatic Control,
IEEE Transactions on, vol. 49, no. 9, pp. 1520–1533, Sept. 2004.

[7] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation in
networked multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1,
pp. 215–233, Jan. 2007.

[8] N. Elhage and J. Beal, “Laplacian-based consensus on spatial comput-
ers,” in AAMAS 2010, 2010.

[9] J. Beal and J. Bachrach, “Infrastructure for engineered emergence in
sensor/actuator networks,” IEEE Intelligent Systems, vol. 21, pp. 10–19,
March/April 2006.

[10] “MIT Proto,” software available at http://proto.bbn.com/, Re-
trieved June 22nd, 2012.

8

Spatial Programming for Musical Transformations
and Harmonization

Louis Bigo∗†, Jean-Louis Giavitto†, Antoine Spicher∗,
∗LACL/Université Paris-Est Créteil, 94010 France

†UMR CNRS STMS 9912/IRCAM Paris, 75004 France

Abstract—This paper presents a spatial approach to build
spaces of musical chords as simplicial complexes. The approach
developed here enables the representation of a musical piece as
an object evolving over time in this underlying space, leading to
a trajectory. Well known spatial transformations can be applied
to this trajectory as well as to the underlying space. These spatial
transformations induce a corresponding musical transformation
on the piece. Spaces and transformations are computed thanks
to MGS, an experimental programming language dedicated to
spatial computing.

Index Terms—MGS; musical transformation ; harmonization;
counterpoint; self-assembly; Tonnetz.

I. INTRODUCTION

Musical objects and processes are frequently formalized
with algebraic methods [1]. Such formalizations can some-
times be usefully represented by spatial structures. A well-
known example is the Tonnetz (figure 1), a spatial organization
of pitches illustrating the algebraic nature of triads (i.e., minor
and major 3-note chords) [2]. In [3] we have introduced an
original method that extends and generalizes the approach
of [4] for the building of pitch spaces using simplicial
complexes [5]. This combinatorial structure is used to make
explicit algebraic relations between notes and chords, as in
Tonnetze, or more general relationships like co-occurrences.

In such spaces, a musical sequence is represented by a sub-
complex evolving over time: a trajectory. It is then compelling
to look at the musical effect of well known spatial transforma-
tions on a trajectory. In section IV we investigate geometrical
transformations, as discrete translations and discrete central
symmetries, leading to the well known operations of musical
transpositions and inversions. Such discrete geometrical trans-
formations can be generalized, leading to a new family of
transformations with less known musical interpretation. Some
audio examples are available online1. In section V, the problem
of counterpoint is investigated from a spatial perspective.
We propose to generate the additional voice such that the
distance with other played notes in a particular underlying
space is minimized. This generalizes some spatial approaches
to generate musical voice-leading. The underlying space is a
parameter of the algorithm and by changing spaces, alternate
(families of) solutions are generated.

1see the web page: http://www.lacl.fr/~lbigo/scw13

Figure 1. The original Tonnetz. Pitches are organized following the interval
of fifth (horizontal axis), and the intervals of minor and major thirds (diagonal
axis). Triangles represent minor and major triads.

II. A SHORT INTRODUCTION TO MGS

MGS is an experimental domain specific language dedicated
to spatial computing [6], [7]. MGS concepts are based on well
established notions in algebraic topology [5] and uses of rules
to compute declaratively spatial data structures. In MGS, all
data structures are unified under the notion of topological col-
lection. Simplicial complexes defined below are an example of
topological collections. Transformations of topological collec-
tions are defined by rewriting rules [8] specifying replacement
of sub-collections that can be recursively performed to build
new spaces.

A simplicial complex is a space built by gluing together
more elementary spaces called simplices. A p-simplex is the
abstraction of an elementray space of dimension p and has
exactly p+ 1 faces in its border. A 0-simplex corresponds to
a point, a 1-simplex corresponds to an edge, a 2-simplex is a
triangle, etc. The geometric realization of a p-simplex is the
convex hull of its p + 1 vertices as shown in Figure 3 for
p-simplices with p ∈ {0, 1, 2, 3}.

For any natural integer n, the n-skeleton of a simplicial
complex is defined by the set of faces of dimension n or less.

A simplicial complex can be built from a set of simplices by
self-assembly, applying an accretive growing process [9]. The
growth process is based on the identification of the simplices
in the boundaries. This topological operation is not elementary
and holds in all dimensions. Figure 2 illustrates the process.
First, nodes E and G are merged. Then, the resulting edges
{E,G} are merged.

9

A simple way to compute the identification is to iteratively
apply, until a fixed point is reached, the merge of topological
cells that exactly have the same faces. The corresponding
topological surgery can be expressed as a simple MGS trans-
formation as follows:
transformation identification = {

s1 s2 / (s1==s2 & faces(s1)==faces(s2))

=>

let c = new_cell (dim s1)
(faces s1)
(union (cofaces s1)

(cofaces s2))
in s1*c

}

The expression new_cell p f cf returns a new p-cell with
faces f and cofaces cf . The rule specifies that two elements
s1 and s2, having the same label and the same faces in their
boundaries, merge into a new element c (whose cofaces are
the union of the cofaces of s1 and s2) labeled by s1 (which
is also the label of s2).

In Fig. 2, the transformation identification is called
twice. At the first application (from the left complex to the
middle), vertices are identified. The two topological operations
are made in parallel. At the second application (from the
complex in the middle to the right), the two edges from E to G
that share the same boundary, are merged. The cofaces of the
resulting edge are the 2-simplices IC and IIIC corresponding
to the union of the cofaces of the merged edges. Finally (on
the right), no more merge operation can take place and the
fixed point is reached.

C

G

E

BIC IIIC BIIICC

G

E

ICC

E

GG

E

IIICIC B

Figure 2. Identification of boundaries.

III. CHORD SPACES

A. Building Chord Spaces

A chord space is an organization in space of a collection of
musical chords. Such organizations are typically represented
by graphs [10], or more recently by orbifolds [11]. Chords are
generally represented in these spaces by vertices. A sequence
of chords, which are included in the space, can thus be
represented by a path. A trajectory generalizes the notion of
path to higher dimensional simplices and a trajectory is not
necessarily connected.

We use a method presented in [12] to represent chords by
simplices. A n-note chord, viewed as a set of n notes, is rep-
resented by a (n− 1)-simplex. To simplify the presentation,
we consider pitch classes instead of notes. This abstraction is
customary in musical analysis and gathers all notes equivalent
up to an octave under the same class. For example, the notes

3-cell1-cell

{C,E}

{E,G}

C

{C,G}

{C,E,G}

G E

3-note
chord2-cell0-cell note

2-note
chord

4-note
chord

Figure 3. A chord represented as a simplex. The complex on the right
corresponds to the 3-note chord C,E,G and all 2-note chords and notes
included in it.

C1, C2, C3 . . . , all played by distinct keys on the piano, are
grouped under the pitch class C.

In the simplicial representation of chord, a 0-simplex rep-
resents a single pitch class. More generally, a n− 1-simplex
represents a n-note chord, as illustrated on figure 3.

We build a chord space simplicial complex by representing
each chord of a chord collection by a simplex, then by
applying the self-assembly process described in section II. The
application of this process to a collection of n-note chords
gives rise to a n − 1-dimensional simplicial complex. For
example, the self-assembly process applied to the 24 major
and minor triads (3-note chords) builds a toroidal simplicial
complex. This complex extends the notion of Tonnetz devel-
opped in musical theory and illustrated on figure 1.

B. Chord Class Spaces

In this subsection, we present two particular types of chord
spaces that will be used in next sections.

a) Chromatic Chord Class Spaces: Musical chords can
be classified according different methods. One of the most
popular classification spreads chords in 351 pitch class sets,
called the Forte Classes [13]. Two pitch class sets belong to
the same class if they are equivalent up to a transposition.
We merge further chords equivalent up to transposition and
inversion. The resulting classes can be obtained by listing
orbits of the action of the dihedral group D12 on subsets of
the cyclic group Z12 [14]. There are 224 such classes, we
call chromatic chord classes. Chords belonging to a chromatic
chord class share the same interval structure X: a sequence
of intervals defined up to circular permutation and retrograde
inversion. We note C(X) the simplicial complex representing
the chromatic chord class associated with the interval structure
X . In the chromatic system, the elements of X are elements
of Z12.

b) Tonal Chord Class Spaces: A tonal chord class space
is obtained by assembling chords sharing the same diatonic
interval structure and including pitches of a particular tonality.
If the scale of the tonality is heptatonic, (i.e., the tonality
includes seven pitch classes), the 16 spaces associated with
the tonality can be obtained by enumerating the orbits of the
action of the dihedral group D7 on subsets of Z7. Such a space
is noted C(X) where the elements of X belongs to Z7. For
more details on these spaces, see [3].

C. Unfolding Chord Class Spaces

Chord class spaces of a same dimension can have different
topologies. For example, C(3, 4, 5) and C(2, 5, 5) are both

10

E

C

G

Bb

E
C

G

Figure 4. On the top, the unfolding process is applied to C(3, 4, 5) by
extending C Major 1-simplices to infinite lines on the plane. At the bottom,
unfolding process is applied to C(2, 4, 3, 3) in the 3D space.

two-dimensional simplicial complexes but the first one has
the shape of a torus and the second one has the shape of a
strip [15]. However, chord class spaces of a given dimension
can be unfolded in topologically equivalent infinite spaces.
The unfolded representation is built as follows: an arbitrary
chord of the class is represented by the geometric realization
of its simplex. Then, 1-simplices (i.e., edges) are extended
as infinite lines. The interval labelling an edge is assigned to
the corresponding line and all its parallels. Pitch classes and
chords are organized and repeated infinitely following the lines
according their assigned intervals.

The major difference between a simplicial complex and
its unfolded representation is that in the former, notes are
represented once, and in the latter, by an infinite number
of occurrences. Moreover, the associated 1-skeleton can be
embedded in the euclidean space such that parallel 1-simplices
(representing 2-note chords) relate to the same interval class.
By considering 1-skeletons of the unfolded complexes rep-
resenting major and minor triads (Figure 4), one gets the
neo-Riemannian Tonnetz [2]. The 1-skeleton of the unfolded
complex representing seventh and half-diminished seventh
chords is equivalent to Gollin 3D Tonnetz [16]. These two
complexes are chromatic chord class spaces.

Chord class spaces resulting from the assembly of n-note
chords are unfolded as (n − 1)-dimensional infinite spaces.
From 2-note chords one gets an infinite line, from 3-note
chords an infinite triangular tessellation. Note that n-simplices
don’t systematically tessellate the n-dimensional Euclidean
space. For example, 2-simplices (triangles) tessellate the 2D
plan but 3-simplices (tetrahedra) do not tessellate the 3D space.
For this reason, the 3D unfolded representation of complexes
as the one at the bottom right of the figure 4 contains some
holes.

IV. SPATIAL TRANSFORMATIONS AND THEIR MUSICAL
INTERPRETATION

We focus on unfolded representations of chord class spaces
resulting from the self assembly of 3-note chords. These

Figure 5. Path representing the first measures of J-S. Bach choral BWV 255.
The chord class space used for the representation is obtained by unfolding
C(3, 4, 5) which is the assembly of the 24 minor and major triads.

unfoldings are infinite triangular tessellations which have the
property to preserve local neighborhoods between elements.
If two elements are neighbor in a folded space then they
are neighbor its unfolded representation, and vice versa. Note
that this property does not systematically hold at higher
dimensions. The advantage to consider unfolded representa-
tions of 3-note chords is that it preserves the neighborhood
of each simplex while enabling the specification of discrete
counterparts of euclidean transformation. This is not easily
achieved in the initial finite space.

A. Representation of a Musical Sequence in a Chord Space

As previously said, a note corresponds to an infinite number
of possible locations in an unfolded chord space. To represent
a musical sequence as a moving object in such a space, only
one of those locations has to be chosen for each played note
over time. The precise location of a note played at some date is
chosen in order to minimize the distance with both previously
and simultaneously played notes. These two criteria enable the
representation of the sequence by a trajectory “as connected
as possible”. Figure 5 illustrates such a path in C(3, 4, 5).

B. Spatial Transformations

Now we have a spatial representation of a musical sequence,
we can apply some spatial transformations to it and listen to
the musical result. We consider two kinds of transformations:

• the first one applies a geometrical transformation on the
trajectory, (i.e., on the spatial object representing the
sequence in a predefined space) as illustrated on figure 7;

• the second one applies transformations on the underlying
space of the piece, that is, the triangular tessellation (fig-
ure 8). This is possible because all such transformations
amount to change the labels of the underlying space.

Musical examples of different pieces, before and af-
ter transformations, are available in MIDI format at

http://www.lacl.fr/~lbigo/scw13 .
1) Geometrical Transformations: The regularity of the tri-

angular tessellation enables to specify a discrete counterpart
of usual geometrical operations like translations or some
rotations.

11

Figure 6. On the top, the first measures of the melody of the song Hey
Jude. On the bottom, the same measures after three rotations in the complex
C(1, 2, 4) related to F major tonality

a) Translations: As previously mentioned, a direction in
an unfolded space is associated with a constant interval. Then,
a n-step translation of a path in a direction associated with
the interval i reaches to a transposition of n × i on each
note of the sequence. This translation is thus interpreted as
a transposition (if the chord space is chromatic) or as a modal
transposition (if the chord space is tonal). Audio example 1
is the result of a one-step translation of the path representing
Beethoven’s piece Für Elise in C(3, 4, 5). The direction of the
translation is associated with the interval of fourth (the left
direction on figure 5). The result is the transposition of the
whole piece a fourth higher. Example 2 is the beginning of
Mozart’s 16th sonata after a translation in C(1, 2, 4) related to
C major tonality. Example 3 illustrates the same transformation
on the song Hey Jude written by Paul McCartney, in C(1, 2, 4)
related to F major tonality. This transformation corresponds to
a modal transposition. The result is that the two original pieces
switched from major mode to minor mode.

b) Rotations: Figure 7 illustrates a discrete π/3 rotation.
Around a given vertex, five different rotations are possible in
a triangular tessellation. This property is easily understandable
by seeing that a note has six neighbors into six different direc-
tions. Thus, the motion to a note to one of his neighbors can be
rotated five times around the starting note. Six rotations reach
to an entire rotation around the center and is equivalent to
identity. Three rotations are equivalent to a central symmetry.

This last operation is particularly interesting since it pro-
duces a trajectory having exactly the opposite direction from
the original one. Each interval i being mapped to his opposite
interval −i, this rotation is musically interpreted as an inver-
sion (if the chord space is chromatic) or as an operation we
could call a modal inversion (if the space is tonal).

Other rotations act as interval mappings depending on
the properties of the chord space. Audio example 4 is the
beginning of Mozart’s 16th sonata after 3 rotations (i.e. central
symmetry) in C(3, 4, 5). Examples 5 and 6 are the same
sequence after respectively 2 and 3 rotations in C(1, 2, 4)
related to C major tonality.

Examples 7, 8 and 9 result from the same operations on the
song Hey Jude. Figure 6 compares the first measures of the
melody of the song before and after the central symmetry in
C(1, 2, 4) related to F major tonality.

2) Change of Space: This operation consists in changing
the labels of the underlying space, which is a triangular

Figure 7. Rotation of a path in a triangular tessellation.

space 1 space 2

Figure 8. Transformation of the support space.

tessellation, for the labels of another unfolded two-dimensional
chord class space. Thanks to topological equivalence of the
two unfolded representations, the label mapping between the
two spaces is straightforward. In this operation, the trajec-
tory representing the musical sequence stays “unchanged”.
Example 10 is the beginning of J.-S.Bach’s choral BWV 256
after the initial support space C(3, 4, 5) is transformed into
C(2, 3, 7). The transformation achieves a surprising use of the
pentatonic scale, giving a particular color to the transformed
sequence. Transforming a chromatic space into a tonal space
will lead to a musical sequence including notes of a unique
tonality. An atonal piece thus becomes tonal. Example 11
illustrates this phenomena with the atonal piece Semi-Simple
Variations for piano of Milton Babbit: The piece is represented
in C(1, 4, 7). Then, this complex is transformed in C(1, 2, 4)
related to the D minor tonality. The transformation, maps each
note of the piece to a note in the D minor tonality.

3) Musical Interpretation: Some of these transformations
have a natural interpretation in music. For example, the
translation in a chromatic scale corresponds to a transposition.
Our spatial approach highlights many other transformations
that are not systematically studied in music theory, like for
instance the n-rotations (with 1 ≤ n ≤ 5 and n 6= 3).

These transformations can be combined to generate new
musical results. For example, one can apply successively a
rotation, a translation and a change of space, enabling a
huge set of recombinations to generate new material from an
initial musical sequence. Notice that some of these operations
are equivalent and produce the same musical result. For
example, the central symmetry operation corresponds to the
same musical inversion in all chromatic chord spaces. Note
also that these transformations impact pitches only. However,
the representation of a musical sequence in a space that does
not include all the pitches (this is the case for tonal spaces),

12

will induce a loss of some notes, thus impacting the rhythm
of the sequence.

V. SPATIAL COUNTERPOINT

Counterpoint consists in the writing of musical lines that
are independent from each other but sound harmonious when
played simultaneously. Numerous rules have been proposed
to determine a note on a line according to previously played
notes on the same line and simultaneously played notes of
other lines. The way these notes are chosen determine to a
large extent the musical style of the piece. Different sets of
counterpoint rules have been proposed over time by music
theorists. One of the most popular is probably the Gradus Ad
Parnassum from Joseph Fux [17], used for composition by,
among others, Haydn, Mozart, Beethoven and Schubert. This
set of rules, published in 1725, still fascinates music theorists,
and has been formalized relying on various frameworks,
agebraic [1] or spatial [18].

We propose a method to translate some counterpoint rules,
as the ones defined in Fux’s Gradus Ad Parnassum, in chord
spaces. The goal of this study is not to propose yet another
more efficient and exhaustive method for counterpoint com-
position, but to show how the spatial approach can be used
to express existing rules and can suggest some new rules for
composition.

A. Segmentation

We focus on the generation of a melodic voice, which will
be added to a pre-existing musical sequence.

First we divide the sequence in successive temporal seg-
ments. For each segment st, a pitch pt or a silence has to
be chosen and concatenated to the generated voice. If a same
pitch is generated for two successive segments, the note can be
hold or repeated. We use a simple segmentation process in this
preliminary study: Each time a note is played or stopped in the
pre-existing sequence, the previous segment stops and a new
one starts. Figure 9 illustrates this process for the generation
of a voice, in parallel with three others. The set Pt includes
other voice’s pitches sounding during the segment st. In this
example, 8 pitches have to be determined to complete the
fourth voice of this measure.

Note that this process only allows the generated voice to
move simultaneously with an other pre-existing one. More
sophisticated systems would typically allow new notes to be
generated between pre-existing notes. The approach described
here is constrained but sufficient for this preliminary study.

B. Translation of the Rules

Counterpoint rules can generally be classified in three
categories:

• Vertical (or harmonic) rules: How pt fits with pitches in
Pt;

• Horizontal (or melodic) rules: How pt fits with pt−1 (and
sometimes with pt−2 or earlier);

• Transverse rules: How {Pt, pt} fits with {Pt−1, pt−1}.

p1 p2 p3 p4 p5 p6 p8

v1

v2

v3

v4 p7

s1 s2 s3 s4 s5 s6 s8 s7

P1 P2 P3 P4 P5 P6 P7 P8

Figure 9. The generation of the voice v4 consists in adding to the pitch set
Pt a pitch pt (or a silence) for each segment st.

1) Vertical Rules: Vertical rules typically consist in promot-
ing, avoiding or forbidding the formation of particular intervals
or chords in {Pt, pt}. We build a chord complex V corre-
sponding to these rules by assembling simplices specifying
the permitted intervals and chords. For example, a rule that
allows the formation of minor and major chords is typically
translated by the choice of the chord class complex C(3, 4, 5).
If the rule forbids a particular interval, V contains no edge
corresponding to this interval.

Once the complex V is assembled, we use a method
presented in [3] to measure how the set of pitches defined
by {Pt, pt} fits within this space. This method consists in
measuring the compactness of the sub-complex made by the
pitches of {Pt, pt} in V . For a given V , pt is chosen in order
to maximize this compactness. Informally, for a connected set
S of simplices in a complex V , the compactness depends on
the length of the paths in V between two arbitrary simplices
of S.

An entire set of vertical rules rarely matches the structure
of a particular complex, and a compromise needs generally to
be done.

2) Horizontal Rules: Horizontal rules mostly specify al-
lowed or forbidden intervals between pt−1 and pt. Note that
some complex rules can forbid some longer pitch sequences,
for example pt may depend also on pt−2. In this preliminary
study, we focus on rules concerning only the previous gener-
ated pitch pt−1.

We build the complex H by assembling all the edges
corresponding to allowed intervals. The resulting space is
a one-dimensional complex, which is an undirected graph.
The pitches pt are successively determined by constructing
a trajectory as connected as possible in H . Notice that a pitch
transition in H is not oriented: for instance, if the notes F and
G are neighbor in H , both transitions F → G and G → F
are allowed.

3) Transverse Rules: A transverse rule consists in allowing
or forbidding particular n-pitch transitions. A n-pitch transi-
tion consists in two consecutive sets of n pitches. Here is an
example of a rule on 2-pitch transitions: If the pitches of two
voices are separated by an interval of fifth during the segment

13

C

E

D

F

B

D

C

G E

2-pitch transition

3-pitch transition

Figure 10. On the left, an allowed 2-pitch transition, between {C,E} and
{D,F}, represented by a square-shaped 2-cell. This 2-cell is not a simplex:
it has four edges in its border while a 2-simplex has only three edges
in its border. On the right, the 3-pitch transition between {C,E,G} and
{B,D, F}.

st−1, they cannot be separated by this same interval during
st. This rule is related to the parallel fifth rule, widely used
during the baroque period.

We represent an allowed n-pitch transition by a n-cell built
as the extrusion of a (n− 1)-simplex. Here, the extrusion is
the product of an arbitrary simplex with a 1-simplex. The
two sides of the extrusion correspond to the (n− 1)-simplices
respectively representing the pitch set {Pt−1, pt−1} and
{Pt, pt}. For example, a 2-transition is represented by a
square-shaped cell (the extrusion of an edge). A 3-transition is
represented by the extrusion of a triangle (figure 10). Notice
that the resulting cell is not a simplicial cell, it is a a simploid
i.e., the product of two simplices.

As for horizontal spaces, this representation does not specify
the direction of the transition. For example, the square cell on
the left of figure 10 represents both transitions {C,E} →
{D,F} and {D,F} → {C,E}. To specify rules on directed
transitions, n-cells representing n-transitions have to be ori-
ented, in the same way that an edge (which is a 1-cell) can be
oriented. An alternative approach would consist in updating
the structure of H at each segment according to the played
pitch set.

We build the space H by assembling the allowed n-pitch
transitions. The resulting space is a simploidal set, a slight
generalization of a simplicial complex [19].

All the notions we have presented on simplicial complexes
lift immediately on simploidal sets. Thus, the pitch pt is
chosen so that the simploid spanned by {Pt−1, pt−1} and
{Pt, pt} exists and maximizes the compactness in H .

4) Application: The respect of the rules by a potential pitch
pn is evaluated in each of the three spaces V , H and T . If
no pitch is found, rules can be weakened by relaxing some
constraint in one of the spaces, for instance by including some
additional cells. An other possibility is to put a silence.

Some traditional rules cannot be easily represented solely
by the structure of these complexes. However, we believe that
the spatial approach can be an inspiration to propose new sets
of rules for various kinds of music.

Moreover, the analyse of a set of musical pieces in a
particular style can provide elements to design customized
spaces to realize counterpoint in a similar style. For example,

one can look for the complex in which a piece (or a set of
pieces) is represented as compact as possible [3]. Using this
complex for V is a good starting point to harmonize another
piece in a similar style. Similar processes can be done to
determine H and T .

VI. CONCLUSION

The starting point of this work is the abstract spatial
representations of various musical objects defined in [4],
[12], [3]. These representations have been unified using a
simple self-assembly process, and further defined in MGS.
They have already shown their usefulness, for instance for
the computation of all-interval series [12].

In this paper we take a step further and we propose
two spatial formulations of some non trivial compositional
processes: the definition of a class of musical transformations
that includes the transposition from a major to a minor mode
and the spatial formulation of counterpoint rules, leading to a
new algorithm to generate an additional voice.

The spatial framework works here as a powerful heuristic. In
section IV we show that some straightforward spatial transfor-
mations have a well defined musical interpretation. The others,
that is the straightforward spatial transformations that do not
correspond to a well known chord or melodic transformation,
suggest alternative musical transformations that are not easily
expressed in the usual algebraic setting used in musicology.
In section V, we demonstrate how counterpoint rules can be
encoded on three cellular complexes that respectively represent
the constraints on the notes that are played simultaneously, the
possible successions of notes in a line, and the possible succes-
sion of chords in the sequence. Again, the spatial framework
suggests some alternative rules, or new rule parametrization.

All the mechanisms described here have been implemented
and the audio examples illustrating this work are accessible at
the url http://www.lacl.fr/~lbigo/scw13 . The first results are
very encouraging and open various perspectives. We mention
two of them. In another direction, the research of an adapted
space with a musical piece rarely accommodates with a unique
complex. The comparison of how complexes fit with a piece
over the time gives elements for an harmonic segmentation of
the piece. A study of the successive most adapted complexes
during a piece can be represented by another complex and
gives interesting elements on composers practices.

The building and processing of abstract spaces appears to be
a key issue for musical analysis and composition. We believe
that the path taken in this paper can help to improve and to
develop new tools.

ACKNOWLEDGMENT

The authors are very grateful to M. Andreatta, C. Agon and
G. Assayag from the REPMUS team at IRCAM and to O.
Michel from the LACL Lab. at University of Paris Est for
endless fruitful discussions. This research is supported in part
by the IRCAM and the University Paris Est-Créteil Val de
Marne.

14

REFERENCES

[1] G. Mazzola et al., The topos of music: geometric logic of concepts,
theory, and performance. Birkhäuser, 2002.

[2] R. Cohn, “Neo-riemannian operations, parsimonious trichords, and their
"tonnetz" representations,” Journal of Music Theory, vol. 41, no. 1, pp.
1–66, 1997.

[3] L. Bigo, J. Giavitto, and A. Spicher, “Computation and visualization
of musical structures in chord-based simplicial complexes,” submited to
Mathematics and Computation in Music, 2013.

[4] L. Bigo, A. Spicher, and O. Michel, “Spatial programming for music
representation and analysis,” in Spatial Computing Workshop 2010,
Budapest, Sep. 2010.

[5] M. Henle, A combinatorial introduction to topology. New-York: Dover
publications, 1994.

[6] J.-L. Giavitto and O. Michel, “MGS: a rule-based programming lan-
guage for complex objects and collections,” in Electronic Notes in
Theoretical Computer Science, M. van den Brand and R. Verma, Eds.,
vol. 59. Elsevier Science Publishers, 2001.

[7] J.-L. Giavitto, “Topological collections, transformations and their appli-
cation to the modeling and the simulation of dynamical systems,” in
Rewriting Technics and Applications (RTA’03), ser. LNCS, vol. LNCS
2706. Valencia: Springer, Jun. 2003, pp. 208 – 233.

[8] A. Spicher, O. Michel, and J.-L. Giavitto, “Declarative mesh subdivision
using topological rewriting in mgs,” in Int. Conf. on Graph Transfor-
mations (ICGT) 2010, ser. LNCS, vol. 6372, Sep. 2010, pp. 298–313.

[9] J.-L. Giavitto and A. Spicher, Systems Self-Assembly: multidisciplinary
snapshots. Elsevier, 2008, ch. Simulation of self-assembly processes
using abstract reduction systems, pp. 199–223, doi:10.1016/S1571-
0831(07)00009-3.

[10] G. Albini and S. Antonini, “Hamiltonian cycles in the topological dual
of the tonnetz,” in Mathematics and Computation in Music, ser. Com-
munications in Computer and Information Science, E. Chew, A. Childs,
and C.-H. Chuan, Eds. Springer Berlin Heidelberg, 2009, vol. 38, pp.
1–10.

[11] C. Callender, I. Quinn, and D. Tymoczko, “Generalized voice-leading
spaces,” Science, vol. 320, no. 5874, p. 346, 2008.

[12] L. Bigo, J. Giavitto, and A. Spicher, “Building topological spaces for
musical objects,” Mathematics and Computation in Music, pp. 13–28,
2011.

[13] A. Forte, The structure of atonal music. Yale University Press, 1977.
[14] M. Andreatta and C. Agon, “Implementing algebraic methods in open-

music.” in Proceedings of the International Computer Music Conference,
Singaphore, 2003.

[15] M. Catanzaro, “Generalized tonnetze,” Journal of Mathematics and
Music, vol. 5, no. 2, pp. 117–139, 2011.

[16] E. Gollin, “Some aspects of three-dimensional" tonnetze",” Journal of
Music Theory, pp. 195–206, 1998.

[17] J. J. Fux and A. Mann, The study of counterpoint from Johann Joseph
Fux’s Gradus ad Parnassum. WW Norton & Company, 1965, vol. 277.

[18] D. Tymoczko, “Mazzola’s model of fuxian counterpoint,” Mathematics
and Computation in Music, pp. 297–310, 2011.

[19] S. Peltier, L. Fuchs, and P. Lienhardt, “Simploidals sets: Definitions,
operations and comparison with simplicial sets,” Discrete Applied Math-
ematics, vol. 157, no. 3, pp. 542–557, 2009.

15

16

Population Protocols on Graphs: A Hierarchy

Olivier Bournez
LIX, Ecole Polytechnique

91128 Palaiseau Cedex, France
Email: Olivier. Bournez@lix. polytechnique. fr

Jonas Lefèvre
LIX, Ecole Polytechnique

91128 Palaiseau Cedex, France
Email: jlefevre@lix. polytechnique. fr

Abstract—Population protocols have been introduced as
a model in which anonymous finite-state agents stably
compute a predicate of the multiset of their inputs via
interactions by pairs. In this paper, we consider popula-
tion protocols acting on families of graphs, that is to say
on particular topologies. Stably computable predicates on
strings of size n correspond exactly to symmetric languages
of NSPACE(n), that is to say to non-deterministic space of
Turing machines. Stably computable predicates on cliques
correspond to semi-linear predicates, namely exactly those
definable in Presburger’s arithmetic. Furthermore, we ex-
hibit a strict hierarchy in-between when considering graphs
between strings and clique.

Keywords: population protocols, computability, hierarchy,
space complexity

I. Introduction

The model of population protocol has been introduced in [1]
as a model of anonymous agents, with finitely many states, that
interact in pairs according to some rules. Agents are assumed to
be passively mobile, in the sense that there is no control over
the way the interactions happen: interactions can be seen as
resulting from a fair scheduler. The model has been designed to
decide predicates. Given some input configuration, the agents
have to decide whether this input satisfies the predicate, in
which case the population of agents has to eventually stabilize
to a configuration in which every agent is in accepting state.
A protocol must work for any size of population. Predicates
computable by classical population protocols have been char-
acterized as being precisely the semi-linear predicates, that is
those predicates on counts of input agents definable in first-
order Presburger arithmetic. Semi-linearity was shown to be
sufficient in [1], and necessary in [2].

So far, most of the works on population protocols has
concentrated on characterizing what predicates on the input
configurations can be stably computed in different variants of
the models and under various assumptions. Variants of the
original model considered so far include restriction to one-
way communications [3], restriction to particular interaction
graphs [4], and random interactions [1]. Various kinds of fault
tolerance has been considered for population protocols [8],
including the search for self-stabilizing solutions [5]. We refer
to [6] for a comprehensive 2007 survey.

From a computability point of view, the equivalence be-
tween predicates computable by population protocols and Pres-
burger’s arithmetic definable sets (semi-linear sets) is rather
intriguing. The upper bound obtained in [2] is non-trivial and
rather different from classical arguments in computability or
complexity theory when dealing with computational models.
The work in this present paper originates from an attempt
to better understand the relations between the population
protocol model and classical models like Turing machines.

In that perspective we consider population protocols over

various interaction graphs in the spirit of [1], [4]. This can be
also seen as considering population protocols over particular
spatial models.

Clearly classical population protocols corresponding to semi-
linear sets correspond to the case where the interaction graph
is a clique (i.e. complete graph). It has already been stated that
one can simulate a Turing machine when working over a path
(or more generally a bounded degree graph) in [4].

We review these constructions and we somehow extend them
to more general classes of graphs/topologies.

In particular, we discuss intermediate classes, by considering
interaction graphs in between bounded degree graphs and
clique, namely separable graphs. We prove that there is a whole
hierarchy between paths (non-deterministic linear time) and
cliques (semi-linear sets), that can be proved to be strict for
graphs verifying some conditions.

A. Related work.

The following works, not covered by 2007 survey [6] can also
be mentioned: in [9] a variant of population protocols where
agents have unique identifier and can store a constant number
of bits and a constant number of other agents’ identifiers is con-
sidered. The model has been proved to be able to compute any
predicate computable by a non-deterministic Turing machine
in space n logn. Moreover the construction has been proved to
tolerate Byzantine failures.

The idea of restricting to an underlying graph for interactions
is already present in the initial definition of the model in [1].
The paper [4] is devoted to understand which properties of
graphs can be computed by population protocols. It is proved
for example that one can detect whether a given graph is a path
or a tree using population protocols, or whether a graph has a
bounded degree.

A variant of the classical model is studied in the paper [7].
This variant considers that each agent is a Turing machine
with a space f(n) for a population of size n. For f = Ω(log),
the computational power of the model is characterized to be
precisely the class of all symmetric predicates recognizable by
a non-deterministic Turing machine in space nf(n). A hierarchy
for population protocols is inherited from Turing machines.
Furthermore it is proved that if agents have o(log log) space
then the model is no more powerful than the classical model.
Our hierarchy is using both the restrictions of the communica-
tion graph and the computational power of the agents.

II. Definitions

We restate the population protocol model introduced by
Angluin, Aspnes, Diamadi, Fisher and Peralta in [1] in the rest
of this section.

Informally, in the basic population protocol model, we have
a collection of anonymous agents. Each agent is given an input

17

value, then agents interact pairwise in an order fixed by some
scheduler that is assumed to satisfy some fairness guarantee.
Each agent is assumed to have finitely many states, and the
“program” for the system describes how the states of the two
agents evolve when two agents interact. The agents’ output
values change over time and must eventually converge to the
correct output [6]. More formally:

Definition 1 (Population protocol): A population protocol
(Q,Σ, in, out, δ) is formally specified by:

• Q, a finite set of states, that correspond to possible states
for an agent;

• Σ, a finite input alphabet;
• in, an input function from Σ to Q, where in(σ) represents

the initial state of an agent whose input is σ;
• out, an output function from Q to {0, 1}, where out(q)

represents the output value of an agent in state q;
• δ ⊂ Q2×Q2, a transition relation that describes how pairs

of agents can interact. We will mostly write (s1, s2) →
(r1, r2) for ((s1, s2), (r1, r2)) ∈ δ.

A computation of such a protocol takes place over a fixed set
A of n agents, where n ≥ 2. A population configuration (over
Q) is a mapping C : A→ Q specifying the state of each agent.
We will say that a configuration C contains a state q if C(a) = q
for some agent a ∈ A. Agents with the same state are assumed
in the model indistinguishable. Hence we will always reason
modulo permutations of agents. In other words, configurations
can also be considered as ordered multisets of states, and we
assume that for all permutation π of A, configurations C and
C′ with C′(a) = C(π(a)) are the same.

To a word ω = ω1ω2 . . . ωn ∈ Σ∗ of length n over input
alphabet Σ, corresponds any initial configuration C0[ω] where
agents have corresponding initial state: fixing any numbering
of the set A of agents, agent 1 ≤ i ≤ n is in state in(ωi). Given
some configuration C, we write C → C′ if C′ can be obtained
from C by a single interaction of two agents: this means that
C contains two states q1 and q2, and C′ is obtained from C by
replacing q1 and q2 by q′1 and q′2, where ((q1, q2), (q′1, q

′
2)) ∈ δ.

We denote→∗ for the transitive and reflexive closure of relation
→.

An execution over word ω = ω1ω2 . . . ωn ∈ Σ∗ is a finite
or infinite sequence of configurations C0C1 . . . CiCi+1 . . . such
that C0 = C0[ω] and, for all i, Ci → Ci+1.

The order in which pairs of agents interact is assumed to
be unpredictable, and can be seen as being chosen by an
adversary. In order for only meaningful computations to take
place, some restriction on the adversarial scheduler must be
made (otherwise, nothing would forbid for example that all
interactions happen always between two same agents). As often
in the distributed computing context, this is model by some
fairness hypotheses: a fair execution is an execution such that
if a configuration C appears infinitely often in the execution and
C → C′ for some configuration C′. Therefore C′ must appears
infinitely often in the execution. This fairness property states
that a configuration which is always reachable will eventually
be reached. There is absolutely no control over any finite
execution, but any possibility that can not be evade with a
finite execution will be met. Observe that this is equivalent to
say that if a configuration C′ is reachable infinitely often, then
it is infinitely reached.

At any step during an execution, each agent’ state determines
its output at that time: whenever an agent is in state q,

its output is out(q). A configuration C is said to output 1
(respectively 0) iff all agents outputs 1 (resp. 0): in other words
out(C(a)) = 1 for all agent a ∈ A (resp. 0). If in a configuration
there are agents outputting 1 and other outputting 0, the
output of the configuration is undefined. A configuration C is
said to be output-stable with output b ∈ {0, 1} if ∀C′, C →∗
C′, ∀s ∈ C′, out(s) = b. Namely a configuration is output-stable
if its output is defined and any reachable configuration has the
same output.

A fair execution C0C1 . . . CiCi+1 . . . stabilizes with output b
if there exists some m such that for all j ≥ m, the output of
configuration Cj is defined and given by b. In particular, a fair
execution converges with output b iff it reaches an output-stable
configuration with output b.

A protocol is well-specified if for any initial configuration
C0[w], every fair execution starting from C0[w] converges with
an output, that is determined by that input configuration. A
well specified protocol induces a subset L ⊂ Σ∗ of configura-
tions yielding to output 1: this subset will be said to be the
language decided by the protocol.

We will also need to consider population protocols over
graphs. Observe that the previous model is just the case where
the graph is a clique.

Definition 2 (Population protocol on a graph): Given a graph
G with n vertices, a population protocol over G is a population
protocol whose set of agents A is the set of vertices of G, and
where in definition above two agents can interact by a single
interaction only if they are adjacent in graph G: in definitions
above, this only changes the definition of C → C′. Formally:
C → C′ if C contains two states q1 and q2 in respective vertices
v1 and v2, and C′ is obtained from C by replacing q1 and q2 by
q′1 and q′2, where ((q1, q2), (q′1, q

′
2)) ∈ δ, and (v1, v2) is an edge

of graph G.
We insist on the fact that we do not change anything else.

In particular the input is still distributed on the population
without any control.

Given a family of graphs (G(n) = (V (n), E(n)))n∈N, where
G(n) has n = |V (n)| vertices, a well-specified protocol also
induces a subset L ⊂ Σ∗: this subset will also be said to be the
language decided by the protocol over this family of graphs.

Equivalently a language L ⊂ Σ∗ is decided by population
protocol working over this family if there is a well-specified
protocol verifying the following property: the w ∈ L correspond
exactly to initial configurations C0[w] for which every fair exe-
cution of the protocol on G(n) = (V (n), E(n)) with |V (n)| = n,
where n is the length of w, eventually stabilize to output 1.
From our definitions, languages corresponding to population
protocols are necessarily invariant by permutations of letters, as
initial configurations are assumed to be indistinguishable when
agents are permuted.

Population protocols on bounded degree graphs can be re-
lated to Turing machines. The languages decided by population
protocols on bounded degree graphs correspond exactly to sym-
metric languages of NSPACE(n), that is to say to language
recognized in non-deterministic space n by Turing machines,
invariant by permutation of letters.

In the spirit of [7], we will also consider variants where the
agents are no longer just finite automata but deterministic
Turing machines with memory space constraints: this model
will be called the passively mobile machines model, following
the terminology of [7]: the agents are now Turing machines.

18

Formally, they are Turing machines with four tapes: work-
ing tape, output tape, incoming message tape and outgoing
message tape. They have internal transitions, corresponding to
local computations, and external transitions, corresponding to
interactions, where the two agents copy in their own incoming
message tape the contents of the outgoing message tape of the
other agent.

The authors in [7] show that if the n agents of the population
have a memory of size at least log(n) then they can be organized
to model a Turing machine. Basically, the idea is that agents
can use interactions to compute eventually unique identifiers,
and then use these identifiers so that each agent then simulate
a cell (or few cells) of the tape of a (global) Turing machine.

Here will be discussed smaller cases. Let us first come back
to classical population protocols where agents are finite state.

We will often use variations of the following routine
electing a leader in a uniform population: consider set
of states is Qleader = {L, x}, where state L means
that this agent has a leader token and rules δleader =
{(L,L)→ (L, x), (x, L)→ (L, x)}. Thanks to the first rule, if
two agents with leader token meet, one token is deleted. With
this rule, the quantity of leader token will decrease to one, but
the last token can never be deleted. The second rule allows any
leader token to move on the graph. The computation starts
with every agent with state L: in any fair execution, eventually
there will remain exactly one L state in the population. Indeed,
since leaders can move they can always meet, and hence the
fairness hypothesis guarantees that leaders will eventually meet
and disappear until only one remains.

III. Modeling a Turing Machine on graphs

The paper [4] explains how to model a Turing machine
with a population protocol working on a graphs family with
degree bounded by d. We will explain the main steps of the
construction.

The algorithm of [4] can be decomposed into three subalgo-
rithms: construct a distance-2-coloring of the graph ; use this
labeling to build a spanning tree on the graph ; and use this
spanning tree to model the tape of a Turing machine.

A distance-2-coloring of a graph G is a coloring of the vertices
of G such that two vertices that are adjacent or have a common
neighbor receive distinct colors.

A graph family will be said to be distance-2-colorable if there
exists a population protocol such that starting from any initial
configuration the system eventually evolves (restricting as usual
to fair computations only) to a configuration that corresponds
to a distance-2-coloring.

Proposition 1: A graph family is distance-2-colorable iff the
graph family has a bounded degree: there exists some constant
d that bounds the degree of each graph of the family.

Proof: The idea of the proof of the if part of the proposition
is to use a moving leader token. After a move the token stops
and interacts successively with two of its neighbors. If they have
the same color, one changes, and the token moves away. Thanks
to the fairness property, the population will eventually reach a
configuration where no two neighbors of any agent have the
same color. If two moving leader tokens meet, one (and only
one) is destroyed. A more detailed proof of this can be found
in [4].

Conversely, since agents are finite state, the degree is directly
bounded by the number of colors (i.e. states) minus one in a

distance-2-coloring.
Notice that some more general families of graphs could also

be distance-2-colorable, if we consider that agents would not be
finite state, that is to say passively mobile machines instead of
population protocols.

Proposition 2 ([4]): Consider a distance-2-colorable graph
family. One can build a population protocol that builds a
spanning tree over this graph family.

Proof: The idea of the proof is to observe that a distance-
2-coloring of the graph allows one to emulate pointers. Indeed,
each agent can store in his state a color c0 and by definition
of the coloring, it can have at most one neighbor with color
c0; in other words the color of an agent is like a unique pointer
address for its neighbors. This allows one to build a forest where
the parent links in the trees are the pointers and the forest can
eventually be transformed into a spanning tree using leaders
and the fairness of the scheduler.

The construction itself uses leader tokens. The leader token
starts its construction on a vertex that will be the root. Then
it explores the graph in depth-first fashion. While it finds a
neighbor not yet in the tree, the token moves to this agent, and
makes this agent point to the one it comes from. If no new son
can be added to the tree, the leader token backtracks until it
comes to an agent having neighbor not yet in the tree. If a leader
encounters an other leader, one is erased and restart markers
are produced to erase the trees already built. The construction
then starts again with one less leader. It will eventually succeed
when the number of leaders will reach one (by the fairness
assumption). The coloring and the spanning tree construction
being simultaneous, if an agent part of a tree is recolored, a
restart marker is produced.

Eventually, the coloring will be stable, only one leader token
will make the depth-first search, and a spanning tree will be
built on the graph.

