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Abstract 
 

In this paper, a new expression of the equations describing the locked states of two van der Pol oscillators coupled through a 

broadband network and allowing an accurate prediction of the oscillators’ amplitudes is presented. To do so, the York’s theory 

is improved using a more accurate van der Pol model in order to obtain a new system of four equations with four unknowns 

describing the locked states of two van der Pol oscillators coupled through a resonant network. Then, the case of a resistive 

coupling circuit is deduced from this new system of equations. The theory regarding the prediction of the oscillators’ 

amplitudes is verified using Agilent’s ADS software for the practical case of an array made of two differential Voltage 

Controlled Oscillators (VCOs) coupled through a resistive network. 

Keywords: Coupled oscillators, resistive coupling network, synchronization, van der Pol oscillator, Voltage Controlled 

Oscillators. 

 

 

1.   Introduction 

Arrays of coupled oscillators offer a potentially useful technique for producing higher powers at millimeter-

wave frequencies with better efficiency than is possible with conventional power-combining techniques [1,2]. 

Another application is the beam steering of antenna arrays [3], through a constant phase progression in the 

oscillator chain which is obtained by detuning the free-running frequencies of the outermost oscillators in the 

array [4,5]. Moreover, it is shown that the resulting inter-stage phase shift is independent of the number of 

oscillators in the array [6,7,8]. Furthermore, synchronization phenomena in arrays of coupled oscillators are 

very important models to describe various higher-dimensional nonlinear phenomena in the field of natural 

science [9]. 

Many techniques have been used to analyse the behaviour of coupled oscillators for many years such as 

time domain approaches [10-15]. Concerning the frequency domain approaches, R. York made use of simple 

van der Pol oscillators to model microwave oscillators coupled through either a resistive network or a broad-

band network [6,16,17]. Since these works are limited to cases where the coupling network bandwidth is 

much greater than the oscillators’ bandwidth, he used more accurate approximations based on a generalization 

of Kurokawa’s method [18] to extend the study to the case of a narrow-band circuit [19]. This theory allows 

the equations for the amplitude and phase dynamics of two oscillators coupled through many types of circuits 

to be derived. Since these works, only few papers present new techniques for the analysis of coupled-

oscillator arrays in the frequency domain [20-23]. In [22], a semi-analytical formulation is presented for the 

design of coupled-oscillator systems, avoiding the computational expensiveness of a full harmonic balance 
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synthesis presented in [20] and [21]. In [24], a simplified closed-form of the semi-analytical formulation 

proposed in [22] for the optimised design of coupled-oscillator systems is presented. Nevertheless, even if this 

new semi-analytical formulation allows a good prediction of the coupled-oscillator solution, it is only valid 

for the weak coupling case whereas the York’s theory [19] provides a full analytical formulation allowing to 

predict the performances of microwave oscillator arrays for both weak and strong coupling. Unfortunately, 

although this latter theory provides simple approximate formulas for the dimensions of the locking region, for 

the amplitudes of the two coupled oscillators and for the inter-stage phase shift, the van der Pol model used is 

too simple and doesn’t allow an accurate prediction of the amplitudes.  

Furthermore, since the theoretical limit of the phase shift obtained for an array of single-ended coupled 

oscillators is within the range of ±90° [6], it seems to be interesting to analyse the behaviour of an array of 

coupled differential VCOs. Indeed, in this case, the theoretical limit of the phase shift is within 360° due to 

the differential nature of the array. In these conditions, a continuously controlled 360° phase shifting range 

can be obtained leading to a more efficient beam-scanning architecture for instance. Furthermore, differential 

VCOs are widely used in high-frequency circuit design due to their relatively good phase noise performances 

and ease of integration. Moreover, the use of a broadband coupling network, i.e. a resistor, instead of a 

resonant one can lead to a substantial save in chip area. 

Due to these considerations, the aim of this paper is to present a new formulation of the equations 

describing the locked states of two van der Pol oscillators coupled through a broadband network using an 

accurate model allowing a good prediction of the oscillators’ amplitudes. The accuracy of the theory will be 

validated by simulations for the practical case of two NMOS differential VCOs coupled through a resistive 

network. To do so, an overview of the equations developed by R. York giving the dynamics for two van der 

Pol oscillators coupled through a resonant network will be provided in section 2. The details concerning the 

van der Pol model used in [19] will be given showing the limitations of such an approach. In section 3, a new 

expression of the York’s equations using a more accurate van der Pol model will be presented. Then, the case 

of a resistive coupling circuit will be treated. In section 4, the theory is verified using Agilent’s software ADS 

for an array made of two differential VCOs coupled through a resistive network. 