The class ZPSPACE(s) corresponds to language accepted
by (so-called) Zero-error Probabilistic Turing machines using a
memory space bounded by s.

Equivalently, (and we will use this definition), it can be
shown to the class of languages accepted by a non-deterministic
Turing machine, with three special internal states Yes, No and
Don ′tKnow verifying the following property: if ω ∈ L (resp.
ω 6∈ L) then a possible execution of the machine on ω can
only output Yes or Don ′tKnow (resp. No or Don ′tKnow). And
for every input, there are executions outputting a firm answer
(Yes or No). The construction of this machine is described
in [10]. The class ZPSPACEsym(s) is the restriction of the
symmetric languages, that is to say the language L such that
for all permutation π, ω ∈ L iff ω′ ∈ L where ω′[i] = ω[π(i)].

Proposition 3: Let (Gn) be a graph family. If there is a
population protocol on (Gn) that organizes the agents into a
spanning tree, then there is a population protocol that model
a Turing machine tape with a tape of size n on Gn.

Proof: Once a spanning tree is built, the spanning tree can
be used as the tape of the Turing machine: we can order the
vertices of the graph using the spanning tree (using a breadth-
first search for instance). The numeration gives the location of
the agent in the tape.

Let L ∈ ZPSPACEsym(n). Using the tools from above,
we can model the behavior of a Turing machine computing
L. For any input x, the computation outputs either a firm
answer, either Don ′tKnow . Whenever the protocol ends a sim-

19

ulation, it starts a new one. The first simulations of the Turing
machine may be made when the routine that organize the
population into a tape is not finished. Those simulations gives
answers with no warranty. The fairness makes certain though
that the population will eventually be organized, after what
exact simulation can occur. The looping simulation ensures
that configurations corresponding to exact simulation of the
Turing machine are always reachable. Then fairness guarantees
every correct simulation will occur during any execution of the
population protocol. By fairness, some execution giving the
firm answer will occur. And from this instant the simulation
will only answer either the correct and firm answer, either
Don ′tKnow . By outputting the last firm answers computed by
a simulation, the protocol can decide ”x ∈ L?”.

IV. Separable graph family

Definition 3: A graph family
(
G(n) = (V (n), E(n))

)
is s, d-

separable if for all n, the set of vertices V (n) can be partitioned
into U1 and U2 such that:

• (U1, E(n)|U1
) is a connected graph with s(n) vertices

• for all vertex u ∈ U1, its degree (in G(n)) is bounded by
d(n)

• for all vertex v ∈ U2, v belongs to a clique of size at least
2d(n)+1.

U2 may be empty.
Notice that there are such separable graph families only if

d(n) ≤ logn and s(n) ≤ n.
For instance with d(n) = 2, a path of size s(n) connected

(in one or two vertices) to a clique of size at least 8 provides
a s, 2-separable family of graphs. The figure 1 shows a possible
graph of a s, 2-separable graph family. In the figure 2 a graph
of a s, 4-separable graph family is shown.

U1

U2

Fig. 1. A graph of a s, 2-separable family

U1

K16

K26

2
U

Fig. 2. A graph of a s, 4-separable family

We will construct a simulation of Turing machine on separa-
ble graphs. The first step is to recognize the clique part of the
graph.

Lemma 4.1: Let be G = (V,E) a s, d-separable graph
with d = O(1). There is a population protocol Clique that
distinguishes U1 from U2.

That means its set of states can be partitioned in Qclique and
Qbounded, and for any fair execution (Ct) of the protocol Clique,
there is t0 such that in configurations Ct with t ≥ t0, an agent
has a state in Qclique iff it belongs to U2.

Proof: The construction of this protocol uses two routines.

Color, the first routine, colors the agent with d+ 1 colors in
such a way that an agent has every colors in its neighborhood
if it belongs to a clique of size at least 2d+1: At the beginning
of this routine, every agent is candidate for the color 1. If two
candidate for the color i interact, one is definitely colored with
color i while the other is candidate for the color i+1. The color
d + 1 is an exception since the candidates are automatically
colored. This way, half the agents of a clique take the color 1,
half the remaining agents take the color 2, and so on. At the
end a proportion 1

2d
of the agents of a clique will have the color

d, and the same quantity will have the color d+ 1.

Count, the second routine, counts (up to d + 1) how many
different colors there are in the neighborhood of any agent, and
therefore decides if the agent is in the bounded degree sub-
graph (where an agent can not have d + 1 different colors in
its neighborhood) or in the clique (where the agents have more
than d+ 1 colors in their neighborhood).

V. Modeling a Turing machine on separable graph
family

A. Counting protocol

To achieve the simulation we need a protocol counting the
input letters, the objective is to have the input into a format the
Turing machine can use. The idea is to use the bounded-degree
sub-graph as a tape to store the entry in a more efficient form.
Indeed, the protocol input is symmetric and can be describe
by the number of symbol of each type without losing any
information. With a tape, we can write those numbers in binary
because the agents are implicitly ordered. Of course, this is
possible only if this “tape” is big-enough with respect to the
total number of agents.

Lemma 5.1: Let be G a s, d-separable graph with s = Ω(log).
There is a population protocol WriteInput which organizes the
bounded degree part as a Turing machine tape and which writes
(using binary encoding) the initial input multiset on this tape.

Proof: The protocol WriteInput uses different routines.

First, Clique (from lemma 4.1) recognizes the bounded degree
sub-graph. Then the routines described in the propositions 1
and 2 organize the bounded degree sub-graph.

The next routine has two phases:

1) Writing on the tape, it counts the input letter and mark
them (so they will not be counted twice),

2) It saves the value, if greater than the last saved value, and
send Erase token in the population to erase the marks.
After the tokens are back, it starts again the counting
phase.

This routine will never count too many of any kind of letter,
but it can count every one of a kind. Eventually they will count
every states. And the multiset corresponding of the input will
be written (in binary notation) on the tape. This can be done
only if the tape has enough cells, that is to say if there is at
least Ω(log(n)) cells.

20

B. Main result of this section

Let L(s) be the class of languages decided by population
protocols on s, d-separable graph family with d = O(1).

If s = Ω(log), using the routine WriteInput to prepare the
population, we can simulate a Turing machine on the bounded
degree part. The Turing machine we model uses at most s(n)
cells on its working tape and the result of any computation does
not change if we apply any permutation on the input. In fact,
we prove that we model any Turing machine that computes a
language of the class NSPACEsym(s) using same principles.

Theorem 5.1: ∀s = Ω(log), L(s) = NSPACEsym(s)
Proof: Fix some s(n) = Ω(logn) and d = O(1).

First we prove L(s) ⊆ NSPACEsym(s).
A configuration of a population of size n on a s, d-separable
graph needs O(s(n)+log(n−s(n)) cells on a tape to be stored.
Since s(n) = Ω(log(n)), we only need O(s(n)) cells. To compute
the result of a computation by a population protocol we need
to find a reachable configuration such that we cannot find
any other reachable configuration where the output is different
or undefined. Then it is computable by a Turing machine
of NSPACE(s), since NSPACE(s) = coNSPACE(s) for
s = Ω(log) (see e.g. [10]). And the languages of L(s) are
symmetric then L(s) ⊆ NSPACEsym(s).

We prove now ZPSPACEsym(s) ⊆ L(s).
Let M be a machine corresponding to a language of
ZPSPACEsym(s). We can construct a population protocol
of L(s) computing the same language. As direct application
of the lemma 5.1, we are able to model a Turing machine
using a tape with s(n) cells. The proof of the proposition 3
can be used to prove that the simulated Turing machines can
compute languages of the class ZPSPACEsym(s). Therefore
ZPSPACEsym(s) ⊆ L(s)

As s = Ω(log), it is known (see e.g. [10]) that we have
NSPACEsym(s) = ZPSPACEsym(s).

To conclude:

L(s) = NSPACEsym(s) = ZPSPACEsym(s)

C. Passively mobile machines model

Let s, s′ functions such that s(n) = O(n). We will consider
the passively mobile machines model (i.e. population protocol
where the agents are Turing machines) with memory of the
agents bounded by s′.

In [7], a detailed proof of the following result can be found.
Proposition 4: Let s′ = Ω(log). The set of languages decided

by the passively mobile machines model with memory of the
agents bounded by s′ is exactly NSPACEsym(n.s′(n)).

In other words, if the agents have at least a logarithmic
memory space, then whatever the interaction graph is, the
model is equivalent to a Turing machine with a memory space
equal to all the possible available space. If the agents have less
memory space, considering the interaction graph may permit to
gain some computational power. So we will now only consider
cases were s′ = o(log).

Let Ls′(s) be the class of languages decided by the passively
mobile machines model with memory of the agents bounded
by s′ on s, d-separable graph family with d(n) = 2O(s′(n)). We
remind that d(n) ≤ logn in any case.

The results of the previous sections can be extended to
the population protocol model where the agents are not finite

states, but Turing machines with memory bounded by s′. Then
the agent can have up to 2O(s′(n)) different ”states” (in fact
they are configurations). So we can use those extra states to
construct distance-2-coloring with more colors, and hence we
may be able to construct a spanning tree on s, d-separable
graphs for non constant d. More precisely we have the following
result that extends Lemma 4.1.

Lemma 5.2: Let be G = (V,E) a s, d-separable graph. There
is a passively mobile machines model with memory bounded by
log(d(n)) that distinguish U1 from U2.

It gives a way to model a Turing machine on the bounded
degree sub-graph. The modeled Turing machine has a tape
modeled on s(n) agents, each one having s′(n) cells ; then
the total space the Turing machine have is s(n).s′(n) (each
of the s(n) agents contribute with s′(n) cells). And then the
generalisation of the proposition 5.1 is the following.

Theorem 5.2: Let d, s and s′ such that d = 2O(s′(n)), d(n) =
O(logn), s′ = o(log) and s(n) ≤ n. The class of the language
computable by passively mobile machines of DSPACE(s′) on
s, d-separable graph family is NSPACEsym(s.s′).

Ls′(s) = NSPACEsym(s.s′)

D. A Hierarchy

With Theorems 5.1 and 5.2, we can transpose the hierarchy
of non-deterministic Turing machines above the logarithmic
space.

Theorem 5.3: Let s1, s2, s
′
1, s
′
2 such that si(n) = O(n) and

s′i = O(log log) for i = 1, 2. If s′1.s1 = o(s′2.s2) then Ls′1
(s1) ⊆

Ls′2
(s2). And the inequality is strict if s′2.s2 = Ω(log).

For instance, let be s′ = o(log) and consider the sequence
of function logk n/s′(n). If k ≥ 1, we have Ls′(logk n/s′(n)) =
NSPACEsym(logk). Therefore, we have the following hierar-
chy with:

L1(1) (Ls′(1)

(Ls′(logn/s′(n))

(Ls′(log2 n/s′(n))

...

(Ls′(logk n/s′(n))

...

(Ls′(n) = NSPACEsym(n.s′(n))

L1(1) corresponds to what is decided by the classical model
with finite automaton agents and the complete interaction
graph: L1(1) is the class of the semi-linear languages. Ls′(1)
corresponds to the passively mobile machines model where
agents use O(s′) memory and the complete interaction graph.
Ls′(n) corresponds to the passively mobile machines model
where agents use O(s′) memory and the bounded degree inter-
action graph. The proof of the strict inequality L1(1) (Ls′(1)
is detailed in [7].

Note that in [7], a hierarchy is built by using only the memory
available on the agents. Their hierarchy can not be exactly
characterized if s′ = o(log) and collapsed if s′ = o(log log).
Using restrictions on the interaction graph, we are able to
construct a more accurate hierarchy.

21

VI. Conclusion

In this paper we determine the computational power of a
model of population protocol working on different kind of inter-
action graph families and with different kind of restrictions on
the computational power of the agent. The classical population
protocols are the case where the interaction graph is complete
and where the agents are finite automata. The case where the
interaction graph is a uniformly bounded degree graph and
the agents are finite automata has the same computational
power as linear space non deterministic Turing machines. With
intermediate interaction graphs and the agents having more
memory allowed, the model is equivalent to non-deterministic
Turing machine working with some bounded memory. We have
constructed a Turing machine simulation with as much memory
as the sum of all the memory of the agents of a “good” sub-
graph. By varying the“good”sub-graph and the bound over the
memory of the agents, we disserted a hierarchy. This hierarchy
is inherited from the one over the non-deterministic Turing
machines.

References

[1] D. Angluin, J. Aspnes, Z. Diamadi, M.J. Fischer, and R. Peralta.
Computation in networks of passively mobile finite-state sen-
sors. In Proceedings of the twenty-third annual ACM symposium
on Principles of distributed computing, pages 290–299. ACM,
2004.

[2] D. Angluin, J. Aspnes, Z. Diamadi, M.J. Fischer, and R. Per-
alta. Computation in networks of passively mobile finite-state
sensors. Distributed Computing, 18(4):235–253, 2006.

[3] D. Angluin, J. Aspnes, D. Eisenstat, and E. Ruppert. The
computational power of population protocols. Distributed Com-
puting, 20(4):279–304, 2007.

[4] Dana Angluin, James Aspnes, Melody Chan, Michael J. Fischer,
Hong Jiang, and René Peralta. Stably computable properties
of network graphs. In Viktor K. Prasanna, Sitharama Iyengar,
Paul Spirakis, and Matt Welsh, editors, Distributed Comput-
ing in Sensor Systems: First IEEE International Conference,
DCOSS 2005, Marina del Rey, CA, USE, June/July, 2005,
Proceedings, volume 3560 of Lecture Notes in Computer Science,
pages 63–74. Springer-Verlag, June 2005.

[5] Dana Angluin, James Aspnes, Michael J. Fischer, and Hong
Jiang. Self-stabilizing population protocols. volume 3, page 13,
November 2008.

[6] James Aspnes and Eric Ruppert. An introduction to population
protocols. In Bulletin of the EATCS, volume 93, pages 106–125,
2007.

[7] I. Chatzigiannakis, O. Michail, S. Nikolaou, A. Pavlogiannis, and
P.G. Spirakis. Passively mobile communicating machines that
use restricted space. Theoretical Computer Science, 2011.

[8] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui,
and Eric Ruppert. When birds die: Making population protocols
fault-tolerant. In Phillip B. Gibbons, Tarek F. Abdelzaher,
James Aspnes, and Ramesh Rao, editors, Distributed Computing
in Sensor Systems, Second IEEE International Conference,
DCOSS 2006, San Francisco, CA, USA, June 18-20, 2006,
Proceedings, volume 4026 of Lecture Notes in Computer Science,
pages 51–66. Springer, 2006.

[9] Rachid Guerraoui and Eric Ruppert. Names trump malice: Tiny
mobile agents can tolerate byzantine failures. pages 484–495,
2009.

[10] M. Saks. Randomization and derandomization in space-bounded
computation. In Computational Complexity, 1996. Proceedings.,
Eleventh Annual IEEE Conference on, pages 128–149. IEEE,
1996.

22

AREA: an Automatic Runtime Evolutionary Adaptation mechanism for
Creating Self-Adaptation Algorithms in Wireless Networks

Qingzhi Liu1,2, Stefan Dulman1, Martijn Warnier2

1. Embedded Software, EEMCS Faculty, Delft University of Technology, The Netherlands
2. System Engineering, TPM Faculty, Delft University of Technology, The Netherlands

{q.liu-1, s.o.dulman, m.e.warnier}@tudelft.nl

Abstract—The application requirements and the spatial envi-
ronments of wireless networks continue to become more and more
complex and changeable. Most existing algorithms for wireless
sensor networks are designed with a specific type of environment
in mind. While such algorithms work well in the environment
they have been designed for, once the environment changes
beyond the domain in which the design can adapt, the algorithms
can hardly work properly. This paper proposes a novel design
mechanism called the automatic runtime evolutionary adaptation
(AREA) mechanism. It has been designed to automatically adapt,
during runtime, to the variation of environments in wireless
networks. This adaption is realized by self-creating and self-
evolving algorithms: AREA allows the created algorithm not
only to be adaptive but also to evolve to other adaptive abilities
according to the variation of the application requirement and
the spatial environment. The AREA mechanism is validated by
applying it to a data aggregation example in wireless networks.
This shows that the mechanism can adapt to the changing
environments and outperform the other strategies.

I. INTRODUCTION

Nowadays an increasing amount of research is focused on
various wireless network applications, such as environment
monitoring [1], traffic control [2] or navigation localization [3].
As the application complexity increases, more new research
requirements are involved. However, most existing algorithms
are designed with a specific type of (spatial) environment in
mind, such as assumed bandwidth, node density, etc. Once
the environment changes beyond the presumed domain, the
algorithm will no longer be able to adapt: it will not function
properly anymore. Therefore, it is necessary to design a
mechanism that allows wireless networks to automatically self-
create and self-evolve algorithms according to the changes in
the (spatial) environment.

Based on this motivation, we propose a novel algorithm
design mechanism called an Automatic Runtime Evolutionary
Adaptation (AREA) mechanism. The AREA mechanism has
three main properties, including automatic computing, runtime
processing, and evolutionary adaptation.

The self-adaptation property has been widely recognized
as an important performance metric for wireless networks.
However, existing self-adaptive algorithms, based on design
mechanisms such as swarm intelligence [4], stigmergy [5],
and autopoiesis [6] only maintain the adaptation properties
for specific environments. Once the deployment environment
changes beyond the scope of the originally envisioned domain,
the algorithm performance will decrease. The AREA mecha-
nism allows the created algorithm not only to be adaptive but

Algorithm 1 Algorithm 2 Algorithm 3

Function 1 Function 4Function 3Function 2

Node

Environment 1 Environment 3Environment 2

A
lg

o
rith

m
 C

reatio
n

Algorithm Evolution

Fig. 1. AREA lets each agent (node) self-create algorithms that adapt to
different application requirements. The created algorithms self-evolve to other
function combinations, self-adapting to their (changing) environment.

also to evolve to other adaptive abilities based on the variation
of the application requirements and the spatial environment. In
addition, AREA is totally distributed. Each agent only spatially
coordinates with neighbors, uses runtime local information,
and the whole processing flow is automatically executed in
each agent during the runtime.

The AREA mechanism assumes that each agent has some ba-
sic functions, such as routing, forwarding messages, etc. Each
agent mutates local function combinations and learns from
neighbors. Finally, the function combination that meets the
environment requirements emerges and spreads throughout the
network. If the environment or the agent function parameters
change, and the selected function combination no longer meets
the application requirements, agents evolve the algorithm and
converge to new function combinations. In this way, agents
always use the function combinations that suit the application
requirements and the spatial environment. We also present a
stabilization algorithm that reduces the churning phenomenon
in different function combinations while maintains fast con-
vergence of function selection.

We validate the AREA mechanism by applying it to the
simulation of a data aggregation example. In the simulation
example, each agent is supposed to have four basic func-
tions: forwarding messages, routing messages, joining into
clusters, and increasing the transmission range. The applica-
tion requirement for every agent is to maintain the message
arriving rate above a predefined threshold. By changing the
agent density and transmission bandwidth parameters, agents
in the network self-create and self-evolve various function
combinations according to the spatial distribution. For the
implementation of each component in AREA, we in detail
illustrate how to select the parameters of fitness functions, etc.

23

based on the requirement. We use three other algorithms with
fixed strategies for comparison. According to the test results,
the AREA mechanism always maintains the best performance
even when the environment and agent parameters change.

The remainder of the paper is organized as follows. Sec-
tion II overviews the AREA mechanism and the application
example. Section III illustrates AREA’s components in detail
and the example implementation. We present the simulation
results and evaluations in Section IV, related work follows in
Section V and the paper ends with conclusions.

II. THE AREA MECHANISM OVERVIEW

In this section, we present the design framework of the
AREA mechanism, the working components and the processing
flow. And we demonstrate the general implementation of the
data aggregation example based on AREA.

A. Mechanism Framework

It is supposed that each agent has some basic functions
in the function set, such as forwarding messages, routing,
etc. The agents are given an application requirement, such
as “the message arriving rate should be larger than a prede-
fined value”. The agents self-create algorithms by selecting
suitable combinations from predefined basic functions. When
the environment changes, the agents self-evolve to select
a different function combination as the new algorithm. In
the system, each agent is independent and distributed, and
only accesses the information of neighboring agents. The
working process is automatic and during runtime. Figure 1
demonstrates an example of the AREA design framework.
In the environment 1, the agent (node) converges to select
the combination of function 1, 2 and 3 as the algorithm
to fulfill the requirement. As the environment changes from
environment 1 to 2, the originally created algorithm cannot
meet the application requirement any longer. The agent evolves
the algorithm and converge to select the combination of
function 2 and 3. No matter how the environment changes,
the agent always evolves to the function combination that
will fulfill the predefined application requirements. After these
requirements are fulfilled, the algorithm selected by the agents
converges to a spatially stable state.

The AREA mechanism has four working components as
shown in Figure 2(a). The first component is the definition
of the basic functions of the agents in the function set. All
predefined basic functions should work independently of each
other. The second component is function mutation. Each basic
function has a mutation probability that can change between
being used and unused. So each agent can use different
function combinations. The third component is environment
selection. The agents in the network need to meet application
requirements, such as maximizing the message arriving rate,
minimizing the power consumption, etc. Each agent calculates
a fitness credit for every function in the environment, and
learns the function usage rule (using or unusing) of the agent
with the largest function fitness credit in the neighboring

(a)

���������	 ���������	

�����������

�����������������

�����������

�����������������

(b)

Fig. 2. (a).The working flow components of the AREA mechanism combine
the most suitable functions into an algorithm. (b).The function mutation
component creates different function usage rules (f : use the function; f :
unuse the function), and the rule that best suits the environment (A or B)
is selected as the suitable function.

agents. This component allows the most suitable function com-
binations to be survived and diffused in the spatial network.
To make the algorithm usable in practice, the algorithm needs
to converge once the most suitable function combination is
found, For this, the algorithm stabilization component is used.
This component decreases the churn of selecting different
function combinations in the network by each agent. The four
components outlined above, make it possible for the agents
in the network to select a suitable and stabilized function
combination as the new algorithm. If the environment changes
and the created algorithm can no longer fulfill the application
requirements, the AREA mechanism will make the existing
algorithm evolve to another function combination in order to
meet the new application requirements.

B. Application Example

The AREA mechanism is validated by implementing it in an
application example: data aggregation. Data aggregation is a
basic building block for spatial network application. Most of
the existing data aggregation algorithms are designed for spe-
cific deployment environments. In deployment scenarios where
the environment may change sometimes, these algorithms can
no longer work properly. We use the AREA mechanism to
implement data aggregation in changing environments.

Suppose agents are randomly scattered in an area. Each
agent can only communicate with neighbors. A sink agent
is predefined to aggregate messages from other agents. If new
agents come into the network, the agent density increases. If
existing agents leave the network, the agent density decreases.
We define the bandwidth as the number of the messages that
can be forwarded by a agent at one tick. The agent density and
bandwidth are changeable in the environment. We suppose that
each agent knows the number of messages that are sent out and
arrive at the destination. The data aggregation implementation
based on AREA allows the agents in the network to automat-
ically and during runtime find suitable function combination
that meet its application requirements. The created function
combination for data aggregation maintains a high message
arriving rate and low power consumption values.

24

In the simulation, the environment is changed by adapting
the agent density and bandwidth. The different simulation sce-
narios are outlined in Figure 3. At the start of the experiment
the agents are randomly deployed. Under standard agent den-
sity and bandwidth, agents self-create function combinations
that use forwarding and routing functions, as shown in Figure
3(a). Then we change the environment by increasing the agent
density. Because the bandwidth is limited, some messages are
now dropped. So the agents start to evolve the existing data
aggregation approach, and spatially self-organize to clusters
to increase the message arriving rate in the network as shown
in Figure 3(b). In case the agent density decreases, and the
network becomes disconnected the message arriving rates of
the agents that are not connected to the destination agent
become 0. When this happens, some of the agents evolve their
algorithm and increase the transmission range to connect the
network as shown in Figure 3(c). The increased transmission
range of the agents will increase their message arriving rates.

III. THE AREA COMPONENTS

Based on the overall design presented in Section II, in the
next subsections, we first define the content and structure of
each component from AREA, and then present the detailed
component implementation for the data aggregation example.

A. The Function Set

Each agent has some basic functions in a function set. These
basic functions, such as joining into a cluster, are predefined,
For each agent, all the possible function combinations form
the search space of the available algorithms. For the data
aggregation application, we use four basic functions in the
function set for each agent: forwarding messages, routing the
messages via the shortest path, joining to a cluster with other
neighbors and increasing the transmission range.

Firstly, each agent has the basic function that it can forward
messages to a neighboring agent. The bandwidth of forwarding
messages is limited. It is supposed that the agent can only
forward a limited number of messages during one time slot.
If the number of messages to be forwarded is larger than the
bandwidth, the agent drops the excess messages.

For the second function it is assumed that each agent
can calculate the next hop on the shortest path based on
the gradient [7]. If the agent knows the next hop on the
shortest path, the agent forwards the messages to the next
hop. Otherwise, the agent forwards the messages to a random
neighboring agent. We assume that if the message is forwarded
to a hop that is further away from the destination agent, then
next hop agent drops the message.

Agents also have the function to join in a cluster. In a
cluster, the cluster leader represents all the members to send
out messages. Because the bandwidth is limited, we suppose
that the forwarding priority of the message from a cluster is
higher than the message from a single agent. And it is assumed
that the forwarding priority of the message from a cluster with
larger number of member agents is higher than the message

Fig. 3. The application example of AREA for data aggregation. (a). Agents
evolve to use forwarding and routing functions. (b). Agents form clusters to
send out messages. (c). Agents unconnected to the destination agent increase
their transmission range.

from a cluster with smaller number of member agents. Agents
forward messages from higher to lower priority.

Finally, agents have the basic function to increase their
transmission range. Each agent has a default and an increased
transmission range. If the agent cannot connect to the network
with the destination agent using the default transmission
range, then it can reconfigure (mutate) to use the increased
transmission range.

B. Function Mutation

In this section, we present how the function combinations
are created for each agent. We define the function combination
series {f1,f2,...,fi,...,fn}. Where n is the total number of
functions. fi represents the basic function i explained in
Section III-A. The value of fi can be 0 or 1. fi = 0 means
that the function i is not used in the function combination, and
fi = 1 means that the function i is used. All the basic functions
together form a function combination series. In the initial state,
agents select a random value (0 or 1) for fi (i = 1, 2, ..., n)
of each basic function. In the function mutation component,
AREA makes each agent change the function value fi by
setting fi = fi with a mutation probability.

In the application example, agent x has a Switchxi value
0 or 1 for each function i representing unused or used. We
predefine a mutation probability Pm for all the basic functions.
If a random value is smaller than Pm, then Switchxi does not
change. Otherwise, Switchxi is changed to Switchxi.

C. Environment Learning

In this section, we demonstrate how agents learn from each
other, and make the most suitable function combination spread
throughout the network. We define the fitness credit of the
function for each agent by Ci = wi1ci1 + wi2ci2 + · · · +
wikcik + · · · + wimcim. Where i is the function number as
defined in Section III-B. k (k = 1, 2, ...,m) is the number
of the evaluation criteria for the function, and m is the total
number of evaluation criteria. For example, the performance
of the network can be determined by the arriving rate, power
consumption, etc. cik is the fitness credit of the function i
evaluated by the criteria k. wik is the weight of the fitness
credit with evaluation criteria k. In the learning component,
each agent records the fitness credit of each function. At
the same time, each agent detects the fitness values of the
functions from neighboring agents and learns the function

25

usage strategy (used or unused) from the agent with the largest
fitness credit. Finally, the function combination that has the
largest fitness credit in the network survives and spreads. The
mutation and learning process is shown in Figure 2(b).

For the application example, we define the fitness credit for
every function as follows. The fitness credit of forwarding the
messages is defined as AR·WAR+FR·WFR+FC ·WFC . The
AR value equals the percentage of the number of messages
arriving at their destination. If the agent forwards messages
of other agents, then FR = 1; otherwise, FR = 0. FC is
the power consumption credit for forwarding messages. If the
agent forwards messages, FC is 0; otherwise, FC is 1. WAR,
WFR and WFC are the weight values of AR, FR and FC.
The value domain of AR is [0, 1]. FR and FC can be 0 or
1. For different application requirements, AR, FR and FC
can be set to different values. In the simulation, each agent
sends out 10 messages for each communication round, so the
precision accuracy is 0.1. The message arriving rate is assumed
to be the most important evaluation criteria. Therefore, the
weight value of the arriving rate is set as WAR = 1.
WFR = 0.02 and WFC = 0.01. Their sum is smaller than the
arriving rate precision accuracy 0.1, so their weight values do
not affect the distinction among different message arriving rate
values. In the network, we suppose that forwarding messages
is more important than saving energy. We set WFR = 0.02,
which is larger than WFC = 0.01. The fitness credit of routing
messages is defined as AR·WAR+FR·WFR+RC ·WRC . RC
is the power consumption credit for routing. If the agent cal-
culates the next hop on the shortest path, RC = 0; otherwise
RC = 1. The weight value WRC = 0.01. The fitness credit of
constructing a cluster is defined as AR ·WAR + CC ·WCC .
CC is the power consumption credit for constructing and
maintaining a cluster. If the agent joins in a cluster, CC = 0;
otherwise CC = 1. The weight value WCC = 0.01. The
fitness credit of adjusting the transmission range is defined as
AR ·WAR +RN ·RU ·WRU +RC ·WRC . Where RN is the
parameter that shows whether the agent has a connection route
to the destination agent. If the agent cannot find a connection
route to the destination agent, then RN is set to 1, which
means that the agent has increased its transmission range to the
maximum allowed value. RU is the usage value of increased
transmission range. If the agent increases the transmission
range, and the increased range is used to forward messages of
other agents, then RU = 1; otherwise RU = 0. The weight
value WRU is set to 0.02. RC is the power consumption credit
for using different transmission ranges. If the agent uses the
default transmission range, RC = 1; if it uses the increased
transmission range, RC = 0. The weight value WRC = 0.01.

D. Stabilization

To make the selected function combination feasible, it must
be stable. In this section, we introduce an algorithm that can
stabilize the system. The mutation and learning probability
are the main factors that affect churning in the selection and
spread of the function combination among agents. First, we
define a fitness credit threshold value Ti. This value equals

Algorithm 1 : Stabilization for Mutation and Learning
Mutation:
for all Agent x do

if (Ci ≤ Ti&R<PM)||(Ci>Ti&R< (PM/D)) then
Switchxi = 1− Switchxi

end if
end for

Learning:
for all Agent x do

maxC = max([Ci] of Nb)
if maxC > Ci then

if (Ci ≤ Ti&R<PL)||(Ci>Ti&R< (PL/D)) then
Switchxi = [Switchxi] of Nb with [maxC]

end if
end if

end for

the minimum acceptable fitness credit value by using or
unusing the function i. Then we define a stabilization rate
D, which equals the rate between the normal mutation or
learning probability and the minimum acceptable mutation or
learning probability. If the fitness credit of the function i is
smaller than Ti, then the agent selects learning probability
PL and mutation probability PM . Otherwise, the agent selects
learning probability PL

D and mutation probability PM

D . So each
agent uses low mutation and learning probabilities in the state
with acceptable fitness credit to decrease churning of different
function combinations. The detail processing flow is shown in
Algorithm 1. Each agent x is given a Switchxi value for each
function i. Where the switch values change between 0 and 1
representing unusing and using the function, R is the random
probability from 0 to 1 and Nb is the neighbor agents.

To encourage the use of the forwarding and routing func-
tions, in the data aggregation application, the threshold values
of forwarding and routing are set to 1.01. So only agents
with fitness credit 1.02 and higher can use PL

D and PM

D to
learn and mutate. Whether to actually use the clustering and
increasing the transmission range functions is based on the
environment condition, such as agent density, bandwidth, etc.,
so the threshold value of clustering and ranging are set to 0.99
and 1.0 respectively.

IV. TEST AND EVALUATION

We use NetLogo [8] for the simulation experiment. The
deployment area is a 200×200 square region. Agents are static
and randomly scattered across the area. Each agent sends out
one message per one tick. After sending 10 messages, each
agent waits 10 ticks for calculating the message arriving rate.
We call the 20 ticks as one communication round. The default
transmission range of each agent is 40 units. All the agents
send messages to one specified destination agent. We run the
experiment 10 times for each testing point.

A. Adaptation to Environments

In the experiments, the environment changes by varying the
agent density and the bandwidth. The agent density ranges
from 5 to 40, with 5 offset. The bandwidth is 5× 2 units. m
is from 0 to 7, with 1 offset. Three evaluation parameters are

26

FR
FRR
FRC

AREA

 10
 20

 30
 40 0

 1
 2

 3
 4

 5
 6

 7

 0

 0.5

 1

 1.5

Agent Density
Band Wd. 5

× 2
yM

sg
.A

rr.
R

at
e

(a)

FR
FRR
FRC

AREA

 10
 20

 30
 40 0

 1
 2

 3
 4

 5
 6

 7

 0

 0.5

 1

 1.5

Agent Density
Band Wd. 5

× 2
y

N
or

m
.

Po
w

er
C

sp
.U

ni
t

(b)

FR
FRR
FRC

AREA

 10
 20

 30
 40 0

 1
 2

 3
 4

 5
 6

 7

 0

 2

 4

 6

 8

 10

Agent Density
Band Wd. 5

× 2
y

M
sg

.A
rr.

Pe
r

N
or

m
.

Po
w

er
C

sp
.U

ni
t

(c)

Fig. 4. (a).Average message arriving rate for various agent densities and bandwidths. (b).Normalized average power consumption unit for various agent
densities and bandwidths. (c).Average message arriving count per normalized power consumption unit for various agent densities and bandwidths.

used: average message arriving rate, average power consump-
tion unit and average arriving rate per power consumption unit.
Three other data aggregation methods are used for comparison.
The first method, named as FR, makes all agents forward
and route the messages. The second method, named as FRC,
makes all agents construct a fixed number of clusters. All
agents can forward and route the messages, but only the cluster
leader represents the cluster to send out messages. The cluster
number is set to 20. The third method, named as FRR, makes
all agents use the increased transmission range to forward and
route the messages. The increased transmission range is 80
units. To evaluate the power consumption performance, we
suppose that the running of each basic function consumes 1
unit power per round.

Figure 4(a) shows the average message arriving rate for
various agent densities and bandwidths. The AREA mechanism
has the best arriving rate in the low density area 5. This
is because the network is generally unconnected with agent
density 5. If the agents that are not connected to the destination
agent do not increase their transmission range, they cannot
send messages to the destination. Furthermore, the AREA
mechanism makes some agents increase their transmission
range to link the connected network. In the low bandwidth
area from 0 to 2, the AREA mechanism constructs clusters to
meet the bandwidth restrictions. The method FRC uses clusters
to increase the message arriving rate. When the bandwidth is
equal or larger than 20, which is equal to the fixed cluster
number of FRC, the FRC method has the best arriving rate.
But because it is construct with a fixed number of clusters,
the method is not adaptive to the variation of the environment.
If the environment has unconnected subnetwork or very low
bandwidth, agents using the FRC method will drop messages.
Agents that use the FRR method also use the increased
transmission range all the time. In the connected network
with low bandwidth, increasing the transmission range cannot
always increase the message arriving rate. Although AREA
does not have the best arriving rate, the difference to the best
arriving rate is very small. This is because agents need to
keep a mutation rate to adapt to the new environments in
AREA. When the bandwidth is larger than 6, the FR and

FRR methods can also have near optimal message arriving
rate. This is because that the bandwidth is larger than the
total number of agents in the network. So no matter how the
network topology is constructed, all the messages will finally
arrive at their destination.

Figure 4(b) illustrates the power consumption for various
agent density and bandwidth. Because there are four types of
basic functions, the average power consumption unit is nor-
malized to 4. It can be found that the FRC and FRR methods
consume the same amount of energy in all the testing points.
This can be explained because all agents always use clustering
in the FRC method and increase their transmission range when
using the FRR method. This is because it only uses two basic
functions: forwarding and routing. The power consumption of
AREA is larger than FR, because AREA sometimes increases
its transmission range and constructs a cluster to increase the
message arriving rate. But AREA makes all the agents in the
network automatically adapt to the different environments.

In order to evaluate the efficiency of the AREA algorithm,
we calculate the rate between the message arriving count and
the power consumption unit for various agent densities and
bandwidth values, as shown in Figure 4(c). It can be seen that
the AREA algorithm is the most efficient method for almost
all the testing points. Only in the very high bandwidth area,
the FR method is slightly more efficient. This is again because
the total bandwidth is larger than the total number of agents.
Since the AREA algorithm always will mutate to other function
combinations, its efficiency is slightly less at this point.

B. Stabilization Efficiency

Agents in environments with a different spatial distribution
could churn in different function combinations. Stabilization
of the function selection is an important evaluation parameter.
We test the stabilization algorithm presented in Section III-D.

The testing results are shown in Figure 5. We initialize the
environment with an agent density of 20 and bandwidth of 40.
The y coordinates of Figure 5(a) and Figure 5(b) are the mes-
sage arriving rate and the normalized power consumption unit
respectively. The x coordinates in both figures are calculated
by x = lgD, in which D is the stabilization rate with value
1, 5, 10, 50, 100, 500, 1000, 5000, 10000. The other testing

27

 0.6

 0.8

 1

 1.2

 0 1 2 3 4

Arrive Std
Arrive

x = lg(Stabilization Rate)

M
sg

.A
rr.

R
at

e

(a)

 0.4

 0.6

 0.8

 0 1 2 3 4

Power Std
Power

x = lg(Stabilization Rate)

N
or

m
.

Po
w

er
C

sp
.U

ni
t

(b)

Fig. 5. (a).The average message arriving rate and standard deviation with
various stabilization rates D. (b).The normalized power consumption unit and
standard deviation with various stabilization rates D.

parameters are the same as the previous experiments. Accord-
ing to the results, as the stabilization rate D increases from 1
to 10000, the standard deviations of the message arriving rate
and power consumption value decreases significantly. When
the stabilization rate becomes 10000, which is 4 (= lg 10000)
in the figures, the standard deviations of the arriving rate and
power consumption are 0.022 and 0.015. As the stabilization
rate increases, the message arriving rate increases from 0.87
to 1. This is because the low stabilization rate D make the
system unstable, and further decreases the message arriving
rate. Therefore the stabilization Algorithm 1 can effectively
stabilize the function mutation and learning.

V. RELATED WORK

Traditional spatial computing algorithms [9] [10] primarily
focus on function implementation in a fixed environment.
The spatial and temporal distribution of the agents in the
network significantly affect the relations among agents. In this
paper, we make advantage of the coordination between agent
interaction in the spatial network to promote the evolution of
algorithms adapting to various changing environments.

Evolutionary dynamics [11] researches the power of ad-
vancing the system to evolves from one state to another
on a global population level. Evolution dynamics theory
forms the theoretical basis on which the AREA mechanism
is founded. Evolutionary computing is widely researched for
producing optimized systems [12]. Traditional evolutionary
computation [13] selects members via centralized methods,
which is not very efficient in distributed environments. Nakano
and Suda [14] and Lee et al. [15] improve the adaptation
mechanisms using evolutionary computing. They propose de-
sign structures that build adaptive network services using
bio-inspired distributed agents. By evolutionary adaptation,
agents can evolve and adapt their behavior to the changing
environments. And Champrasert et al. [16] present a structure
to self-optimize and self-stabilize cloud applications. It extends
the biological evolutionary adaptation from agents to related
platforms. But the above papers do not explain the influence
of the parameters to the performance of the system. More-
over, these works focus on the construction of services using
interacting agents, and the simulation is on a grid network,
which does not map naturally (nor easily) to wireless networks.
Mirko et al. [17] extends the tuple spaces by chemical-inspired

model to coordinate spatially pervasive services. Although the
mechanism can effectively make services diffuse and interact
in a spatial network, it can not coordinate multiple different
services together to cope with various problems.

VI. CONCLUSIONS

We propose a new mechanism: automatic runtime evolu-
tionary adaptation (AREA) for spatial algorithm design. It
can effectively create and evolve the algorithms in wireless
networks to meet application requirements and adapt to the
changing of the environment. The working process of AREA
is automatically updated in every agent during runtime and the
created algorithm works stably in the network. The mecha-
nism is validated by the simulation experiment involving data
aggregation. For the future work, we plan to use the AREA
mechanism for the creation of other algorithms, such as self-
created gradient, synchronization, etc. Further more, the AREA
mechanism has the potential to be used in other domains, such
as Internet services, swarm robotics control, etc., which will
be further researched.

REFERENCES

[1] G. Werner-Allen, J. Johnson, M. Ruiz, J. Lees, and M. Welsh, “Mon-
itoring volcanic eruptions with a wireless sensor network,” in Wireless
Sensor Networks. IEEE, 2005, pp. 108–120.

[2] U. Lee, B. Zhou, M. Gerla, E. Magistretti, P. Bellavista, and A. Corradi,
“Mobeyes: smart mobs for urban monitoring with a vehicular sensor
network,” Wireless Comm., IEEE, vol. 13, no. 5, pp. 52–57, 2006.

[3] G. Mao, B. Fidan, and B. Anderson, “Wireless sensor network localiza-
tion techniques,” Comp. Net., vol. 51, no. 10, pp. 2529–2553, 2007.

[4] J. Kennedy, “Swarm intelligence,” Handbook of nature-inspired and
innovative computing, pp. 187–219, 2006.

[5] M. Dorigo, E. Bonabeau, and G. Theraulaz, “Ant algorithms and
stigmergy,” Future Generation Computer Systems, vol. 16, no. 8, pp.
851–871, 2000.

[6] N. Nanas and A. De Roeck, “Autopoiesis, the immune system, and
adaptive information filtering,” Natural Computing, vol. 8, no. 2, pp.
387–427, 2009.

[7] Q. Liu, A. Pruteanu, and S. Dulman, “Gde: a distributed gradient-based
algorithm for distance estimation in large-scale networks,” in MSWiM,
ACM, 2011, pp. 151–158.

[8] U. Wilensky, “Netlogo, center for connected learning and computer-
based modeling,” Northwestern University, 1999.

[9] J. Beal and R. Schantz, “A spatial computing approach to distributed
algorithms,” in 45th Asilomar Conference on Signals, Systems, and
Computers, 2010.

[10] M. Duckham, “Decentralized spatial algorithm design,” Spatial Com-
puting 2012 colocated with AAMAS, pp. 13–18.

[11] M. Nowak, Evolutionary Dynamics: exploring the equations of life.
Belknap Press, 2006.

[12] Y. Jin and J. Branke, “Evolutionary optimization in uncertain environ-
ments : A survey,” Evolutionary Computation, IEEE Transactions on,
vol. 9, no. 3, pp. 303–317, 2005.

[13] M. Melanie, “An introduction to genetic algorithms,” Cambridge, Mas-
sachusetts London, England, Fifth printing, 1999.

[14] T. Nakano and T. Suda, “Self-organizing network services with evolu-
tionary adaptation,” Neural Networks, IEEE Transactions on, vol. 16,
no. 5, pp. 1269–1278, 2005.

[15] C. Lee, J. Suzuki, and A. Vasilakos, “An evolutionary game theoretic
framework for adaptive, cooperative and stable network applications,”
BIONETICS, pp. 189–204, 2012.

[16] P. Champrasert, J. Suzuki, and C. Lee, “Exploring self-optimization
and self-stabilization properties in bio-inspired autonomic cloud applica-
tions,” Concurrency and Computation: Practice and Experience, 2012.

[17] M. Viroli, M. Casadei, S. Montagna, and F. Zambonelli, “Spatial coor-
dination of pervasive services through chemical-inspired tuple spaces,”
ACM Trans. Auton. Adapt. Syst., vol. 6, no. 2, pp. 14:1–14:24, 2011.

28

1

Promoting Space-Aware Coordination:
ReSpecT as a Spatial Computing Virtual Machine

Stefano Mariani Andrea Omicini
ALMA MATER STUDIORUM–Università di Bologna

Email: {s.mariani, andrea.omicini}@unibo.it

Abstract—Situatedness is a fundamental requirement for to-
day’s complex software systems—as well as for the computation
models and programming languages used to build them. Spatial
situatedness, in particular, is an essential feature for coordination
models and languages, as they represent the most effective
approach to face the critical issues of interaction. Following
some seminal works [1], [2], [3], in this paper we try to bring
some novel results from the Coordination field into the Spatial
Computing perspective, by identifying a minimal set of primitives
that could be used to build a virtual machine for a space-aware
coordination language, using ReSpecT as our reference example.