2.   Overview of the dynamics of two van der Pol oscillators coupled through a resonant network 

The theory elaborated by J. Lynch and R. York in [19] is exemplified using an architecture made of two 

parallel resonant circuits containing nonlinear negative conductance devices and coupled through a series 

resonant circuit, as shown in Fig. 1. These oscillators are considered identical, except for their free-running 

frequencies. Thus, starting from the admittance transfer functions (Y1, Y2, Yc) binding the coupling current (Ic) 

to the oscillators voltages (V1 and V2), and relying on Kurokawa’s substitution [18], the authors cited 

previously described the oscillators dynamic equations, as well as those for the amplitude and phase of the 

coupling current. Then, by setting the derivatives equal to zero, the algebraic equations describing the 

oscillators’ frequency locked states were obtained. This system of four equations with four unknowns (A1, A2,  

φ∆
 
and ω ) is presented as follows:  
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With  

• 
c

o
RG0

1
=λ : the coupling constant, where G0 is the nonlinear device conductance at zero voltage ; 

• 
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G
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0
2 =ω  : the oscillators bandwidth ; 
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R
=ω2  : the unloaded coupling circuit bandwidth ; 

• 
21  , AA  : the amplitudes of oscillators 1 and 2, respectively ; 

• φ∆  : the inter-stage phase shift ; 

• 
21  , oo ωω  : the free-running frequencies or tunings of oscillators 1 and 2, respectively ;  

• ocω : resonant frequency of the coupling circuit ; 
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Furthermore, the free-running frequencies of the oscillators, 1oω  and 2oω , and the synchronization 

frequency of the system, ω , are referred to the resonant frequency of the coupling circuit, ocω , using the 

following substitution : 

 

ocoo ωωω∆ −= 11  

   
ocoo ωωω∆ −= 22  

    
occ ωωω∆ −=   

 

 

Thus, a solution to (1) indicates the existence of a frequency-locked state and provides the user with the 

amplitudes A1 and A2 of the two oscillators as well as the inter-stage phase shift φ∆  and the synchronization 

pulsation ω  for a combination ( 0201  , ω∆ω∆ ).  

Nevertheless, to simplify the analysis, J. Lynch and R. York made use of cases of practical interest according 

to the tunings of oscillators 1 and 2. Indeed, for equal tunings, i.e. for 0201  ω∆ω∆ = , one can show, using the 

second and fourth equations of (1), that the phase difference φ∆  equals zero and the oscillators will lock on a 

bandwidth depending on the value of the coupling circuit bandwidth (ωac) with equal amplitudes ( 21 AA = ) 

[19].  

 

 

 

 

 

 

 

Figure 1: Two oscillators coupled through a resonant circuit 
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On the other hand, when the coupling circuit resonance ( ocω )  is located exactly between the two oscillators 

free-running frequencies, i.e. for 0201  ω∆ω∆ −= , one can show, again using the second and fourth equations 

of (1), that 0 =cω∆ , which implies 0  =Φ  and 21 AA = . In these conditions, the frequency difference 

between the two free-running frequencies of oscillators 1 and 2 can be expressed, by subtracting the fourth 

and second equations, as follows: 

 ( ).sin2 00 φ∆ωλω∆ a=  (2) 

with 01020   ωωω∆ −= as mentioned previously.  

Furthermore, in the same conditions, the amplitudes are equal and found from (1), by combining the first and 

third equation,  as follows:  
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As explained in [19], the amplitude will remain close to the unity for weak coupling, i.e. when 0λ << 
2

1
. 

Nevertheless, for weak coupling, the amplitudes of the oscillators will remain close to their free-running 

values. Thus, with the van der Pol model used in this theory, the free-running amplitudes of the oscillators are 

always equal to unity showing the limitations of this theory regarding the prediction of the amplitudes of the 

two coupled oscillators.  

To illustrate this affirmation, let us explain the assumptions and approximations made by J. Lynch and R. 