I. THE SPATIAL COMPUTING VIEW

According to the definition in [1], a Spatial Computer is
“a collection of local computational devices dis-
tributed through a physical space, in which the diffi-
culty of moving information between any two devices
is strongly dependent on the distance between them,
and the functional goals of the system are generally
defined in terms of the system’s spatial structure.”

So, Spatial Computing Languages (SCL) are basically con-
cerned with linking the aggregate behaviour of a number of
spatially-situated independent devices to the way in which they
are individually programmed. Also, SCL should provide Spa-
tial Computers programmers with the most suitable topological
constructs to program the ensemble of devices—whereas the
task of translating such constructs into locally executable ones
should be left to a proper compiler/interpreter running on
each device. Along this line, a layered architecture for devices
running Spatial Computing programs is described in [1], which
helps bridging the gap between the hardware and SCL:
• Physical Platform — The lowest level in the hierarchy,

identifying the medium upon which the computation
actually executes—e.g. a smartphone, a drone with a
whole set of sensors and actuators, even a virtual device
in the case of a simulation.

• System Management — Typically the OS layer, abstract-
ing away from physical details, (hopefully) providing all
the low-level drivers needed by spatial applications—e.g.
for a GPS module, or a motion engine.

• Abstract Device — The top abstraction level exposing the
basic API for SCL—e.g. a clock service, GPS coordinates
tracking, and the like.

Focussing on the last layer, Subsection I-A describes the
Abstract Device Model, allowing different devices to be distin-
guished by analysing their relationships with spatial aspects.

A. The Abstract Device Model

According to [1], the Abstract Device Model (ADM) relates
computing devices to the space they occupy, and specifies the
ways in which they communicate with one another. Although
both aspects are essential in the Spatial Computing context,
here we mainly focus on the latter, assuming for the former a
discrete model in which any device occupies a null amount of
space—as typically done in the context of sensor networks.

As far as communication between devices is concerned,
three key properties are identified:
• Communication Region — The relationship between the

communication actions of a given device and their spatial
“coverage”—e.g., distance-limited (aka neighborhood)
vs. global communication.

• Transmission Granularity — The relationship between
the communication actions and the number of receivers—
e.g., unicast / multicast / broadcast communication.

• Mobility of Code — The relationship between a given
device’s runnable program and other’s—e.g. do they
run the same program (possibly executing differently on
each), or, are they heterogeneous? Can they share code?

This model is used in Subsection IV-B to describe our Spatial
Computing virtual machine.

B. The “T-Program” Requirements

Independently of the layer of abstraction at which a given
SCL can be placed, as well as of the kind of ADM it
implements, three classes of operators are required to reach
maximal expressiveness and computational power—the sort
of “Spatial-Turing equivalence” discussed in [2]:
• Measure Space — Transforming spatial properties into

computable information—e.g., distances, angles, areas.
• Manipulate Space — Translating information into some

modification of the spatial properties of the device—e.g.,
turning wheels to face a given direction, slowing down
the motion engine.

• Compute — Beyond Turing computation, any kind of
“spatial-pointwise” operation as an interaction, or a non-
spatial sensor or actuator—e.g., a light recogniser.

A fourth class (Physical Evolution) looks more like a sort
of assumption over the (possibly autonomous) dynamics a
given program/device can rely upon—e.g., the existence of
actuators responding to the program/device commands, or the
independent motion of a colony of cells.

29

2

As a reference benchmark to test the expressive power
and the computational completeness of SCL, the “T-Program”
is proposed in [1], consisting of the following three stages,
depicted in Fig. 1 for Proto [3]: (i) cooperatively creating
a local coordinate system; (ii) moving devices to create a
“T-shaped” structure; (iii) computing such structure centre of
gravity and draw a ring around it.

Fig. 1. T-Program “run” from [1], implemented using the Proto language [3].

Stage (i) requires the capability to measure the spatial
context where the program/device lives; stage (ii) requires the
ability to manipulate the spatial properties of each device (thus
relying also on the fourth category); stage (iii) requires both
computational capabilities and, again, measuring capabilities.

Subsection IV-C provides both infrastructural and linguistic
support to all the three classes of operators by means of our
Spatial Computing virtual machine.

II. THE SPACE-AWARE COORDINATION VIEW

The need for coordination models and languages to support
adaptiveness and reactiveness to the contingencies that may
occur in the spatio-temporal fabric was recognised by several
proposals in the literature, accounting for spatial issues and/or
enforcing spatial properties.
στLINDA [4] extends the LINDA model in three ways to

enable the emergence of spatio-temporal patterns for tuples
configuration in a distributed setting: (i) tuples are replaced
by “space-time activities”, that is, processes manipulating the
space-time configuration of tuples in the network; (ii) space
operators neigh, $distance and $orientation are
added to allow respectively to send broadcast messages to
the neighborhood spaces, measure the distance toward them,
devise the relative orientation of a target space w.r.t. the current
one; (iii) time operators next, $delay and $this are added
allowing (respectively) to delay an activity execution, measure
the flow of time, access current coordination space identifier.

GEOLINDA [5], another LINDA extension, deals with spatial
aspects by attempting to reflect physical spatial properties in
a mobile tuple space setting: (i) each tuple and each reading
operation is associated to a geometrical volume (addressing
shape); (ii) the semantics of reading operations is changed
so as to unblock only when the shape of a matching tuple
intersects with the addressing shape of the operation; (iii) each
coordination space is associated to a communication range to
allow detection of incoming and outgoing tuples/volumes.

The TOTA middleware [6] considers a distributed tuple
space setting in which each tuple is equipped by two additional
fields other than its content, so as to enable emergence of com-
putational fields—such as gradients: (i) a propagation rule,
determining how the tuple should propagate and distribute

across the network of linked tuple spaces; (ii) a maintenance
rule, dictating how the tuple should react to the flow of time
and/or events occurring in the space.

In [7], the authors adopt a biochemically-inspired metaphor
and apply it to tuple-based coordination, namely extending
standard tuple spaces with the ability of evolving tuples so
as to mimick chemical systems—in terms of reaction and
diffusion rules that apply to tuples modulo semantic match.

Although the above models deal with some spatial-related
issues, they are basically tailored to a specific problem or
application domain. Thus, since they were conceived with a
given goal in mind, they mostly lack of an exhaustive analysis
of which are the basic mechanisms required to enable and
promote “general-purpose” Space-Aware Coordination. To this
very end, in the following we take the ReSpecT coordination
language & virtual machine [8] – already augmented to ac-
count for time-related aspects [9] and environment situatedness
[10] – and extend it with few fundamental constructs and
mechanisms required to deal with spatial issues.

III. ReSpecT IN TIME & ENVIROMENT

In short, a ReSpecT tuple centre is a tuple space that
can be programmed so as to react to events occurring in
the space—basically allowing its coordination policies to be
tailored to the specific application needs [11], [8]. ReSpecT
is a Prolog-like language where events – such as coordination
operations issued by either agents or tuple centres – can be
declaratively associated to computations carried out atomically
and transactionally by the ReSpecT tuple centre [12].

Such a declarative specification is called reaction,
and takes the form reaction(Event, Guards,
ReactionGoals):

• Event — Any event involving the tuple centre, such as
the execution of a LINDA-like operation.

〈TCSpecification〉 ::= {〈SpecificationTuple〉 .}
〈SpecificationTuple〉 ::= reaction(〈TCEvent〉 , [〈Guard〉 ,] 〈Reaction〉)

〈TCEvent〉 ::= 〈TCPredicate〉 (〈Tuple〉) |
time(〈Time〉) | 〈EnvPredicate〉

〈Reaction〉 ::= 〈ReactionGoal〉 | (〈ReactionGoal〉 {, 〈ReactionGoal〉})
〈ReactionGoal〉 ::= 〈TCPredicate〉 (〈Tuple〉) | 〈ObsPredicate〉 (〈Tuple〉) |

〈Computation〉 | (〈ReactionGoal〉 ; 〈ReactionGoal〉)|
〈TCLinkPredicate〉 | 〈TCEnvPredicate〉

〈TCPredicate〉 ::= out | in | inp | rd | rdp | no | nop |
get | set

〈TCLinkPredicate〉 ::= 〈TCId〉 ? 〈TCPredicate〉
〈TCEnvPredicate〉 ::= 〈EnvResId〉 (<-|->) 〈EnvPredicate〉
〈EnvPredicate〉 ::= env(〈Key〉 , 〈Value〉)
〈ObsPredicate〉 ::= 〈EventView〉_〈EventInfo〉 (〈Tuple〉) | 〈EnvPredicate〉
〈EventView〉 ::= current | event | start
〈EventInfo〉 ::= predicate | tuple | source | target |

time
〈Guard〉 ::= 〈GuardPredicate〉 | (〈GuardPredicate〉 {, 〈GuardPredicate〉})

〈GuardPredicate〉 ::= request | response | success | failure |
endo | exo | intra | inter |
from_agent | to_agent | from_tc | to_tc |
before(〈Time〉) | after(〈Time〉) |
from_env | to_env

〈Computation〉 is a Prolog-like goal performing arithmetic / logic computations
.

TABLE I
CORE SYNTAX OF ReSpecT

30

3

• Guards — Predicates providing fine-grained control
over reaction triggering based on observable event prop-
erties.

• ReactionGoals — The ReSpecT operations – in-
cluding Prolog computations – to be issued in response
to the triggering event.

Whereas the full formal syntax can be found in [8], here we
focus solely on the grammar rules in TABLE I.

A. ReSpecT with Time

The extension of ReSpecT to deal with time-related as-
pects was discussed in [9]. According to TABLE I, Re-
SpecT deals with time through: the event time(〈Time〉);
the observation predicates 〈EventView〉 time; and the guards
before(〈Time〉), after(〈Time〉):
• time(〈Time〉) — Triggers a reaction at a given 〈Time〉.
• 〈EventView〉 time — Access timing information about

the triggering event.
• before(〈Time〉), after(〈Time〉) — Execute reaction

goals if a certain timing condition is met.
Altogether, they make ReSpecT a time-aware language by
extending ReSpecT tuple centres to time-aware coordination
abstractions.

B. ReSpecT with Situatedness

The extension of the ReSpecT language towards a more
comprehensive notion of situatedness was discussed in [10].
According to TABLE I, ReSpecT deals with general envi-
ronment events through:
• 〈EnvResId〉 — Introduced as a new identifier – beyond
〈AgentId〉 and 〈TCId〉 [8] – to univocally represent envi-
ronmental resources.

• -> env(〈Key〉 , 〈Value〉), <- env(〈Key〉 , 〈Value〉) —
Provide the ability to observe and control any envi-
ronmental resource – typically sensors and actuators –
directly handling environment events.

• env(〈Key〉 , 〈Value〉) — As an event descriptor, triggers
reactions to environment events.

• env(〈Key〉 , 〈Value〉) — As an observation predicate, ac-
cesses the properties of an environment event.

• from_env, to_env — Guards to filter triggering of
environment-driven reactions.

The above constructs allow coordination policies to be situated
within the computational environment, which is an essential
requirement for complex systems such as pervasive and adap-
tive ones [13].

C. ReSpecT with Space: What is Missing?

Although the environmental interpretation of the spatio-
temporal fabric is undoubtedly useful, we believe a crucial
point regarding the situatedness of coordination abstractions is
missing: both time and space properties should be first-class
entities directly embedded within the coordination medium,
which lives immersed in the environment as much as agents
do. Nevertheless, the simple yet expressive interface toward

sensors and actuators – or, more generally, any kind of
environmental resource – provided by the situated extension of
ReSpecT remains essential, and is then used in our extension
toward spatial coordination (Subsection IV-C). Thus, following
the approach of [9] for time awareness, in Subsection IV-A
we propose a novel extension along the spatial dimension,
promoting space-awareness at the language level.

IV. BRIDGING THE GAP

We believe the main concern of SCL – that is, “the ability
to link the aggregate behaviour of a number of independent
devices to the way in which they are individually programmed”
(Section I) – contains in the very end a coordination issue.
In fact, in spite of the (possibly higher) desired level of
abstraction for a Spatial Computing programmer, “under the
hood” its program should be somehow compiled/interpreted so
as to meaningfully coordinate a set of independent devices—
with the aim of achieving the application-specific goal. Fur-
thermore, based on the Spatial Computing requirements, the
distributed coordination process taking place between the
programmed devices should clearly be space-driven, hence
space-aware coordination is what is actually needed.

In the following, after presenting the extended ReSpecT
model – here called stReSpecT –, we describe why it could
be taken as a reference Abstract Device Model, upon which
to interpret/compile SCL, by highlighting its most appealing
features. Then, in Subsection IV-C, we focus on meeting
the requirements pointed out by the T-Program benchmark
introduced in Subsection I-B.

A. stReSpecT Model

In order to both express and enforce space-dependent coor-
dination laws, a number of issues should be addressed: (i) first
of all, the coordination language ontology should include all
the necessary concepts so as to deal with spatial aspects; (ii)
then, the language should provide a set of statements to enable
coordination laws to “talk about space”; (i) finally, the coor-
dination medium executing the language should “naturally”
account for space-related aspects during its lifecycle.

Issue (i) requires some reasoning upon the different criteria
according to which spatial properties can be described: (lo-
cality) space could be defined w.r.t. either a global coordinate
system, known by any coordination artefact, or a local one;
(relativity) such coordinate system could be either absolute,
hence exploiting some spatial conventions – e.g. GPS data –, or
relative, thus describing spatial relationships between different
coordination artefacts solely; (topology) spatial properties may
be described considering either the physical world – e.g. “Via
Zamboni 33, Bologna” –, our organisational view of the world
– e.g. “the Dean’s office at DISI” – or even a logical interpre-
tation of the world—e.g. “Stefano’s workspace”; (granularity)
spatial measures could be expressed either on a continuous
scale – again, as GPS data – or on a discrete scale—e.g. hops
in a network.

Since we are interested in supporting virtually any kind of
space-aware coordination policy, our assumption here is that
a global, absolute and “physical” description of the world is

31

4

.

〈TCEvent〉 ::= 〈TCPredicate〉 (〈Tuple〉) |
time(〈Time〉) | 〈EnvPredicate〉 |
from(〈Place〉) | to(〈Place〉)

.

〈EventInfo〉 ::= predicate | tuple | source | target |
time | place

.

〈GuardPredicate〉 ::= request | response | success | failure |
endo | exo | intra | inter |
from_agent | to_agent | from_tc | to_tc |
before(〈Time〉) | after(〈Time〉) |
from_env | to_env|
at(〈Place〉) | near(〈Place〉 , 〈Radius〉)

.

〈Place〉 is a ground term representing a point in an absolute space
〈Radius〉 is a non-negative integer representing distance

TABLE II
stReSpecT SYNTAX EXTENSIONS TO ReSpecT

available. Unlike time aspects, in fact, where a relative, local
notion of time is often preferred in distributed environments,
most of today hardware/software systems have an easy and
effective access to GPS data, making a global, absolute and
physical description of any spatial property easily available—
even in distributed systems. Furthermore, given such a de-
scription is available at the infrastructural level, it is easy
to build higher-level descriptions either at the application
level or through a suitable middleware—e.g., designed using
stReSpecT itself.

Issue (ii) is possibly the most challenging one, since it
requires first to (theoretically) foresee any kind of space-driven
coordination law an application may need, then to provide a set
of “spatial statements” to allow for it. Our proposal for Space-
Time-Aware ReSpecT (stReSpecT henceforth) is reported
by difference in TABLE II—amending TABLE I.

By focussing on the new things only, stReSpecT features:
• from(〈Place〉), to(〈Place〉) — Triggering reactions

to spatial events, such as leaving from and arriving at a
given location.

• 〈EventView〉 place — Providing access to spatial infor-
mation for the triggering event.

• at(〈Place〉), near(〈Place〉 , 〈Radius〉) — Allowing
for evaluation of the reaction goals when the given spatial
conditions are met.

Complementarily to the timed extension of ReSpecT [9],
the above constructs enhance the programmed coordination
media to be space-aware—that is, able to recognise events,
access information, and test conditions belonging to the spatial
dimension in a situated coordinated system.

In particular, the extended notion of 〈TCEvent〉 in TABLE II
accounts for issue (iii), since it represents the ability by the
coordination abstraction to pro-actively generate space events,
in response to which some kind of space-related (reactive)
computation can be programmed. Obviously, the stReSpecT
virtual machine relies on the capability of the hosting platform
software/hardware to provide spatial information, e.g., avail-
ability of a GPS module. Looking at the HW/SW equipment
of today mobile devices, this is apparently a reasonable
assumption met by the vast majority of them.

In the remainder of the paper, we discuss the suitability
and the benefits of using stReSpecT as a Spatial Computing
virtual machine upon which to build & run domain-specific
SCL, by better framing it in the ADM, and showing how the
T-Program requirements could be successfully met.

B. The stReSpecT Device Model

Being stReSpecT a distributed tuple centres programming
model featuring a communication language and a coordination
language both based on first-order logic tuples, it naturally
provides a number of appealing features from the Spatial
Computing standpoint, which we list here by recalling the
ADM—from Subsection I-A:
• Communication Region — The stReSpecT language

fully complies with the linkability model introduced in
[14], hence any tuple centre can communicate with
any other network-reachable tuple centre through linking
operations (〈TCLinkPredicate〉 in TABLE I). The basic
communication model of stReSpecT is thus global
communication.

• Transmission Granularity — No first-class coordination
operations exist in stReSpecT allowing communication
with a set of target tuple centres at once—unlike [15].
Thus, stReSpecT supports point-to-point communica-
tion at the language level.

• Mobility of Code — Since stReSpecT features meta-
coordination operations dealing with specification tu-
ples – pretty much as coordination operations do with
communication tuples –, it requires no effort moving
stReSpecT “code” from space to space.1 Therefore,
stReSpecT tuple centres features code mobility.

The ADM described is just the “basic” one straightforwardly
supported by stReSpecT tuple centres. Other ADM could be
defined on top of the basic one by exploiting stReSpecT itself
to adequately program a tuple centre. For instance, distance-
limited communication could be implemented by simply (i)
attaching to any exchanged tuple a space value, and (ii)
programming tuple centres so as to check such value, then
stopping communication when due, continuing otherwise.

Even the Transmission Granularity property could be
adapted by need. For instance, broadcast (multicast) com-
munication could be achieved by exploiting the transactional
semantics of stReSpecT reactions: if any tuple centre is pro-
grammed to spread any incoming information to any (some)
other one, the whole broadcast (multicast) communication
is perceived as a single, atomic communicative act by the
initiator (agent, tuple centre) of the original operation.

A special remark is due w.r.t. the last property of the
stReSpecT ADM: in fact, describing as “code mobility” the
feature provided by the meta-coordination operations of the
stReSpecT programming model is somehow restrictive. In
fact, not only ReSpecT allow specification tuples to be moved
between tuple centres: also, they can be added and deleted,
their presence/absence tested—and, most importantly, this can

1Not reported in TABLE I for the sake of simplicity. Here, we as-
sume meta-coordination predicates with the form 〈TCForgePredicate〉 ::=
〈TCPredicate〉 s—see [8] for the full syntax.

32

5

be done at run-time. Coupling this with the spatio-temporal
awareness of the stReSpecT model enables not only spatio-
temporal-aware coordination, but also spatio-temporal-aware
meta-coordination—that is, the ability of the coordination
abstraction to adapt its coordination policies as time passes
and the spatial context changes.

C. Meeting “T-Program” Requirements

Given the stReSpecT syntax reported in TABLE II, we can
now associate the new constructs to the classes of operators
described in Subsection I-B. One should keep in mind that we
are concerned with the minimal API our stReSpecT-based
Spatial Computing VM should provide to SCL, so as to better
separate the “primitive” spatial mechanisms from the higher-
level “composite” behaviours/patterns they could be used to
build—similarly to the approach taken in [16] for classifying
and comparing self-organising design patterns.
• Measure Space — A combination of three Observation

Predicates is given to measure spatial properties:
– current place — Measuring where the tuple

centre executing the current stReSpecT reaction is.
– event place, start place — Measuring re-

spectively where the direct cause and start cause
[8] of the event triggering the current stReSpecT
computation took place.

• Manipulate Space — Given that the modification of
spatial properties is necessarily bound to the facilities
provided by the host device, this can be addressed by
the original situatedness constructs of ReSpecT (Sub-
section III-B):

– 〈EnvResId〉 <- env(〈Key〉, 〈Value〉) — Precisely
meant to be used as an interface to device actu-
ators, allowing an agent to dispatch commands to
a device 〈EnvResId〉 at the most appropriate level
of abstraction—that is, as a part of the environment
managed through the coordination medium.

• Compute — While this category is orthogonal w.r.t. the
spatial (temporal) dimension, some predicates may be
considered here as they ease the process of “computing
over spatial information”—in particular, guards:

– at(〈Place〉) — Triggers a reaction when the reacting
tuple centre is at a given location.

– near(〈Place〉, 〈Radius〉) — Triggers a reaction
when the reacting tuple centre is near a given lo-
cation.

Finally, it should be noted that some constructs were left out,
in particular those in 〈TCEvent〉. We believe they belong to the
fourth category of “operators”, since they allow the Abstract
Device – that is, the stReSpecT VM – to perceive motion
events generated either autonomously or on demand by the
physical device hosting the VM. Respectively, from(〈Place〉)
is the spatial event generated by the stReSpecT VM when the
host tuple centre starts moving (leaving a location), whereas
to(〈Place〉) is the spatial event generated when it stops mov-
ing (approaching a location). Such events are meant to reify
a change of state in the “spatial dimension of computation”:

therefore, no events have to be generated while the VM is
staying still, since there is no state change to reify.

D. Sketching “T-Program” Stages

To better demonstrate how a stReSpecT tuple centre could
act as a Spatial Computing virtual machine, in the following
we sketch a few reactions showing how the spatial constructs
could be used to support the different stages of the “T-
Program” benchmark—whereas not directly solving it, which
could become cumbersome and should be left to a higher-level
SCL.

Coordinate System: Setting a local coordinate system
basically amounts at (i) choosing an origin node, (ii) making
it spread a “vector tuple” to neighbours, then (recursively)
(iii) making them increment such vector, and (iv) forwarding
it to neighbours. Thus, the basic mechanism needed by the
VM at the application level is what we call neighborhood
spreading. Assuming a physical neighborhood relation is used,
the following reactions – installed on every node – could help:

1% Check range then forward.
2reaction(out(nbr_spread(msg(Msg),nbr(Dist),req(ID))),
3(completion, success),
4(no(req(ID)), out(req(ID)), % Avoid flooding
5current_place(Me), event_place(Sender),
6within(Me,Sender,Dist), % Prolog computation
7out(msg(Msg)),
8rd(nbrs(Nbrs)), % Neighbours list
9out(forward(Msg,Dist,req(ID),Nbrs))
10)).
11% Delete multicast request.
12reaction(out(nbr_spread(msg(Msg),nbr(Dist),req(ID))),
13(completion, success),
14in(spread(msg(Msg),nbr(Dist),req(ID)))
15).
16% Forward to every neighbour.
17reaction(out(forward(Msg,Dist,req(ID),[H|T])), % Some Nbrs
18(intra, completion),
19(H ? out(spread(msg(Msg),nbr(Dist),req(ID))), % Forward
20out(forward(Msg,Dist,req(ID),T)) % Iterate
21)).
22% Delete iteration tuple.
23reaction(out(forward(Msg,Dist,req(ID),Nbrs)),
24(intra, completion),
25in(forward(Msg,Dist,req(ID),Nbrs)) % Delete it anyway
26).

Reactions 2-10 and 12-15 manage spreading requests: the
former checks if request has been already served, gets react-
ing node position, sender node’s one, checks if it’s in the
desired range, and if so stores the tuple (Msg) then starts
forwarding it; the latter simply removes the request. Reactions
17-21 and 23-26 manage the forwarding process, that is,
iterate neighbours forwarding the spreading comman—where
neighbourhood is set here at the VM level through a tuple
nbrs([nbr_1,...,nbr_N]), but could also be set at the
middleware level by using a coordination middleware such as
TuCSoN [17].

a) “T-shape”: To arrange nodes (tuple centres) so as
to form a “T-shaped” structure, we need to (i) define spatial
constraints representing the T (how much “tall”, “fat”, etc.),
then (ii) make every node move so as to satisfy them. Thus, the
basic mechanism needed at the VM level is motion monitoring
and control:

33

6

1% Compute motion vector then start moving.
2reaction(out(move(Constraints)),
3(completion, success),
4(current_place(Here),current_time(Now),Check is Now+1000,
5direction(Constraints,Here,Vec), % Prolog computation
6out_s(
7% Reaction 12-22
8),
9set(engine,’on’), set(dir,Vec) % Start actuators
10)).
11% Motion constraints monitoring.
12reaction(time(Check),
13internal,
14(current_place(Here),
15rd(move(Constraints)),
16(check(Here,Constraints), % Prolog computation
17set(engine,’off’)
18;
19current_time(Now), Check is Now+1000,
20out_s(
21% Reaction 12-22
22)))).
23% Arrival clean-up.
24reaction(to(Dest),
25internal,
26in(move(Constraints))
27).

An interesting feature of stReSpecT is exploited in the
code above. Beside reacting to a motion request by prop-
erly controlling actuators, Reaction 2-10 performs a meta-
coordination operation, by inserting a new coordination law
in the tuple centre (Reaction 12-22), which is responsible for
arrival check. This is precisely what we defined as space-
aware meta-coordination at the end of Subsection IV-B.

b) Focal Point: To first compute the focal point (FC)
of the “T-shape”, then draw a sphere around it, we need two
basic mechanisms, both similar to the neighborhood spreading
previously shown: (i) a bidirectional neighborhood spreading
to collect replies to sent messages – allowing to aggregate
all the node’s coordinates and counting them – and (ii) a
spherical multicast to draw the ring pattern. Nevertheless, the
code for spherical multicast (not shown here for the sake of
brevity) is almost identical to neighborhood spreading, but
with a fundamental difference (besides the req(ID) test
to avoid flooding), that is, the use of observation predicate
start_place instead of event_place. This replacement
(almost) alone stops the spreading process and completely
change the spatial properties of communication, demonstrat-
ing what we meant with minimal API.

V. CONCLUSION

In this paper we brought some results from the Coordination
field into the Spatial Computing perspective: in particular,
we presented the stReSpecT space-aware extension to the
ReSpecT language & virtual machine as a suitable Abstract
Device Model for Spatial Computing Languages. We then
described how stReSpecT programmability can be exploited
to (i) adapt stReSpecT ADM to application-specific needs
(even at run-time), and (ii) meet “T-Program” benchmark
requirements. Finally, we sketched a few lines of code showing
how stReSpecT model provides VM-level support to SCL.

VI. ACKNOWLEDGMENTS
This work has been partially supported by the EU-FP7-FET Proactive

project SAPERE – Self-aware Pervasive Service Ecosystems, under contract
no. 256874.

REFERENCES

[1] J. Beal, S. Dulman, K. Usbeck, M. Viroli, and N. Correll, “Orga-
nizing the aggregate: Languages for spatial computing,” CoRR, vol.
abs/1202.5509, 2012.

[2] J. Beal, “A basis set of operators for space-time computations,” in
Proceedings of the 2010 Fourth IEEE International Conference on
Self-Adaptive and Self-Organizing Systems Workshop (SASOW 2010).
Washington, DC, USA: IEEE Computer Society, 2010, pp. 91–97.

[3] M. Viroli, J. Beal, and M. Casadei, “Core operational semantics of
Proto,” in 26th Annual ACM Symposium on Applied Computing (SAC
2011), M. J. Palakal, C.-C. Hung, W. Chu, and W. E. Wong, Eds., vol.
II: Artificial Intelligence & Agents, Information Systems, and Software
Development. Tunghai University, TaiChung, Taiwan: ACM, 21–
25 Mar. 2011, pp. 1325–1332.

[4] M. Viroli, D. Pianini, and J. Beal, “Linda in space-time: an adaptive
coordination model for mobile ad-hoc environments,” in Coordination
Languages and Models, ser. LNCS, M. Sirjani, Ed. Springer-Verlag,
Jun. 2012, vol. 7274, pp. 212–229, proceedings of the 14th Conference
of Coordination Models and Languages (Coordination 2012),Stockholm
(Sweden), 14-15 June.

[5] J. Pauty, P. Couderc, M. Banatre, and Y. Berbers, “Geo-linda: a geometry
aware distributed tuple space,” in Advanced Information Networking and
Applications, 2007. AINA ’07. 21st International Conference on, may
2007, pp. 370 –377.

[6] M. Mamei and F. Zambonelli, “Programming pervasive and mobile
computing applications: The TOTA approach,” ACM Transactions on
Software Engineering and Methodology, vol. 18, no. 4, Jul. 2009.

[7] M. Viroli, M. Casadei, S. Montagna, and F. Zambonelli, “Spatial coor-
dination of pervasive services through chemical-inspired tuple spaces,”
ACM Transactions on Autonomous and Adaptive Systems, vol. 6, no. 2,
pp. 14:1–14:24, June 2011.

[8] A. Omicini, “Formal ReSpecT in the A&A perspective,” Electronic
Notes in Theoretical Computer Science, vol. 175, no. 2, pp. 97–117,
Jun. 2007, 5th International Workshop on Foundations of Coordination
Languages and Software Architectures (FOCLASA’06), CONCUR’06,
Bonn, Germany, 31 Aug. 2006. Post-proceedings.

[9] A. Omicini, A. Ricci, and M. Viroli, “Time-aware coordination in
ReSpecT,” in Coordination Models and Languages, ser. LNCS, J.-M.
Jacquet and G. P. Picco, Eds. Springer-Verlag, Apr. 2005, vol. 3454,
pp. 268–282, 7th International Conference (COORDINATION 2005),
Namur, Belgium, 20–23 Apr. 2005. Proceedings.

[10] M. Casadei and A. Omicini, “Situated tuple centres in ReSpecT,” in
24th Annual ACM Symposium on Applied Computing (SAC 2009), S. Y.
Shin, S. Ossowski, R. Menezes, and M. Viroli, Eds., vol. III. Honolulu,
Hawai’i, USA: ACM, 8–12 Mar. 2009, pp. 1361–1368.

[11] A. Omicini and E. Denti, “Formal ReSpecT,” Electronic Notes in The-
oretical Computer Science, vol. 48, pp. 179–196, Jun. 2001, declarative
Programming – Selected Papers from AGP 2000, La Habana, Cuba,
4–6 Dec. 2000.

[12] ——, “From tuple spaces to tuple centres,” Science of Computer
Programming, vol. 41, no. 3, pp. 277–294, Nov. 2001.

[13] A. Ricci, M. Viroli, and A. Omicini, “The A&A programming model
and technology for developing agent environments in MAS,” in Pro-
gramming Multi-Agent Systems, ser. LNCS, M. Dastani, A. El Fal-
lah Seghrouchni, A. Ricci, and M. Winikoff, Eds. Springer, Apr. 2008,
vol. 4908, pp. 89–106, 5th InternationalWorkshop (ProMAS 2007),
Honolulu, HI, USA, 15 May 2007. Revised and Invited Papers.

[14] A. Omicini, A. Ricci, and N. Zaghini, “Distributed workflow upon
linkable coordination artifacts,” in Coordination Models and Languages,
ser. LNCS, P. Ciancarini and H. Wiklicky, Eds. Springer, Jun. 2006, vol.
4038, pp. 228–246, 8th International Conference (COORDINATION
2006), Bologna, Italy, 14–16 Jun. 2006. Proceedings.

[15] R. Menezes, A. Omicini, and M. Viroli, “On the semantics of co-
ordination models for distributed systems: The LOGOP case study,”
Electronic Notes in Theoretical Computer Science, vol. 97, pp. 97–124,
22 Jul. 2004, 2nd International Workshop “Foundations of Coordination
Languages and Software Architecture” (FOCLASA 2003), Marseille,
France, 2 Sep. 2003. Proceedings.

[16] J. Fernandez-Marquez, G. Marzo Serugendo, S. Montagna, M. Viroli,
and J. Arcos, “Description and composition of bio-inspired design
patterns: a complete overview,” Natural Computing, pp. 1–25, 2012.

[17] A. Omicini and F. Zambonelli, “Coordination for Internet application
development,” Autonomous Agents and Multi-Agent Systems, vol. 2,
no. 3, pp. 251–269, Sep. 1999, special Issue: Coordination Mechanisms
for Web Agents.

34

Paper 4

1

Abstract— The Growing Point Language (GPL) is a
programming language that can be used to specify self-
organizing topological patterns on an amorphous computer.
GPL uses a distributed diffusion process (metaphorically
represented as the secretion of a pheromone) to break the spatial
symmetry that is inherent in the coordinate-agnostic property of
the amorphous computing model. (The result of a diffusion is a
radially symmetric, spatial function that decreases monotonically
with the distance from the source.) Tropisms, which guide the
movement (metaphorically propagation) of growing points, are
specified relative to the level curves of one or more pheromones.
Tropisms that are orthogonal to the level curves of a pheromone
are implemented by a node identifying its neighbour with a local
minimum (or maximum) for that pheromone's concentration.
The monotonic property of the diffusion ensures that growing
points with such tropisms move in the same direction on each
propagation step. On the other hand, tropisms that are tangential
to a pheromone's level curves reduce to a node, which chooses a
neighbour with an (approximately) equal pheromone
concentration; but the direction in which such a neighbour lies is
not constrained to a single ray. Moreover, even after making one
such propagation step, a growing point does not have enough
information to continue on the same tangent to the pheromone's
level curve. In other words, there is no model of inertia built into
the movement of a growing point. In this paper, we present a
new GPL construct that provides propagation with inertia for
growing points, and we discuss the methods that have been used
to accomplish this in the past. We provide a quantitative
comparison of the techniques to show that the new construct
produces outcomes that are closer to geometric predictions than
those of the previously used methods. We also discuss some
drawbacks to this new construct and suggest ways in which it
could be improved in a future implementation.

Index Terms— Algorithms, Amorphous Computing, Design,
Experimentation, Programming Languages, Spatial Computing,
Self-organising Patterns, Swarm Intelligence

INTRODUCTION

An amorphous computer is made up of many, locally
interacting parts (Abelson et al, 2000). Depending on the
application, these parts could be nodes on a wireless sensor
network, bacteria in a petri dish, computer processors and so
on. Each unit of an amorphous computer is able to perform

 This work was submitted for review on February 15, 2012.
 Alyssa Morgan is an MPhil. Student in the Department of Computing at

the University of the West Indies (Mona), Kingston, Jamaica. (e-mail:
amorgan.edu@gmail.com).

 Daniel Coore is a Senior Lecturer in the Department of Computing at
the University of the West Indies (Mona), Kingston, Jamaica. (e-mail:
daniel.coore@uwimona.edu.jm).

simple calculations, store some local state and communicate
with its neighbours. Two nodes are neighbours if the distance
between them is less than a user-defined radius, called the
radius of communication. Through local interactions, the
nodes of an amorphous computer work together to create a
global result.

Developed by Coore (Coore, 1999), the Growing Point
Language (GPL), is used to construct patterns of interconnect
topologies on an amorphous computer. In the originally
defined GPL, patterns are formed when the growing point, a
phenomenon that effects behaviour in a node, leaves a trail of
material as it moves through the medium from one node to the
next. This movement is guided by virtual pheromones.
Pheromones are diffused through the medium, starting from a
source, assigning concentration values to all nodes in their
reach. This creates level curves that are radially symmetric
around the source. A growing point can sense the values of
nodes in its neighbourhood, and move based on a tropism
defined on it. When using tropisms that are tangential to the
level curves of secretions, there are always two directions that
are equally viable from a node's standpoint, so that growing
points using this tropism can change its direction a number of
times while propagating. In effect, a growing point has no
inertia while moving through the amorphous computing
medium. Currently, inertia can be modeled in GPL using the
existing language features, but the inescapable uncertainty in
the distribution of nodes leads to results that are sometimes
geometrically counterintuitive. In this paper, we present a
new GPL construct, called propagate‐inertia, that explicitly
implements a model of inertia in a growing point. We
illustrate how it can be used, and we compare it with the
methods that are already available. In order to quantify the
comparisons, we have selected the problem of constructing a
circular path as a specific example application where inertia is
required. We provide three different implementations to
solving this problem, and provide qualitative and quantitative
comparisons to make the case that the new language construct
provides a more reliable method of modeling inertia in GPL.

BACKGROUND
When a growing point moves from one neighbour to another,
it is known as a propagation step. In the originally defined
GPL, the propagation process first retrieves the concentrations
of the relevant pheromones of all neighbours of the current
point at which the growing point resides. The retrieval
process returns the local ID of the relevant nodes, along with
their pheromone values. The values are then assessed and a

Modeling Inertia in an Amorphous Computing
Medium

Alyssa S. Morgan and Daniel N. Coore

35

Paper 4

2

node whose value satisfies the tropism rule defined is chosen.

There are three types of tropisms defined in GPL to guide a
growing point’s movement, relative to one or more pheromone
distributions. The tropism ortho+ (ortho-), indicates
movement orthogonal to the level curves of secretions, in a
direction directly towards (away from) the source. The tropism
dia causes a growing point to move tangentially to the level
curve, essentially tracing it out. Radially symmetric secretions
imply that in two dimensions, dia tropism causes a growing
point to effectively orbit the source. A combination of these
two tropisms, called plagio+ (plagio-) causes the
growing point to move obliquely to a level curve, towards
(away from) the source of the secretion.

The tropism ortho+ (ortho-) chooses the node with the
greatest (smallest) value, directing the growing point directly
towards or away from the source of the secretion. To satisfy
the requirements for dia, the growing point chooses a node
whose pheromone value is nearly equivalent to its own (within
a defined tolerance). This causes a growing point to trace a
given level curve, around the source. The tropism plagio+
(plagio-) combines the two tropisms mentioned above.
First it collects all neighbours whose pheromone
concentrations are larger (smaller) than the current node's then
chooses the node with the median concentration among them.
Once a successor is chosen, the propagation step is made to
the chosen node. The choice can be marked by depositing a
material, showing the growing point’s path.

Growing points have no inertia. That is to say, there is
nothing in the GPL computational state that maintains any
directional information about where a growing point has
visited, prior to its current position in the computational
medium. For the purposes of this paper, we shall say that a
growing point is in forward propagation, if it makes a step in
the same direction as its previous step. The tropisms ortho
and plagio exhibit a kind of pseudo-inertia because they
ensure forward propagation of the growing point. The reason
this occurs is that a secretion yields monotonically decreasing
concentrations from the source, and therefore the neighbours
of a node whose concentrations of a pheromone are larger than
the propagating node's are necessarily closer to the source.

In contrast, the implementation of dia tropism identifies
neighbours with approximately equal values of pheromone
concentration. Those neighbours will lie on the same level
curve as the propagating node, usually on either side of the
node. Without any inertia, the predecessor of a node is
equally likely a candidate for propagation as any other node
would be with the same concentration level. This is most
clearly illustrated by an attempt at drawing a circle in GPL by
defining a growing point that has a dia tropism, relative to the
pheromone secreted from a single distant point (which will act
as the centre of the circle).

(define-growing-point (centre)

(material red)
(actions

(secrete+ 15 circle-pheromone)))

The centre growing point will be coloured red, and its only
action is to secrete a pheromone called circle-pheromone, for a
distance of 15 hops. Note that the centre growing point does
not move (there are no calls to propagate).

Naively, the code for the circumference would be defined as
follows:

(define-growing-point (arc)

(material blue)
(tropism (dia circle-pheromone)
(actions

 (propagate)))

The arc growing point will be coloured blue, and will move
diatropically to a pheromone named circle-pheromone. The
only computation performed at each node that the growing
point visits is to determine its next location (i.e. it calls
propagate as its only action).
Figure 1 illustrates the outcome of executing this GPL program.
Observe that the growing point named arc gets stuck in
oscillation between two points. This is because the pheromone
concentrations of the two nodes are closer to each other than
to that of any other node in either of their neighbourhoods.
Each point then becomes the other's “best choice” for
maintaining a constant pheromone concentration.

Figure 1 The results of using the originally defined propagate only, method
Mo

In his PhD thesis, Coore showed how inertia can be modeled
by giving a growing point a “self-repelling” tropism.
Specifically, a growing point is given a tropism that is
negatively orthotropic (ortho-) to a pheromone that the
growing point itself secretes. (Coore, 1999). This method was
also used by other authors as the way to model inertia in the
originally defined GPL (D’Hondt, 2000) (D’Hondt &
D’Hondt, 2001). The pheromone that it secretes is superposed
on any phromone that has previously been laid down, so that
there is more buildup of the pheromone along the line joining
the predecessor and the current node of the growing point.
This creates a natural preference for the growing point to
propagate in the forward direction. This technique is shown
below as a modification of the previously given code to draw a
circle.

(define-growing-point (centre)

36

Paper 4

3

(material red)
(actions

(secrete+ 15 circle-pheromone)))

(define-growing-point (arc)

(material blue)
(tropism (and (dia circle-pheromone)

 (ortho- self-pheromone)))
(actions

(secrete+ 3 self-pheromone)
(propagate)))

In order to give arc a self-repelling tropism along with its
dia-tropism to the circle pheromone, the two tropisms were
combined with the AND tropism operator. The AND combiner
in GPL is not commutative. Each tropism is implemented as a
function that takes a multi-set of pheromone concentrations
and yields a subset that satisfies the appropriate criterion,
sorted by the degree to which that criterion is satisfied. The
AND operator applies its given specified tropism functions in
reverse order, so that the first tropism given is the one that
determines the final sorted order of the neighbourhood
pheromone concentrations that qualify to be successor
locations for the growing point. This means that there are two
variations to implementing inertia purely with pheromones,
which are derived by simply exchanging the order of the
tropisms specified in the AND clause. The two methods would
give rise to the following two variants of arc:

[1] Propagate method, Mdiaortho

…

(tropism (and (dia circle-pheromone)

(ortho- self-pheromone)))
…

[2] Propagate method, Morthoda

…

(tropism (and (ortho- self-pheromone)

(dia circle-pheromone)))

…

We shall use these two methods as references for comparing
the behaviour of the new propagate‐inertia primitive.

IMPLEMENTATION
The syntax of the new propagate‐inertia command is the
same as the original propagate command, namely it is given
the values that should be passed to the growing point's next
active site. Its semantics though, are that the next active site
will be selected from among those neighbours that are located
away from the direction in which the current active site's
predecessor lies.

Apart from their pheromone concentrations, all nodes in a
neighbourhood appear the same to a growing point when it is
trying to propagate. For example, when using dia, all
neighbours with pheromone concentrations approximately
equal to that at the initial node's are suitable candidates,

irrespective of direction. To introduce inertia, any spatial
symmetry within pherommone values must be broken. This is
done by creating a difference in the pheromone field
surrounding the current active node, that depends on the
direction the growing point came from. The idea is to take
advantage of the difference in communication patterns of the
nodes involved, to generate the desired inertia. Nodes that
have previously communicated about propagating a growing
point have different information from those hearing about the
growing point for the first time. The new primitive,
propagate‐inertia, exploits this by effectively disabling nodes
that have previously participated in propagating the growing
point. Nodes are turned off after responding to a growing
point, so that only newly responding nodes can be selected.
This forces forward movement through the medium.

In its propagation, the growing point first requests a list of all
its neighbours. One neighbour will be chosen as the successor,
that is, the node that the growing point will now reside at.
Once the node is chosen and the hop is made, the predecessor
must be deactivated so that its successor does not return to it,
stunting the growing point’s movement. Furthermore, to
prevent a change of direction in the movement of the growing
point, all other neighbours that were being considered are
deactivated as well. This ensures that only newly discovered
nodes are considered.

Information of being deactivated is stored locally in each
processor. When a processor responds to a query from a
growing point, it stores that growing point’s ID. It will then
ignore any further queries for neighbours from that growing
point instance. This ensures that only new neighbours respond
to the query and so the successor to a growing point's active
site will always be different from its predecessor, and
moreover will likely be in the opposite direction..

In the simulator, this is done by creating a list of IDs
belonging to the nodes that should be turned off for a
particular growing point instance. Once a growing point has
moved from one node to another all points considered during
its propagation have their IDs added to the list of deactivated
nodes.