York for the modelling of a van der Pol oscillator. Indeed, let us first consider the schematic of a van der Pol 

oscillator as shown in Fig. 2 for which the current in the nonlinear conductance GNL is equal to 

( ) ( ) ( )tbvtavti
3

1     +−=  with –a the negative conductance necessary to start the oscillations and b a 

parameter used to model the saturation phenomenon. In this case, according to the Kirchhoff's current law, the 

current i(t) can be written as 

 ( ) ( ) ( ) ( )..  .  
3
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Figure 2 : van der Pol oscillator model 

 

Now, using the assumption of a perfectly sinusoidal oscillation so that ( ) ( )tAtv 0cos.  ω= , from (4) we have 

 

( ) ( ) ( ).3cos
4

  cos..
4

3
      0

3

0

2

t
A

btAbAGati ωω +







++−=

   (5) 

G 

v(t) 

GNL L C 

i(t) 

i1(t) i2(t) 



 5

Furthermore, let us recall that such an oscillator topology can be modelled by a quasi-linear representation 

allowing a very simple analytical calculation [25]. In this case, the expression in the first bracket in (5) 

represents the negative conductance presented by the active part. Nevertheless, in York’s model [19], this 

negative conductance is equal to  

 ( ) .1  
2

0 







−−=− AGAG    (6) 

In these conditions, the expression in the first bracket in (5) and (6) leads to 

 .
4

3
   0 bGaG =−=    (7) 

This result clearly shows the limitations of the van der Pol model used by Lynch and York in [19] since this 

model is valid only for van der Pol parameters values a and b for which (7) is fulfilled. Furthermore, one can 

show that, in this case, the free-running amplitude of the van der Pol oscillator is always equal to unity. 

Indeed, the condition of free-running oscillation of one of the oscillators of Fig.1 at a frequency f0 can be 

written as 

 ( ) ( ) .0    , 00 =+ ωω LNL YAY    (8) 

where the subscripts “NL” and “L” denote the nonlinear and linear portions of the circuit and with 

( ) ( ) 
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Thus, according to (8), the frequency of oscillations is found to be 

LC

f

π2

1
0 =  and the amplitude is 1  =A .  

As a consequence, a new formulation of (1) using a more accurate van der Pol model will be presented in the 

next section. The case of a resistive coupling circuit will then be deduced from the obtained system of 

equations. 

3.   New expression of the equations describing the locked states of two van der Pol coupled 

oscillators 

3.1.   Two van der Pol oscillators coupled through a resonant network 

In order to obtain the new system of four equations with four unknowns describing the locked states of 

two van der Pol oscillators coupled through a resonant network, the theory of J. Lynch and R. York [19] will 

be adapted to the case of a more accurate van der Pol model. To do so, let us consider the circuit of Fig. 3 

made of two van der Pol oscillators coupled through a series RLC circuit. These oscillators are considered 

identical, except for their free-running frequencies. In this case, the frequency-domain equations, using the 

admittance transfer function binding the coupling current to the oscillators voltages, can be written as follows:  
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where A1, ω1, represents the amplitude and pulsation of oscillator 1, etc… and the subscripts “NL” and “L” 

denote the nonlinear and linear portions of the circuit. Let us now determine the oscillator admittance function 

for oscillator 1 which can be written as follows: 

(9) 
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 =ω  is the tank resonant frequency of oscillator 1 and ( ) 2
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4

3
    bAaAG NL +−=−  is the 

negative conductance presented by the active part as explained in (5) leading to sinusoidal oscillation. Now, if 

the frequency of oscillator 1 remains close to its “free running” frequency or uncoupled value 01ω , then, the 

admittance function can be written as 
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Now, let us note 
C

G L

a  2 =ω  which represents the resonator “bandwidth” and using the substitution 
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In the same way, the admittance function for oscillator 2 is found to be 
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Furthermore, let us note that the admittance functions for oscillators 1 and 2 are similar to those obtained by 

Lynch and York in [19] except that LG  and ( )iAS  replace 0G  and ( ) 2

1  ii AAf −= . Nevertheless, let us 

recall that a more accurate van der Pol model is used in (12) and (13) since  ( ) ( )
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L
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Figure 3: Two van der Pol oscillators coupled through a series RLC circuit 
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Thus, following the same steps as in [19] but using (12) and (13) for the admittance functions of oscillators 1 

and 2 and replacing 0G  by LG , the new system of four equations with four unknowns describing the locked 

states of two van der Pol oscillators coupled through a resonant network is the following: 
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Thus, for the specific case of 0201  ω∆ω∆ −=  for which the coupling circuit resonance is located exactly 

between the two oscillators free-running frequencies, one can show, using (14), that 0 =cω∆ , which implies 

0  =Φ , 1  =ε  and AAA == 21 . As a consequence, the frequency difference between the two free-running 

frequencies of oscillators 1 and 2 can also be expressed using (2) but with 
cL RG

1
 0 =λ  and 

C

G L

a 2
 =ω . 