To take its next step, the growing point once again makes a
query for its neighbours. Its ID would have been stored locally
by nodes that already responded to a query sent out by it, as a
result, they will not respond to any more queries from it. This
allows only newly discovered neighbours to take part in the
propagation process. Using this method, previously considered
neighbours are filtered from a successor’s choices, forcing
forward propagation of the growing point. With this method
for the intended effect of a self-repelling pheromone is
achieved by directly manipulating a node's computation. The
following code fragment illustrates how our previous objective
of drawing a circle would be implemented using the new
propagate‐inertia primitive:

define-growing-point (centre)

(material red)
(actions

37

Paper 4

4

(secrete+ 15 circle-pheromone)))

(define-growing-point (arc)

(material blue)
(tropism (dia circle-pheromone)
(actions

 (propagate-inertia)))

RESULTS
We set up a simulation of 30,000 nodes, each one of diameter
1 unit, in a square of 100x100 units. The radius of
communication used was 2.5 units. A growing point set at
(55.06, 49.94) was asked to trace a secretion with an extent of
15 hops, whose source was at (39.79, 49.84). The parameters
for the simulator run are shown in TABLE 1.

TABLE 1 PARAMETERS OF SIMULATION RUN

Node of secretion, Ns (39.79,49.9)

First point chosen (55.06,49.94)

Radius of communication, r 2.5

We ran each method on a fresh simulation with exactly the
same network and parameters. Figure 2, Figure 3 and Figure 7
show the the resulting pattern for each method of modeling
inertia, using the same simulation parameters . The red dot
shows the secreting node, and the blue dots show the nodes
selected for propagation.

Figure 2 The results of using the originally defined propagate along with a
self-repelling pheromone, method Mdiaortho

Figure 3 The results of using the newly implemented propagate, method
Minertia

Qualitatively, the overall pattern formed using the
implemented propagate (Figure 3), gave approximately the
same visual result as the method employing the self-repelling
pheromone with preference to dia (Mdiaortho, seen in Figure 2).

Figure 4, Figure 5 and Figure 6 show (in red) the angles that each
point selected on the circumference made with the first point
at the centre, for each method, on its run. It is plotted against
the index (i) of the generated point (Pi), and the indices
correspond to the order in which the points were generated.
They also show (in blue) the distance from the centre point, of
each point Pi against its index, i. The findings presented are
typical of the results obtained on other runs.

Table 2, Table 3 and Table 4 show the minimum, maximum angle
in degrees of the points generated, along with the standard
deviation and average angle generated. The minimum,
maximum, mean and standard deviation of the distance of a
point from the centre are also shown. Table 2 shows the nodes
selected when using the newly implemented propagate, Minertia.
Table 3 shows results for using the method Morthoda; Table 4 shows
results when using method Mdiaortho;

Figure 4 Plot of points chosen by using method Minertia. The red plot shows the
angle against the indexes and the blue plot shows the radius of the point
against its index 

Table 2 Results for method Minertia.

 |Pi-Ns| Difference in Angle
max 15.21 6.1
min 14.58 1.9
standard dev 0.31 1.84
mean 15.21 6.1

In analyising the data of Table 2, as well as the generated graph
(Figure 4) we can see the points chosen for propagation using
method Minertia. This method completed a full trace of the level
curve, getting stuck when it returned to its starting point. Also,
the growing point never changed its direction. Variations in
the distance of points from the center were minimal. The
standard deviation obtained was 0.31, showing that the points
were on a nearly perfectly circular locus.

38

Paper 4

5

Figure 5 Plot of points chosen by using method Morthodia. The red plot shows
the angle against the indexes and the blue plot shows the radius of the point
against its index

Table 3 Results for method Morthodia.

 |Pi-Ns| Difference in Angle
max 17.45 10.00
min 13.01 -9.49
standard dev 1.31 4.85
mean 15.37 7.6

Figure 5 shows the points generated using method Morthoda. The
average angle generated when using this method, is always
larger that that of method Mdiaortho causing it to close its path in
fewer points. This is because method Morthoda often cuts
through the circle (Figure 7) instead of staying confined to the
circumference. This causes larger deviations in the distance of
points from the centre (Table 3), and a pattern that has a less
circular shape.

Figure 6 Plot of points chosen by using method Mdiaortho. The red plot shows
the angle against the indexes and the blue plot shows the radius of the point
against its index

Table 4 RESULTS FOR METHOD Mdiaortho

 |Pi-Ns| Difference in Angle
max 17.4 351.9
min 13.2 -8.9
standard dev 0.5 27.0
mean 15.3 0.2

When a self-repelling pheromone was used along with the
originally defined propagate (Table 4), the growing point

changed its direction a number of times during the run as seen
in Figure 6. While the growing point eventually completes its
trajectory, it often goes backwards and forwards during the
trace, until finally getting stuck at a neighbour that has no
suitable options. Unidirectional movement, therefore, is not
guaranteed with this method. This can first be seen in the
generated nodes 1-39, where the growing point begins by
oscillating between two nodes, changing its direction on every
hop. As with Minertia, the standard dev in the distance of points
from the centre is relatively small (0.5), showing that the
points are in a circular shape.

Figure 7 Results of using the method Morthodia 

We have shown use of a self-repelling pheromone to promote
forward propagation in two ways. The first passes
neighbouring points through the dia filters and sorters and
then those of the ortho-. Using this method, it was shown
that a circular trace was obtained, however, the growing point
did not commit to one direction for its movement. This is due
to the fact that the growing point will first filter out neighbours
of equal values and then from that list, choose the node with
the smallest value of the self-pheromone. Naming dia first
means that precedence is given to satisfying its rule, and then
to the chosen direction. The second method described, passes
the points through the ortho- filter, and then the dia filter.
It was shown that this forces unidirectional movement, but
sacrifices a circular shape. By naming ortho- first, it is
ensured that the growing point will move away from the
secretions of its self-pheromone, resulting in unidirectional
movement. After the directional requirement has been
satisfied, a point of nearly equal value is chosen. However,
since the node chosen by ortho- might not have been the
optimal node to continue the circular shape, the global result
shows a distorted circle. The method Minertia combines the
positive aspects of these two methods, achieving both
unidirectional movement and a circular trace.

39

Paper 4

6

DISCUSSION AND CONCLUSION
Minertia described in this paper forces the trace of a level curve
and forward movement of the growing point and is an
improvement on the previous method used to get a similar
effect. The secretion of a self-repelling pheromone on every
hop does encourage forward motion, but cannot guarantee it.
That method increases the time to run the simulation as the
growing point changes direction a number of times, before
completing the trace. Furthermore, the use of a self-repelling
pheromone is more taxing on the system, as a secretion has to
be laid down on every step. The same global effect can be
obtained using the newly implemented propagate, but with
greater efficiency in resource management.

It is arguable that for some GPL programs, permanent
deactivation of nodes towards a certain growing point would
be unfavourable. If points are to be reactivated, they must
change that state after the trace is complete. To test this, the
implemented propagate was used, however, points stayed
deactivated for only one hop, after which, they were
reactivated. Results show that instead of getting stuck upon
reaching the starting point, or even selecting a different node,
a growing point selects the same point and proceeds to take
exactly the same path as before, perpetually moving in a self-
loop. This modification to the implementation is possible only
in the simulator though, because it managed the deactivation
and reactivation of nodes in a manner that was not necessarily
consistent with the local requirements of amorphous
computing (i.e. a node would become reactivated if its
neighbour's neighbour successfully propagated). A realistic
implementation of this variation of Minertia would probably use
a small timeout to implement the temporary disabling of a
node – much like the way neurons operate in the brain.
However, GPL currently has no model for time, and therefore
even this modification would have required extensive changes
to the GPL interpreter. Given the results obtained in this
paper, it seems worthwhile to implement such a temporal
dimension to GPL in the future.

As currently implemented, Minertia can be used in programs
that require a growing point to work with other growing points
in order to form a pattern because nodes are selectively
disabled only to a specific instance of a growing point. That
means that those nodes may still respond to other growing
points (even different instances of the same growing point that
caused them to become unresponsive in the first place) and
therefore facilitate almost all of the previously supported
modes of interaction between growing point trajectories. Only
patterns that relied upon a growing point interacting with its
own trajectory would require a different implementation, if
they were to take advantage of the new propagate-inertia
command.

The current implementation causes a node’s response to a
growing point to be “digital”, that is, either active or inactive.
The purely pheromone based approach to modeling inertia
was “analogue” in that it provided a means for a node to retain
(by degrees) the potential to be an active site for a growing
point, which might be desirable in certain situations (e.g. in

order to make a pattern robust to node death or failure).

Our propagate-inertia primitive is reminiscent of the physical
notion of inertia, in that growing points are strongly
encouraged to keep moving in the same direction. However, a
growing point still depends upon a tropism in order to move,
unlike in Physics where inertia allows a particle with an initial
velocity to move, in the absence of friction, in a straight line to
infinity. But our propagate-inertia primitive is unable to make
a growing point move indefinitely because a growing point
requires the presence of a pheromone to which its tropisim is
sensitive in order to make a step. This is one important
difference between our model of inertia and physical inertia.
Interestingly, in Physics, the phenomenon of friction is
modeled as a force that is present only when there is velocity
(or at least an attempt at initiating it). In GPL, the propagate-
inertia primitive provides inertia only in the presence of a
pheromone. It will probably be worthwhile investigating
whether these physical analogies in GPL can be deepened to
the point of using Physical laws to make interesting
predictions about GPL programs.

REFERENCES
[1] Abelson,  H.,  Allen,  D.,  Coore,  D.,  &  Hanson.  (2000).  Amorphous 

computing. Communications of the ACM , 43 (5), 74‐82. 

[2] Coore, D.  (1999).  Botanical  computing:  a  developmental  approach 
to  generating  interconnect  topologies  on  an  amorphous 
computer. Phd. Thesis . Massachusetts Institute of Technology. 

[3] D’Hondt, E.  (2000). Exploring the amorphous computing paradigm. 
Master's thesis in computer science, Vrije University, Brussel . 

[4] D’Hondt,  E.,  &  D’Hondt,  T.  (2001).  Experiments  in  amorphous 
geometry. 2001 International Conference on Artificial Intelligence, 
285‐290..  

40

1

Declarative Multidimensional
Spatial Programming

John Plaice1,2 Jarryd P. Beck1 Blanca Mancilla1
1School of Computer Science and Engineering, UNSW, Australia

2Department of Computer Science and Software Engineering,
Concordia University, Canada

Abstract—We extend the declarative multidimensional lan-
guage TransLucid so that TransLucid systems become first-class
values. These systems can then be placed in a multidimen-
sional grid, thereby enabling multidimensional spatial computing.
TransLucid systems can appear as functions inside other systems,
or as standalone systems which are programmed by receiving new
declarations from other standalone systems.

I. INTRODUCTION

This paper presents the TransLucid system, a mechanism
for defining reactive systems which can be arranged in a
multidimensional grid. The proposed mechanism extends the
TransLucid programming language, in which variables de-
note multidimensional arrays of arbitrary rank and extent. A
TransLucid system is a reactive system which, at each discrete
instant, calculates finite arrays as output from finite arrays as
input, using a system of equations. TransLucid systems can
be defined in a functional manner or in an object-oriented
manner; in the latter case, the systems can program each other
by mutually sending new declarations for future instants, and
a runtime system is needed to manage these interactions.

In the 2006 Dagstuhl seminar introducing the concept of
space-oriented computation [4], now known as spatial com-
puting, it was concluded that there is a need to grasp the
distribution of computation through space, be it at a global
level or at the level of an individual die. For it to be possible
to put a handle on this concept, then there is a need for space
to be structurable using an arbitrary set of dimensions, be they
physical dimensions defining location and altitude/depth to an
arbitrary level of detail, or other, virtual dimensions providing
information more specific to a given task.

The intuition which drives this paper is that the structuring
of space for distributing computations should be the same
as the structuring of data in TransLucid, and so to prepare
for spatial computing, it suffices to extend this language.
Specifically, reactive systems need a notion of time, which here
will be a clock dimension, passed as parameter to systems; and
object-oriented systems need a mechanism to exchange their
messages with each other, which here will be a declaration
multiplexer, also passed as parameter.

Before we can imagine extending TransLucid, we must
understand the nature of variables and their evaluation, as
well as the behavior of functions. In TransLucid (cf. §II), a
variable X is understood to vary, conceptually, in all possible
dimensions; this means, say, that if X is defined using two

dimensions d1 and d2, and Y is defined using two dimensions
d2 and d3, then both can be considered to vary in all three
dimensions: the “variance” of X in d3 is constant, as is the
“variance” of Y in d1. As for their sum, X + Y , it varies
in all three dimensions. (We say that the ranks of X , Y and
X + Y are, respectively, {d1, d2}, {d2, d3} and {d1, d2, d3}.)
This approach is consistent with the use of dimensions in
differential equations, in which one only writes down the
dimensions of relevance, and with the use of attributes in
the universal relation model used to define the semantics of
relational databases [6].

The evaluation of an expression in TransLucid is always
undertaken with respect to a runtime multidimensional context,
an unordered set of (dimension, ordinate) pairs, in which
any atomic value may play the role of dimension. Should a
variable appear in an expression, it is evaluated lazily, and is
indexed by the context. To define the variance of variables
with respect to the context, the latter can be perturbed by
changing some of the (dimension, ordinate) pairs defining
it. The runtime context permeates an entire program, and
dimensions are queried using dynamic binding.

TransLucid is a functional language, hence functions are
first-class values, and variables can denote entire arrays of
functions, which correspond to families of functions in math-
ematics. Entire variables can be passed to functions by name.
Dimensions and constant values, on the other hand, are passed
to functions by value. As for the body of a function, the key
question is whether it should be evaluated with respect to the
context when the function is created or to the context when
the function is applied. It turns out that most of the time the
application context is what is needed, but the programmer can
bind the ordinates of a set of named dimensions from the
context at the time of creation of an abstraction.

To extend TransLucid to address the problem of spatial
computing, we propose to extend the notion of function:
we add two new kinds of abstraction, together called system
abstractions, where 1) the input arrays of finite—as opposed
to arbitrary—rank and extent are passed by value, 2) the
dimensions and extent of these arrays are passed by value,
and 3) the named dimensions whose ordinates are to be bound
correspond to the dimensions structuring space.

The system abstractions are, like other TransLucid abstrac-
tions, first-class values, so it is possible to define variables
whose values are multidimensional arrays of systems. Hence,
simply by adding new forms of abstraction to TransLucid, i.e.,

41

2

the system abstractions, spatial computing comes for free.
Of course, some dimensions do have an immediate physical

interpretation. This is the case, for example, for the time
dimension, which must always be causal, i.e., at no point may
one refer to a future instant, with respect to time. We envisage
that in the future, with more applications, there will be a need
to add other physical dimensions.

The first system abstraction (§III), designed to appear
directly in the system of equations of another system, has
a completely functional interface: the system of equations
defining it is given once, and cannot be changed. When an
inner system is created by the outer system, a causal time
dimension is passed by the outer system to the inner system,
which then uses it as its own, internal time dimension. That
inner system then becomes a function mapping streams of
finite arrays to streams of finite arrays.

The second system abstraction (§IV), designed for stan-
dalone use or for peer-to-peer interactions, has an object-
oriented interface, following the intuition of Alan Kay in
his design of Smalltalk [5]: an object is a mapping from a
stream of input messages to a stream of output messages.
In TransLucid, the ‘messages’ are TransLucid declarations,
tagged with a range defining which systems will be recipients
of the message.

For the moment, interaction between systems is considered
to be synchronous. At each instant, a declaration-multiplexer
value collects all of the messages output from the different
systems, and passes them on to the appropriate recipients
before the beginning of each instant.

This second kind of system abstraction is a generalization of
the current implementation of a TransLucid standalone system,
as is incorporated in the current TransLucid interpreter.

II. BACKGROUND

Development of the TransLucid programming language
began in late 2005. It is the latest descendant of Ashcroft and
Wadge’s Lucid [1]. A historical recollection of the develop-
ments from Lucid to TransLucid is given in [8]. The denota-
tional semantics and implementation of TransLucid, including
full higher-order functions over arbitrary-dimensional arrays,
are presented in [7]. The problem of memoizing arbitrary-
dimensional data, as needed by TransLucid, is solved in [3].
The current interpreter and some running examples can be
found at translucid.web.cse.unsw.edu.au.

Given that the evaluation of TransLucid expressions is
unusual, we spend some time explaining it. An expression,
such as ‘42’, ‘#.0 + #.1’ or ‘#.1 + X’, varies conceptually
in all dimensions, although any given variable will have finite
rank. If the rank of X is {0}, i.e., X is a 0-stream (a stream
varying in dimension 0) of the form 〈x0, x1, x2, . . .〉, then here
is the partial variance of these three expressions with respect
to dimensions 0 and 1.

0 →
42 0 1 2 3 4 5 6 7 8 · · ·

1 0 42 42 42 42 42 42 42 42 42 · · ·
↓ 1 42 42 42 42 42 42 42 42 42 · · ·

...
...

...
...

...
...

...
...

...
...

. . .

0 →
#.0 + #.1 0 1 2 3 4 5 6 7 8 · · ·
1 0 0 1 2 3 4 5 6 7 8 · · ·
↓ 1 1 2 3 4 5 6 7 8 9 · · ·

2 2 3 4 5 6 7 8 9 10 · · ·
...

...
...

...
...

...
...

...
...

...
. . .

0 →
#.1 +X 0 1 2 3 4 · · ·
1 0 x0 x1 x2 x3 x4 · · ·
↓ 1 1 + x0 1 + x1 1 + x2 1 + x3 1 + x4 · · ·

2 1 + x0 2 + x1 2 + x2 2 + x3 2 + x4 · · ·
...

...
...

...
...

...
. . .

An expression is evaluated with respect to a runtime context,
a set of (dimension, ordinate) pairs. If we consider the three
above examples, the symbol ‘#’ corresponds to the current
context, and ‘#.1’ applies the current context to the value 1,
i.e., queries the 1-ordinate; expression ‘42’ has rank ∅, and
has value 42 in all contexts; expression ‘#.0 + #.1’ has
rank {0, 1}, and has value κ(0) + κ(1) in all contexts κ
where {0, 1} ⊆ dom(κ); and expression ‘#.1 +X’ has rank
{1} ∪ rank(X), and has value the sum of κ(1) and the value
of X in κ, assuming 1 ∈ dom(κ).

The methodology of programming in TransLucid is still
under development. We have found, nevertheless, that pro-
gramming with conceptually infinite data structures offers
interesting possibilities. For example, consider calculating the
factorial of 6 in a two-dimensional triangular grid:

d →
fact .6 0 1 2 3 4 5 6 7 8 · · ·
t 0 1 1 2 3 4 5 6 1 1 · · ·
↓ 1 1 6 20 6 1 1 1 1 1 · · ·

2 6 120 1 1 1 1 1 1 1 · · ·
3 720 1 1 1 1 1 1 1 1 · · ·

The sequence 1..6 is embedded in a sea of 1s in order
to create an infinite sequence. Then, in 3 iterations (the
integer logarithm, base 2, of 6), a new sequence is created
by multiplying successive pairs of integers from the previous
sequence. Here is the TransLucid program, using higher-order
functions.

fun fact .n = tournamentOp1.d.n.times(
default1.d.1.n.1 (#.d)

)

where

dim d← 0
end

fun default1.d.m.n.val X = Y
where

var Y [d : m..n] = X
var Y [d : int] = val

end

fun tournamentOp1.d.n.f X = Y
where

dim t← ilog .n
var Y = fby .t X

(
f.(LofPair .d Y).(RofPair .d Y)

)

end

42

3

fun fby .d X Y = if #.d ≡ 0 then X
else Y @ [d← #.d− 1] fi

fun LofPair .d X = X @ [d← #.d ∗ 2]
fun RofPair .d X = X @ [d← #.d ∗ 2 + 1]

In TransLucid, one can use identifiers for dimensions (dim)
or for variables (var); functions are a kind of variable. A
dimension identifier will, during evaluation, be replaced by
unused dimensions, which are atomic values. Variables, on
the other hand, are multidimensional objects.

Function fby .d A B assumes that A and B are d-streams,
and prepends, in the d direction, the first element of A to B.
Function LofPair .d A (respectively, RofPair .d A) assumes
that A is a d-stream, and returns, in the d direction, every
second even (respectively, odd) element of A.

The default1.d.m.n.val X function assumes that X is a
d-stream, and creates a new d-stream, where elements m
through n are recopied from X and all the other elements
have value val .

The tournamentOp1.d.n.f X function assumes that X is
a d-stream, and that the first 2dlog2(n)e elements of X will be
used to calculate a result. There will be dlog2(n)e iterations
(ilog .n in the code) in the t direction. In iteration [t ← i],
element [t← i, d← j] of Y is equal to function f applied to
elements [t← i− 1, d← 2 ∗ j] and [t← i− 1, d← 2 ∗ j+1].
The line

dim t← ilog .n

declares local dimension identifier t, and the initial ordinate
for the corresponding dimension will be ilog .n.

The fun fact .n function creates an infinite stream by
embedding the sequence 1..n in a sea of 1s and then applies
tournament computation, where function f is multiplication.

Note that some arguments are preceded by a period (.),
while others are preceded by a space. The arguments preceded
by a period are base parameters (typically dimensions and
constants), which are the parameters of base functions; the ar-
guments are passed by value and the body is not evaluated with
respect to the application context. The arguments preceded by
a space are name parameters, which are the parameters of
name functions; the arguments are passed by name and the
body is evaluated with respect to the application context.

As we have seen, functions can be first-class values, hence
it is possible to have arrays of functions. In the next example,
the n-th power function is created by extracting it from a
stream, varying in local dimension d, of the successive power
functions, starting from the 0-th power.

dim d →
P 0 1 2 · · ·

λb m→ m0 λb m→ m1 λb m→ m2 · · ·

Here is the text in TransLucid:

fun pow.n = P
where

dim d← n
var P = fby .d (λb m→ 1) (λb {d} m→ m× P.m)

end

There are two anonymous base-function abstraction creators
here. The second one, ‘(λb {d} m → m × P.m)’, has
two kinds of parameter: the m is the value which will be
raised to a certain power, and the {d} corresponds to the set
of dimensions—in this case, the single dimension d—whose
ordinates are bound at the time of creation of the application.

From these examples, it follows that the idea of a function
in TransLucid is not simple. There are in fact three separate
aspects: 1) Is the body of the abstraction evaluated with respect
to the application context, or to an empty context? 2) Is there
a normal parameter passed as argument? and 3) If there is a
normal parameter, is it passed by value or by name? It turns
out that only four combinations are useful:

1) base fns (λb): empty context, value parameter;
2) value fns (λv): application context, value parameter;
3) name fns (λn): application context, name parameter;
4) intensions (↑): application context, no normal parameter.

In all four cases, a set of dimensions whose ordinates should be
bound at the time of creation of the application can be passed
as well. (See [7] for more details.) In the above examples, we
have seen base functions and name functions.

In the current implementation, a TransLucid system consists
of a set of declarations which grows over (discrete) time. There
is a special dimension, called time, which enumerates the
instants. At each instant, a new set of declarations can be
added to the system.

In fact, a system is entirely constructed from declarations.
There are declarations for dimensions (dim), for operators ap-
pearing in expressions (op), for inductively defined datatypes
(data and constructor), and for variables and functions
(var and fun). The op declaration, for example, introduces
a new lexeme for the parser, and specifies its associativity and
precedence, as well as its mapping to a function in the host
language, currently C++. (See [2] for more details.)

All symbols and identifiers may have multiple declarations.
As a result, a symbol or identifier, at the syntactic level, can be
understood to denote a multidimensional array of declarations,
also indexed by the context. When an expression is being
evaluated in a given context, and a symbol or an identifier
appears in the expression, then the bestfit declaration for that
symbol or identifier, with respect to the current context, is
selected. Bestfitting takes into account the time validity of
declarations, and all other things being equal, will take the
latest declaration.

Hence, adding new declarations to a system can change the
meaning of all operators and identifiers, effectively reprogram-
ming the system. However, the past of the system cannot be
changed. An attempt to recalculate a result from a previous
instant will use the declarations available to the system at that
previous instant.

The goal of this paper thus becomes to formalize this
existing notion of system, and then to make it possible for
a system to have further systems within it, or to set up a
number of systems to be mutually programmed, in such a
way that these systems are first-class TransLucid objects that
resemble the existing abstraction mechanisms of TransLucid.

43

4

III. THE SIMPLE SYSTEM

A simple TransLucid system, called a functional TransLucid
system, maps streams of input arrays to streams of output
arrays, where the rank and extent of all arrays are finite.
For this to work, a system acts as a discrete reactive system
which, at each instant i ∈ N, takes as input, say, n inputs Xij ,
j = 1..n, and produces an output Yi. In that sense, the behavior
of the system for each instant i is then like that of a base
function, except that the inputs are finite arrays that are used as
ordinary TransLucid arrays inside the equations of the system.

Several new concepts are introduced for the functional
TransLucid system to be definable. First, if a functional system
is to be used within another, then the time dimension of the
inner system cannot be expected to be the same as the time
dimension of the outer system. Since it is the outer system
that would call the inner system, it follows that the outer
system must provide to the inner system its time dimension
as a parameter.

Second, if, within an instant, the functional system is to
effectively act as a base function, this means that the input
arrays for that instant need to be bundled up so that they can be
passed in as complete input blocks to the system. This requires
mechanisms both at the abstraction and the application levels
to define the arrays that must be built up. The same holds true
for defining the output of the system.

Before we can write down the interface for the functional
system, we therefore need two new features. First is a clock
dimension, or causal dimension, which can be used as the
clock of a system. The ordinates of a clock dimension must
always be natural numbers, and a change of context during the
evaluation of an expression can never refer to an ordinate for
the clock dimension that is greater than the current ordinate.
A clock dimension is introduced with the syntax:

clock t

declaring identifier t to be a clock dimension.
Second is the block array calculation, which forces an

expression to be evaluated over an entire multidimensional
region. Its syntax is of the form:

E $ [region]

where the region defines a multidimensional region using the
same syntax as for guards in guarded equations (see variable Y
in the definition of function default1, §II).

We present the functional system abstraction through an
example:

fun S ĉk .d.n.
(
X$[d : 0..n]

)
= E

which could also be written:

var S = λfs ck → λb d→ λb n→ λb
(
X$[d : 0..n]

)
→ E

There are three kinds of parameters:
1) ck , introduced by a ˆ, is a clock dimension parameter;
2) d and n, introduced by a period, are base (call-by-value)

parameters; and
3) X$[d : 0..n], introduced by a period, is a base parameter,

annotated with its rank and extent, which is used inside
the system as an intension.

As for the output E, it must be of the form

E′ $ [region]

In all cases, both the inputs and the outputs must be finite.
To use this abstraction, we would write an expression of the

following form:

var B = S t̂.d1.n1.
(
A$[d1 : 0..n1]

)

where
1) t, which must be a clock dimension, is the actual

parameter corresponding to formal parameter ck ;
2) d1 and n1 are the actual parameters corresponding,

respectively, to formal parameters d and n; and
3) A$[d1 : 0..n1] is the actual parameter corresponding to

formal parameter X$[d : 0..n].
It is supposed that the rank of A is {t, d1}, so the current
t-ordinate and the region [d1 : 0..n1] are sufficient to compute
any element of A.

In the above example, A would be a t-stream of arrays of
rank and extent [d1 : 0..n1], and B would be a t-stream of
arrays whose rank and extent would be defined by the output
of the S abstraction.

For a functional system to be usable in a spatial computing
context, there needs to be a mechanism for multiple, similar,
functional systems to be defined. For this to be possible, we
can reuse the “bound dimension” feature of the other abstrac-
tions (cf. the pow example in §II), in which the ordinates of
a named set of dimensions from the context at the time of
creation of an application are bound.

We can adapt the above example so that the outer system
has two “space” dimensions, dr and dc. Then

fun S ˆ{dr, dc} ck .d.n.
(
X$[d : 0..n]

)
= E

allows the creation of a {dr, dc} grid of S systems, where
the output expression E could take into account dimensions
dr and dc to create slightly different systems, depending on
where they appear in the grid.

Once it becomes possible to define an arbitrary-sized multi-
dimensional grid of functional systems, where the dimensions
of the grid can correspond either to physical or virtual at-
tributes, we need to experiment. The obvious example is that of
systolic arrays. Here we present a systolic matrix multiplier, in
which a function incorporates a network of functional systems:

fun systolicmul .d1.d2.n X Y =
Sˆt .X ′′.Y ′′ @ [t← 3× n]

where

clock t
var X ′ = default2.d1.0.(n− 1).d2.0.(n− 1).0 X
var Y ′ = default2.d1.0.(n− 1).d2.0.(n− 1).0 Y
var X ′′ = X ′ @ [d2 ← #.t− #.d2 − #.d1]
var Y ′′ = Y ′ @ [d1 ← #.t− #.d1 − #.d2]
fun S ˆ {d1, d2}ck .U.L = A
where

var A = fby .ck 0
(
A+ next .ck (U × L)

)

end

end

44

5

In systolic algorithms, the data processing units (DPUs)
are arranged in a two-dimensional grid, and the data moves
through the grid in a lock-step clocked manner. In TransLucid,
three variables are needed for the definition of a systolic array:
one for the grid of DPUs (here S), one for the data flowing
horizontally (here X), and one for the data flowing vertically
(here Y).

The systolicmul .d1.d2.n X Y assumes that both X and Y
are n × n matrices varying in dimensions d1 and d2. Each
of X and Y is embedded in a two-dimensional sea of 0s
to produce, respectively, X ′ and Y ′. Then X ′ (resp. Y ′) is
staggered in time with respect to dimension d2 (resp. d1) to
ensure the correct arrival of the elements of X (resp. Y) at the
processing systems. Each system is trivial, doing a multiply
of its two inputs and adding the product to a running total.
The results are ready once 3× n instants have elapsed.

IV. THE PROGRAMMABLE SYSTEM

A programmable TransLucid system, called an object-
oriented TransLucid system, maps streams of input declara-
tions to streams of output declarations. It is designed to be a
generalization of a functional TransLucid system, so it also
maps streams of input arrays to streams of output arrays,
where the rank and extent of all arrays are finite. The input
declarations are used to change the internal behavior of the
system, i.e., the set of equations defining the system, over
time, and the output declarations are used to affect the internal
behavior of other systems.

The intuitions leading to the invention of the object-oriented
system are twofold. First, the existing implementation for
TransLucid already works with the idea that a user programs a
system, in which, at every discrete instant t, new declarations
may be added to the system by the programmer, and all of
the valid declarations for that instant, including ones from
previous instants as well as the new ones, are taken into
account for building up the system of equations for that instant.

Second, the semantics for object-oriented programming, as
envisaged by Alan Kay for Smalltalk, was that an object is a
function mapping a stream of input messages to a stream of
output messages, and that the stream of internal states of the
object was simply a byproduct of this function.

Combining these two intuitions, and maintaining declarativ-
ity, requires that the updates to the set of declarations defining
a system be synchronous and discrete, i.e., updates take place
in discrete transactions.

Assuming that the input declarations have been passed to a
system, handling them is straightforward.

The key problem to be solved, therefore, is how to generate
output declarations from the evaluation of a declarative system
of equations, and then distributing those output declarations to
other systems as input declarations for the latter.

The solution is also twofold. First, the output declarations
are built up by generating side-effects during the evaluation of
the expressions required to produce output during an instant.
Since evaluation of TransLucid is done in a demand-driven
manner, only those side-effects needed will be generated, and,
further, multiple copies of the same side-effect are equivalent

to one copy, hence re-evaluation of an expression can have no
negative consequences.

Side-effects are generated in TransLucid by using the “;”
operator. The expression E1;E2 means evaluate E1, then E2,
and return the value from E2. So, if E1 is a side-effect,
then it will be generated, and computation continues with the
evaluation of E2.

Second, a new kind of value is introduced: the declaration-
multiplexer value. Here is an example declaration:

multidecl dm ck {dr, dc}
which states that identifier dm is a declaration-multiplexer. At
each instant t of clock dimension ck , for every point [dr ←
i, dc ← j], there is a set of declarations D = dmt,i,j . The
set D has two components: D.in and D.out are respectively
the set of input declarations and the set of output declarations
at instant t for the system indexed by [dr ← i, dc ← j].

A family of object-oriented systems is introduced by the
syntax:

fun S˜{dr, dc} dmpar = E

which could also be written

var S = λoos {dr, dc} dmpar → E

which means that the declaration multiplexer formal parame-
ter dmpar is used by the family S of systems, and the two
“space dimensions” dr and dc are used to parameterize a grid
of object-oriented systems.

Adding to dmpar .out is done by evaluating expressions
of the form dmpar .addDecl(guard , idOrSymb, declExpr),
where guard designates which of the systems in the multi-
dimensional grid defined by the bound dimensions dr and dc
will be informed in the next instant of the decls; idOrSymb is
the identifier or symbol being declared, and declExpr is some
kind of expression actually providing the declaration.

At the end of instant t, each system indexed by [dr ←
i, dc ← j] will have produced its dmpar .out component.
The multiplexer dm will then run a builtin functional system
which, reading the guards, produces the set of input declara-
tions for each system from the set of output declarations from
all of the systems.

The infrastructure proposed above allows for the declarative
programming of object-oriented systems, with no explicit
change of state at any level, only the passage of time. In
fact, it becomes possible to define a multidimensional grid of
synchronous multi-agent systems, where at each instant, the
different systems can assess their current state and provide
new declarations both for themselves and for other systems.

Given the novelty of this proposed model of programming,
many programming experiments will need to be undertaken
before a methodology is developed.

Nevertheless, we do provide the following toy example.
There are two systems, S1 and S2, where S2 is setting the
precedence of the plus operator in S1 to be the ordinate of
its clock at each instant. The result computed by S1 may
therefore change from one instant to the next, because its
expression will be reparsed at each instant. Note that both

45

6

S1 and S2 bind dimension d, so that S1 reads from dm at d
taking value 1, and S2 reads from dm at d taking value 2.
In this way, system S2 simply needs to write to its parameter
dmpar at location [d← 1] to program system S1.

clock t
multidecl dm t {d}
fun S1˜ {d}dmparˆck = 1 + 2− 3× 4 + 5∗∗6
fun S2˜ {d}dmparˆck =
dmpar .addOp

(
[d : 1], “ + ”,
OpInfix .“plus”.false.AssocLeft .(#.ck)

)

var demand [slot : 1] = S1˜dmˆt @ [d← 1, t← #.time]
var demand [slot : 2] = S2˜dmˆt @ [d← 2, t← #.time]

In the textual interpreter, variable demand is a special variable
keeping track of all of the current demands. Dimension slot
is used to order the different demands.

V. CONCLUSION

The guiding principle of this article is that if spatial comput-
ing is to have broad success, then space needs to be structured,
and our approach is to use multiple dimensions.

To add spatial computing to TransLucid, we simply extend
the idea of the multidimensional array to the building of
“systems”, so that there can be multidimensional families of
systems.

For functional systems, we add a primitive for packaging
arrays of finite rank and extent into single chunks, and
introduce a clocked dimension, which acts in a causal manner.

For object-oriented systems, we add the ability to generate
side-effects while evaluating an expression, and ensure that
if the same side-effect were to be generated several times,
that it only be counted once. We also introduce the declaration

multiplexer, which distributes the declarations generated from
within a family of systems as output to all of the systems that
should receive these declarations in the next instant as input.

The solutions proposed in this paper need to be im-
plemented, and much experimentation with programming
methodology needs to be undertaken.

REFERENCES

[1] Edward A. Ashcroft and William W. Wadge. Lucid, a Nonprocedural
Language with Iteration. Communications of the ACM, 20(7):519–526,
1977.

[2] Jarryd P. Beck, Blanca Mancilla, and John Plaice. TransLucid user
documentation, version 0.3.0, August 2012. http://translucid.
web.cse.unsw.edu.au/TL-doc-0.3.0.pdf.

[3] Jarryd P. Beck, John Plaice, and William W. Wadge. Multidimensional
Infinite Data in the Language Lucid. Report UNSW-CSE-TR-2013-
06, School of Computer Science and Engineering, The University of
New South Wales, Sydney, Australia, 2013. Submitted for publica-
tion. http://plaice.web.cse.unsw.edu.au/archive/JAP/
U-CSE-201306.pdf.

[4] André DeHon, Jean-Louis Giavitto, and Fréderic Gruau. 06361 Executive
Report – Computing Media Languages for Space-Oriented Computation.
In André DeHon, Jean-Louis Giavitto, and Frédric Gruau, editors, Com-
puting Media and Languages for Space-Oriented Computation, number
06361 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2007. In-
ternationales Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany.

[5] Stuart I. Feldman and Alan C. Kay. A conversation with Alan Kay. ACM
Queue, 2(9):20–30, 2004.

[6] David Maier, Jeffrey D. Ullman, and Moshe Y. Vardi. On the foundations
of the universal relation model. ACM Trans. Database Syst., 9(2):283–
308, 1984.

[7] John Plaice and Jarryd P. Beck. Higher-order Multidimensional Program-
ming. Report UNSW-CSE-TR-2012-15, School of Computer Science
and Engineering, The University of New South Wales, Sydney, Australia,
2012. Submitted for publication. http://plaice.web.cse.unsw.
edu.au/archive/JAP/U-CSE-201215.pdf.

[8] John Plaice, Blanca Mancilla, and Gabriel Ditu. From Lucid to
TransLucid: Iteration, dataflow, intensional and Cartesian programming.
Mathematics in Computer Science, 2(1):37–61, 2008.

46

Computing Activity in Space
Martin Potier∗, Antoine Spicher∗, Olivier Michel∗

∗LACL, Université Paris-Est Créteil,
61 av. du Général de Gaulle 94010 Créteil, France

Email: {martin.potier,antoine.spicher,olivier.michel}@u-pec.fr

Abstract—In the field of modeling and simulation of dynamical
systems, an interesting challenge consists in the spatial computa-
tion of the activity, and its topology, exhibited by their discrete
event simulation. We believe that activity and regions of activity
can help in optimize, analyze and model complex systems.

In a previous work, we have introduced a limited form
of computation of activity. We extend here the algorithm to
take into account any kind of MGS program. We apply the
algorithm to optimise the pattern matching of MGS. A process of
diffusion-limited aggregation is used as a benchmark to provide
encouraging preliminary results.

I. INTRODUCTION

Complex simulation models are usually defined in terms
of a large number of interacting parts. In common modeling
tools and languages it is not easy to extract abstractions of
the dynamics of the whole system, during, before or after its
simulation. When outputs are available, their analysis is long
and meticulous. To our knowledge, no spatial method exists for
finding or using patterns of interactions in system structures,
during a simulation. In the simulation context, activity is
usually used as a stage of the system under study.

We call active regions contiguous active parts. These regions
are evolving according to the laws governing the model. They
are highly dynamical, usually changing at each time step. We
are interested in giving a topological definition of the active
regions and to handle them intentionally [1], as we would with
any other element of the system. We believe that the definition
of activity and activity regions [2], [3] can be used as a central
guiding concept to enhance the dynamics of sub-components
in time, space, and states. Moreover, we believe that it could
open the route to multi-level modeling considering multiple
levels of descriptions of phenomenon.

MGS is an experimental programming language dedicated
to the modeling and the simulation of a special kind of dis-
crete dynamical systems: dynamical systems with a dynamical
structure, or (DS)2 [4]. Dynamical systems with a dynamical
structure arise when the state space is not fixed a priori but is
jointly computed with the current state during the simulation.
In this case the evolution function is often given through local
rules that drive the interaction between some system compo-
nents. MGS offers a new kind of data structure, topological
collections, to describe the state of a dynamical system, and
a new kind of control structure, transformation, to express
local and discrete evolution laws. These two notions permit an
easy specification of (DS)2 and capture most of unconventional
computation models, such as cellular automata, multi-agents

systems, Lindenmayer systems, chemical computations, Paŭn
systems, etc.

We focus in this paper on the spatial computation of
activity and activity regions for programs in MGS involving
matching patterns of arbitrary radius. Section II introduces a
generic method for tracking an active region throughout the
simulation of a dynamical system. Using the link operator
from combinatorial topology, it allows one to decompose the
domain into active and quiescent sub-domains. Active regions
are used to optimize the efficiency of MGS’s pattern matching
algorithm and preliminary results of the optimization are given
in section III. Conclusions are drawn in the last section.

II. SPATIAL COMPUTING OF ACTIVITY IN MGS

We are interested in investigating the concept of activity
in MGS. Activity [3] is a measure of event occurrences or
state changes in a simulation. This measure can be used for
different purposes like optimizing simulation or giving a better
understanding of the dynamics. In the context of MGS, activity
will allow us (1) to develop a more efficient pattern matching
algorithm, and (2) to identify higher level structures in a
model and to track them in simulations. The former will be
illustrated in the next section, the latter will be discussed in
the conclusion.

In this section, we present a generic way to track an active
region throughout the simulation. The reader not familiar with
the MGS concepts should refer to our previous publications [5],
[6], [7].

A. Context

For the sake of simplicity, we restrict ourselves only to
patterns that involve at most two interacting elements. For
example, pattern x, y, z (i.e., matching three elements
where y is a neighbor of x and z is a neighbor of y) is
out of the scope of the following study. However we conclude
the section with a paragraph about the generalization to any
pattern.

We illustrate our idea with a simplistic but paradigmatic
example, a model of forest fire spread where fire spreads
through a forest leaving burnt matter in the form of ashes.
This can be described by a 3-state cellular automaton easily
encoded in an MGS transformation as follows:

trans fire_spread = {
‘Forest as x / member(‘Fire, neighbors x)

=> ‘Fire;

47

C0 C1 = T (C0) C2 = T (C1)

Figure 1. Evolution relation, first three steps of a forest fire simulation. Green,
orange (hatched) and black represent Forest, Fire and Ashes respectively.

‘Fire => ‘Ashes;
}

States are represented by three symbols: ‘Forest, ‘Fire
and ‘Ashes. The first rule specifies how forest gets into
fire when it is neighbor of some fire and the second rule
specifies that fire leaves ashes after burning. Figure 1 shows
three consecutive evolution steps of this automaton on a square
grid topological collection.

In the example of Figure 1, activity is located in a small
subpart of the domain – only cells in fire and forest in
their neighborhoods evolve – and progresses from neighbor
to neighbor. However the usual MGS pattern matching process
needs to iterate over the whole collection at each application of
the transformation fire_spread. Given the small number
of cells in interaction, the matching process is here quite
inefficient. The following study of activity will allow us
to target specifically evolving cells during pattern matching.
Moreover, activity enlightens an important emergent structure
of fire spread models, the fire front.

B. Activity and Interactions

The interpretation of activity in MGS corresponds to the
number of interactions occurring at each time step of a
simulation. Since interactions happen whenever a rule of a
transformation matches a subcollection, activity splits natu-
rally a collection into two parts: the active subcollection as the
subcollection where interactions can occur and the quiescent
subcollection where they cannot.

Let us define the active and quiescent subcollections in a
formal and general way, using the construct of topological
collections. Let C be a collection and T be a transformation.
We define the matching function MT of transformation T as
the function which maps a collection C onto the set of all
subcollections of C matched by a pattern of T . In other words,
the matching function MT represents a call to the pattern
matching process. The active subcollection A of C is then
defined as

A =
⋃

S∈MT (C)

S

that is the merge1 of all matched subcollections of C. Thus, the
quiescent subcollection Q corresponds to the complementary

1The union operator is used instead of the addition since some subcollec-
tions of MT may have overlapping support.

C = A + Q

Figure 2. Decomposition of a topological collection into a set of active cells
and quiescent cells. Green, orange (hatched) and black represent Forest, Fire
and Ashes respectively.

of A in C:
Q = C −A

Figure 2 shows the decomposition into active and quiescent
subcollections for the fire spread example.

C. Activity Dynamics

In order to track activity during the simulation of a system,
we define a way to compute the evolution of the active region
(grow, shrink, carve, etc.) based on the topological properties
of the active subcollection.