Nevertheless, since, in these conditions, the amplitudes are equal, the following condition needs to be 

satisfied: 

( ) ( )φ∆λλ cos   00 −=−AS  

Now replacing ( )AS  by its expression we have 
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and then 

 

 ( )( )( )[ ].1 cos 1  .
3

4
0 −−−= φ∆λLGa

b
A    (15) 

One can notice that this expression is different from the one obtained in (3) and allows the prediction of the 

amplitudes of the two coupled van der Pol oscillators for values of parameters a and b of the van der Pol non 

linearity leading to a sinusoidal waveform. 

3.2.   Resistive coupling circuit case 

The case of a resistive coupling circuit is found by letting the coupling circuit bandwidth approach infinity so 

that ∞→acω  leading to 1  =ε  and 0  =Φ according to (1). In these conditions, the new equations describing 

the locked states can be deduced from (14) as follows : 

(14) 
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Hence, knowing the parameters λ0, ωa , a, and b, a solution to the system (16) provides the user with the 

amplitudes A1 and A2 of the two oscillators as well as the inter-stage phase shift φ∆  and the synchronization 

pulsation ω  for a combination ( 0201  , ωω ). Nevertheless, since the two oscillators are considered identical 

and for a broadband or resistive coupling circuit, the synchronization frequency is expected to be located 

between the two oscillators’ free-running frequencies [19], so that: 

2
  

0201 ωω
ω

+
=  

Thus, according to the second and fourth equations of (16), this implies 21 AA = . In these conditions, the form 

of the phase difference φ∆  is found again from (16) by subtracting the fourth and second equations leading to 

the same equation as (2) with 
cL RG

1
 0 =λ  and 

C

G L

a 2
 =ω . 

Furthermore, the amplitudes, which are equal in this case, are found from (16) by combining the first and 

third equation leading to exactly the same result as in (15). 

4.   Simulations and verification 

In order to verify the accuracy of the presented theory regarding the prediction of the oscillators’ 

amplitudes, simulations using Agilent’s ADS software will be performed for the practical case of two 

identical differential VCOs coupled through a resistor Rc/2 equal to 260 Ω, as shown in Fig. 4. The VCO 

structure is based on a cross-coupled NMOS differential topology using a 0.35 µm BiCMOS SiGe process. 

The cross connected NMOS differential pair provides the negative resistance to compensate for the tank 

losses and the tail current source is a simple NMOS current mirror which draws 12 mA under Vcc = 2.5 V.  

 

 
 

(16) 
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Figure 4: Two differential VCOs coupled through a resistor 

 

The frequency of oscillation is determined by the LC tank at the drains and is chosen to be close to 6 GHz 

with an inductance value, L, close to 0.8 nH with a quality factor, Q, equal to 15 at 6 GHz. The tuning range 

depends on the global capacitance C variation and thus on the Cmax/Cmin ratio of the P+/N varactor diodes and 

on the AC coupling capacitor.  

A tail capacitor CT is used to attenuate both the high-frequency noise component of the tail current and the 

voltage variations on the tail node [26].  

Furthermore, to ensure a proper start-up of the VCO,  the following condition needs to be satisfied: 

R
g m

1
  〉  

where: 

-gm is the transconductance of the NMOS transistor ; 

-R is the resistive part of the resonator. 

In these conditions, the sizes of NMOS transistors T1 to T4 are identical and chosen to be 
µm35.0

µm70
  

L

W
=







. 

The simulated tuning characteristic of  one uncoupled VCO is presented in Fig. 5. As shown on this figure, 

the VCO is tuned from 5.55 GHz to 7 GHz with a tuning voltage varying from 0 to 2.5 V. 

Since the presented theory uses van der Pol oscillators to model microwave coupled oscillators, we 

performed the modelling of this structure as two differential van der Pol coupled oscillators as presented in 

[27], using ADS simulation results for one differential NMOS VCO at the required synchronization 

frequency. As a consequence, the two coupled VCOs of Fig. 4 can be reduced into two differential van der 

Pol coupled oscillators as shown in Fig. 6. In this case, let us note that the value of the coupling resistor on 

each path is equal to Rc/2 to match well with the theory based on the use of two single-ended van der Pol 

oscillators.  