Let us consider (C0, C1, . . .) the trajectory of collections
due to the successive applications of a transformation T ,
where Ci+1 = T (Ci) for i ≥ 0. Using the active-quiescent
decomposition on Ci = Ai + Qi, one can notice that the
application of transformation T only acts on the active part
and leaves Qi unchanged so that the pattern matching can be
restricted to subcollection Ai only:

Ci+1 = T (Ci) = T (Ai|F i) +Qi (1)

The notation T (Ai|F i) reflects that the restricted pat-
tern matching process may require some information from
Qi: visiting the neighborhood of some matched element
(e.g., in transformation fire_spread: member(‘Fire,
neighbors x)) does not imply that the visited neighbors
are in Ai. This information is denoted F i which is the
subcollection whose support consists of all quiescent cells with
a neighbor in Ai:

F i = LkAi

The link operator Lk denotes the set of all neighbor cells of
some cell σ. We use here its natural extension to the set of
active cells.

The decomposition of Ci+1 proposed in Equation (1) does
not coincide with the definition of Ai+1 and Qi+1. In fact,
some cells of Qi may become active and vice versa. However
the tracking of the active-quiescent frontier during a simu-
lation can be refined by making use of subcollection F i.
Indeed, assuming that transformation rules involve at most
two neighbor elements, any quiescent cell, at some iteration
of the simulation, having no active neighbor cell will observe
no change in its environment and then will remain quiescent
at the next iteration step. More formally, we obtain:

Qi − LkAi ⊂ Qi+1 Ai+1 ⊂ T (Ai|LkAi) + LkAi (2)

48

The second statement is trivially obtained using complemen-
tary and means equivalently that the active part cannot expand
further than F i. Equation (1) is then rewritten

Ci+1 =
[
T (Ai|LkAi) + LkAi

]
+
[
Qi − LkAi

]
(3)

D. Optimized Pattern Matching

In the light of Equations (2), it is obvious that Equa-
tion (3) over-approximates the active-quiescent decomposition
of Ci+1. As an example, on Figure 3, bold lines represent the
limit of expansion of the active part at next step but some
cells in this subcollection become quiescent. These cells can
be identified as the cells of T (Ai|LkAi)+LkAi which cannot
be involved in any interaction at time i + 1. In other words
they are not selected by the pattern matching process:

MT (C
i+1) = MT (T (A

i|LkAi) + LkAi)

and the computation of sequence (Ai)i∈N follows
{
A0 =

⋃
S∈MT (C0) S

Ai+1 =
⋃

S∈MT (T (Ai|LkAi)+LkAi) S

Notice that this recursive definition of Ai does not refer to the
quiescent subcollection Qi anymore, since the neighbor oper-
ator Lk exactly targets the interesting cells. As a consequence,
activity tracking during the simulation allows us to focus on
a reduced part of the collection for pattern matching. The
induced optimization is discussed and illustrated in Section III
on a more complex example.

Figure 3. Evolution of the active-quiescent frontier for the three steps of
Figure 1. Active cells in red, quiescent cells in light blue. The bold lines
represent the decompositions induced by Equation (3).

E. Topological Characterization

The previous study can be generalized to transformations
involving more than two interacting elements by reconsidering
how far the active subcollection can expand at each time step.
Let r be the radius of an interaction, i.e., the minimum distance
(in terms of hops) between interacting elements. The previous
restriction was to only consider transformations of radius r =
1, which was considered in our previous work [8]. Let us now
consider an arbitrary radius r ∈ N.

The expansion F i
r of Ai for a radius r is given recursively

by {
F i
0 = 0
F i
r+1 = Lk(Ai + F i

r) + F i
r

This definition is analogous to the definition of the wave
operator W (n) in [9] and reveals the topological nature of

e

n ne

se

w

ssw

nw

Figure 4. A GBF defining a Moore neighborhood, with four generators e, n,
ne and se and two constraints n+ e = ne, e− n = se. The directions w, s,
sw and nw are defined as the inverses of the generators.

activity. The wave operator is used for the elaboration of a
combinatorial Morse theory; Morse theory is a mathematical
tool for studying topology of spaces. Roughly speaking, this
theory deals with Morse functions – a way to flood the space
with some “liquid” – and critical points – where the liquid
reveals basins, passes and peaks of the topography of the
space. We are currently investigating the analogy between
Morse theory and activity tracking: Morse functions will
correspond to activity propagation and critical points to space-
time positions where independent activity zones segregate or
collide, pointing out important events in the model.

III. PRELIMINARY RESULTS

In this section, we consider a more elaborate example: we
chose to implement a model of a system presenting diffusion-
limited aggregation (DLA). Contrary to the forest fire spread
model, the DLA model presents real interactions between two
particles, and not just reactions of a particle depending on
the state of its neighbors. Following results of Section II,
information provided by activity is used to speed up the
simulation by applying the rules of the transformations only
to the active regions.

A. The Example of DLA simulation

DLA phenomenon is a well-known example of aggregate
particules clustering together to form Brownian trees [10]. It
can be implemented [11] on a Cellular Automaton (CA) and
so we implemented it in MGS.

1) State Representation in MGS: The regular lattice used
in the CA is represented using a GBF topological collection
representing a Moore neighborhood on a cyclic 2D square
grid.

In MGS, such a collection is specified from a presentation of
the group of displacements. The definition of a Moore neigh-
borhood grid, requires four basic displacements n (north),
e (east), ne (north-east) and se (south-east) as shown on
Figure 4:

gbf Grid = < n, ne, e, se ;
50 n = 0, 50 e = 0,
ne = e + n, se = e - n >

The four additional equations specify that the grid is cyclic
of size 50 × 50, and define relations between diagonal and

49

Figure 5. DLA at 3 different iterations, from left to right, of a simulation
with mobile particles starting at the center and static particles on the borders
on a 50× 50 grid. In the top serie, ‘mobile cells are in red, ‘static in
blue, and ‘empty in white. In the bottom serie, active cells are in red, and
quiescent are in blue.

non-diagonal directions while the reverse directions are auto-
matically considered. Then, each cell of the GBF is labeled by
its state, which varies along the iterations of the simulation.

type cell = ‘empty | ‘mobile | ‘static ;;

The label ‘mobile refers to a cell containing a particle that
may randomly move out at a next iteration; the label ‘static
is used for cells where there is a particle that will remain still
for the rest of the simulation, and the label ‘empty means
that there is no particle on the cell therefore it is available to
host one particle at the next iteration.

2) Dynamics Specification in MGS: Specifying the dynam-
ics of the DLA in a transformation amounts to specifying two
rules which are applied following a maximal parallel strategy:

trans evolution = {
‘mobile, ‘static => ‘static, ‘static ;
‘mobile, ‘empty => ‘empty, ‘mobile ;

} ;;

The first rule of transformation applies if two neighbor cells
are in states ‘mobile and ‘static, and replaces them by
a couple of cells which states are both ‘static. The second
rule of transformation matches if two neighbor cells are in
states ‘mobile and ‘empty in which case they exchange
their states to simulate a particle “jumping” from one spot to
another. Note that the priority is given to the first rule allowing
a cell labeled ‘mobile surrounded by many ‘empty and at
least a ‘static to become ‘static instead of continuing
its walk. This transition function iterates over all cells and
updates their labels. Figure 5 shows simulations of the model
at different iterations.

B. Benchmark

Using the classical pattern matching algorithm, the entire
topological collection must be iterated over at every update.
For a CA on a square grid of side length n, the process must go
through the n2 cells leading to an update step with a constant

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900

Iterations

Topt/Tnorm

Active/1002

Figure 6. Amount of active cells, and computation time for optimized
algorithm per iteration step on a 100×100 grid. Values have been normalized
using the total size of the grid (10 000 cells), and the computation time of a
normal run per iteration step respectively.

time since all cells must be visited at each iteration. However,
only a fluctuating number of cells have their values changed
on the update – which correspond to only a fraction of the
grid.

In this section, we use activity information to reduce the cost
of pattern matching. The example of DLA was rewritten to have
the transformation rules only apply to the active regions and
skip the quiescent part. As with the theoretical view presented
in Section II, the cellular automaton space is split between
active cells taking part in a transformation, meaning that they
are caught in an interaction, and quiescent cells having no role
to play whatsoever in the current iteration. This results in a
speed-up of the whole computation.

Figure 6 presents a plot of the count of active cells for
each iteration, and of the computation time by iteration for the
optimized run of the simulation. The occasional noise comes
from the fluctuating workload on the test computer.

As shown in Figure 5, at the beginning of the simulation,
very few cells are active; there is only the “crown” around the
initial square of mobile particles which are particles with some
freedom of movement. Their amount increases dramatically
with the random walk of the particles starting to fill the
domain to only lower once they pair more and more with
a static particle. As with a classical cellular automaton, the
computation time is linear with the number of cells: the
more cells there are, the more time it requires with the
same computation time by cell. Moreover, the computation
time of the non-optimized run is roughly the same for every
iteration: the pattern matching mechanism must explore all of
the 10 000 cells to verify whether a rule applies. Whether a rule
matches or not hardly changes the time required to compute
the application of a transformation rule.

From the graph, we can notice that activity and computation
time of the optimized run coincide since the latter directly
depends on the amount of cells to explore. Then, it is only

50

natural that the shape of the curve is nearly identical to the
variation of the amount of active cells.

Cells are never all active at once. Actually, for the presented
run, the maximum amount of active cells is very low and
stays below 30% of the total amount. So, even at its peak,
the optimized run always requires less computation time by
iteration than the non-optimized one. The cost of maintenance
can be read from the difference between the computation time
of the optimized run and the active cell count. In our case,
it is rather elevated, one reason would be that the activity
optimizations were implemented on top of MGS, and not yet
included in the language itself. This optimization is data-
dependent, had we changed the initial values, the graph would
have been altered too. Therefore, a general or global speed-up
does not make sense. More generally, there is no guarantee
of speed-up but there cannot be a slow-down since the worst
case scenario would correspond to a pattern matching on the
whole structure, that is the normal run. Regarding the DLA,
such a speed-up is dependent on the type of implementation; in
an agent-based implementation, activity tracking would have
allowed a focus on the mobile particles only and thus an
optimal speed-up.

IV. CONCLUSION

This paper focuses on the computation in space of activity
and activity regions in the context of the domain-specific
language MGS. We have extended the topological framework
introduced in [8] to compute these two notions on match-
ing patterns of arbitrary radius. Activity regions have been
successfully used to reduce the cost of pattern matching in
the simulation of an example of diffusion-limited aggregation.
Here activity appears to be a data-dependent optimization
technique that can be easily combined with other techniques.
It is important to stress that, due to the topological approach
followed by MGS, the computation of activity regions describe
in this paper are valid for any kind of topological collections
available in the language.

The perspectives opened by this work are numerous. At
the runtime level, the optimization of the MGS runtime is a
long term effort. We have to internalize in the runtime the
computation of the active regions. Indeed, we believe that it
is not the role of the programmer to seek for complex and
obfuscating optimizations but to the language (or the execution
support) to provide automatic high-level techniques to reduce
the execution time.

At the language level, activity regions are not first-class
objects: they are computed at each time-step of the simulation,
and there is no link between regions computed at two different
time steps. We plan on reifying the regions to first-class objects
and to add operators to handle these new objects. Moreover,
as we pointed out in section II-E, we have to investigate the
analogy between Morse theory and activity tracking. Those
two directions will be the key to level up the language to multi-
level modeling of complex dynamical systems that exhibits
behaviors at multiple levels of descriptions (like in biology
the molecular level, the cellular level, the organic level, etc.).

ACKNOWLEDGMENTS

We are grateful to J.-L. Giavitto at CNRS-IRCAM for being
part of the MGS project since its beginning in 2001.

The work on activity would not have “grown” without the
participation of, and the fruitful interactions with many col-
leagues. The authors are especially grateful to the community
born during the Cargese Interdisciplinary Seminar in 2009 and
more specifically to A. Muzy at the CNRS, B. P. Zeigler at
the University of Arizona and D. RC Hill at the University
Blaise Pascal - Clermont-Ferrand.

This research is supported in part by the French ANR grant
“SynBioTIC” 2010-BLAN-0307-03, the Université Paris-Est
Créteil, the IRCAM (CNRS, UMR STMS 9912), the Univer-
sité of Évry and the Complex System Institute - Paris.

REFERENCES

[1] A. Spicher, O. Michel, and J.-L. Giavitto, “Spatial computing as inten-
sional data parallelism,” in Third IEEE International Conference on Self-
Adaptive and Self-Organizing Systems - Spatial Computing Workshop,
San Franciso, United States, 14–18 September 2009.

[2] A. Muzy, L. Touraille, H. Vangheluwe, O. Michel, M. Kaba Traoré,
and D. R.C. Hill, “Activity Regions for the Specification of Discrete
Event Systems,” in Spring Simulation Multi-Conference Symposium On
Theory of Modeling and Simulation - DEVS Integrative M&S Symposium
(DEVS’10), USA, 2010, p. Accepted for publication, ACM, SCS CNRS.

[3] A. Muzy, F. Varenne, B. P. Zeigler, J. Caux, P. Coquillard, L. Touraille,
D. Prunetti, P. Caillou, O. Michel, and D. R. Hill, “Refounding of activity
concept? Towards a federative paradigm for modeling and simulation,”
SIMULATION: Transactions of The Society for Modeling and Simulation
International, vol. 89, no. 2, pp. 156–177, 2012.

[4] J.-L. Giavitto, C. Godin, O. Michel, and P. Prusinkiewicz, Modelling and
Simulation of biological processes in the context of genomics. Hermes,
Jul. 2002, ch. “Computational Models for Integrative and Developmental
Biology”, also republished as an high-level course in the proceedings of
the Dieppe spring school on “Modelling and simulation of biological
processes in the context of genomics”, 12-17 may 2003, Dieppes,
France.

[5] A. Spicher, O. Michel, and J.-L. Giavitto, “Spatial computing as inten-
sional data parallelism,” in Third IEEE International Conference on Self-
Adaptive and Self-Organizing Systems - Spatial Computing Workshop,
San Franciso, United States, 14–18 September 2009.

[6] L. Bigo, A. Spicher, and O. Michel, “Spatial programming for music
representation and analysis,” in Fourth IEEE International Conference
on Self-Adaptive and Self-Organizing Systems - Spatial Computing
Workshop, Budapest, Hungary, 27 September 2010.

[7] A. Spicher, O. Michel, and J.-L. Giavitto, “Arbitrary nesting of spatial
computing,” in Spatial Computing Workshop 2012 at AAMAS. Valencia,
Spain: AAMAS, June 2012.

[8] M. Potier, A. Spicher, and O. Michel, “Topological computation of
activity regions,” in Submitted to the Conference on Principles of
Advanced Discrete Simulation (PADS’13), 2013.

[9] U. Axen, “Topological analysis using morse theory and auditory dis-
play,” Ph.D. dissertation, University of Illinois at Urbana-Champaign,
Champaign, IL, USA, 1998.

[10] T. A. Witten and L. M. Sander, “Diffusion-limited aggregation, a kinetic
critical phenomenon,” Phys. Rev. Lett., vol. 47, pp. 1400–1403, Nov
1981.

[11] A. Spicher, N. A. Fatès, O. Simonin et al., “From reactive multi-
agent models to cellular automata - Illustration on a diffusion-limited
aggregation model,” Proceedings of ICAART’09, 2009.

51

52

Application of Force-Directed Graphs
on Character Positioning

Christine Talbot and G. Michael Youngblood
Game Intelligence Group

University of North Carolina at Charlotte
Email: {ctalbot1, youngbld}@uncc.edu

Abstract—Mixed human-agent control and positioning is a
challenge in virtual environments, such as the theater. The main
impacts are found when human-controlled characters choose not
to follow a predefined script, or play-script.

Force directed graphs have been utilized to provide clean
layouts for large and complex graphs and their relationships.
Here, we utilize a force-directed graph approach to spatially
organize where our characters are while on-stage. We analyze our
approach’s success against the basic positioning of the characters
on-stage, using our predefined goals for the force-directed graphs
from our previous work.

I. INTRODUCTION

There is a need for greater automation of character position-
ing within virtual environments, especially around visualiza-
tions of play-scripts, or production notes. This becomes more
critical when arranging a mix of human- and agent-controlled
characters. Humans do not always follow predictable patterns,
and virtual characters must be able to react appropriately
(spatially) within the environment.

A simple example of this is within theatre productions as
a virtual environment. In real life, actors arrange themselves
on the stage according to both basic rules of the theatre, as
well as with respect to the positioning of the other actors
on-stage. Humans may not always hit their mark like they
should, may move when they are not supposed to, or may
not even move at all during the play. This presents issues
with the blocking within the play, as the other characters on-
stage are assuming that the human followed the script. If the
agent-controlled characters do not adjust, they could create
unrealistic positionings of the characters based on the standard
rules of thumb for theatre, but also could obstruct visibility to
themselves or the human-controlled character for the audience.
In video games, there is also a desire to adjust the positions
of the agent-controlled characters based on where the human-
controlled character is, in order to provide better visibility (or
less visibility) of those characters.

In this paper, we look at force-directed graphs to assist
with positioning the agent-controlled characters based on the
movements of the human-controlled character within a theatre
environment. Force directed graphs, also known as string em-
bedders, utilize the information contained within the structure
of the graph when placing nodes on the screen. They have been
shown to create both aesthetically pleasing and symmetric
graphs, and have been used for many years to display complex
graphs. Some have been used for visualizing networks, such

as a social network, or even to better understand relationships
between entities.

We review some key force-directed graph algorithms and
extract some key features provided by them, which can be
utilized for positioning our characters on-stage. Results of
implementing our proposed algorithms from our previous work
[1] are presented, showing reasonable results for six of our
eight targeted requirements for force-directed graphs.

II. BACKGROUND

Prior work has centered around the emotional and one-on-
one interactions of characters with humans. The placement of
characters on a stage has not been heavily pursued. Many re-
searchers focus on the conversational and nonverbal domains,
such as Thespian [2], Virtual Storyteller [3], and Stability
and Support Operations (SASO) [4]. However, these do not
emphasize the spatial aspects of the interactions between
multiple characters.

To appropriately apply spatial logic, there are some key
works done by groups around personal space and conversa-
tional space. For instance, Jan and Traum describe six different
forces that affect when / why a person may shift position when
in a group of people:

• one is listening to a speaker who is too far and or not
loud enough to hear

• there is too much noise from other nearby sound sources
• the background noise is louder than the speaker
• one is too close to others to feel comfortable
• one has an occluded view or is occluding the view of

others [5]
Additional research shows that friendship and attraction

can affect the spatial distances between people (decreases as
attraction increases), while negative attitudes may not have
much effect on the spatial distances [6]. People also prefer
to be across from one another than next to each other in
most situations, but there is importance to the environment
for determining what distance is comfortable [7]. According
to studies reviewed by Sundstrom, comfortable face-to-face
distances for speaking while sitting is approximately five feet
and comfortable face-to-face conversation while standing is
approximately three feet [6]. There is also a discussion around
the effects of spatial invasion on character behaviors and
movements within Sundstrom’s review.

53

Robotics focuses more on spatial reasoning, such as verbal
instructions. For instance, Langley, Schermerhorn, and Scheutz
provide an approach to human-robot interaction which allows
for communicating complex tasks which can be translated into
procedures for the robot [8]. Matuszek and Herbst take natural
language and robotic perceptions and translate it into a robot
control language for following route directions [9]. Dzifcak,
Scheutz, and Baral also utilize natural language to determine
actions and goals for the robot [10]. All of these incorporate
telling a robot what to do or where to go.

In addition, Brooks’s work attempted to train a robot to be
an actor by utilizing verbal directions [11]. This is helpful,
but we require less explicit directions for our work. David
Lu and Bill Smart’s work with robots in theatre focused on
pre-recording real actors’ movements and replicating them on
robots to perform specific scenarios [12]. The focus in their
work is on believability; however, this work is based more
on a motion capture-like style of replaying actions done by a
human and does not address our concerns with dynamically
positioning multiple characters without pre-recording.

In our previous work, we focused on what had been
explicitly written as an annotation (in natural language) within
a play-script [13]. We showed that combining play-scripts,
natural language, and a rules engine can correctly position
characters, on average, 89% of the time [14] with respect to a
well-known production of Hamlet [15]. Movements identified
by our natural language processor were fed into our rules
engine to adjust the motion based on these rules:

r1: Characters should face the audience as much as possible,
and avoid turning their back to the audience

r2: Characters should face the person speaking
r3: Characters with higher importance or larger roles should

be placed slightly closer to the audience relative to lesser
role characters

r4: Characters should try to stay closer to center line as much
as possible to improve visibility for the maximum portion
of the audience

r5: Characters should avoid unnatural movements by adher-
ing to basic frame coherence rules, such as not having
their gaze or orientation jump from left to right immedi-
ately

r6: Characters should maintain appropriate personal space
based on inter-character relationships within the play

r7: Characters should be next to an item they wish to pick
up [14]

However, all of this prior work was done with computer-
controlled characters only. We had not introduced the variable
of a human-controlled character, where we must adjust our
rules in a more real-time manner. Therefore, we proposed
the use of force-directed graphs for positioning characters
in our prior work [1], and provided some key algorithms to
assist with translating force-directed graphs into a positioning
network on-stage. Our focus is on ensuring that all the
characters on-stage (including the human-controlled character)
are appropriately positioned, even with an incorrect human

movement (or lack thereof).

III. RELATED WORK

Crowd modeling at first thought appears to be an appropriate
approach to positioning characters. Upon further investigation,
it can be seen that crowd modeling focuses more on modeling
people’s behaviors as opposed to the close-knit intricacies
of the relationships between the characters onstage. It does
not focus on spatially pleasing arrangements as a whole, but
rather looks at each individual’s contribution independent of
the others. In theatre, the goal is to have the actors work
together as a whole, not as independent entities, and thereby
is not suitable for a theatre-type environment.

The next logical approach involves the use of force-directed
graphs and their repellent and attractive forces to spatially
arrange the characters. The connected nodes (or characters
in our situation) are arranged as a whole to be aesthetically
pleasing, meaning that all edge lengths should be the same
length, and it should maximize symmetry over the entire graph
layout. They have been used for many different purposes,
such as social networks, like Bannister et al’s work. Their
work attempts to centralize vertices that are more theoretically
central in the graph [16]. This is interesting because of its close
relationship to our work—visualizing relationships between
nodes.

Network visualizations use force-directed graphs to help
identify information about different clusters, and arranges
graphs into symbolic shapes to help recognize the relative size
of the clusters. These allow viewers to be able to estimate
overall sizes of the graphs, as well as recall the layout of
the graph at a high level. It does best with clusters of about
eight vertices, and may not do well scaling to sparse clusters
[17]. This could prove useful in specifically shaping clusters
of characters into particular shapes such as a semi-circle when
discussing.

One of the first force-directed graph drawing methods was
provided by Tutte in 1963 [18]. In his algorithm, he guarantees
a crossings-free drawing if all faces of the drawing are convex
for a 3-connected planar graph. The forces in this model are
proportional to the distance between vertices, with no repulsive
forces, and places each free vertex at the barycenter (center
of mass) of its neighbors. This is useful in our work since
we are concerned with obstructing the audience’s view of all
the characters onstage. However, there are some results of
this algorithm that produce a graph with infinite area [19],
or would not place our characters within our stage’s confines.
Also ensuring three-connectedness and a convex drawing may
be challenging in a dynamic environment with a human-
controlled character, such as the theatre’s stage.

In 1991, Fruchterman and Reingold introduced an algorithm
which provides an equalization of vertex distributions. It
calculates the forces between adjacent vertices as well as
between all pairs of vertices. It also introduces the concept
of temperature to reduce the amount of movement of vertices
as the layout improves. This algorithm was targeted for small
graphs, such as those with 40 or fewer vertices, not unlike what

54

we expect to have within the theatre. Its cooling of movement
via temperature is a specialized use of simulated annealing,
which helps to limit oscillations of the layout. However the
forces are based on the size of the grid that is to be drawn on,
and therefore tries to maximize the real estate used. [20]

Another algorithm, by Kamada and Kawai, tries to minimize
the distance of vertices from their corresponding, underlying
graph distances [21]. This method is intriguing because of
the intent to keep closely related nodes together. However, it
requires more computation (O(|V |3) time) and more storage
space (O(|V |2) space) since it requires a shortest distance
calculation on every vertex before running its minimization
function [19]. Even though we could calculate the underlying
shortest distances for the graph ahead of time, we would need
to adjust this each time a character is introduced into the scene
or creates a new association to a targeted position onstage.
Also, we have some key relationships which encourage a
character to hit their mark(s) and remain there until their next
movement in the play. Kamada and Kawai’s method would
equally distribute the characters from each other as well as
their marks, which is undesirable in the theatre.

Other more complex force-directed graph drawing algo-
rithms exist that can accommodate tens and hundreds of
thousands of vertices. These attempt to break down the graph
into simpler structures, like Hadany and Harel [22] or Gajer,
Goodrich, and Kobourov [23]. They often involve three-
dimensional drawing of the graphs and zooming in order to
provide visibility to the nodes of the graph. However, we
are focused on very small numbers of vertices and a planar
drawing area, so these do not provide much use for our current
work.

IV. APPROACH

To utilize force-directed graphs for positioning characters,
we applied the algorithms based on Fruchterman and Rein-
gold’s algorithm, as discussed in our prior work [1]. The al-
gorithms included the details on constructing the graph’s nodes
and vertices to reflect the relationships between the characters,
pawns, and the audience. They centered on the addition of
characters, the movement of characters, the movement of the
human-controlled character, the leaving of characters, and the
elapsing of time.

The main algorithm utilized the forces and this graph
for repositioning characters on-stage whenever the human-
controlled character moved. Each character relationship (edge)
had its own unique forces that pushed or pulled the AI
characters (vertices) around the stage. Some vertices are setup
to be unmoveable, such as the human-controlled character and
the targets/pawns. For instance, the relationship between the
AI character and its mark/target would pull the AI character
closer to the mark, depending on how long it had been since
the character moved to that location. The targets are identified
by the play-script, with the assumption that all characters
(including the human-controlled one) hit their marks correctly
and on-time.

The goal for the non-moveable vertices is to act as attractors,
but not repellers for the moveable characters. This can be
seen in the table of forces in Table I. The attraction and
repelling of the vertices is setup to be a quadratic function
of the distance of the two vertices. This ensures a stronger
pull or push between the vertices as they get further or closer
together, respectively. The special vertices of the audience to
the character helps to attract the characters to the front of the
stage as much as possible, while the center point is intended
to act as a barycenter (or mass center point) for the characters
onstage. By providing the center point a strong attraction to
the audience, it forces the group of characters to form a semi-
circle facing the audience.

Fo
rc

e
Ty

pe

A
I

C
ha

r

C
en

te
r

Pt

AI Character Attract |δ|2 − α2

AI Character Repel −|δ|2 + α2

Human Character Attract |δ|2/2− α2

Human Character Repel 0

Audience Attract |δ|2 − L2/4 |δ|2 − L2/16
Audience Repel −|δ|2 + L2/4 0

Center Point Attract |δ|2 − α2

Center Point Repel −|δ|2 + α2

Target / Pawn Attract β|δ|2 − α2

Target / Pawn Repel 0

TABLE I: Attractive and Repellent Forces
|δ| = Separation Distance, α = Desired Separation Distance

The key requirements that are met by these particular forces
and graph structures are described in more detail in our prior
work [1]. However, to provide appropriate context, they are
briefly described here as well. They are based on the typical
rules of the theatre and conversational groupings as described
in the Background section and our prior work on a rules engine
[14].
Even Vertex Distribution – Provide a sense of balance and

symmetry with the character positioning onstage
Small Number of Vertices – To maintain a small number of

vertices within the graph, less than 40 vertices
Crossings-Free Drawing – Avoid occlusions of characters

from the audience perspective, if three-connected graph
with convex faces

Fixed Vertices – Ability to include unmoveable vertices to
assist with characters hitting their marks

Oscillation-Free Arrangements – Avoid oscillation of posi-
tions for a single arrangement of characters with the use
of a cooling factor

Strength of Relationships Over Time – Ability to adjust
the strength of relationships between characters and tar-
gets over time

Centering and Encircling Groups – Ensure characters pro-
duce a consistent conversational grouping arrangement
(semi-circle)

Varying Attracting and Repellent Forces – Ability to have

55

(a) Random Layout
of Three Characters

(b) Adjustment of Figure 1a
Using Force-Directed Graphs

(c) Random Layout
of Nine Characters

(d) Adjustment of Figure 1c
Using Force-Directed Graphs

Fig. 1: Character Positioning Using Force-Directed Graphs—Red=Human; Green=AI Character; Black=Pawn; Blue=Center Pt

different relationships between the vertices that control
the forces incurred

Validating the accomplishment of these requirements, we
will need to measure performance in three separate, but
related, threads. The first is to validate the positioning from
randomized states of the play, which is done in this paper.
Most of the requirements can be measured during this ex-
perimentation. Next, the positioning of the characters must
be validated over the duration of an entire scene or play.
This test focuses on the oscillation-free arrangements and the
strength of relationships over time, in conjunction with human-
controlled character movements both correct and incorrect.
Finally, it is important to validate these positionings with
respect to a human audience. Is the play reasonably blocked,
and is it a believable arrangement of the characters?

This approach can be applied to predefined trajectories of
characters, if the target destination is considered the current
location of the character during the adjustment calculations.
It will not address the orientation of the characters at each of
these positions. However, our prior work with a rules engine
can be utilized to adjust gazes appropriately.

V. EXPERIMENTATION

To test our approach, we implemented the algorithms de-
scribed in our previous work [1] in a JSGameSoup javascript
application. Here, the stage was represented as a box within
the screen, and characters as circles with connecting lines
representing their relationships. One character (the human-
controlled character) could be moved by dragging it across the
screen, to represent the human-controlled character. Numerous
scenarios were tested by randomly placing characters, pawns,
and the human character on the screen and applying the force-
directed graph drawing algorithms to arrange them on the
screen, as seen in Figure 1.

Each AI character (in green) is connected to every other AI
character on the stage, the human-controlled character, and
the audience. They are also sometimes connected to a target
position, or pawn, to indicate their correct “mark” on the stage
for this moment in the play. These target point connections
have no repellent forces, but very strong attractive forces (β)
applied to them. Also, if there is at least two AI characters

on the stage, they are also connected to a center point which
only has attraction forces applied to it. The human character
is also tied to this center point (if it exists), the audience,
and every character on the stage. The relationship between
the human-controlled character and the AI characters has a
weaker attraction force than the between-AI character forces.
The center point is given a stronger tendency to be in the front
quarter of the stage than any of the AI or human-controlled
characters to help force the semi-circular arrangement on the
stage, as well as an opening in the grouping which faces the
audience. Each force is described further in Table I.

These forces allowed for a relatively consistent positioning
distance of about 3.14 (SD=1.54) feet between the different
characters, which provided our “Even Vertex Distribution”
as described above. Even with 12 characters plus the one
human-controlled character on the screen, we had at most 40
vertices in our graph, which kept us within reasonable limits
for the Fruchterman and Reingold algorithm approach. We
observed that the fixed points (also known as the AI characters’
target destination) pulled the characters toward them, which
helped to minimize movement of the character from their
mark. This distance averaged at 494.56 drawing units apart,
which represents about 3.30 (SD=1.52) feet of spacing, and
was relatively consistent across the different sized character
groupings tested (1-12) as seen in Table II.

The forces were varied between the audience, the center
point, the target pawns, the AI characters, and the human
character, with the target pawn connections being the strongest
attraction (with no repelling forces), and the AI character
interrelationships being the strongest repellent forces. This,
in conjunction with the center point, provided balance with
the positioning and provided semi-circle positioning for the
smaller number of characters on the stage, as seen in Figure
1b. However, for the larger character groups, they often formed
a more circular arrangement, with the audience side not quite
being enclosed, as seen in Figure 1d. More work may be
required to better balance the grouping arrangements of the
characters.

More work needs to be pursued to test the varying relation-
ship strengths over time, as well as the impact of oscillations
between arrangements. Some preliminary testing indicated is-

56

Number
of
Characters

Character
Connected
To:

Average
Distance
(in Drawing
Units)

Average
Distance
(in Feet)

1 audience 370.63 2.47
1 human 526.30 3.51
1 target 496.80 3.31
2 audience 515.92 3.44
2 center 270.80 1.81
2 char 400.74 2.67
2 human 488.35 3.26
2 target 456.22 3.04
3 audience 449.66 3.00
3 center 355.34 2.37
3 char 414.75 2.77
3 human 662.09 4.41
3 target 448.98 2.99
4 audience 528.01 3.52
4 center 296.00 1.97
4 char 424.55 2.83
4 human 468.30 3.12
4 target 555.88 3.71
5 audience 419.66 2.80
5 center 378.33 2.52
5 char 529.04 3.53
5 human 466.43 3.11
5 target 611.72 4.08
6 audience 425.97 2.84
6 center 368.86 2.46
6 char 482.32 3.22
6 human 484.72 3.23
6 target 464.94 3.10
7 audience 436.75 2.91
7 center 348.79 2.33
7 char 469.19 3.13
7 human 502.33 3.35
7 target 428.91 2.86
8 audience 415.04 2.77
8 center 401.58 2.68
8 char 564.30 3.76
8 human 462.93 3.09
8 target 487.51 3.25
9 audience 498.57 3.32
9 center 439.40 2.93
9 char 511.48 3.41
9 human 502.24 3.35
9 target 489.51 3.26
10 audience 482.81 3.22
10 center 376.99 2.51
10 char 483.21 3.22
10 human 480.38 3.20
10 target 521.40 3.48
11 audience 496.43 3.31
11 center 394.77 2.63
11 char 478.84 3.19
11 human 495.07 3.30
11 target 480.68 3.20
12 audience 476.52 3.18
12 center 403.22 2.69
12 char 477.78 3.19
12 human 498.51 3.32
12 target 493.62 3.29

TABLE II: Average Distances (in Feet) Between
Characters and Pawns

sues with oscillations of character positioning where characters
would swap places, but still maintain the overall layout on
the stage. Additional force manipulations may achieve better
results than found during this particular experiment.

VI. CONCLUSION

The results from this work are encouraging, but may require
some additional fine-tuning to better optimize the balance
between the different forces. We showed that force-directed
graphs can create a balanced and centralized grouping of
characters on the stage, and maintain relatively consistent
distances between characters versus other connections on the
stage. This resulted in meeting the following six out of the
eight criteria discussed in this paper:

• Even Vertex Distribution
• Small Number of Vertices
• Fixed Vertices
• Oscillation-Free Arrangements
• Centering and Encircling Groups
• Varying Attracting and Repellent Forces
Future work will involve sequentially positioning characters

through a single scene to enable measurement of time-based
relationships, such as target relationships and paired character
entrances. Also, user studies to analyze the human perspective
of the resulting positioning will be key in determining the
overall success of this work.

REFERENCES

[1] C. Talbot and G. M. Youngblood, “Positioning Characters Using Forces,”
in CAVE, 2013.

[2] M. Si, S. C. S. Marsella, D. V. Pynadath, and M. Rey, “Evaluating Direc-
torial Control in a Character-Centric Interactive Narrative Framework,”
Proceedings of 9th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2010), pp. 1289–1296, 2010.

[3] M. Theune, S. Faas, and D. Heylen, “The virtual storyteller: Story
creation by intelligent agents,” Proceedings of the Technologies for
Interactive Digital Storytelling and Entertainment TIDSE Conference
(2003), 2003.

[4] P. Kenny, A. Hartholt, J. Gratch, W. Swartout, D. Traum, S. Marsella,
and D. Piepol, “Building Interactive Virtual Humans for Training
Environments,” The Interservice/Industry Training, Simulation &
Education Conference (I/ITSEC), vol. 2007, no. -1, 2007. [Online].
Available: http://ntsa.metapress.com/index/awk02100355170v6.pdf

[5] D. Jan and D. R. Traum, “Dynamic Movement and Positioning of
Embodied Agents in Multiparty Conversations,” in Proceedings of the
Workshop on Embodied Language Processing, ser. Embodied NLP ’07.
Stroudsburg, PA, USA: Association for Computational Linguistics, 2007,
pp. 59–66.

[6] E. Sundstrom and I. Altman, “Interpersonal Relationships and Personal
Space: Research Review and Theoretical Model,” Human Ecology,
vol. 4, no. 1, pp. 47–67, 1976.

[7] R. Sommer, “The Distance for Comfortable Conversation: A Further
Study,” Sociometry, vol. 25, no. 1, pp. 111–116, 1962.

[8] N. Trivedi, P. Langley, P. Schermerhorn, and M. Scheutz, “Communi-
cating, Interpreting, and Executing High-Level Instructions for Human-
Robot Interaction,” in Proceedings of the 2011 AAAI Fall Symposium
on Advances in Cognitive Systems, Arlington, VA, November 2011.

[9] C. Matuszek, E. Herbst, L. Zettlemoyer, and D. Fox, “Learning to
Parse Natural Language Commands to a Robot Control System,” in
Proceedings of the 13th International Symposium on Experimental
Robotics (ISER), June 2012.

[10] J. Dzifcak, M. Scheutz, C. Baral, and P. Schermerhorn, “What to do and
How to do it: Translating Natural Language Directives into Temporal
and Dynamic Logic Representation for Goal Management and Action
Execution,” Proceedings of the 2009 IEEE international conference on
Robotics and Automation, pp. 3768–3773, 2009.

[11] A. G. Brooks, “Coordinating Human-Robot Communication,” Ph.D.
dissertation, MIT, Jan. 2006.

[12] D. V. Lu and W. D. Smart, “Human-robot interactions as theatre,” in
RO-MAN 2011. IEEE, 2011, pp. 473–478.

57

[13] C. Talbot and G. M. Youngblood, “Spatial Cues in Hamlet,” in Intelligent
Virtual Agents, Y. Nakano, M. Neff, A. Paiva, and M. Walker, Eds.
Springer, 2012, pp. 252–259.

[14] ——, “Shakespearean Spatial Cues,” in International Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2013, Saint Paul,
Minnesota. IFAAMAS, 2013.

[15] B. Colleran, J. Gielgud, W. Shakespeare, R. Burton, H. Cronyn,
A. Drake, and E. Herlie, “Hamlet, Electronovision, Inc.” 1964.
[Online]. Available: http://www.youtube.com/watch?v=NelO Jm5O6w

[16] M. J. Bannister, D. Eppstein, M. T. Goodrich, and L. Trott, “Force-
Directed Graph Drawing Using Social Gravity and Scaling,” CoRR, vol.
abs/1209.0748, 2012.

[17] R. Shannon, A. Quigley, H. Australia, and P. Nixon, “Graphemes:
Self-Organizing Shape-Based Clustered Structures for Network Visu-
alisations,” in Proceedings of the 28th of the International Conference
Extended Abstracts on Human Factors in Computing Systems, 2010, pp.
4195–4200.

[18] W. T. Tutte, “How to Draw a Graph,” Proc. London Math. Soc, vol. 13,
no. 3, p. 743768, 1963.

[19] S. G. Kobourov, “Spring Embedders and Force Directed Graph Drawing
Algorithms,” CoRR, vol. abs/1201.3011, 2012.

[20] T. M. J. Fruchterman, Edward, and E. M. Reingold, “Graph Drawing by

Force-Directed Placement,” Software: Practice and Experience, vol. 21,
no. 11, pp. 1129–1164, 1991.

[21] T. Kamada and S. Kawai, “An algorithm for drawing general undirected
graphs,” Inf. Process. Lett., vol. 31, no. 1, pp. 7–15, Apr. 1989.

[22] R. Hadany and D. Harel, “A multi-scale algorithm for drawing graphs
nicely,” in Proceedings of the 25th International Workshop on Graph-
Theoretic Concepts in Computer Science, ser. WG ’99. London, UK,
UK: Springer-Verlag, 1999, pp. 262–277.

[23] P. Gajer, M. T. Goodrich, and S. G. Kobourov, “A Fast Multi-
Dimensional Algorithm for Drawing Large Graphs,” 8th Symp. on Graph
Drawing (GD), pp. 211–221, 2000.

[24] C. Talbot and G. M. Youngblood, “Lack of Spatial Indicators in Hamlet,”
in FLAIRS, 2013.

[25] C. Manning, “Force layout,” https://github.com/mbostock/d3/wiki/
Force-Layout. [Online]. Available: https://github.com/mbostock/d3

[26] A. Modeling, “Anchor modeling | an agile modeling technique
for evolving information,” http://www.anchormodeling.com/. [Online].
Available: http://www.anchormodeling.com/

[27] A. Quigley, “Large scale force directed layout (spring algorithm):
For information visualization: Clustering and abstraction,” http:
//rp-www.cs.usyd.edu.au/∼aquigley/3dfade/, 2003. [Online]. Available:
http://rp-www.cs.usyd.edu.au/∼aquigley/3dfade/

58

Engineering Confluent Computational Fields:
from Functions to Rewrite Rules

Mirko Viroli
Alma Mater Studiorum – Università di Bologna, Italy

Email: mirko.viroli@unibo.it

Abstract—Among the many models used to specify spatial
computations in terms of (computational) fields, those based on
some form of rewrite rules have been proposed for their ability
to support the development of open and situated systems—e.g.,
on top of distributed tuple space infrastructures. However, due
to lack of modularity abstractions, one such approach hardly
tackles multi-level combination of different fields, as typically
happens in non-trivial self-organisation patterns. In this paper
we introduce a functional notation to express computational
fields (and their combination), and define its semantics by a
translation into a rewrite-based model. The proposed language,
which is reminiscent of Proto, includes a somewhat narrow set of
constructs, yet providing a good trade-off between expressiveness
and formal tractability. In fact, we state for it the confluence
property, namely, so-called “don’t care non-determinism”: this
implies – among the others – that specifications satisfying certain
monotonicity properties result in fields that stabilise in linear time
to a state of easily predictable shape.

I. INTRODUCTION

Chemical-oriented computational models have a large tradi-
tion, beginning with the work of Gamma [2], the chemical ab-
stract machine [8], and then higher order chemical computing
[1]. They are based on the idea of structuring computation in
terms of rewrite rules for multiset of data-terms. Recent works
extend this approach to spatial computing, allowing such
rules to span information on a node and its neighbourhood
[23], [20]. A natural engine for this kind of approach is the
distributed tuple space architecture [13]: a tuple injected in
a node gets diffused and aggregated by locally-applied rules,
thus resulting in whole computational fields (of tuples)—e.g.
gradients [5]. This approach finds notable applications in the
context of pervasive computing applications, as recently being
developed in the context of SAPERE EU project [24], [15].

However, when expressing complex self-organisation pat-
terns [10], in which spatial structures result from the combi-
nation of many computational fields, the rule-based approach
hardly scales, for it lacks the desired level of modularity.
Additionally, it makes it very difficult to properly engineer
computational fields, e.g., investigating the conditions under
which we can formally predict their stability and evolution
over time—simulation remains the only viable approach [20],
[9], [16]. So, while some form of chemical-like rewrite
rules can serve as a sort of “bytecode” language for spatial
computing in open and situated systems, we believe that
different approaches can be envisaged that rely on higher-level
programming metaphors and can possibly be compiled into
such bytecode.

The functional approach adopted in Proto [14], [4], [19] is a
first choice in this direction, for its expressiveness and ability
of naturally filling the gap between aggregate-level specifi-
cation of behaviour and single-device interactions. However,
it cannot be taken “as is” at this stage of our research for
basically two reasons: first, it is still a too large and expressive
language, hampering the ability of reasoning about programs;
and second, it does not perfectly fit the rewrite nature of
chemical computing. Although future works will possibly
aim at solving these problems, in this paper we proceed
identifying a tiny functional language to express computational
fields (which in fact resembles in many ways a fragment of
Proto), with arguable good trade-off between expressiveness
and tractability. It is based on the following few constructs:
(i) functional composition, (ii) function definition and call
(without recursion), (iii) pointwise operators, (iv) spread of
information (by which field evolution is achieved), and (v)
corresponding aggregation (based on a “minimum” function).
This language is shown to allow expressing a rather wide set
of useful computational fields.

On top of this language we provide two contributions. First,
we formalise its semantics by a translation into a model of
rewrite rules inspired by the work in [15], [24], thus enabling
a rather direct implementation on top of distributed tuple
spaces, as well as shading light towards the relationship be-
tween the functional and rewrite spatial computing metaphors.
Second, we prove that under certain monotonicity conditions
(not very restrictive for the proposed language, actually) any
computational field expressed with the proposed language has
the confluence property [12]. This property gives us a proof
technique to state stabilisation of computational fields, and to
easily characterise what the final state would be 1.

The remainder of this paper is organised as follows: Section
2 motivates, presents and exemplifies the proposed language,
Section 3 describes the underlying rewrite model we consider,
Section 4 defines how the proposed language can be translated
into corresponding rewrite rules, Section 5 presents the con-
fluence property and its implications, and Section 6 concludes
discussing related and future works.

1Proof sketches are not reported here for the sake of brevity. The interested
reader can read them in [18]

59

II. A HIGH-LEVEL LANGUAGE OF COMPUTATIONAL FIELDS

A. Motivation

This work starts from the consideration that there is a
correspondence between the following two ways of generating
a hop-count gradient structure. The first, which we call the
“rewrite style”, is made of a system of two (chemical-like)
rewrite rules of the kind:

x+ y ⇒ min(x, y) x⇒ (x+ 1)

where x and y are “molecules” (possibly implemented as
tuples) residing in the same space, function min takes the
one with minimum distance value, (x+1) creates a molecule
similar to x but with increased distance, and operator de-
notes that the molecule will be spread to neighbours [20]. The
second, which we call the “functional style”, is constructed by
the Proto specification

(rep d (inf) (mux (sense 1) 0

(min-hood (nbr (+ d 1))))))

which defines a field that is initially infinity everywhere, and
evolves by setting the initial value 0 in the source (where
sensor 1 returns positive value), and the minimum of neigh-
bourhood values plus one everywhere else.

Of course, the two systems have many differences and
underlying assumptions, including: the message-caching tech-
nique sustaining nbr construct in the functional style, which
has no counterpart in the rewrite style; the initial value of
the field (infinity in the functional style and “undefined” in
the rewrite-style approach); the openness assumption of the
rewrite style, in which the initial 0 value in the source is
assumed to be externally provided; and finally the need of
properly imposing an ordering/rate of rewrite rules in the
rewrite approach. In this paper we hence try to investigate
on the relationship between the two styles, and also on the
idea that it can be proved, because of a certain monotonicity
structure of the above specifications, that the resulting field
surely stabilise to the gradient pattern.

We proceed by identifying a functional language inspired
by Proto, but releasing a number of assumptions for the sake
of simplifying the language (and consequently, reducing its
expressiveness in favour of enhancing tractability):

• While the idea of defining and combing “functions” is re-
tained, we neglect constructs explicitly representing state
and its evolution (namely, rep), since handling variables
introduces many technical difficulties (especially when
they are nested). We shall still use variables for function
formal parameters, though.

• In our model, evolution is intertwined with interaction,
and is never explicitly mentioned. Instead we have a
notion of spreading the values of a field in neighbours
and eventually re-aggregate them into a single one in each
node. As suggested in [3], we shall allow only aggrega-
tion by extraction of the minimum value (according to
any user-defined ordering of values).

• We do not have the powerful restriction operator of Proto:
we rely on a simple mechanism rooted on the idea that
fields are partial mappings, namely, they can be undefined
in certain regions of the network.

• There are no special constructs to model the “environ-
ment” (time passing, topological structure): inspired by
the work in [21], [23] such information, like “sensors” in
Proto, is assumed to be externally provided in the form
of “environment fields”.

B. Syntax

In the following we let meta-variable f range over built-
in function names, x over variable names, d over user-defined
functions, and σ over environment fields. In the surface syntax
we introduce here, they will all be expressed as literals: f
by non capitalised characters, x by capitalised characters, d
starts by one capitalised character, and σ starts with symbol
#. We use notation x to mean a (possibly empty) comma-
separated list of variables, also written x1, . . . , xn.Such an
overbar notation will be used for other elements as well
(fields F , atoms a, and so on). The syntax of the language
is expressed by the abstract grammar:

a ::= number | boolean | string Atom
v ::= # | a | 〈a〉 Value
V ::= x | v Var-value
A ::= V | 〈V 〉 Var-atom
F ::= A | σ | f(F) | {F} | [F] | d(F) Field
D ::= def d(x) is F Definition

A variable atom A is an atom, symbol # means no-value, a
variable, or a tuple 〈V1, . . . , Vn〉 of these elements. A field F ,
a (possibly partial) mapping from locations to (sets of) values
v, can be: the constant field A, the environment field σ, a
functional combination f(F) of fields F by built-in function
f – possibly using prefix notation for unary functions, infix
notation for binary ones, and notation F?F:F for standard
ternary conditional operator –, the spreading field {F} ob-
tained by spreading the local value of F to all neighbours, the
aggregating field [F] obtained from (previously spread field
F) by taking the minimum value in each node, and finally
the functional combination d(F) of fields F by user-defined
function d. Functions are defined by standard sentences of
the kind “def d(x) is F ”, where x are formal parameters
and F (possibly including parameters) is the expression body.
Built-in functions include mathematical ones, and other utility
functions such as unary functions 1st, 2nd,. . . , to access i-
th element of a tuple, and n-ary tup to create a tuple of n
values. We shall use infix operator “∧” for the minimum of two
values—according to an externally-provided ad-hoc minimum
function.

We assume that a program made of a set of definitions
and one top-level field is well-structured if the graph of user-
defined function usage is acyclic (i.e., we do not permit
recursion). Additionally, we have the following constraints
on occurrences of spreading and aggregating fields: (i) each

60

def Restrict(FIELD,WHERE) is WHERE?FIELD:#
def LBFilter(FIELD,BOUND) is FIELD<=BOUND?FIELD:#

def Gossip(VAL) is [{VAL}]
def Gossip-max(VAL) is -[-{VAL}]
def Gossip-val(SRC,VAL) is Gossip(Restrict(VAL,SRC))

def GradRNG(SRC,RANGE) is [{SRC}+RANGE]
def Grad-count(SRC) is GradRNG(SRC,1)
def Grad(SRC) is [{SRC}+#RNG]
def Grad-zero(SRC) is Grad(SRC*0)

def Grad-bound(SRC,BND) is [LBFilter({SRC}+#RNG,BND)]
def Grad-obs(SRC,OBS) is [Restrict({SRC}+#RNG,not(OBS))]

def Dist(SRC,DEST) is Gossip(Restrict(Grad(SRC),DEST))
def Channel(SRC,DEST,WIDTH) is

(Grad(SRC)+Grad(DEST)+WIDTH)<Dist(SRC,DEST)
def GradChannel(SRC,DEST,WIDTH) is

Restrict(Grad(SRC),Channel(SRC,DEST,WIDTH))

def addTo1st(T,V) is tup(1st(T)+V,2nd(T))
def GradCast(SRC,VAL) is [addTo1st({<SRC,VAL>},#RNG)]

Fig. 1. Example definitions, inspired by related Proto programs

spreading field is enclosed in one aggregating field (e.g., we do
not accept field {#a}), and (ii) each aggregating field includes
exactly one (top-level) spreading field (e.g., we do not accept
[{#a} + {#b}]). A valid field is e.g. [{1 + [1 + {#a}]}]. The
reasons for this constraints is that we need to strongly and
directly couple spreading and aggregating fields to create the
proper feedback loop.

C. Examples

Example definitions of useful fields are reported in Figure 1.
Function Restrict applied to FIELD and WHERE creates a
new field that is FIELD where WHERE is true, and is undefined
everywhere else. Similarly LBFilter creates a new field
identical to FIELD where it is not greater than BOUND, and
is undefined everywhere else.
Gossip accepts a field VAL and yields a new constant field

holding the minimum value of it—in each node the value is
spread to neighbours, and the result is the minimum value
received from neighbours. Gossip-max is similar but gossips
the maximum value: this is achieved by spreading around
the negated value, taking the minimum of the received ones
and then negating again. Gossip-val spreads the minimum
value of VAL considered where field SRC is true—as an
example, Gossip-val(#sns,1) gossips value 1 from where
environmental field #sns is true.
GradRNG creates a gradient from the source SRC (defined

only in the source nodes where the gradient value is fixed),
and increasing in each node by the local value of RANGE.
Grad-count is hence trivially an hop-count gradient. Grad is
instead a gradient based on an externally provided distance
increase value in each node, provided and maintained by
the environment field denoted #RNG. Should we want to use
this field to represent an estimation of physical distances
(like construct nbr-range in Proto) we should consider one
physical location per physical device with value 0 for #RNG,

and a virtual one per directional connection between two
devices with the estimated distance as value for #RNG. Finally,
Grad-zero makes sure that we fix value 0 for the gradient
where SRC is defined—as an example, Grad-zero(#sns) is a
field of distances from the nearest node where #sns is defined.
Grad-bound and Grad-obs use (directly or indirectly)

Restrict to limit the region where gradient propagates: the
former limits propagation as the gradient reaches a bound
value BND, the latter propagates everywhere obstacle OBS is
false.
Dist creates a constant field with the minimum distance

from where SRC and DEST are defined—note such a distance
is obtained by restricting the gradient of SRC where DEST
is defined. Channel is a boolean field that is true in all
nodes whose distance from the minimum path from SRC and
DEST is WIDTH. Finally GradChannel creates a gradient from
SRC which propagates only inside a channel of width WIDTH
directed to DEST—a sort of slide area from DEST to SRC.

The last case is GradCast which spreads a gradient from
SRC additionally carrying the value VAL stored where SRC is
defined. Assuming lexicographic ordering of tuples is applied,
this makes sure that in each node the value coming from the
nearest source will establish: if VAL have distinct values where
SRC is defined, namely in so-called source nodes, a partition
of the network emerges with exactly one region per source
node, tagged by the corresponding value of VAL.

III. A REWRITE-ORIENTED PLATFORM

We now explain the computational model of rewrite rules
adopted in this paper as target for the translational semantics.
Among the many forms rewrite rules can take, our model is
inspired by previous works of ours in the context of chem-
ical tuple spaces [20] and their application to the SAPERE
approach in the context of pervasive computing [15].

A. Architecture

We shall assume that each location (or node) of the network
holds one local annotation space, and has direct interaction
abilities with locations in the neighbourhood. We use the
terminology of [15], calling the data-terms stored in the
space annotations and not tuples, to avoid confusion with
the different concept of a tuple as a possible kind of value,
introduced in previous section. Each annotation is a pair of a
field unique identifier i and the local value v, written [i : v].
Note that the field with identifier i is made by all annotations
with id i available in the system, and that annotation spaces
are actually sets of annotations—duplication is not permitted.
Agents residing in each location and interacting with the anno-
tation space are in charge of keeping updated the annotations
corresponding to all environment fields.

Each annotation space carries a fixed set of rewrite rules (the
same set occurs in each space) and executes them according
to the following dynamics: it (i) sleeps for a given amount
of time, (ii) wakes up and clean the annotation space except
environment fields, which get possibly updated, (iii) transfers
the content of the message queue into the annotation space,

61

(iv) executes all rewrite rules until a fix-point is reached, (v)
sends all annotations marked as “to-be-spread” to neighbours,
and then go back to sleep—a similar computation round is
present in [14], [21].

To tackle the difficulty of providing a fully synchronous
firing model for nodes, thus tolerating the case in which a
node lacks messages coming from neighbours for it fires too
frequently, we also assume that input messages are cached as
in [14]. New messages overwrite the cache, and a message
is actually dropped from the cache only if the underlying
platform perceives a permanent failure of the connection with
the message source.

B. Rewrite Model

We let metavariable W generalise over V by adding to it
expressions of the kind f(V). We abuse the overbar notation
writing, [i :W] as a shorthand for [i1 :W1] + . . .+ [in :Wn],
and similarly for [i :W]+, which denotes an annotation to be
spread to neighbours. A rewrite rule R takes the form:

[i : V]�p
name [i

′
:W] + [i

′′
:W

′
]+

Tag name is the rule name, while p is an indication of priority:
we use ∗ to mean high priority, and leave it as blank for
low priority—in a nature-inspired chemical model they would
mean high rate and low rate [20]. For a rule to be valid, each
variable on the right-hand side (W and W

′
) should also occur

on the left-hand side (V). Rules are applied in a given location
as follows:
• We look for one substitution of the variables x in V to

values v forming a set of annotations [i : V {v/x}] which
exist in the space, and accordingly remove them.

• We apply substitution {v/x} to the right-hand side, and
then evaluate the resulting expressions (which are ground
by construction) to obtain products [i

′
: v′] and [i

′′
: v′′]+.

The set of annotations [i
′
: v′] are immediately injected

in the space, while annotations [i
′′

: v′′] are added to
the queue of outgoing messages. Addition of a new
annotation in the space (or queue of outgoing messages)
has no effect if an equivalent one already exists. We say
that at a given time a rule is enabled if it can be applied
and its application would change the space.

• Application of rules is non-deterministic, with the only
constraint that a low-priority rule is never fired if an
enabled high-priority rule exists. Application of rules
carry on until no rule is enabled.

IV. TRANSLATIONAL SEMANTICS

In this section we fill the gap between the proposed
functional language and the underlying rewrite-rule semantics
described in previous two sections, orderly.

A. Core Source Language

As far as describing the translation details is concerned,
it is not necessary to consider the entire surface language
proposed, for the following reasons: (i) constant fields can
be dropped from the language as they can be seen as 0-ary

built-in functions; (ii) since we do not deal with recursive
functions, user-defined functions can always be inlined in
the top-expression, so the concept of function definition and
call may be simply skipped and we can just focus on built-
in functions; (iii) we can consider the composition of built-
in functions as being built-in functions as well; (iv) due to
the constraints on the mutual occurrence of spreading and
aggregating functions, we can assume they are always present
in expressions of the kind [. . . {F} . . .], and can hence simply
consider syntax [g({F}, F)] for some built-in function g.
Accordingly, from the remainder of the paper we restrict our
attention to the following core syntax:

F ::= σ | f(F) | [g({F}, F)]
where f, g belong to an extended set of built-in func-
tions. As an example, GradCast(#S,#V) is equivalent to
[g({f(#S, #V)}, #RNG)] where g is function addTo1st and f
is tup.

B. A set of universal rules

To support the translation, in this paper we shall focus only
on the following kinds of rule:

F(i, i, f) = [i : x]�F [i : x]+[i : f(x)]

C(is, ic, i, g) = [is : x]+[i : x]�∗C [i : x]+[ic : g(x, x)]

A(ic) = [ic : x]+[ic : x
′]�∗A [ic : x ∧ x′]

O(ic, i, io) = [ic : x]+[i : x′]�O [i : x′]+[io : x ∧ x′]
S(io, is) = [io : x]�S [io : x]+[is : x]

+

Function rule F(i, i, f) is used to produce annotation with id
i out of function F and input annotations i. Contextualisation
rule C(is, ic, i, g) turns annotation is into one ic obtained
by applying to is function g also considering as arguments
the content of annotations i. Aggregation rule A(ic) takes
two annotations ic and retains the one with smaller value.
Output rule O(ic, i, io) concludes the spreading/aggregation
process by turning the resulting annotation ic into one io
whose value is the minimum between ic’s value, x, and the
input annotation i’s value, x′. Finally, spreading rule S(io, is)
spreads the value of io’s annotation into field is. Although
O(ic, i, io) = C(ic, io, i,∧) we prefer to keep aggregation and
output rules distinct for the sake of presentation.

C. Translation

The basic idea behind the translation is that each purely
functional field f(F) is created out of parameters by rule F ,
while spreading-aggregation field [g({F}, F)] is achieved by
the remaining four rules: C and A execute until all incoming
messages (is) have been contextualised by function g and then
min-aggregated (into ic), then the minimum value from the
result of contextualisation and the result of F (i) yields the
result by O (io), which is also spread by S (is again). As
an example, field Grad-zero(#S), that is [{#S*0}+#RNG],
is handled by the following rules, which create field io out of

62

#S and #RNG, and using temporary fields ii (the local input),
is (the spread field), and ic (the aggregating field):

[#S : x]�F [#S : x]+[ii : x ∗ 0]
[is : xs]+[#RNG : xr]�∗C [#RNG : xr]+[ic : xs + xr]

[ic : x]+[ic : x
′]�∗A [ic : x ∧ x′]

[ic : x]+[i : x′]�O [i : x′]+[io : x ∧ x′]
[io : x]�S [io : x]+[is : x]

+

This translation can be formalised as a ternary relation
|F | i

= R between a field F , its identifier i, and the rules
that produce it, recursively defined by the following deduction
system:

−
|σ| σ= · [ENV]

fresh(i) |F | i= R RF = F(i, i, f)
|f(F)| i= (R RF)

[FUN]

fresh(is, ic, io) |F | i= R |F | i= R
′

RC = C(is, ic, i, g) RA = A(ic)
RO = O(ic, i, io) RS = S(io, is)

|[g({F}, F)]| io= (R R
′
RC RA RO RS)

[NBR]

Deduction rule [ENV] generates no rule to handle environ-
ment fields, and use their name σ as field identifier. Deduction
rule [FUN] generates all the rules necessary to produce argu-
ments (R), and add function rule RF that produces a field with
the freshly generated id i. Similarly, [NBR] generates all the
rules necessary to produce arguments F and F , and then add
four instances of the remaining rules, by properly generating
the fresh identifiers is, ic and io.

V. CONFLUENCE

We consider a system composed of a directed graph of
locations, capable of the following kinds of transition: (i) the
whole computation of a round by a node n, called “firing of
n”, causing a change in the set of annotations and dispatch of
messages to neighbours; (ii) a new (communication) link can
be added to the graph; (ii) an existing link of the graph can be
removed; (iv) some value of an environment field can change.

Definition 1 (Fair evolution). A system is said to have fair
evolution if in any computation path, at each step of the path
any node n fires again.

Definition 2 (Transitory evolution). A system is said to have
transitory evolution to network topology T if it starts from a
graph topology T ′ ⊆ T , no links outside T are ever added,
and it eventually reaches a state in which there is topology
T , and from then no changes to topology and to environment
fields occur.

Definition 3 (Well-monotonicity). A field F (along with the
functions it uses, and the order relation it bases function min
upon) is said to be well-monotonic if: (i) each function g is
such that forall v, g(v, v) ≥ v and g(v, v) ≥ g(v′, v) if v ≥ v′;

and (ii) there is no infinite ascending chain of values that can
be constructed where an element is obtained by previous one
v by formula g(v, v) for some g and v—chosen arbitrarily at
each point in the chain.

Note that well-monotonicity would typically imply to im-
pose an upper bound to the set of values (preventing fields
from diverge to infinity)—a condition not very hard in practice.

Theorem 1 (Confluence). A system with fair and transitory
evolution running a well-monotonic field is confluent [12].

Definition 4 (Stability). A system in state S is said to be stable
if firing at any node does not change the state of annotation
spaces.

Confluence property is key: it implies that if we are able to
find one computation path leading to a stable state, then this
stable stable is eventually reached in any path. A key brick
is the unveiling of outcomes of spreading and aggregation,
explained by the following theorem.

Theorem 2 (Outcome of spreading-aggregation). A system
with fair and transitory evolution and running the well-
monotonic field Fs = [g({F}, F)] (where F, F are assumed
to be constant over time), stabilises to a field mapping node n
to the value v computed as the minimum value it would take
in any smaller network made of a single directed path from
a node in the domain of F to n. Let π = n0, . . . , nk be such
a path, the value that the final field Fs takes in any node is
recursively computed as:

Fs(n0) = F (n0)
Fs(nj) = g(Fs(nj−1) ∧ F (nj), F (nj))

Additionally, and assuming all nodes are given the same
rate of firing, the time to reach the stable value in a node nj
is linear in j.

More generally, we can state that a system running the
combination of stabilising fields F stabilises to a field obtained
by combing the stable state reached from each element in F .
Concerning a spreading-aggregation field [g({F}, F)], it states
that one can reason about its final shape by assuming that F, F
are immutable—have already reached their stable state.

Theorem 3 (Compositionality and Stability). A system with
fair and transitory evolution and running a well-monotonic
field F reaches a stable state written ⇓F . Abusing the notation
considering ⇓F itself as a non-evolving field, we can write:

⇓f(F) = f(⇓F)
⇓ [g({F}, F)] = ⇓ [g({⇓F},⇓F)]

VI. CONCLUSIONS

This paper investigates the problem of engineering com-
putational fields (from specification down to implementation)
in such a way that their evolution and final state is formally
predictable. It provides the following contributions: (i) a tiny
functional language able to express a wide set of useful

63

computational fields, (ii) a translation of it into an easy-to-
implement rewrite-model, and (iii) a set of sufficient condi-
tions to make the expressed computational fields (composi-
tionally) stable—via the notion of confluence.

To the best of our knowledge, the only work aiming at a
mathematical proof of stabilisation for computational fields
is [5]. There, a self-healing gradient algorithm called CRF
(constraints and restoring forces) is introduced to estimate
physical distance in a spatial computer, where the neighbour-
ing relation is fixed to unit-disc radio, and node firing is strictly
connected to physical time. Compared to our approach, the
work in [5] tackles a more specific problem, and is highly
dependent on the underlying spatial computer assumptions.
Our confluence-based results instead, although used on a rather
rigid computational model, apply to a wide set of scenarios,
since it makes no assumption on the network topology, rather
weak ones on node firing, and can be applied to various fields.

The work proposed in this paper leads to several future
directions of investigation. First, we aim at weakening the
sufficient conditions we found for stabilisation, namely, ad-
dressing a wider set of computational fields. For instance,
it would be interesting to relax the need of disallowing
infinite chains of node updates (used in the definition of Well-
montonicity), and topological conditions of transient evolution.

Second, we believe some of our results can be applied to
many spatial computing languages [6], there included Proto,
as recently it has been given an operational semantics [19].
We speculate that stability might be stated for Proto programs
featuring the use of nbr and rep constructs only in the
following combination:

(rep var loc (f (min-hood (nbr (g var)))))

where loc is a local value, f any pointwise function, and
g a monotonic pointwise function in the sense described in
Definition 3. The solution of the stability problem can also
be a starting point for proving the related (but not equivalent)
problem of convergence of a field evolution as the network
density and firing rates tend to infinite [7].

Third, due to the mapping to rewrite rules, the present
work can apply also to the SAPERE framework [24]. Namely,
it suggests that using only five general eco-laws adhering
to the five kinds presented in Section IV-B, and adding
the monotonicity constraints, can likely guarantee again the
stability of the pervasive ecosystem dynamics [22].

Finally, it would surely be interesting to look at other
reasearch areas where the notion of confluence and stability
have been used, e.g., in term rewriting systems [12], chemical-
oriented computing [1], sensor networks [11], and distributed
algorithms [17], to bridge with some existing technique so as
to possibly investigate a more general approach.

ACKNOWLEDGMENT

This work has been supported by the EU-FP7-FET Proactive
project SAPERE Self-aware Pervasive Service Ecosystems,
under contract no.256873

REFERENCES

[1] J.-P. Banâtre, P. Fradet, and Y. Radenac. A generalized higher-
order chemical computation model. Electr. Notes Theor. Comput. Sci.,
135(3):3–13, 2006.

[2] J.-P. Banâtre and D. Le Métayer. Gamma and the chemical reaction
model: Ten years after. In Coordination Programming, pages 3–41.
Imperial College Press London, UK, 1996.

[3] J. Beal. A basis set of operators for space-time computa-
tions. In Spatial Computing Workshop, 2010. Available at:
http://www.spatial-computing.org/scw10/.

[4] J. Beal and J. Bachrach. Infrastructure for engineered emergence in
sensor/actuator networks. IEEE Intelligent Systems, 21:10–19, 2006.

[5] J. Beal, J. Bachrach, D. Vickery, and M. Tobenkin. Fast self-healing
gradients. In Proceedings of ACM SAC 2008, pages 1969–1975, 2008.

[6] J. Beal, S. Dulman, K. Usbeck, M. Viroli, and N. Correll. Organizing the
aggregate: Languages for spatial computing. In Formal and Practical As-
pects of Domain-Specific Languages: Recent Developments, chapter 16,
pages 436–501. IGI Global, 2013.

[7] J. Beal, K. Usbeck, and B. Benyo. On the evaluation of space-time
functions. The Computer Journal, 2012. Online first.

[8] G. Berry and G. Boudol. The chemical abstract machine. Theoretical
Computer Science, 96(1):217–248, apr 1992.

[9] M. Casadei, L. Gardelli, and M. Viroli. Simulating emergent properties
of coordination in Maude: the collective sort case. volume 175(2) of
ENTCS, pages 59–80. Elsevier Science B.V., 2007.

[10] J. L. Fernandez-Marquez, G. D. M. Serugendo, S. Montagna, M. Viroli,
and J. L. Arcos. Description and composition of bio-inspired design
patterns: a complete overview. Natural Computing, 12(1):43–67, 2013.

[11] C. Fischione and U. Jonsson. Fast-lipschitz optimization with wireless
sensor networks applications. In Proceedings of IPSN 2011, pages 378–
389. IEEE, 2011.

[12] G. Huet. Confluent reductions: Abstract properties and applications to
term rewriting systems: Abstract properties and applications to term
rewriting systems. J. ACM, 27(4):797–821, Oct. 1980.

[13] M. Mamei and F. Zambonelli. Programming pervasive and mobile
computing applications: The tota approach. ACM Transactions on
Software Engineering Methodologies, 18(4):1–56, 2009.

[14] MIT Proto. http://proto.bbn.com/, 2013.
[15] S. Montagna, M. Viroli, J. L. Fernandez-Marquez, G. Di Marzo Seru-

gendo, and F. Zambonelli. Injecting self-organisation into pervasive
service ecosystems. Mobile Networks and Applications, pages 1–15,
September 2012. Online first.

[16] D. Pianini, S. Montagna, and M. Viroli. Alchemist: a chemical-oriented
multi-agent based simulation framework. Journal of Simulation, 2013.
In press. Appeared online with DOI: 10.1057/jos.2012.27.

[17] S. Tixeuil. Algorithms and theory of computation handbook. chapter
Self-stabilizing algorithms, pages 26–26. Chapman & Hall/CRC, 2010.

[18] M. Viroli. Engineering confluent computational fields: from
functions to rewrite rules – proof sketches of theorems.
http://apice.unibo.it/xwiki/bin/download/Publications/
FieldsSCW2013/proofs.pdf, 2013.

[19] M. Viroli, J. Beal, and K. Usbeck. Operational semantics of Proto.
Science of Computer Programming, 2012. Online first.

[20] M. Viroli, M. Casadei, S. Montagna, and F. Zambonelli. Spatial coor-
dination of pervasive services through chemical-inspired tuple spaces.
ACM Transactions on Autonomous and Adaptive Systems, 6(2):14:1 –
14:24, June 2011.

[21] M. Viroli, D. Pianini, and J. Beal. Linda in space-time: an adaptive
coordination model for mobile ad-hoc environments. In Coordination
Models and Languages, volume 7274 of Lecture Notes in Computer
Science, pages 212–229. Springer, 2012.

[22] M. Viroli, D. Pianini, S. Montagna, and G. Stevenson. Pervasive
ecosystems: a coordination model based on semantic chemistry. In
Proceedings of ACM SAC 2012, pages 295–302. ACM, 2012.

[23] M. Viroli and G. Stevenson. On the space-time situation
of pervasive service ecosystems. In Workshop on Spatial
Computing, Valencia, Spain, June 2012. Available at:
http://www.spatial-computing.org/scw12/.

[24] F. Zambonelli, G. Castelli, L. Ferrari, M. Mamei, A. Rosi, G. D. M.
Serugendo, M. Risoldi, A.-E. Tchao, S. Dobson, G. Stevenson, J. Ye,
E. Nardini, A. Omicini, S. Montagna, M. Viroli, A. Ferscha, S. Maschek,
and B. Wally. Self-aware pervasive service ecosystems. Procedia CS,
7:197–199, 2011.

64

Short Presentations

65

66

Composing gradients for a context-aware navigation of
users in a smart-city

Sara Montagna and Mirko Viroli
Alma Mater Studiorum–Università di Bologna

Via Venezia 52, 47521 Cesena, Italy
{sara.montagna,mirko.viroli}@unibo.it

ABSTRACT
Recent works suggested the use of self-organising spatial pat-
terns, enacted as computational fields, to the problem of
steering users towards their desired destination in complex
environments. In a rich and open scenarios, various con-
textual services can enter the system providing additional
information that can be exploited to guide users by suggest-
ing paths that more likely satisfy their preferences. This
can be done composing new information with the steering
services already available in the system.

Since the type and number of new services available can
vary over time, such compositions must be identified dy-
namically, in an autonomous, spontaneous and unsupervised
way. Moreover, in order to avoid the system to be over-
flooded by services that do not match any user preferences,
a mechanism for identifying useless compositions and for re-
moving them should be provided.

In this paper we investigate this problem and propose a
self -composition approach envisioned to support the compo-
sition of new services together with basic services for crowd
steering, such that, depending on the actual (spatial/temporal)
context in which the composition is deployed, users are steered
across the path that better fit their preferences.

1. INTRODUCTION
Context-aware navigation of users in complex environ-

ments is a typical problem in pervasive computing. There,
many services typically enrich the system with information
and functionalities that can be opportunely used for steering
users based on their preferences and on contextual informa-
tion. Such services, are main actors in pervasive computing,
and are dynamically injected by humans, institutions, soft-
ware systems and devices, without an a-priori knowledge of
the structure and behaviour of those already available and
those that will be injected later. For a context-aware nav-
igation it can be useful to compose the information they
provide with the basic navigation service, so as to provide a
whole new set of “tailored” navigation services.

Making composition of services effective in such open and
complex systems is a rather challenging task, which in this
paper we aim at tackling by a self-composition approach.
The term “self” is used to suggest that this process should

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May,
6–10, 2013, Saint Paul, Minnesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

happen automatically and in an unsupervised way, i.e., with-
out specifying at design time which services are to be com-
posed, and ensuring that the system is not overflooded by
useless service compositions.

From [9, 11] we cite the big questions that self-composition
brings: what can make services compose if they were not
explicitly designed to do so? how can we decide “whether”
and “how” two or more services should compose? how can
such decisions be continuously reconsidered depending on the
actual (spatial/temporal context) in which the composition
is deployed? can we make multi-level composition seem-
ingly work as well? These problems are far from being
fully solved, though several surveys and partial solutions
have been proposed in different contexts, classified in three
main categories: (i) Service Composition in SOA where the
static character of traditional composition approaches such
as orchestration and choreography has been recently chal-
lenged by so-called dynamic service composition approaches,
involving semantic relations [2], and/or AI planning tech-
niques to generate processes automatically based on the spec-
ification of a problem [14]; (ii) Evolutionary techniques such
as those based on Genetics Algorithms (GA) have been pro-
posed as well for service composition, such as in [5], moti-
vated by the need of determining the services participating
in a composition that satisfies certain QoS constraints, which
is known to be a NP-Hard problem; and (iii) Competition-
based approaches where, in order to tackle the potentially
high number of different compositions that can arise in an
open system, a mechanism of coordination reactions for net-
worked tuple spaces is proposed, showing how it can be ap-
plied to support competition and composition in a fully dis-
tributed setting [11, 12, 9].

In this paper we adopt the latter approach developing on
preliminary results appeared in [9], focussing on the com-
position of computational fields [1, 7, 12]. We address the
problem of automatically composing a gradient-based navi-
gation service [7], with the distributed information provided
by contextual sensors available around, detecting presence
of traffic, pollution, points of interests, availability of friends
—in [9] the unique information of crowded areas were con-
sidered. We propose the adoption of a strategy for optimis-
ing service composition based on competition of different
compositions according to their actual exploitation, hence
promoting successful ones while decaying the useless ones,
in what can appear as a spontaneous selection of the most
proper crowd steering service.

The scenario is modelled within the framework of perva-
sive ecosystems [8]. In this computational model, the pres-

67

ence and activities of all system components is reified in
terms of tuple-like items called Live Semantic Annotations
(LSAs), which are stored across all computational devices of
the pervasive computing system. Overall system behaviour
is regulated by a set of laws, called eco-laws, which act locally
on each node and its neighbourhood, combining and ma-
nipulating annotations using a chemical style and semantic
pattern matching [8]. Accordingly, each service in the sys-
tem is represented as an LSA. Eco-laws are then in charge
of composing these basic LSAs creating new services. When
involving the gradient service, this composition realises gra-
dient contextualisation with local information provided by
sensors. Each composition is associated with a quality value
that can be increased by user positive feedbacks or decreased
over time via eco-laws. If a service has a low quality it is
removed by the system according to the competition prin-
ciple: services are used based on their quality, which is the
solely means by which the quality level can avoid decreasing
to zero.

The remainder of this paper is organised as follows. Sec-
tion 2 introduces the framework of pervasive ecosystems;
Section 3 describes our vision on how self-composition can
be achieved in such a framework; the approach application
to the context-aware navigation of users is illustrated in Sec-
tion 4, showing how gradient can be composed with other
services using a simulation scenario; and finally Section 5
concludes with a discussion of future works.

2. FRAMEWORK
The framework we rely upon for describing and experi-

menting our approach is the one of pervasive ecosystem. A
detailed description of the framework is provided in [8, 13].
Pervasive ecosystems [15] are characterised by two main fea-
tures, which influence their underlying abstract architecture
and model. On one hand, they should be situated, namely,
the activity of any software agent and the data it produces
are tightly bound to the agent’s physical location: this is
because any behaviour should be intrinsically aware of and
affect the surrounding context. Situatedness is achieved by
infrastructures reifying data, knowledge, and events in the
precise point (or region) of space where they pertain, and
by promoting interactions based on proximity. Accordingly,
a cornerstone of pervasive ecosystems is that a uniform rep-
resentation is required for the various software agents living
within them (whether they run on smartphones, sensors, ac-
tuators, displays, or any other computational device). We
term such a representation a “Live Semantic Annotation”
(LSA) for it should continuously represent the state of its
associated component (live), and it should be implicitly or
explicitly connected to the domain in which such informa-
tion is produced, interpreted and manipulated (semantic).
The LSAs of each agent are reified in a distributed space
(called an “LSA-space”) acting as the fabric of the ecosys-
tem, located in the computational device hosting the agent.
On the other hand, pervasive ecosystems should be adap-
tive, exhibiting properties of autonomous adaptation and
management to survive contingencies without human inter-
vention and/or global supervision. This is achieved follow-
ing the natural inspiration [15, 4], by designing system rules
that – by acting locally – make global properties emerge dy-
namically. So, while agents enact their individual behaviour
by observing their context and updating their LSAs, global
behaviour (i.e., global system coordination) is enacted by

self-organising manipulation rules of the LSA-space, which
we call eco-laws. They can execute delete/update/create
actions applied to a small set of LSAs within the same
locality. Moreover they can move or copy LSAs among
neighbouring locations, allowing local information to be-
come global. Following [12] such eco-laws are structured as
chemical-resembling reactions over LSAs. To have in mind
an architectural view of the system, one should think of a
very large and mobile set of devices connected to each other
based on proximity, creating a distributed “space” – ideally
a pervasive continuum – where LSAs form spatial structures
that evolve over time. The eco-law engine, accordingly, has
to be seen as a distributed one uniformly working on all
LSA-space—though we will show that a feasible approach
amounts at developing local eco-law engines in each node.

3. THE SELF-COMPOSITION APPROACH
The self-composition approach we adopt here is inspired

at competition-based approaches [11, 12], already introduced
in Section 1. There potentially high number of different
compositions that can arise in an open system is managed
via a mechanism of competition and composition that is
envisioned in a fully distributed setting, guaranteeing that
services opportunistically compose in those regions of the
network where this results in a more competitive service.
While all compositions can possibly take place, thanks to
a positive/negative feedback only successful ones are meant
to “survive” in the system, the others fading until becoming
never actually selected. This is achieved by matching ser-
vices with requests through a self-regulating dynamics in-
spired by prey-predator model of population dynamics [3],
and by diffusing service tuples using a computational-field
approach similar to the one presented in [1].

The incarnation of this approach to the context-aware
crowd steering scenario mainly consists in creating new gra-
dients composing the basic gradient – that only contains a
measure of distance to the source – with other services pro-
viding also contextual information about the different path
the user can follow towards the source. These new gradi-
ents have a different shape from the basic one, i.e. distance
value is modified and contextualised. Such modification, ac-
cording to user profiles, encourages or discourages the path
across certain areas whose characteristics are described by
those services the gradient is composed with. In order to
perform competition among all these composite gradients
available, at each of them is associated a value that repre-
sents the satisfaction of users that exploited it. This value
decays over time, so that if it is not reinforced by new good
feedbacks from users it will decay until fading. Once sat-
isfaction is in fact lower then a certain threshold the com-
position is removed from the system. This process should
ensure that only “appreciated” compositions will survive in
the system.

4. A SELF-COMPOSITION MODEL FOR
CONTEXT-AWARE CROWD STEERING

The framework described so far can be adopted for mod-
elling crowd steering scenarios. In particular we claim that
self-composition can be successfully adopted for the context-
aware navigation of users to their destinations inside a city.
Our scenario is built upon two crucial services: a service
that builds a gradient out of a specified source and a crowd

68

steering service that provides users with a direction to fol-
low. These two basic services can be composed with data
produced by other sensors hosted in nodes spread in the city.
These services are, in principle, unknown and can vary in
time without any predictable plan. They can equip the sys-
tem with, for instance, the following information: (i) traffic
levels along the street of the whole city map; (ii) measures
of smog; (iii) measures of the street slopes; (iv) informa-
tion about the street characteristics (is it across a pedestrian
area, a park, an industrial zone, a residential district and so
on?); (v) a map of the city; (vi) information about stuff for
kids; (vii) information about 30 days weather forecast; (viii)
information about levels of pollution or crime in a city. All
these data can be composed together and with the two basic
services.

The first goal of this scenario is to demonstrate that in a
crowd steering application enriched with a self-composition
algorithm, given information about what users prefer to
come across, given data provided by sensors, as well as the
basic gradient and the crowd steering service, the more sat-
isfiable path can be identified for each user, composing all
these services and information together. The second goal is
to demonstrate that it is possible to guarantee only useful
service to survive and to make this process dynamic, i.e.
continuously reversible.

4.1 The model
Our application is developed across a city, whose map can

ideally be a real map of a city, but in this first example is
a fake map. Sensors are located here and there to produce
information about the characteristics of different areas of
the city. In each node of the network is available at least
one basic gradient, for each point of interest in the city, and
the crowd steering service. Users specify a set of preferences
that characterises their profile.

The model can be discussed in two parts, one that per-
forms self-composition and that can be valid in any scenario,
the second one that is more application specific and that de-
scribes those services for making crowd steering. The main
behaviours of the model for the self-composition part are:

1. Sensor data are reified in the system via LSAs in the
closest node/nodes.

2. Self-composition happens through an eco-law that cre-
ates from two services A and B a new one that contains
all the information of A and B; it can be applied recur-
sively so that we have a multilayer composition. This
mechanism can be applied at any service, being com-
pletely unaware, at design time, of the specific char-
acteristics of the application. At each composition is
associated a quality level SV .

3. If SV is lower than a threshold value, the new service
is removed.

4. SV can decrease for two reasons: evaporation – if a
service is not used by users, SV evaporates with a
certain rate – or negative feedbacks by users.

5. SV is increased by positive feedbacks coming from
users or from software components – such as reasoners
– possibly available in the system, if the composition
is recognised to be crucial.

While the crowd steering components can be modelled as
follow:

1. A gradient service can be built out of each point
of interest (source) identified in the “fake” map above.
Composing gradient with one or more services provides
a new gradient source tagged with contextual informa-
tion provided by other services. They are propagated
over the system so that in each point a set of gradients
is available, each one tagged in a different way.

2. The crowd steering service should identify the gra-
dient with the shorter distance and follow it. If at some
point the crowd steering service finds a local minimum
of that gradient it should look for a new gradient to
follow which is again the one with shorter distance.

3. The gradient contextualisation service locally mod-
ifies the gradient distance according to the user pro-
file. We represent user preferences as a set of pairs
preference-(value ki), where ki ∈ [0, inf]. Each ki es-
timates how much user is interested to service i with
respect to the maximum deviation he/she is inclined to
accept. If the preference is not specified we can decide
to not consider the correspondent tag (namely ki = 0)
or to take a random number for ki. Distance D of the
composite gradient is then updated with the following
function:

D = D −
Ntag∑

i=0

ki
(D −Dmin)

(1)

where Ntag is the number of tags stored in the gradient,
and Dmin is the value of distance of the shortest path
towards the desired point of interest. The physical
distance to travel along the shorter path of a tagged
gradient is then decreased as much as the preference i
of a tag is strong (value ki) and as much as the distance
to travel is close to the distance of the shortest path.
This ensures that if a composite gradient requires to
travel a distance too much bigger with respect to the
shorter one, its choice will be discouraged. At the same
time if the preference is not that strong the decreased
factor is not very significative even in the case of small
D −Dmin.

To summarise, the effect of gradient distance modification is
that the best path perceived by the user – the one with the
minimal distance value – will not necessarily be the physi-
cally shorter one, but the one that maximises the user satis-
faction minimising the deviation, from the physically shorter
path, needed to ascend a composite gradient. The distance
value of composite gradients will then no more represent
only the physical distance but will also include a measure of
user thoughts against the service the composite gradient is
tagged by, opportunely modulated with respect to the devi-
ation needed to exploit different paths. At the same time,
it still remains a real value which can be exploited by the
crowd steering service, that, once all the gradient distances
have been updated, simply identifies the one with smaller
D as the gradient that will steer the user. This behaviour
is shown in Figure 2 where users with the same preference
are steered along different paths (continuos lines) according
to their initial position: the ones on the extreme left are for
instance guided in a path that cross the park (i.e. the area

69

〈sensor, Desc, V alue, Id〉 7−→ 〈sensor, Desc, V alue, Id〉, 〈service, [Id;], initSV 〉 (1)

〈service, A, SV 1〉, 〈service, B has not [A], SV 2〉 7−→ 〈service, A, SV 1〉, 〈service, B, SV 2〉, 〈service, B add [A], initSV 〉 (2)

〈service, grad, T, Id, Tag has not [L], D, SV 2〉, 〈service, L, SV 1〉, 〈service, grad, T, Id, Tag,D, SV 2〉,
〈service, L, SV 1〉 7−→ 〈source, T, Tag add [L], D, initSV 〉 (3)

〈source, Type, ID, Tag,Distance, SV 〉 7−→ 〈source, Type, ID, Tag,Distance, SV −∆SV 〉 (4)

〈source, Type, ID, Tag,D, SV <= 0 >〉 7−→ (5)

〈preference, Desc, V,K〉,+〈sensor, Desc, V alue, Id1〉, 〈diffLength,∆D〉, +〈sensor, Desc, V alue, Id〉
+〈source, Type, Id, Tag has [Id1], Distance, SV 〉, 〈feedback, Id〉 7−→ +〈source, Type, ID, Tag,Distance, SV + K/(∆D + 1)〉 (6)

Figure 1: Laws describing the crowd steering application

Figure 2: Representation of model behaviour

where a sensor reifies the LSA 〈sensor, park, 0, id1〉) even
though the physically shorter one from their position would
follow an other path (dashed line); the one in the middle
will instead not cross the park, meaning that the k value as-
sociated at the park preference is not sufficient for ignoring
the path extension from their initial position.

4.2 A formalisation
We follow the annotation described in [10]. All the infor-

mation exchanged is in form of annotations, simply modelled
as tuples 〈v1, . . . , vn〉 (ordered sequence) of typed values,
which could be for example numbers, strings, structured
types, or function names. Rules are expressed in form of
chemical-resembling laws, working over patterns of annota-
tions. One such pattern P is basically an annotation which
may have some variable in place of one or more arguments
of a tuple, and an annotation L is matched to the pattern P
if there exists a substitution of variables which applied to P
gives L. Moreover we introduce here operators has and has
not applied to a list, meaning, in the conditions, that the
element or sublist has not to be contained, and operators
add and remove that forces, in the actions, the element
to be added or removed from the list. A law is hence of
the kind P1, . . . , Pn

r7−→ P ′
1, . . . , P

′
m, where: (i) the left-hand

side (reagents) specifies patterns that should match annota-
tions L1, . . . , Ln to be extracted from the local annotation
space; (ii) the right-hand side (products) specifies patterns
of annotations which are accordingly to be inserted back in
the space (after applying substitutions found when extract-
ing reagents, as in standard logic-based rule approaches). To
allow interaction between different nodes (hence, annotation
spaces), it is possible to use a remote pattern, written +P ,
which is a pattern that will be matched with an annotation

occurring in a neighbouring space.
Each sensor in the system produces data that can be rep-

resented as tuples of the kind:

〈sensor, Desc, V alue, Id〉
where variable Desc contains a description of the service
(such as “measure of smog” or “measures of slope” or “pres-
ence of a park” etc), variable V alue possibly the numeric
measures acquired by the service, and finally Id couples with
the service an univocal identificator. Associated services are
then represented as

〈service, List, SV 〉
where variable List collects the set of ids of sensor data it is
composed by and SV stores a measure of satisfaction of users
exploiting that service. Therefore the condition required for
two services to be composed is that they are represented
with an LSA matching this pattern. Service composition is
then obtained with eco-laws (1) and (2) of Figure 1: the first
one associates at each sensor datum a description in terms
of service LSA, while the second realises the composition of
services adding a new element to the list of ids.

A gradient is represented with the following couple of
LSAs for the source and the gradient service

〈source, T ype, Id, Tag,Distance, SV 〉
〈service, grad, Type, Id, Tag,Distance, SV 〉

where Type and Distance are typical attribute for a gra-
dient, used respectively to characterise the gradient source
and to define the distance of the node to the source. Id,
Tag and SV are attributes introduced at the purpose of
composition of gradient with other services. They have the
same meaning as before. The list of ids contained in the Tag
list will be used to contextualise each gradient according to
user preferences. Eco-law (3) allows gradient service com-
position with sensor services: a new source for a gradient
with an enriched list of tags is created, out of which a new
tagged gradient will be built. Eco-law (4) evaporates, of a
parameter ∆SV , the SV value of gradient sources, that will
be deleted, via eco-law (5), if it becomes smaller or equal to
0.

Finally each person is modelled as a node hosting the LSA:

〈preference, Desc, V,K〉
that describes the service the user is looking for (Desc),
if necessary specifies the value desired for that service (V)
and, inside K, quantifies the interest of the user for that
service. Reactions that model person behaviour mainly are

70

those for contextualising gradients and for steering people
ascending the chosen gradient. Given their complexity these
behaviours are not modelled in terms of eco-laws but with
agents that perform the computation described in Section
4.1. Moreover the mechanism for giving feedback to the
system about the gradient followed is modelled via eco-law
(6). It is built upon two new LSAs:

〈feedback, Id〉
〈diffLength,∆D〉

the first one is produced by the crowd steering service once
a local minimum is found and simply claims that the user
followed the gradient Id, the second one is produced by the
gradient contextualisation service and in variable ∆D stores
the measure of deviation required to follow that gradient
(namely D−Dmin of Equation 1). This eco-law then ensures
that once users reach the source of the gradient, they provide
feedbacks augmenting gradient’s SV of the factor K/(∆D+
1), i.e. how much the users were interested to that service
modulated with how much the deviation costed.

4.3 Simulation results
Simulations are performed using the Alchemist simula-

tor [10], created to smoothly target pervasive ecosystems.
It implements an optimised version of the Gillespie’s SSA –
which has in principle been developed to model the dynamic
of chemical solutions – namely the Next Reaction Method
[6], that is known for its high performances. To face the
model requirements, this algorithm has been properly ex-
tended with the possibility to have dynamic reactions, i.e.,
system transitions that can be added or removed during sim-
ulation due to network mobility and unpredicted situations.
It is equipped with a Domain Specific Language to flexibly
formulate the model in terms of LSAs, eco-laws and envi-
ronment structure and topology, and with a user interface
to load, execute and inspect the simulation.

In Figure 3 are provided a set of snapshots of the simula-
tion we performed. Snapshot (a) shows the initial setting:
a fake city map with buildings, parks and streets for cars
or pedestrians; people are randomly distributed across the
map, bringing information about their preferences —they for
instance wish to cross a park, to see a lake, to avoid sloping
or polluted streets. Snapshot (b) shows the overlay network
of nodes and with a ”plus” symbol those nodes where a ser-
vice is available – they advertise level of smog and slope, and
presence of parks, lakes and churches – while with a ”circle”
symbol the central area – the square – of the city towards
which all the people move, (i.e. the main gradient source.
From snapshot (c) it is possible to observe the content of
each node, i.e. the set of gradients alive in that moment
and the eco-laws resembling the ones of Figure 1 that can
possibly be fired inside the node. Moreover, for each eco-law,
the scheduling time is provided. Among them also infinity
appears for some reactions, meaning that their conditions
are not satisfied so that they cannot be executed. Finally
in snapshot (d) people movement towards the city centre is
shown. Moreover attention should be paid at the number
of services still alive, which is clearly decreased from the
initial condition of snapshot (b) due to the self-composition
algorithm selection.

In Figure 4 measures for the qualitative behaviour of the
system are then plotted. The upper one shows how the
number of composite gradients available in the whole sys-

Figure 4: Number of services (up) and system per-
formance (down) over time

tem varies with time. The second measures how the overall
satisfaction of users varies in the same window of time. It
is computed as the sum of SV values stored in composite
gradient sources. We can observe that while the number
of available compositions significantly decrease after a first
period of adaptation, the quality of the system still remains
high – it begins with low values as soon as no user feed-
backs are already available, then it increases until reaching
an average value around which it oscillates due to the decay
and feedback components –, meaning that clearly only those
compositions that satisfy users, survive.

5. CONCLUSIONS
In this paper we described an approach for self-composition

of services in pervasive system, with the purpose of develop-
ing context-aware crowd steering applications. An illustra-
tive model, framed in the pervasive ecosystem framework, is
given. Experiments have been performed for validating the
approach, and first results are promising.

Future works are devoted to: (i) Adopt a composition rec-
ommender or an evolutionary technique that selects only a
subset of all possible compositions, identifying the most use-
ful according to the actual state of the system. The adoption
of heuristic algorithms for instance, may restrict the num-
ber of paths available and may provide faster convergence
in the identification of the best path (ii) Introduce the con-
cept of “dangerous” services. For instance, we can imagine
services that advertises levels of pollution or crime in a city.
The composition results in higher services identifying areas
of the city that the crowd steering service should force to
avoid, regardless of user preferences.

6. ACKNOWLEDGMENTS
This work has been supported by the EU FP7 project

“SAPERE - Self-aware Pervasive Service Ecosystems” under
contract No. 256873.

7. REFERENCES
[1] J. Beal and J. Bachrach. Infrastructure for engineered

emergence on sensor/actuator networks. IEEE
Intelligent Systems, 21(2):10–19, 2006.

[2] M. Beek, A. Bucchiarone, and S. Gnesi. A survey on
service composition approaches: From industrial
standards to formal methods. In Technical Report
2006TR-15, Istituto, pages 15–20. IEEE CS Press,
2006.

71

(a) Initial setting (b) Nodes and PoIs

(c) Inspecting the content of one node (d) PoIs decayed and people moved

Figure 3: Snapshots from Alchemist of the crowd steering application

[3] A. A. Berryman. The origins and evolution of
predator-prey theory. Ecology, 73(5):1530–1535,
October 1992.

[4] J.-P. Bonâtre and D. Le Métayer. Gamma and the
chemical reaction model: Ten years after. In
Coordination Programming, pages 3–41. Imperial
College Press London, UK, 1996.

[5] G. Canfora, M. Di Penta, R. Esposito, and M. L.
Villani. An approach for qos-aware service
composition based on genetic algorithms. In
Proceedings of the 2005 conference on Genetic and
evolutionary computation, GECCO ’05, pages
1069–1075, New York, NY, USA, 2005. ACM.

[6] M. A. Gibson and J. Bruck. Efficient exact stochastic
simulation of chemical systems with many species and
many channels. J. Phys. Chem. A, 104:1876–1889,
2000.

[7] M. Mamei and F. Zambonelli. Programming pervasive
and mobile computing applications: The tota
approach. ACM Trans. Softw. Eng. Methodol.,
18(4):1–56, 2009.

[8] S. Montagna, M. Viroli, J. L. Fernandez-Marquez,
G. Di Marzo Serugendo, and F. Zambonelli. Injecting
self-organisation into pervasive service ecosystems.
Mobile Networks and Applications, September 2012.
Online first, available through DOI:
10.1007/s11036-012-0411-1.

[9] S. Montagna, M. Viroli, D. Pianini, and J. L.
Fernandez-Marquez. Towards a comprehensive
approach to spontaneous self-composition in pervasive

ecosystems. In F. De Paoli and G. Vizzari, editors,
Proceedings of the 13th Workshop on Objects and
Agents. CEUR-WS, 12 September 2012.

[10] D. Pianini, S. Montagna, and M. Viroli.
Chemical-oriented simulation of computational
systems with alchemist. Journal of Simulation,
January 2013. Advance online publication.

[11] M. Viroli. A self-organising approach to competition
and composition of pervasive services. Science of
Computer Programming, pages 1–29, oct 2012. In
press. Appeared online with DOI:
10.1016/j.scico.2012.10.002.

[12] M. Viroli, M. Casadei, S. Montagna, and
F. Zambonelli. Spatial coordination of pervasive
services through chemical-inspired tuple spaces. ACM
Transactions on Autonomous and Adaptive Systems,
6(2):14:1–14:24, June 2011.

[13] M. Viroli and G. Stevenson. On the space-time
situation of pervasive service ecosystems. In Workshop
on Spatial Computing, pages 53–59, Valencia, Spain,
June 2012. Informal Proceedings.

[14] Z. Wu, A. Ranabahu, K. Gomadam, A. Sheth, and
J. Miller. Automatic composition of semantic web
services using process and data mediation. In Proc. of
the 9th Intl. Conf. on Enterprise Information Systems,
pages 453–461, 2007.

[15] F. Zambonelli and M. Viroli. A survey on
nature-inspired metaphors for pervasive service
ecosystems. International Journal of Pervasive
Computing and Communications, 7(3):186–204, 2011.

72

Teams to exploit spatial locality among agents

James Parker and Maria Gini
Department of Computer Science and Engineering, University of Minnesota

Email: [jparker,gini]@cs.umn.edu

Abstract—In many situations, task allocation is highly depen-
dent on the spatial locality of the agents and the tasks. In this
paper we explore task allocation in complex spatial environments,
where the cost of completing a task can vary over time. This
work focuses on a subset of cost functions for tasks that grow
over time and presents the real-time Latest Finishing First (RT-
LFF) algorithm, which strikes a balance between the optimal zero
travel time solution and minimizing the amount of time agents
spend transferring to tasks in different locations. We also present
how spatial knowledge can be used to infer missing knowledge
in partially observable spaces.

I. INTRODUCTION

Multi-agent systems offer robustness, flexibility, and ef-
ficiency over single-agent systems. The fields of wide-area
surveillance, exploration and mapping, transportation, and
search & rescue are all being enriched by incorporating mul-
tiple agents. In all these examples, not only must agents travel
through the spatial topology of the environment to accomplish
their goals, but the topology itself can effect how the agent’s
goals can change over time. However, the benefits of multi-
agent systems increases the burden on coordination.

In dynamic environments where the set of agents might
change over time, as agents fail or new agents are added to
the system, and where new tasks can appear and old tasks can
expire, task allocation has to be done in real-time to handle the
uncertainty as to location, completion requirements and size of
tasks. Also agents travel through unknown and possibly unsafe
areas to reach the tasks. Unlike most task allocation problems
[1], we focus on domains where the amount of resources that
a task requires changes over time.

We present the Latest Finishing First (LFF) algorithm for
task allocation in domains where the cost of tasks increases
with time (Section IV). These types of problems can occur
in nature, such as invasive species or forest fires, where if
a task is not completed quickly, then it can become difficult
or impossible later. We then extend our LFF algorithm to a
real-time heuristic version for partially observable dynamic
environments where new tasks can appear as time progresses
(Section V). Finally, we propose a novel way of incorporating
partial information in RoboCup Rescue to accurately predict
a model for clustered tasks (Section VI), and we evaluate
experimentally our work against other methods (Section VII).

II. RELATED WORK

Multi agent task allocation is well known to be an NP hard
problem, giving rise to many different techniques for finding an
approximate solution. One example is swarm robotics, where
agents often use threshold based methods to individually assess
the constraints and their ability to complete each task. If an
agent’s abilities surpass a threshold on the constraints, then

the agent allocates itself to the task. If not, the agent passes
the information to other agents. An example is [2], which uses
distributed constraint optimization (DCOP) as a basis for task
allocation. A comparison between DCOP and other swarm
techniques is provided in [3]. In comparison, market inspired
auction methods typically require more communication and
are more centralized. Zhang et al. [4] present an auction based
approach to form executable coalitions, allowing multiple
agents from different locations to reach a task and compete
it efficiently. Recently, decentralized applications have been
designed that add flexibility to the system (e.g., [5]). Our work
strikes a balance between swarm and centralization, each agent
is directed to an area by a central authority, but upon reaching
the destination, agents act on their own individual abilities.

Other approaches have been developed, such as modeling
task allocation as a potential game [6]. Sandholm et al. [7]
present a generalized coalition formation algorithm which pro-
duces solutions within a bound from the optimal via pruning
a subset of the search tree. Dang et al. [8] improve on it
by further pruning, but the search time is still exponential.
The work in [9] focuses on tasks that require more than
one agent to do them, while simultaneously trying to use
efficiently the agent’s resources and time. Our approach also
assumes multiple agents are required, but we also allow the
requirements of tasks to change over time.

Our work specifically applies to urban search & rescue
using the RoboCup Search and Rescue Simulator [10], pro-
viding simulations based off street and building maps of real
cities. Emergency situations are very time critical and often
lacking in information, as demonstrated by [11]. Most notably,
when the emergency occurs agents are spatially spread out in
a disorganized fashion and must quickly coordinate and form
teams to accomplish tasks.

III. PROBLEM DESCRIPTION

Our problem is task allocation for multi-agent systems,
where agents must travel on designated pathways. The agents
are scattered at random initially and need to converge on
tasks. These tasks require more work to be completed as time
progresses, which necessitates multiple agents being allocated
to them. Thus, simply going to the nearest task can cause
overallocation and other tasks might grow out of control.

We denote the set of homogeneous agents by A =
{a1, . . . , a|A|} and the set of tasks by B = {b1, . . . , b|B|}.
The set of assignments of agents to a task is denoted by
N(t) = {n1(t), . . . , n|B|(t)}, where ni(t) is the set of agents
from A that are assigned to task bi at time unit t. An agent
ai ∈ A can only work on one task, bj , at a time and at most
one assignment nj(t) ∈ N can contain ai. All agents and tasks

73

have a spatial location in the environment and the travel time
between two locations is assumed to be computable.

Each agent provides the amount of work w per time unit
towards the task it is assigned. Every task bi ∈ B has a cost
function f ti : (f t−1i , |ni(t− 1)|)→ R with the relationship:

f t+1
i (f ti , |ni(t)|) = f ti (f

t−1
i , |ni(t− 1)|) + ∆f ti (1)

where ∆f ti has the form:

∆f ti = gi(f
t
i)− w × |ni(t)| (2)

and gi : R>0 → R>0 is a monotonically increasing function
with initial value f0i . For simplicity, we will treat f ti as
a value rather than a function if the values of f t−1i and
|ni(t − 1)| are clear in the context. This means f ti is strictly
monotonically increasing when gi(f

t
i) > w × |ni(t)| and

strictly monotonically decreasing when gi(f ti) < w × |ni(t)|.
When the cost function f ti reaches or passes zero at some time
ti(0), the task is considered complete and is removed from the
problem. In our problem the cost of completing a task increases
over time, therefore the goal of task allocation is to minimize
the time the last task is completed.

IV. LATEST FINISHING FIRST

With perfect knowledge about how a task grows, we can
predict what allocation of agents would be ideal. This ideal
solution is not reachable due to travel time being required to
reach tasks, but even in this ideal setting task allocation is not
as simple as it seems. Even neglecting the spatial limitations,
when tasks grow over time some allocations of agents are
better than others. Taking into account the spatial limitations,
we derive the Latest Finishing First (LFF) algorithm, which
we present after first describing properties of the dynamic cost
functions we will use. Throughout this section, we assume that
time t is sufficiently small to enable us to treat t as continuous
and we assume a solution exists. TT (x, y) is defined to be the
travel time between location x and location y.

A solution is found at some time ts if and only if all bi ∈ B
have f tsi = 0. Using (2), we can write the previous equation
as f0i +

∑
t<ts

∆f ti = 0. Since this is true for every bi ∈ B a
solution is reached if and only if:

∑

bi∈B

(
f0i +

∑

t<ts

(
gi(f

t
i)− w × |ni(t)|

)
)

= 0 (3)

Note that
∑
bi∈B f

0
i is a constant and

∑
bi∈B

∑
t<ts

w ×
|ni(t)| = p̄ × ts × w × |A|, where p̄ is the overall percent
of time the agents are working. We can then rewrite (3) as:

∑

bi∈B
f0i +

∑

bi∈B

∑

t<ts

gi(f
t
i)− p̄× ts × w × |A| = 0 (4)

This means that
∑
bi∈B

∑
t<ts

gi(f
t
i) is the amount of work

added to the system from time t = 0, which we call Rts or the
global regret. We define ∆Rt = Rt −Rt−1 =

∑
bi∈B gi(f

t
i).

Theorem 1: Minimizing Rts is an optimal solution when
TT (x, y) = 0 ∀x, y.

Proof: When TT (x, y) = 0 ∀x, y we can assume p̄ =
1, since agents can instantly move between tasks. Suppose

a better solution f̂ ti exists, then R̂tŝ =
∑
bi∈B

∑
t<tŝ

gi(f̂
t
i)

where Ŝ < S with R̂tŝ > Rts . Rewriting (4) for Rts yields:

Rts = w × |A| × ts −
∑

bi∈B
f0i

Solving (4) for R̂tŝ in terms of ts:

R̂tŝ + w × |A| × (ts − tŝ) = w × |A| × ts −
∑

bi∈B
f0i

Using our two assumptions, we can then write:

Rts + w × |A| × (ts − tŝ) < R̂tŝ + w × |A| × (ts − tŝ)
which implies that Rts satisfied (3) at time tŝ. This is a
contradiction.

Theorem 2: Minimizing ∆Rts for every time unit t also
minimizes the global regret, Rts , when 1. TT (x, y) = 0 ∀x, y,
2. gi = gj ∀i, j, 3. limx→0+ g(x) = 0, and 4. ∂2

∂t2 gi(f
t
i) ≥ 0.

Proof: Since gi = gj ∀i, j, we will denote gi with g
to simplify notation. Assume there exists a better solution
F̂i = {f̂1i , f̂2i , . . .} which differs from the greedy minimiza-
tion Fi = {f1i , f2i , . . .}. This means that at some time td
the better solution must assign agents differently than the
greedy solution. By definition the greedy minimization is a
minimum ∆Rtd at time td, thus ∆Rtd ≤ ∆R̂td , where
∆R̂t =

∑
bi∈B g(f̂ ti). After time td, the greedy minimization

will allocate agents exactly in the same way as the better
solution and because TT (x, y) = 0 ∀x, y this is possible
from any configuration. Next we prove by induction that∑
bi∈B f

t
i ≤

∑
bi∈B f̂

t
i . At time td,

∑
bi∈B f

td
i =

∑
bi∈B f̂

td
i

combined with the fact that fxi = f0i +
∑
t<x ∆fxi along with

Fi is a greedy choice implies
∑
bi∈B f

td+1
i ≤ ∑bi∈B f̂

td+1
i ,

which is the base case in the induction. If we write f̂ ti = f ti+ci,
then we can conclude

∑
bi∈B ci ≥ 0. We can then compute

for f t+1
i as:

f t+1
i = f ti + g(fi)− w × |ni(t)|

and f̂ t+1
i as (ni(t) is the same since assignments are copied):

f̂ t+1
i = (f ti + ci) + g(fi + ci)− w × |ni(t)|

If we use the monotonicity of g, then we can see g(fi+ ci) =
g(fi) + δi × ci for some δi > 0. This means f̂ t+1

i − f t+1
i =

ci + δi × ci or rearranging: f t+1
i + ci + δi × ci = f̂ t+1

i . Since
∂2

∂t2 gi(f
t
i) ≥ 0 we know δi ≥ δj when ci > cj ∀i, j. Thus,∑

bi∈B δi × ci ≥ 0 since
∑
bi∈B ci ≥ 0. We can conclude

that
∑
bi∈B f

t+1
i ≤ ∑bi∈B f̂

t+1
i , the inductive step. Using a

similar logic to extracting the definition of ∆Rt from (3), we
drop

∑
bi∈B f

0
i and

∑
t<ts

∑
bi∈B w×|ni(t)| from both sides

and get:
Rts ≤ R̂ts

where R̂ts =
∑
bi∈B

∑
t<ts

g(f̂ ti). This is a contradiction to
the fact that F̂ is a better solution, therefore minimizing ∆Rt
at every time t also minimizes Rts .

Before concluding the proof, we must consider the cases
when F completes a task that F̂ did not and vice versa. If F
completes a task that F̂ did not, then the greedy minimization

74

will assign agents from an already completed task to a random
unfinished tasks. This does not invalidate any of the inequali-
ties above. When F̂ completes a task that F has not, this task
will never be completed by direct mimicry from the greedy
minimization solution, instead this will be finished by the
random assignment described above. There is no discontinuity
in the sums since we require limx→0+ g(x) = 0, so when a
task is completed it simply disappears from the equations.

Unfortunately, the assumption that TT (x, y) = 0∀x, y is
rather strong. When agents require time to move between
different task clusters, every time an agent is allocated to a
different task, p̄ decreases in (4). To address this issue, we
introduce Latest Finishing First (LFF) in Algorithm 1. The
inspiration behind LFF is to create a stable assignment that will
try to maintain p̄ close to 1 to maximize the overall output of
agents in the system. To do this, each task is prioritized and the
closest agent to the highest priority task is assigned to that task.
After an agent has been assigned, the priority of the highest
priority task is recomputed and this process is repeated.

The priority of a task is the expected time to complete that
task, so tasks that take longer have a higher priority. Since gi
increases work needed to complete a task, all tasks initially
start out never completing (or ti(0) = ∞, ∀i). In case of
ties, the task which has the largest current cost is allocated
the closest agent. This causes the completion times of all the
tasks to be as balanced as possible, which in turn reduces the
amount of travel needed for agents.

Algorithm 1 Latest Finishing First
1: while ∃ai ∈ A and @j such that ai ∈ nj(0) do
2: Find bi for argmax

bi∈B
ti(0) {Task bi ends last}

3: if ∃bi, bj where ti(0) =∞ and tj(0) =∞ then
4: Find bk for argmax

bk∈B
f0k with tk(0) =∞

5: Assign argmin
aj∈A and aj unassigned

TT (aj , bk)

6: else
7: Assign argmin

aj∈A and aj unassigned
TT (aj , bi)

8: end if
9: end while

V. REAL-TIME LATEST FINISHING FIRST

This section extends LFF outlined in Algorithm 1 to a de-
centralized real-time solution for dynamic partially observable
environments in Algorithm 2. The LFF algorithm assumed all
the tasks were known initially, but without this assumption
it becomes impractical to try and minimize agent movement.
When new tasks are discovered, it is crucial that agents are
reallocated to the new tasks. The Real-Time Latest Finishing
First (RT-LFF) algorithm assumes that new tasks are identified
from an oracle, and when a new task is identified agents are
reallocated to try finish all tasks at the same time.

When the task allocation first starts, the normal LFF is
used to compute the assignments of agents. While time is
progressing, if a new task, bj , is identified then RT-LFF uses
a greedy heuristic to reallocate agents to bj . Tasks are ordered
based on spatial proximity to bj , and tasks that are closest to
the new task attempt to reallocate agents first. Let t−i (0) be the

time for task bi to complete with one fewer agent and t+j (0)
be the time for task bj to complete with one additional agent
including the delay from the agent traveling. An agent is only
reallocated from bi to bj if t−i (0) < t+j (0), namely a greedy
heuristic which only transfers agents if the original task will
still finish first even after reallocating an agent.

If the oracle informs all agents of the new task, each agent
can compute this algorithm and agree on which agents should
transfer without any communication. In the case where agents
have limited computational power, a single more powerful
agent at or nearby each task could direct this algorithm. If the
oracle only informs the agents closest to the newly identified
task, these agents would run the RT-LFF algorithm, since they
are the highest priority, and after any assignments pass on
updated information to the next closest agents.

Theorem 3: RT-LFF has at most |B| − 1 misallocated
agents from LFF at any time assuming zero travel time.

Proof: We show that using RT-LFF a task b1 will never
be assigned more than one agent when using LFF by breaking
it down into two cases. First, assume that we have two tasks
b1 and b2 and let t++

j (0) be the time task bj is completed with
two additional agents assigned to it and similarly t−−i (0) be
the time task bi is completed with two less agents assigned to
it. Without loss of generality assume t2(0) < t1(0). If RT-LFF
did not reallocate an agent from b2 to b1, then t−2 (0) > t+1 (0).
We notice that reallocating two agents from b2 to b1 means
t−−2 (0) > t−2 (0) and t++

1 (0) < t+1 (0), which is a contradiction
to the RT-LFF algorithm since b1 would allocate an agent back
to b2 since t−2 (0) > t+1 (0).

Next we show that a task b1 would never receive a single
agent from more than one cluster. The argument is similar to
the first part, only it now involves task b3. If b2 and b3 did not
reallocate an agent to b1 under RT-LFF, then t+1 (0) < t−2 (0)
and t+1 (0) < t−3 (0). Suppose LFF did have both b2 and b3
reallocate an agent to b1, then without a loss of generality
assume t−2 (0) < t−3 (0). Then t++

1 (0) < t+1 (0) < t−2 (0) <
t−3 (0). This is a contradiction to how LFF works. Currently
t−3 (0) is the last finishing and t++

1 (0) is the fastest finishing,
and from the equation above if b1 gave back an agent to b3
then t+1 (0) < t−2 (0). This means the transfer back has reduced
the time of latest finishing task, thus under RT-LFF b1 will be
not allocated an agent from more than one cluster compared
to LFF. This implies a task in RT-LFF cannot have more than
one agent under the allocation of LFF for each time step. The
worst case is when |B| − 1 tasks have one agent fewer than
LFF’s allocation with the last task over allocated.

Algorithm 2 Real-Time Latest Finishing First
1: Use LFF for initial allocation
2: while t < ts do
3: for bi ∈ B do
4: if ∃bi 6= bj where t−i (0) < t+j (0) with argmin

bi
TT (bi, bj) then

5: Reassign ak ∈ Ni(t) to bj with argmin
ak

TT (ak, bj)

6: end if
7: end for
8: end while

75

VI. MODELING COST OF TASK COMPLETION FOR
EXTINGUISHING FIRES

In this section we focus only on the subproblem of dealing
with fires in RoboCup Rescue and present a way of modeling
how fire spreads and assigning agents to fires. The RoboCup
Rescue simulator is designed for urban search & rescue after an
earthquake, which fires to start in buildings. The environment
is large (see Figure 1) with upward of 100 agents. The full
simulator uses heterogeneous agents, but for this work we
focus only on the agents that can extinguish fires, i.e. firetrucks.
The other agents simulate the oracle and constantly search for
new fires, and relay the location and estimated size when a
new fire is found.

Fires are the most dangerous hazard in RoboCup Rescue.
While a single building on fire can be dealt with quickly,
if too many buildings ignite the fire becomes very difficult
to tackle both due to its size and re-ignitions of buildings.
We present two novel contributions. First, fire clusters are
modeled as single tasks that have a cost which increases as
time passes. Second, we present a method to estimate the
number of buildings on fire in a cluster when only a few
buildings from that cluster have been observed. The RT-LFF
algorithm is then shown to out-perform more naı̈ve heuristics.

A. Growth of Fire Clusters

Each building on fire individually has a chance to ignite
nearby buildings based primarily on distance. This means the
rate of growth, g, is proportional to the number of current
buildings on fire, x:

(a) δx
δt = g × x (b) x = C × eg×t (5)

Ten simulations with a single fire starting in various locations
were used to empirically evaluate g to be roughly 0.0687. This
is a first order linear differential equation that can be explicitly
solved by separation of variables to yield the well known
exponential growth function given by (5b). A constant C is
introduced by integration to satisfy the initial conditions. Eq.
(5a) can be modified to incorporate fire agents extinguishing
effect on a fire. If there are n fire agents assigned to a fire
cluster that each extinguish at a rate w, then the rate of growth
of a fire of a fire cluster will be reduced by n× w:

δx

δt
= g × x− n× w (6)

The constant w was also empirically calculated to be about
0.184 by running ten simulations with a single fire agent and
tracking the total number of fires extinguished after 100 cycles.
Matters are further complicated since the intensity of the fire
has an effect on the amount of time it takes to extinguish,
thus, w is biased higher than the real value. Agents can
extinguish small fires much more quickly than larger fires,
which often causes the agent to repeatedly put out small fires
as they are reignited from nearby larger fires. Nevertheless,
w gives a reasonable estimate for the agent’s capabilities as
shown in Section VII. Since both n and w are constants,
this still is a linear differential equation which simplifies to
a slightly modified exponential growth function shown in (7).
This satisfies all the conditions in Theorem 2 except the zero
travel-time assumption.

x =
n× w
g

+ C × eg×t (7)

Fig. 1. Pink and blue buildings’ average position determine the two points
on the red fire cluster circle.

B. Estimating the Size of a Cluster

Clustering is commonly done to group similar objects into
a single abstract object to reduce the complexity and to enable
a macro-level analysis. Running a probabilistic model for every
single building to predict the fire spread would require a large
amount of computation and have a low probability for every
possible state. Furthermore, the model will change based on
which fires agents are assigned to extinguish, so ideally the
model should be recomputed after every assignment. This
method will not scale and is too complex for a scenario in
which a large amount of information is already missing. For
that reason fires are abstracted into clusters and the macro-level
behaviors of these clusters are analyzed instead.

The lack of full information in RoboCup Rescue makes
clustering difficult and requires some assumptions to be made.
If a large number of agents were available to circle around the
fire cluster and monitor its growth, then direct clustering using
(6) with current known information would be a good estimate.
However, normally agents are not able to dedicate this much
time to information gathering, so it is necessary to come up
with a way of estimating the size of a fire cluster while only
being able to see a few buildings. To do this we need to
make one assumption: on average fire propagates equally in
all directions.

From this assumption, a circle is a good estimate of the area
on fire. This circle is identified by two points on its edge in the
following manner: First, the most recently seen building and
the 9 closest burning buildings (or all known nearby burning
buildings if fewer than 9 are on fire) are included in a set. Then
k-means clustering with k = 2 is run to find two subsets. The
average position of each subset is then used as the two points
to fit the circle upon, shown in Figure 1.

The method for finding the radius can be extended from the
exponential model given in Section VI-A. If x is the number
of buildings on fire, then we can estimate π × r2 = A × x,
where r is the circle radius and A is the average building area
(estimated over all buildings on the map). This can be rewritten

76

as: x = π×r2
A which can then be substituted into (5a) yielding:

δr

δt
=
g

2
× r, and r(t) = D × e g

2×t (8)

To overestimate the radius of the circle, we initially assume
the fire started at the beginning of the simulation. For example
if a fire is found at time t = 50, we would assume this fire
started as a single burning building, D = 1, at time t = 0.
Thus the radius would simply be r(50). With a radius and
two points on a circle, there are two possible circles to choose
from. The circle with the highest ratio of burning buildings to
total buildings is the one chosen as the fire cluster.

Since this radius is the worst case estimate, we should
incorporate current information to refine the estimate. For all
buildings in the circle, we check their status at the last time
viewed. If a building has never been seen, we neglect it. If there
is a conflict between past information and the assumption that
the fire started at time t = 0, we assume the center of the circle
is still the same and recompute D for a radius that satisfies the
information. This new initial condition gives a smaller radius to
be fit on the two circle points and this time we choose the circle
whose center was inside the old overestimated circle. This
process is repeated until there is no conflicting information.

C. Assignment to Fire Clusters

The goal of assigning agents to clusters is to extinguish
fires as quickly as possible. Eq. (7) can be solved for t when
x = 0 as shown in (9). If the constant C is nonnegative, then
the fire is growing faster than the n agents can extinguish it.
Thus the fire will grow indefinitely and t(0) is set to∞. When
C is negative, (9) will be computable and will give the time
when the fire will be fully extinguished.

t(0) = (ln
n× w
g ×−C)/g (9)

Algorithm 3 shows the implementation of the RT-LFF
algorithm for the case when g(x) = x in RoboCup Rescue.
Normally in RoboCup Rescue no fire clusters are known
initially, so when the first fire cluster is found all agents are
assigned to that cluster. When a new fire cluster is found,
multiple agents may need to be transfered from the old clusters.
This is why any time an agent was transfered, we should run
the algorithm again until no more useful transfers exist.

The order in which the fire clusters are labeled is important,
since every cluster first attempts to transfer an agent to b1.
When a new fire is discovered, it will initially have no agents
assigned and will need to receive agents from other clusters.
Since this fire cluster is in the greatest need of agents, it is
assigned b1. All other clusters are then reordered based on
their distance from cluster b1, the newly discovered fire. Thus
b2 will be the closest fire cluster to b1, b3 the second closest
and so forth. This helps reduce the travel time TT (i, j) in
order to more efficiently use fire trucks.

VII. RESULTS

In this section, we show the validity of our exponential
model and RT-LFF by empirical evaluation in RoboCup Res-
cue. First, we show how the exponential model accurately fits
the real fire growth data. Then the model is used to estimate

Algorithm 3 RT-LFF for g(x) = x
Require: Ci, Cj , ni, nj , w, g, t {Ci is the integration constant

and ni(t) is the number of agents on task bi, Cj and
nj correspond to similar things on task bj , w is the task
completion rate of agents, g is the growth rate of fires and
t is the current time.}

1: change← true
2: while change do
3: change← false
4: for i = 1 to k do
5: t−i (0) ← (ln (ni(t)−1)×w

g×−Ci
)/g {Compute the time to

extinguish fire i with one less agent than it currently
is assigned.}

6: for j = 1 to k do
7: x̂j ← nj(t)×w

g + Cj × eg×(t+TT (i,j)) {Before
the agent from fire cluster i arrives to cluster j,
compute the effect of the agents.}

8: Ĉj ← (x̂j − (nj(t)+1)×w
g)/(eg×(t+TT (i,j))) {Once

the agent from cluster i arrives, we need to recom-
pute Cj .}

9: t+j (0) ← (ln
(nj(t)+1)×w
g×−Ĉj

)/g {Finally compute
when fire j is fully extinguished.}

10: if t−i (0) < t+j (0) then
11: Transfer an agent from i to j
12: ni ← ni − 1
13: nj ← nj + 1
14: change← true
15: end if
16: end for
17: end for
18: end while

the time a fire is extinguished and compared against the real
time it took for agents to extinguish the fire. Finally RT-LFF is
compared against a random assignment method and a closest
distance greedy heuristic.

A. Model Fitting

A single fire was tracked over 5 simulations on two maps
(Virtual City and Berlin) and the actual number of fires is
compared against the exponential function best fit in Figure 2.
The exponential function slightly under estimates the fire
cluster between t = 40 and t = 60 but is otherwise fairly
accurate.

Fig. 2. Average fire spread estimated by best exponential fit to data.

The estimate of fire cluster size described in Section VI-B

77

was tested by assigning a static amount of fire trucks to
extinguish the fire cluster and comparing the estimated and real
extinguish time. The estimated size of the cluster is recomputed
every time step and increases in accuracy as a larger number
of buildings in the cluster is observed. For worst case analysis
the real extinguish time is compared against the estimated
extinguish time when the fire cluster is first discovered.

A histogram of 54 fires extinguished with the normalized
error is shown in Figure 3. The error in estimation had a mean
of 0.0268 and standard deviation of 0.2526. The distribution
is close to Gaussian and fairly unbiased at overestimating
or underestimating. Some error may be due to imprecise
empirically derived constants in the modeling equation or a
lack of incorporating the intensity in the model.

Fig. 3. Relative error of extinguish time when a cluster is first discovered.

B. Performance Comparison of Different Allocation Strategies

Each map was run with 5 simulations and the time the last
fire was extinguished is reported in Figure 4. In each case,
the oracle is simulated by a fixed number of agents randomly
searching the environment for new tasks and broadcasting the
location of the tasks when they are discovered. The fixed
number of agents searching the environment do not interact
with any of the tasks directly. RT-LFF method does much
better in Virtual City (8.3% better than the closest heuristic
approach) than in Berlin (4.0% better). This is probably due to
Virtual City being an artificial map with similar building sizes
and a compact building arrangement. Berlin has open spaces
where there is a river or park that throws off the accuracy of
the circle estimating method. There is also a larger discrepancy
in building size in Berlin which can again effect the circle
estimate. If a large building is chosen for one of the two
clusters to estimate the two points on the circle, the buildings
in this cluster will be more spread out and would give an
inaccurate point estimate since the center of the large building
is far away from the others. The random method performs
poorly on both maps, due to lack of cooperation.

VIII. CONCLUSIONS AND FUTURE WORK

This paper addresses task allocation with multiple agents,
where each task has a cost that changes over time. This
adds a substantial amount of complexity and requires more
coordination between agents. We limited the investigation of
dynamic cost tasks to a general family of functions in order
to reduce the complexity. We presented the Latest Finishing

Fig. 4. Average finish time (no fires left) per map for each configuration.

First algorithm, which attempts to minimize the time when
the last task finishes. We documented properties exhibited by
dynamic tasks and went on to present a real-time solution,
which approximates LFF for partially observable spaces. The
algorithms currently work only for homogeneous agents with
identical abilities. We hope to expand the current model to
include other agent types. The choice of metric for evaluating
an algorithm for dynamic cost functions is also an open
question, especially when no solution exists. Completing fewer
tasks at the expense of ignoring others might be beneficial
more than keeping the current total cost low.

REFERENCES

[1] S. D. Ramchurn, M. Polukarov, A. Farinelli, C. Truong, and N. R.
Jennings, “Coalition formation with spatial and temporal constraints,”
in Proc. Int’l Conf. on Autonomous Agents and Multi-Agent Systems,
2010, pp. 1181–1188.

[2] P. Scerri, A. Farinelli, S. Okamoto, and M. Tambe, “Allocating tasks in
extreme teams,” in Proc. Int’l Conf. on Autonomous Agents and Multi-
Agent Systems, 2005, pp. 727–734.

[3] P. R. Ferreira, Jr., F. dos Santos, A. L. C. Bazzan, D. Epstein,
and S. J. Waskow, “RoboCup Rescue as multiagent task allocation
among teams: experiments with task interdependencies,” Journal of
Autonomous Agents and Multi-Agent Systems, vol. 20, no. 3, pp. 421–
443, 2010.

[4] Y. Zhang and L. E. Parker, “Task allocation with executable coalitions
in multirobot tasks,” in Proc. IEEE Int’l Conf. on Robotics and
Automation, 2012.

[5] M. Nanjanath, A. Erlandson, S. Andrist, A. Ragipindi, A. Mohammed,
A. Sharma, and M. Gini, “Decision and coordination strategies for
robocup rescue agents,” in Proc. SIMPAR, 2010, pp. 473–484.

[6] A. Chapman, R. A. Micillo, R. Kota, and N. Jennings, “Decentralised
dynamic task allocation using overlapping potential games,” The Com-
puter Journal, 2010.

[7] T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohmé,
“Generation with worst case guarantees,” Artificial Intelligence, vol.
111, no. 1–2, pp. 209–238, 1999.

[8] V. D. Dang and N. R. Jennings, “Generating coalition structures with
finite bound from the optimal guarantees,” in Proc. Int’l Conf. on
Autonomous Agents and Multi-Agent Systems, 2004, pp. 564–571.

[9] X. Zheng and S. Koenig, “Reaction functions for task allocation to
cooperative agents,” in Proc. Int’l Conf. on Autonomous Agents and
Multi-Agent Systems, 2008, pp. 559–566.

[10] H. Kitano and S. Tadokoro, “RoboCup rescue: A grand challenge for
multiagent and intelligent systems,” AI Magazine, vol. 22, no. 1, pp.
39–52, 2001.

[11] Álvaro Monares, S. F. Ochoa, J. A. Pino, V. Herskovic, J. Rodriguez-
Covili, and A. Neyem, “Mobile computing in urban emergency situa-
tions: Improving the support to firefighters in the field,” Expert Systems
with Applications, vol. 38, no. 2, pp. 1255 – 1267, 2011.

78

 1

Abstract—The creation of an orbital services model (where

spacecraft expose their capabilities for use by other spacecraft as

part of a service-for-hire, barter system or single-owner network)

requires effective determination of how to best transmit

information between the two collaborating spacecraft. Existing

approaches developed for ad hoc networking (e.g., wireless

networks with users entering and departing in a pseudo-random

fashion) exist; however, these fail to generate optimal solutions,

as they ignore a critical piece of available information. This

additional piece of information is the orbital characteristics of the

spacecraft. A spacecraft’s orbit is nearly deterministic if the

magnitude and direction of its velocity vector is known (irregular

drag and other factors can introduce error, particularly over an

extended period of time, which can be corrected for). Because of

this, it is possible for the communications routing algorithm to

predict (with a high level of accuracy) future positions of origin,

destination and prospective intermediate nodes and determine a

communications path optimized based on this knowledge. Many

other applications of spatial computing have similar constraints

on the problem space. This paper considers the special case of

spatially-aware communications traffic routing in an orbital

environment and extrapolates from this to other spatial

computing problems with problem space constraints.

Index Terms—Spacecraft networking, orbital computing,

cloud computing, spatial computing, orbital services model,

service delivery

I. INTRODUCTION

NY spacecraft in orbit of a dominating mass moves in a

deterministic pattern around that mass. This allows the

determination of a future position of the spacecraft based on

knowledge of the current magnitude and direction of the

spacecraft’s velocity relative to the dominating mass. While

subtle orbital variations (caused by irregular atmospheric drag,

the irregularities of the central body’s mass distribution, solar

pressure and other factors) will perturb this orbit over time,

these can be effectively corrected for. This allows two

spacecraft to determine when they will be in close enough

proximity to communicate in the future.

A key challenge to facilitating the miniaturization of

J. Straub is with the Department of Computer Science, University of North

Dakota, Grand Forks, ND 58202 USA (e-mail:Jeremy.straub@my.und.edu).

spacecraft and survivability of missions is capability sharing

between multiple spacecraft. This allows spacecraft to

become smaller, resulting in lower mass and cost (both in

terms of construction and launch costs) for a given capability

level or it allows increased capabilities at a given price point.

Large ‘pristine-class’ missions (e.g., most current large-

scale Earth sensing and interplanetary satellites) generally are

equipped with the capabilities required during the period of

greatest need. This is dictated by the fact that they must

operate largely on a stand-alone basis. Thus, they may have

significant capacity most of the time, when these additional

capabilities are not required for their primary mission.

Two models, thus, emerge for reducing space mission costs

(analogous to models utilized for ‘big data’ processing on

Earth): central service providers that make capabilities

available to customer spacecraft or a peer-to-peer-based model

where spacecraft make their unneeded resources available to

others on a barter or fee-for-service basis.

Both versions of the orbital service model [1] require

effective communications and transmission cost prediction.

This is, of course, required when actually transmitting data.

Projections of transmission windows can also be utilized when

comparing multiple service provider bids for prospective jobs

to determine if the collaboration will produce a suitably

expedient result (based on processing time and the projected

delay between the end of processing and result delivery).

Projections may also be utilized to determine whether it is

cost-effective to procure a transmission forwarding service to

allow provider-to-client (and vice-versa) communications via

an intermediary, when the two cannot communicate directly

(due to orbital position).

Several models have been considered based on work related

to various types of networks with entering, moving and

leaving nodes. The value of considering the deterministic

movement is presented and a limited extrapolated is made to

other (more general case) applications where the problem

space of a spatial computing problem can be constrained by

environmental traits or other factors.

II. BACKGROUND

The work presented herein benefits from two existing areas

of knowledge. These areas are the work related to modeling

Spatial Computing in an Orbital Environment:

An Extrapolation of the Unique Constraints of

this Special Case to other Spatial Computing

Environments

Jeremy Straub

A

79

 2

ad hoc networks and orbital mechanics. The prior work

related to modeling ad hoc networks can be utilized to create

an effective (but generally non-optimal) solution to the orbital

communications problem. These algorithms, generally,

presume an unreliable network with nodes entering and

leaving in a pseudo-random fashion. Orbital mechanics

further informs this with specific times and durations of

communications that can be determined before the fact and

used to create optimal or near-optimal communications

routing solutions. Previous work related to these areas is now

presented.

A. Review of Ad Hoc Networks

Abolhasan, Wysocki and Dutkiewicz [2] review the

numerous routing protocols available for mobile ad hoc

networks (MANETs). They identify 28 prospective routing

protocols and divide them into three classes (proactive and

reactive and hybrid). Proactive approaches maintain a cache

of the complete routing map of the network (e.g., they can

determine the best way to get to any other node). Reactive

approaches, alternately, maintain path details only for the

active path; they locate a new path if one is needed between

the same two nodes again in the future. They conclude that

the hybrid approach seems to work the best, benefiting from

features from across the 23 non-hybrid approaches.

Karande and Kulkarni [3] present work on routing for

vehicular ad hoc networks (VANETs). VANETs share several

common characteristics with orbital ones: they incorporate

node movement and in some areas (e.g., a highway) the nodes

follow a common path. Unlike orbital networks, in some

areas numerous movement scenarios are incorporated (e.g., a

parking lot) and nodes are less reliable, potentially not trusted

and more likely to take unpredicted actions. In a VANET

traffic routing can flow from node-to-node or from

infrastructure to node.

Karande and Kulkarni consider two common ad hoc routing

protocols, AODV (ad-hoc on-demand distance vector) and

DSR (dynamic source routing) and determine that while they

can be utilized they are not optimal due to the node mobility

and network dynamism. Instead, they propose several other

solutions including position based routing (PBR), geographic

source routing (GSR), cluster-based routing (CBR), broadcast

routing (BR) and geocast routing (GR).

PBR was found to work well in uncongested areas with

limited obstructions; however, obstructions or congestion

resulted in undesirable performance including routing loops

and not-even-close-to-optimal paths being used. GSR utilizes

map data for the operating area and creates a routing plan

based on the direction of travel from message origin to

destination. CBR requires a virtual network be created via

grouping nodes together. However, the node movement made

this problematic, as the virtual cluster formation was not fast

enough to serve user needs in the quickly changing VANET

environment.

BR sends messages to all adjacent nodes which repeat it to

all nodes they are connected to. This was shown to be suitable

for very small networks; however, congestion becomes a

problem for anything larger than a small network. GR is a

form of localized multicast, where a message is delivered to

all nodes in a designated area. This was described as being

well suited for notification of hazards and vehicles in distress.

None of these approaches is suitable, on its own, for use in

an orbital environment. However, the challenges presented

suggest several possible considerations and inclusions to

improve orbital network performance. Networks utilized for

UAV-to-UAV communication and autonomous boat-to-boat

communications can also be considered; however, many of

these technologies are still designed around the concept of

human-in-the-loop teleoperation. Thus, while the movement

is more deterministic (e.g., controlled by a known routing

algorithm), the communications approach is dissimilar.

Das, Barman and Sinha [4] present a clustering mechanism

for sensornets which incorporates multi-hop ad hoc

transmissions. The proposed approach creates a “virtual

backbone” where, using an iterative convergence approach, a

dominating set is discovered. Traffic flows through these key

nodes, which have been identified. This was shown to work

effectively and demonstrated to save power (however, there

was shown to be a trade-off between the power utilized and

system performance).

B. Introduction to Orbital Mechanics

Orbital mechanics is based on a single fundamental

relationship between velocity and gravity [see 5]. An object

remains in a stable orbit if and only if its velocity directly

counter-balances the force of gravity at a particular distance

from the central mass (i.e., the Earth is the central mass for an

object in orbit around it; the Sun is the central mass for the

orbits of the planets and other objects such as asteroids).

Figure 1. Counteraction of Velocity and Force of Gravity

Central Body

Fg

V

While this is an over abstraction (as perturbing forces must

be corrected for or counter balanced and may change over

time), there is a single velocity suitable for each point in an

orbit of a given altitude / semi-major axis. At this velocity

(V), the object is moving fast enough tangent to the force of

gravity (Fg) so as to be in constant free fall, but never

approach the object (this, notably, is what creates the

microgravity environment in orbit). This relationship is

shown in Figure 1. At a slower speed, its orbit will decay

resulting, eventually, in impact. At higher velocities, it will

exit the orbit. Changes in velocity (ΔV) are thus used to

change the altitude of an orbit.

80

 3

Because of this relationship, three useful suppositions exist.

These are:

1) An object in a given orbit will maintain a constant path

of movement. The velocity at a given point in an orbit

will be the same from iteration-to-iteration. For

circular orbits, the magnitude of this velocity is

constant throughout the orbit.

2) A given orbit will take a fixed amount of time to

complete, which is a function of the orbit’s altitude /

semi-major axis.

3) Two spacecraft in orbits of the same altitude will

occupy the same points at the same times from

iteration-to-iteration of orbits.

Note, however, that there is no guarantee with regards to

objects in orbits of different altitudes having position

consistency from orbit to orbit. These relative positions will

change (unless the orbits are multiples of each other). Other

mathematical relations between orbital periods will cause

recurring patterns to occur. For simplicity of presentation, this

paper deals with orbits that have the same altitude. However,

actual implementations will generally require the

determination of future communications opportunities that do

not benefit from this simple relationship.

III. THE ORBITAL SPECIAL CASE

While being governed by the same fundamental physical

laws, orbital movement is unlike movement on the surface of

the Earth. Spacecraft are constantly moving at a relatively

constant speed. The following two sections discuss how this

impacts the problem space for routing communications traffic

(section a) and how this impacts the determination of an

optimal or near-optimal solution (section b).

Figure 2. Equatorial and Inclined Orbit

A. Constraints Imposed on the Problem Space

The principles of orbital mechanics pose some severe

constraints upon the problem space (making the problem

easier to solve than a general for of the problem). Unlike ad

hoc networks which must presume that a node could enter or

leave (or for many applications, be shut off) at any time,

orbital mechanics (and common spacecraft operation

principles) makes the position of the assets known at all times

(within a margin of error caused by orbital perturbation) and

allows times and speeds of connectivity to be pre-determined.

In addition, the general reliability of orbital assets means that

there is little worry about an asset being shut off (though

services being disabled for maintenance, etc. is certainly

possible and must be handled). This, thus, becomes an

exception to be handled rather than a common (ad hoc)

occurrence that must be projected or predicted by a model.

Figure 3. Relative Angles of Orbits

15ᵒ

15ᵒ

15ᵒ

15ᵒ

30ᵒ

A

B

With a 30 degree inclination orbit and an elliptical orbit, the

separation can be approximated with the equation:

 ()

 (1)

From this, the distance before and after the point where orbits

cross where the spacecraft are in communication can be

determined. Presuming (as an example) a 500 km maximum

separation for effective communications, the two spacecraft

can communicate from approximately 965.62 km before orbit

crossing to 965.62 km after orbit crossing. With the 20,979

km circumference orbit requiring 90.52 minutes to traverse

(and being traversed at a constant speed, as it is a circular orbit

– the speed of traversal of ecliptic orbits varies), a

communications period of approximately 8.33 minutes is

available twice an orbit, for an average daily communications

time of 265.03 minutes.

For the orbits shown in Figure 3 (continuing to presume a

maximum communications distance of 500 km) each

spacecraft is able to communicate with the other from 353.5

km before the point where their orbits cross to 353.6 km after

their orbits cross. This occurs twice per orbit (on opposite

sides of the earth). With an orbital circumference of 20,979

km and traversal of this taking 90.52 minutes, this 707.2 km

traversal during which the spacecraft are able to communicate

lasts 3.05 minutes, for a total of 6.1 minutes of communication

per orbit (or 90.04 minutes of communication per 24-hour

period). The amount of time that the spacecraft can

communicate, for this example, scales up linearly with the

maximum allowed range. For example 12.2 minutes of

communication per orbit are available if the spacecraft is able

to communicate at distances of up to 1000 km. Note that in

each case, the spacecraft cannot cross the shared orbital

crossing point at the same time at exactly the same altitude

(As a collision would occur); however, the small impact of a

slight spacing has been ignored to conceptually simplify the

presentation.

81

 4

Figure 4. Equatorial and Polar Orbit

Additional examples are beyond the scope of what can be

presented herein (and do not add significantly to the analysis

of this topic, even though they add significant computational

complexity). Prospective scenarios that bear consideration

include: orbits with different altitudes (and thus different

periods where the relative position of the two craft differs on

each successive orbit), orbits with different eccentricities (the

eccentricity defines how elongated an orbit is) and the

combination of eccentricity, inclination and altitude. It is

important to note, however, that irrespective of the complexity

of determining relative position, it can be determined for any

time in the future (ignoring orbital perturbations).

In all cases, this can be reduced to a set of values related to

the next times the various spacecraft will be within

communications range of each other and the duration of that

communications window. Tables 1 and 2 show an example of

this for the three spacecraft considered (the spacecraft in

equatorial orbit, spacecraft 1, is presumed to be the same

across the two previously discussed scenarios).

Table 1. Example Future Communications Opportunities

Between Spacecraft 1 and 2

Time Duration

14 8.33

59.26 8.33

104.52 8.33

149.78 8.33

195.04 8.33

240.3 8.33

285.56 8.33

Table 2. Example Future Communications Opportunities

Between Spacecraft 1 and 3

Time Duration

19 6.1

64.26 6.1

109.52 6.1

154.78 6.1

200.04 6.1

245.3 6.1

290.56 6.1

From this, the amount of time before a message of a given

duration can be completely transmitted can easily be

determined. For example a 1 minute message could be

transmitted within 20 minutes. An 8 minute message

(presuming that spacecraft 1 can communicate with spacecraft

2 and 3 concurrently during the overlapping period) would

take 66.36 minutes before transmission was complete.

This scenario is quite simple, as there is only one path for

the transmission to take. If an additional node (spacecraft 4)

was added that could also communicate with both spacecraft 2

and 3, then a routing determination could be made. For the

purposes of this example, it will be presumed that spacecraft 4

is also in an equatorial orbit (at a different position). Tables 3

and 4 present the next times the various spacecraft will be

within communications range of each other and the duration of

that communications window.

Table 3. Example Future Communications Opportunities

Between Spacecraft 2 and 4

Time Duration

22 8.33

67.26 8.33

112.52 8.33

157.78 8.33

203.04 8.33

248.3 8.33

293.56 8.33

Table 4. Example Future Communications Opportunities

Between Spacecraft 3 and 4

Time Duration

26 6.1

71.26 6.1

116.52 6.1

161.78 6.1

207.04 6.1

252.3 6.1

297.56 6.1

With these added communications channels, the 8 minute

message could be completed in 27.9 minutes, with the first 6.1

minutes being relayed by spacecraft 1 and the last 1.9 minutes

being relayed by spacecraft 4.

This can, obviously, get significantly more complex as

additional nodes are added with each one creating (potentially)

n-1 (where the node being added is node number n) additional

connections across the network. The basic principles,

however, remain the same. Numerous routing methodologies

exist for best path determination; many can be augmented with

the additional decision making parameter of time and duration

of connection (in addition to other relevant parameters such as

the link speed, which could conceivably vary from link to

link).

B. Simplification of Solution Determination

The additional information related to when and for how

long nodes will be in contact with each other complexifies the

routing calculation somewhat. However, it can result in

82

 5

significantly more optimal routing choices. This information

also removes the need to add a random/pseudo-random

distribution to attempt to model node entry to / exit from the

network. Figure 6 presents an algorithm that utilizes this

additional information effectively for route determination.

This can be contrasted with Figure 7 which presents a routing

algorithm that is not spatially aware. Figure 5 presents a

diagram of the small network considered. Tables 5 through 8

contrast the performance of these two algorithms across three

transfer scenarios, based on the four spacecraft for which the

connection availability data is presented in Tables 1 through 4.

Figure 5. Connectivity Diagram

1

2

3

4

5 MBPS

5
 M

B
P

S

3 MBPS

3
 M

B
P

S

For simplicity, the network (shown in figure 5) groups the

lower speed and higher speed connections into low and high

speed paths (as combining them removes the ability to easily

demonstrate the differences between the routing algorithms).

Table 5. Performance Using Algorithm 1

To

Transfer
Routing Speed

Units

Time
Competed

25 MB 1-3-4 5/5 mbps 40 296.96

15 MB 1-3-4 5/5 mbps 24 167.48

5 MB 1-3-4 5/5 mbps 8 73.16

Table 6. Performance Using Algorithm 2, Single Path

To

Transfer
Routing Speed

Units

Time
Competed

25 MB 1-3-4 5/5 mbps 40 296.96

15 MB 1-3-4 5/5 mbps 24 167.48

5 MB 1-2-4 3/3 mbps 13.33 72.26

From tables 5 through 8, it is clear that the location aware

algorithm outperforms the non-location-aware one in at least

some circumstances (and never under-performs it). Table 7

demonstrates an approach where traffic is split across the two

available paths, reducing the time significantly. Table 8

contains completion time specifics for this.

IV. EXTRAPOLATION

The details provided in Section IIA demonstrate that the

challenges related to orbital communications are also relevant

to terrestrial ad hoc mobile networks. There are, of course,

significant differences (as discussed in Section IIA). These

differences, however, become significantly less pronounced as

the autonomous operations of vehicles becomes more

commonplace. An autonomously operated vehicle operating

on a roadway shares even more characteristics with the orbital

nodes: its movement is largely predictable (and when it is not,

it’s an explicitly triggered action which can provide

notification for change propagation – just like if a spacecraft

conducts an orbit changing maneuver) and its reasonably

reliable. Of course, autonomously operated vehicles will

likely have to make more maneuvers (that spacecraft) to avoid

human pedestrians or human-operated vehicles.

Figure 6. Non-Spatially-Aware Communications Traffic

Routing Algorithm

Identify prospective
service providers

Determine
prospective next-

hop to each provider

Store aggregate
cost for each link
(based on speed)

All paths
identified?

No

Determine costs for
all identified paths

Choose best
provider and path

(based on cost)

Send request to
provider via chosen

route

Error occurred?

Identify next-best
route / provider

Yes

End

No

There are thus two aspects of generalization relevant for

consideration: first, there is the generalization to all

deterministic or nearly-deterministic mobile (no-

infrastructure) networks. Second, there is the generalization to

any spatial computing application where the problem (and

consequently the solution) space is significantly limited by

constraints on the behavior of the nodes/agents.

V. OTHER PROSPECTIVE AREAS OF APPLICATION

Prospective areas of application of this principle include all

space networks (e.g., orbital communications, deep space

exploration, etc.), most manufacturing processes (e.g., ad hoc

networked robot workers moving around a production floor in

a regular pattern and communicating with each other to

coordinate actions) and construction robots. Less direct

application can be found to applications which cause humans

to move in a controlled pattern (e.g., queuing in a line at an

amusement park, etc.).

83

 6

Figure 7. Spatially-Aware Communications Traffic Routing

Algorithm

Identify prospective
service providers

Using spacecraft
connectivity table

identify all possible
next-hops from

spacecraftInsert nodes into
node list with
connectivity

All paths
identified?

No

Create time-based
connectivity matrix

for all nodes

Choose best
provider and path
(based on earliest

completion)

Send request to
provider via chosen

route

Error occurred?

Identify next-best
route / provider

Yes

End

No

For each node,
identify all

connected nodes

Evaluate path
completion times
based on matrix

Table 7. Example of Using Algorithm 2, Multi-Path

Routing Speed
Units

Time
Session

TTL

XFER

1-2-4 3/3 mbps 8.33 3.12375 3.12375

1-3-4 5/5 mbps 6.1 3.8125 6.93625

1-2-4 3/3 mbps 8.33 3.12375 10.06

1-3-4 5/5 mbps 6.1 3.8125 13.8725

1-2-4 3/3 mbps 8.33 3.12375 16.99625

1-3-4 5/5 mbps 6.1 3.8125 20.80875

1-2-4 3/3 mbps 6.69 2.50875 23.3175

1-3-4 5/5 mbps 2.69 1.68125 24.99875

The generalized principle of spatially constrained problems

and solutions, based on robotic/agent behavior is even more

widely applicable. Image mosaicking of remote sensing

imagery with a loosely known relative camera position and

orientation, for example, falls within this category. Unlike

most mosaicking algorithms which presume that the images

could begin in any relative orientation and skew, imagery with

GPS and/or inertial measurement unit (IMU) difference values

known can employ an expedited image feature matching

process (that is less computationally intensive).

Table 8. Performance Using Algorithm 2, Multi-Path

Transferred Completion

25 MB 164.47

15 MB 115.55

5 MB 29.5

VI. CONCLUSIONS

This paper has explored the value of incorporating orbital

mechanics-derived communications window timing and

duration information into an ad hoc spacecraft

communications framework. It has shown that while many

common routing algorithms will work in this environment,

they do not necessarily generate optimal solutions. By

incorporating this additional data, latency can be reduced (in

some cases significantly) and system performance improved.

Limited examples were presented to illustrate this for

spacecraft in similar orbits. The effect becomes significantly

more pronounced in orbits that are more divergant.

The general principle of acknowledging spatial constraints

upon a problem and solution space is also demonstrated by

this work. While this seems quite simple conceptually, many

applications fail to acknowledge the additional data that they

have at their disposal. Instead they utilize a general-purpose

solution that, while functional, does not maximize resource

utilization and other metrics. Application performance,

particularly in time-sensitive implementations, can be

improved in many cases via utilizing this (possibly) pre-

existing data.

ACKNOWLEDGMENT

Small spacecraft work at the University of North Dakota is

or has been supported by the North Dakota Space Grant

Consortium, North Dakota NASA EPSCoR, the University of

North Dakota Faculty Research Seed Money Committee,

North Dakota EPSCoR, the Department of Computer Science,

the John D. Odegard School of Aerospace Sciences and the

National Aeronautics and Space Administration.

REFERENCES

[1] J. Straub, A. F. Mohammad, “Above the cloud computing: creating an
orbital service model using cloud computing techniques,” acc.

Proceedings of the SPIE Defense Security + Sensing Conference,

Baltimore, MD, 2013.
[2] M Abolhasan, “A review of routing protocols for mobile ad hoc

networks,” Ad Hoc Networks, vol. 2, pp. 1-22, 2003.

[3] N. D. Karande, “Efficient routing protocols for vehicular adhoc
network,” Int. J. Eng. Res & Tech., vol. 2, no. 1, Jan, 2013.

[4] S. Das, S. Barman, J. D. Sinha, “Energy efficient routing in wireless

sensor network,” Procedia Technology, vol. 6, 2012.
[5] H. D. Curtis, Orbital Mechanics for Engineering Students. Burlington,

MA: Elsevier, 2009.

84

Spatial Computation and Algorithmic Information
content in Non-DNA based Molecular

Self-Assembly
Germán Terrazas

ICOS Research Group
School of Computer Science

University of Nottingham, UK
gzt@cs.nott.ac.uk

Leong Ting Lui
ICOS Research Group

School of Computer Science
University of Nottingham, UK

ltl@cs.nott.ac.uk

Natalio Krasnogor
ICOS Research Group

School of Computer Science
University of Nottingham, UK

nxk@cs.nott.ac.uk

Abstract—Porphyrins are molecular units with fourfold sym-
metry and suitable for solid substrate deposition. The chemical
structure of a porphyrin molecule reveals four structural units
which can be synthesised with different substituent functional
groups. The adequate selection of functional groups plays a
central role in defining the correct intermolecular bindings that
lead to a precisely tuned spatial self-assembled pattern. In this
paper we explore the state-space of self-assembled programmable
patterns. This is done by modelling the porphyrins molecular
units using a kinetic Monte Carlo approach. Furthermore we
analyse our simulations by both deriving discrete computational
automata and in terms of algorithmic information content.

I. I NTRODUCTION

Self-assembly is a natural phenomenon observed at all
scales where autonomous entities build complex structures
without external influences or centralised control. Research
and practise of self-assembly systems often encounters three
key problems (a) the “prediction problem” that tries to an-
ticipate the final product of a self-assembly process for a
set of entities under given environmental conditions and the
natural laws prevalent at the scale these operate, (b) the
“programmability problem” which addresses how the entities
(and their environment) should be designed in such a way
that the final outcome of the self-assembly process is a specific
pre-ordained one, and (c) the “yield problem” which relatesto
production and control of the intended self-assembled objects
expected from a particular self-assembling system [1, 2].

Spatial computing metaphors based on multi-agents systems
have already been exploited for the automatic development of
problem-specific heuristics for solving combinatorial optimisa-
tion problems [3]. In fact, earlier ideas on automated program
constructions are reported in [4] where the Automated Self-
Assembly Programming Paradigm (ASAP2) is introduced as
a self-assembly model for unconventional spatial computing.
ASAP2 is defined in terms of gas molecules within a 3-
dimensional volume embodying portions of software sam-
pled from man-made programs that interact with one another
subject to different values of temperature, pressure, “binding
sites” compatibility, etc. giving rise to a variety of emergent
programs architectures.

Closer to the molecular domains related to our investiga-
tions, we observe that linking self-assembly and computa-
tion provides a powerful new approach to addressing pro-
found questions about the controllability of complex physico-
chemical nano systems. We could ask, for example [5–8]what
are the least complex molecular tiling ‘motifs’ which may be
exploited in the programming of self-assembly 2D lattices with
specific geometries?It is important to remark that the idea is to
use computation in such a way as to program nano entities so
they self-assemble, with exquisite detail, into specific patterns.
That is, computation embedded designs allows for an enhanced
control of the self-assembling entities. This approach hasbeen
successfully employed with DNA tiles [9, 10] and here we
aim at studying non-DNA tiles since they are both smaller
and work in different environment. The connection between
self-assembly and computation is the subject of our work.

In the present work, we investigate the “prediction” and
“programmability” problem for non-DNA molecular self-
assembly. By a detailed kinetic Monte Carlo simulation we
explore the range of spatial patterns that can, in principle,
be obtained with porphyrin “tiles”. We then investigate “pro-
grammability” by analysing the algorithm information content
and discrete computational structures embedded within the
observed spatial patterns.

II. PORPHYRIN-TILES K INETIC MONTE CARLO SYSTEM

This section presents a succinct description of the kinetic
Monte Carlo model we have developed [11] for the simulation
of porphyrin molecules spatial self-assembly.

A. Entities of the System

Porphyrins are molecules with a predominant bi-
dimensional structure (the third structure is much smallerand
hence can be ignored), fourfold symmetry and a chemical
structure comprising four structural units which can be
synthesised with substituent functional to obtain different
intermolecular bindings such as hydrogen bonding and van der
Waals forces. We have currently synthesise porphyrins with
iodine, carboxylic acid, pyridine, bromine and nitro functional

85

groups; in particular, the dimension of a porphyrin is2.89nm2

whereas DNA-tiles are12.6nm wide [9]. We choose Wang
tiles [12] as abstract model of porphyrins since these are
two-dimensional squares with labelled edges and undergo
tile-to-tile interactions. Moreover, these have been usedbefore
to model DNA tiles in [9]. Thus, Wang tiles have a natural
morphological correspondence to functionalised porphyrin
molecules. We refer to such embodiment asporphyrin-tile
which could be defined as eitheriso-functionalisedwhen its
four sides are set with the same functional group and as
hetero-functionalisedwhen its four sides are set with different
functional groups. Fig. 1 depicts the model correspondence
and structural parts of an hetero-functionalised porphyrin
molecule.

Fig. 1. A functionalised porphyrin molecule with structural units set with
nitrogen and iodine embodies a Wang tile, the labels of whichcorrespond to
different functional groups. The Wang tile abstracts and models the dinitro-
diiodo porphyrin, while the latter is a physical instantiation of the Wang tile.

B. Interaction Methods and Environment

The substrate where molecules are deposited and interact
with one another forming supra molecular aggregates is mod-
elled as a two-dimensional square site lattice. Such lattice is
set with periodic boundary conditions where each position is
occupied by only one porphyrin-tile at a time. The neighbour-
hood of a porphyrin-tile is von Neumann type and energy
interactions among neighbouring molecules are at the core
of the system dynamics for capturingdeposition, motionand
rotation of a molecule on substrate. In particular, deposition
models the arrival of a molecule onto an empty position of
the substrate. Motion models the translation of a molecule to
one of its four neighbouring empty positions on the substrate
by considering three cases: the diffusion of a molecule across
the lattice without interacting with neighbouring molecules as
shown in Fig. 2 (b), diffusion along an aggregate as depicted
in Fig. 2 (c) or departure of a molecule from an aggregate
as illustrated in Fig. 2 (d). Rotation models spinning of a
molecule on its centre of mass, i.e. the±90 degrees gyration
of a porphyrin-tile on its geometrical midpoint.

The Monte Carlo family of methods are generally good
when a coarse grained modelling of molecular entities and
a fast approximation of the overall behaviour of a physico-
chemical nano system is needed [13–18]. We have then
designed and developed aporphyrin-tiles kinetic Monte Carlo

(a) (b)

(c) (d)

Fig. 2. Symbolic examples of a molecule hop from position(i, j) to
position(i, j +1) together with its neighbouring positions (a), diffusion ofa
molecule across the lattice without interacting with neighbouring molecules
(b), diffusion of a molecule along an aggregate (c) and departure of a molecule
from an aggregate (d).

(kMC) [11] in which a list with the possible transitions of
the system, i.e. deposition, motion and rotation of a porphyrin
molecule together with their correspondent rates is compiled
for each time step. Depositions take place at a constant
deposition rate (RDep) whereas diffusions and rotations are
performed according to a diffusion rate (rijkl) calculated as:

rijkl = exp(
−Eijkl

TT 0
) (1)

whereEijkl is the activation energy a molecule needs to jump
from position (i, j) to position (k, l) and TT 0 is a fixed
parameter capturing the temperature of the system and the
Boltzmann constant. TheEijkl is calculated in terms of the
sum of intermolecular bindings of a molecule and its binding
with the substrate. Once the list of all possible transitions
of the system and their rates is compiled, a Monte Carlo
selection process follows in which the transition with the best
weighted choice is performed. The chance of a transition is
given according to the value of its associated rate linked to
the activation energy, i.e. the more neighbouring molecules,
the smaller the chance for a porphyrin-tile to diffuse or rotate.
After a transition is performed, the list is updated and the
process repeats for a fixed number of time steps.

III. E XPERIMENTS IN-SILICO

In the experiments presented in this section we systemati-
cally program porphyrin-tiles with different functional groups
in order to see how different configurations impact on the
resulting self-assembled patterns. We consider two types of in-
dependent settings for the kMC multi-agent system described
in Section II.

A. Two Porphyrin-tiles Species

Across this set of experiments, the porphyrin-tiles kMC was
configured with a lattice of256×256 positions,Er = 1.3 eV ,
TT 0 = 28×10−3, RDep = 5×10−5, a maximum coverage of
25%, a given binding energy between molecule and substrate

86

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 3. Some of the many self-assembled complex spatial patterns achieved with two species of iso-functionalised porphyrin-tiles. A wide variety is observed
in terms of shape, topological characteristics, dimensionand internal structure.

(Es), and two species of iso-functionalised porphyrin-tiles as
shown in Fig. 4 (a). Since these species are systematically
programmed with different functional groups, intermolecular
binding among their instances takes place either between
identical functional groups (e.g.E11 in Fig. 4 (b)) or between
different functional groups (E12 in Fig. 4 (d)). Although
porphyrin-tiles programmability is achieved in the lab by
changing the associated functional groups, in the model this
is done by setting different values toE11, E22 andE12.

(a) (b) (c)

Fig. 4. The two iso-functionalised porphyrin-tile specieswith functional
groups labelled as1 and2 (a). Intermolecular binding takes place throughout
adjacent functional groups, in this case between identicalfunctional groups
(E11 or E22) or between different functional groups (E12) (b-c).

With these two porphyrin-tile species we then consider
two sets of experiments. The first one involves functional
groups for which the intermolecular bindings are always
positive. Therefore, all the possible combinations among
E11, E22, E12 and Es were systematically tried: the first
three energies taking values from[0.1 eV, 0.2 eV, . . . , 1.0 eV]
with the latter taking values from[0.5 eV, 0.6 eV, . . . , 1.0 eV].
The second set of experiments is designed to explore
the impact of repulsive forces between different functional
groups. Thus, all the possible combinations amongE11,
E22, E12 and Es were systematically tried: the first two
taking values from [0.1 eV, 0.2 eV, . . . , 1.0 eV], the third
from [−0.1 eV,−0.2 eV, . . . ,−1.0 eV] and the latter from
[0.5 eV, 0.6 eV, . . . , 1.0 eV].

B. Six Porphyrin-tiles Species

Across this set of experiments, the porphyrin-tiles kMC was
configured with a lattice of64 × 64 positions,Er = 1.3 eV ,
TT 0 = 28×10−3, RDep = 5×10−5, a maximum coverage of
25%, a given binding energy between molecule and substrate
(Es), and six species comprising two iso-functionalised and
four hetero-functionalised porphyrin-tiles as shown in Fig. 5.

Fig. 5. The six porphyrin-tiles species comprising two iso-functionalised
porphyrin-tiles and four hetero-functionalised porphyrin-tiles with functional
groups labelled as1 and2.

The experiments involving these six porphyrin-tile species
consider functional groups for which the intermolecular bind-
ings are always positive. Therefore, all the possible combina-
tions amongE11, E22, E12 andEs were systematically tried:
the first two taking values from[0.1 eV, 0.2 eV, . . . , 0.5 eV],
E12 from [0.1 eV, 0.2 eV, . . . , 0.5 eV], with the latter taking
values from[0.5 eV, 0.6 eV, 0.7 eV].

IV. RESULTS

For each experimental configuration, our kMC initially con-
sidered deposition, motion or rotation until maximum coverage
is achieved. Then, only motion or rotation took place for200
× RDep × lattice positions time steps. Once finished, the final
arrangement of the porphyrin-tiles on the lattice was captured
into an image. A summary of the input parameters and
their range together with the resulting images of experiments
conducted with the two porphyrin-tile species and the six
porphyrin-tile species are respectively collected in Table 1 and
Table 2 of http://www.cs.nott.ac.uk/∼gzt/sipndbmsa.

87

A. Two Porphyrin-tiles Species

The symmetry of the underlying lattice and range of values
explored by all possible combinations ofEs, E11, E22, E12

suffice to produce wide variety of self-assembly patterns in
terms of shape, dimension and internal structure (see samples
depicted in Fig. 3). This fact is related to the role played by
each of the four variable parameters of the system. As reported
in [11], the principal role ofEs is to determine the number of
resulting aggregates across the lattice.E12 exerts influence on
the segregation between species within aggregates and alsoon
the geometrical diversity of the structures. Different combina-
tions of E11 andE22 are linked to morphological aspects as
well as to internal structural features. More importantly,we are
interested in understanding the programmability of this system
and thus explore next which discrete computational processing
determine specific spatial self-assembled patterns.

We show next cases in which specifically programmed
porphyrin-tile species gave rise to particular self-assembled
structures via embedding discrete processes of computation
order, some of which linked to simple finite automata theory.

Fig. 6. Self-assembled aggregates formed withEs=0.5, E11=1.0, E22=0.2
andE12=0.2. Instances of one species form backbones (red structures) whilst
instances of the other self-assemble within (blue patches)those backbones.

Fig. 7. Self-assembled aggregates formed withEs=0.6, E11=0.4, E22=0.2
andE12=0.1. The physical limits on blue porphyrin-tiles self-assembly are
controlled by the edges of the red backbone. That is, blue porphyrin-tiles act
as counters the positions of which are “seeded” via red porphyrin-tiles.

Instances of aggregates embedding discrete process of com-
putation are shown in Figs. 6 and 7. The internal structures of
these reveal that it is possible to program two porphyrin-tiles
species in such a way that instances of one spontaneously
form backbones (see red structures) whilst instances of the
other self-assemble within (see blue patches) those backbones.
In particular, the emerging backbone not only encloses very
well defined areas but also directs up to which physical
extent supplies of blue porphyrin-tiles will self-assemble. A

similar result has been defined ascounter in [19, 20] where
a self-assembled two-dimensional structure of heightN=2K

systematically emerge from a user defined structure (seed)
of width K by means of repeated accretion of hand-tailored
tiles. Our results indicate that while these DNA-tiles might
be hard to hand craft [19, 20] they are readily designable in
a simulated porphyrin based molecular setting. Remarkably,
these porphyrin-tiles self-assemble with such a precisionand
control that the structure they form never goes beyond the
edges of the longest of the surrounding backbones.

Fig. 8. Self-assembled aggregate formed withEs=0.5, E11=0.1, E22=0.1
andE12=0.4. A systematic order (checkers pattern) within an irregularshape
springs out from specifically programmed red and blue porphyrin-tiles self-
assembly.

An example of internally highly ordered self-assembled
structures is shown in Fig. 8. In this case, there is a specific
arrangement among instances of two porphyrin-tile species
from where a checkers board pattern (visualised in Fig. 8 inset)
springs out as a spontaneous result of self-assembly. This is
an interesting example of a globally complex (i.e. dendritic)
shape with a locally simple organisational pattern. Seen as
a consecutive collection of diagonally-oriented red and blue
stripes, leads to a finite state machine like the one illustrated
in Fig. 9. This is the simplest probabilistic automaton defined
in terms of two states each of which writing a diagonal of
different symbols one after another, i.e. red symbols in state
q1 and blue symbols in stateq2, with an associated small error
probabilityε to write red instead of blue or vice versa, and with
λ transitions to change between states when a new diagonal
begins. One could define an automata by scanning column-
wise or row-wise instead of diagonally. But that results in a
more complex automata.

Fig. 9. The simplest two-states probabilistic automaton that generates the
alternating diagonal stripes of blue and red symbols observed in Fig. 8 and
Fig. 10 (b), error valueε is the probability of mistaking the symbol whereas
λ transitions change between states when a new diagonal begins.

Considering ordered or disordered arrangement among
porphyrin-tiles as a micro level feature and the shape of the
associated aggregate as a macro level feature, it results that it
is possible to program the spatial interaction among porphyrin-
tiles in order to obtain different order/disorder combinations
for the local/global scales. For instance, different porphyrin-
tiles in Fig. 8 and Fig. 10 (a) achieved a structure with ordered

88

arrangements within a regular and irregular shape respectively.
On the other hand, porphyrin-tiles in Fig. 10 (b - c) self-
assembled into disordered arrangements within irregular and
regular shapes.

(a) (b) (c) (d)

Fig. 10. Differently programmed porphyrin-tile lead to irregular assemblies
with ordered internal structure (a), regular assemblies with ordered internal
structure (b), irregular aggregates with disordered internal structure (c) or
regular aggregates with disordered internal structure (d).

Similar analyses can be done to the simulation results ran
with negative input parameter values for which other automata
can be derived.

B. Six Porphyrin-tiles Species

In this section we explore results with a more complex set
of programmable porphyrins. The self-assembled aggregates
obtained with the six species of porphyrin-tiles reveal that
their topological diversity is mostly ruled byEs and E12.
In particular, it is observed a certain degree of structure
complexity and global order (disorder) across simulation
results associated to high (low) values ofE12 for a givenEs.
Thus, one could ask:

Is it possible to measure and characterise the algorithmic
complexity observed across the final self-assembled complex
patterns ?

In order to answer this question, we apply a Kolmogorov
complexity-based technique to assess the simulation results
in terms of algorithmic information content as this proved to
be an effective approach for characterising and quantifying
emergent behaviour in complex systems [11, 21, 22]. The
Kolmogorov complexity of an object is defined as the size of
the shortest computer program that could generate a complete
description of the object [23]. Since the Kolmogorov com-
plexity is an uncomputable function, existing approximations
make use of lossless compression algorithms. Thus, if it is a
highly compressed object, then it has high regularities andif
it is a less compressed object, then it has low regularities.

Across all simulation results achieved with the six speciesof
porphyrin-tiles, the most significant variety regarding topology
of self-assembled aggregates is observed across experiments
ran with combinations ofEs=0.5, E11,E22∈[0.1, . . . , 0.5],
E12∈[0.1, . . . , 0.5]. Since the most remarkable contrast is
found between subsets obtained withE12=0.1 andE12=0.5,
we decided to exploreE11,E22 with higher resolution
aiming at a more comprehensive and insightful complex-
ity analysis. Therefore, extra simulations were ran with

combinations ofEs=0.5, E11,E22∈[0.125, 0.150 . . . , 0.475],
E12∈{0.1, 0.5}. All results are collected in Table 3 of
http://www.cs.nott.ac.uk/∼gzt/sipndbmsa. We applied Portable
Network Graphics (PNG) data compression algorithm to the
images, the size of the compressed images (K) is an approx-
imation in bits of their associated Kolmogorov complexity.
Our findings reveal that low values ofK link to simulation
results containing assemblies like the one depicted in Fig.11
(a), i.e. big aggregates, whereas high values ofK relate to
simulation results presenting small assemblies with porphyrin-
tiles scattered across the lattice as shown in Fig. 11 (d).

(a) (b)

(c) (d)

Fig. 11. Self-assembled complex patterns samples achievedwith six species
of porphyrin-tiles.K values (Kolmogorov complexity) increase from (a) to
(d).

All calculated K values are collected in Fig. 12. For
E12=0.1 (Fig. 12 (top)), low intermolecular bindings between
identical functional groups (E11 or E22) give place to weak
spatial interactions making self-assembly difficult and, conse-
quently, a highly disordered final configuration (e.g. Fig. 11
(d)) is produced. Values ofK quickly drop from1665 bits
to 966 bits asE11 or E22 increase and bigger self-assembled
aggregates are formed with more ordered final configurations
(e.g. Fig. 11 (a)).

On the other hand, simulations ran withE12=0.5 generate
a more homogeneous map of Kolmogorov complexity in Fig.
12 (bottom). The reason behind is that strong intermolecu-
lar bindings between different functional groups are better
exploited in the presence of weak intermolecular bindings
between identical functional groups, thus different species
have a high chance to self-assemble (e.g. Fig. 11 (a)). Values of
K slightly change from1240 bits to 1089 bits asE11 or E22

increase revealing no significant contribution to the overall
topology of the self-assembled aggregates and, moreover, a
conservation of order across associated final configurations.

89

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

K

E12=0.1

E11

E22

K

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

K

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

K

E12=0.5

E11

E22

K

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

K

Fig. 12. K values for simulation results ran withEs=0.5, E11,E22 ∈
[0.1, 0.125, . . . , 0.5] and E12=0.1 (top) or E12=0.5 (bottom). Plots are
shown symmetric overE11 andE22 for illustration purposes.

V. CONCLUSION

In this work we have presented a spatial computing ap-
proach to modelling dynamics of a particular physico-chemical
nano system based on porphyrin tiles which are smaller than
DNA tiles and can operate in different environments. We
have studied the resulting self-assembled complex patterns
from two different perspectives. First, we focused on the
internal structure of aggregates obtained with two species
of iso-functionalised porphyrin-tiles. In this case, we have
demonstrated that it is possible to observe discrete processes
of computation driving the self-assembly among specifically
programmed porphyrin-tiles. In addition, we have also shown
that differently programmed porphyrin-tiles are able to arrange
themselves into a highly ordered structure from disordered
random initial conditions by linking self-assembly process
with discrete computational steps performed by a probabilis-
tic finite automata. Second, we measured the Kolgomorov
complexity of simulation results obtained with six speciesof
porphyrin-tiles. This has contributed not only with a high level
characterisation of the aggregates associated to the operating
intermolecular bindings, but also with a general description of
the degree of order observed within the system.

ACKNOWLEDGMENT

This work is supported by EPSRC grant EP/H010432/1
Evolutionary Optimisation of Self-Assembly Nano-Design.

REFERENCES

[1] J.A. Pelesko.Self Assembly: The Science of Things that Put Themselves
Together. Chapman & Hall/CRC, 2007.

[2] N. Krasnogor, S. Gustafson, D.A. Pelta, and J.L. Verdegay. Systems
self-assembly: multidisciplinary snapshots, volume 5. Elsevier Science,
2008.

[3] G. Terrazas, D. Landa-Silva, and N. Krasnogor. Towards the design of
heuristics by means of self-assembly. InDevelopments in Computational
Models, volume 26, pages 135–146. EPTCS, 2010.

[4] L. Li, J. Garibaldi, and N. Krasnogor. Automated self-assembly
programming paradigm: initial investigation. InIEEE International
Workshop on Engineering of Autonomic and Autonomous Systems, pages
25–26. IEEE, 2006.

[5] D. Soloveichik and E. Winfree. The computational power of benenson
automata.Theoretical Computer Science, 344(2-3):279–297, 2005.

[6] L.M. Adleman, Q. Cheng, A. Goel, M.-D. A. Huang, D. Kempe,
P.M. de Espanés, and P.W.K. Rothemund. Combinatorial optimization
problems in self-assembly. InSymposium on Theory of Computing,
pages 23–32. ACM, 2002.

[7] L.M. Adleman, Q. Cheng, A. Goel, and M.D. Huang. Running time
and program size for self-assembled squares. InSymposium on Theory
of computing, pages 740–748. ACM, 2001.

[8] P.W.K. Rothemund and E. Winfree. The program-size complexity of
self-assembled squares. InSymposium on Theory of computing, pages
459–468. ACM, 2000.

[9] E. Winfree, F. Liu, L.A. Wenzler, and N.C. Seeman. Designand self-
assembly of two-dimensional dna crystals.Nature, 394(6693):539–544,
1998.

[10] R. Schulman and E. Winfree. Programmable control of nucleation for
algorithmic self-assembly.SIAM Journal on Computing, 39(4):1581–
1616, 2009.

[11] G. Terrazas, H. Zenil, and Krasnogor N. Exploring programmable self-
assembly in non-dna based molecular computing.Journal of Natural
Computing, 2013. (to appear).

[12] H. Wang. Proving theorems by pattern recognition.Bell Systems
Technical Journal, 40:1–42, 1961.

[13] E. Flenner, L. Janosi, B. Barz, A. Neagu, G. Forgacs, andI. Kosztin.
Kinetic monte carlo and cellular particle dynamics simulations of
multicellular systems.Phys. Rev. E, 85(3):031907, 2012.

[14] P. Bruschi, P. Cagnoni, and A. Nannini. Temperature-dependent monte
carlo simulations of thin metal film growth and percolation.Phys. Rev.
B, 55(12):7955–7963, 1997.

[15] F. Silly, U.K. Weber, A.Q. Shaw, V.M. Burlakov, M.R. Castell, G. A. D.
Briggs, and D.G. Pettifor. Deriving molecular bonding froma macro-
molecular self-assembly using kinetic monte carlo simulations. Phys.
Rev. B, 77(20):201408, 2008.

[16] B. A. Hermann, C. Rohr, M. Balbás Gambra, A. Malecki, M.S. Malarek,
E. Frey, and T. Franosch. Molecular self-organization: Predicting the
pattern diversity and lowest energy state of competing ordering motifs.
Phys. Rev. B, 82(16):165451, October 2010.

[17] Y. Li and N. Lin. Combined scanning tunneling microscopy and kinetic
monte carlo study on kinetics of cu-coordinated pyridyl-porphyrin
supramolecular self-assembly on a au(111) surface.Phys. Rev. B,
84(12):125418, Sep 2011.

[18] U. K. Weber, V. M. Burlakov, L. M. A. Perdigão, R. H. J. Fawcett, P. H.
Beton, N. R. Champness, J. H. Jefferson, G. A. D. Briggs, and D. G.
Pettifor. Role of interaction anisotropy in the formation and stability of
molecular templates.Phys. Rev. Lett., 100(15):156101, April 2008.

[19] Q. Cheng, A. Goel, and P. Moisset. Optimal self-assembly of counters
at temperature two. InFoundations of nanoscience: self-assembled
architectures and devices, 2004.

[20] P. Moisset. Computer aided search for optimal self-assembly systems.
In K. Natalio, S. Gustafson, D.A. Pelta, and J.L. Verdegay, editors,
Systems Self-Assembly Multidisciplinary Snapshots, volume 5 ofStudies
in Multidisciplinarity, pages 225 – 243. 2008.

[21] P. Siepmann, G. Terrazas, and N. Krasnogor. Evolutionary design for
the behaviour of cellular automaton-based complex systems. In Adaptive
Computing in Design and Manufacture, pages 199–208, 2006.

[22] G. Terrazas, P. Siepmann, G. Kendall, and N. Krasnogor.An evolution-
ary methodology for the automated design of cellular automaton-based
complex systems.Journal of Cellular Automata, 2(1):77–102, 2007.

[23] M. Li and P.M.B. Vitányi. An Introduction to Kolmogorov Complexity
and Its Applications. Springer Verlag, 2008.

90

91

92