Hence, the passive part corresponding to the resonator of the VCO is modeled by a parallel RLC circuit. 

Thus, they must have the same behavior, i.e. the same resonance frequency and the same quality factor, within 

the frequency band of operation of the VCO. This modeling was realized using a S-parameters simulation 

with ADS software, as shown in Fig. 7. Therefore, the resonator parameters of the Van der Pol oscillator were 

Vtune1 Vtune2 

Rc/2 
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vd1 

T2 T3 T4 

vd2 vd3 vd4 

T5 T6 T7 CT CT 
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set so that the impedances presented by the VCO’s resonator, Z11, and the Van der Pol resonator, Z22, will be 

equal. Hence, since the inductor value on each side is equal to 0.8 nH, the differential inductor of the Van der 

Pol resonator will be L = 1.6 nH. The resistor value, R, corresponds to the real part of Z11 at the resonance 

frequency and was found to be equal to 260 Ω as shown in Fig .8. The corresponding value of GL is thus 

0.0038 S. Then, the capacitor value C was tuned so that Z11= Z22. Hence, for C = 0.456 pF, the real and 

imaginary part of the two impedances, Z11 and Z22 match well as illustrated in Fig 8. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Tuning characteristic of the VCO 

 

 

 

 

 

 

 

 

 

Figure 6: The two differential van der Pol coupled oscillators 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: The identification of the parameters of the Van der Pol resonator 
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Figure 8: The real and imaginary part of the two impedances Z11 and Z22 

 

For the modelling of the active part, the I = f(Vdiff)= f(Vd1- Vd2) characteristic of one differential NMOS 

VCO of Fig.4 at the required synchronization frequency was performed leading to the typical cubic non 

linearity of a van der Pol oscillator as shown in Fig. 9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: The cubic non linearity of a VCO  
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Let us now remind the general expression of the current in a Van der Pol oscillator as already mentioned in 

section 2 : 

 

3
  diffdiff  b v  a vi +−=

   (17)
 

The parameter a is given by the slope of the Van der Pol characteristic of Fig. 9 when Vdiff = 0, so that: 

 

 006620    .
V

I
a

diff

≈
∆

∆
=       

Now according to the theory of a Van der Pol oscillator [28], the amplitude of the oscillation is equal to 

 b

Ga L

3
2

−
, with 

R
G L

1
  = . 

Since the free-running amplitude of the differential voltage of one VCO of Fig. 4 at the required 

synchronization frequency is equal to 1.941V, we can deduce the value of parameter b so that:  

 

 b

Ga
.

3
2

−
 = 1.941 ⇒  b = 0.000976. 

Now, using (2), the phase difference φ∆  can be found for a given parameter 0ω∆ . For instance, if the 

free-running frequencies of the two oscillators are GHzf  18.6 01 =  and GHzf  59.5 02 =  leading to 

rad/s 10  3.7- 
9

0 ×=ω∆ , then, the phase shift value φ∆  is -61.7° for 5.0  
1

 0 ==
cL RG

λ  and 

rad/s 10  214  
.2

 
9

×== .
C

G L

aω . Furthermore, since the synchronization frequency is located between the two 

oscillators free-running frequencies, the amplitudes are equal and found from (15) as V. 55.1 21 === AAA In 

these conditions, the coupled system of Fig. 6 simulated with ADS leads to two sinusoidal waves at a 

synchronization frequency of 5.84 GHz with a phase shift equal to -61.27° and two equal amplitudes of 1.556 

V as shown in Fig. 10.  

Let us now compare the previous results with those obtained with the two identical differential coupled 

VCOs of Fig. 4 under the same simulation conditions. To do so, the tuning voltages Vtune1 and Vtune2 have been 

adjusted in order to obtain the same free-running frequencies i.e. GHzf  18.6 01 =  and GHzf  59.5 02 = . In 

these conditions, the two differential NMOS coupled VCOs of Fig.4 simulated with ADS has lead to two 

sinusoidal waves at a synchronization frequency of 5.86 GHz, a phase shift of -65.6° and an amplitude close 

to 1.5 V at the output of each oscillator, as presented in Fig. 11. As a consequence, a good agreement was 

found between the theoretical prediction of the phase shift as well as of the amplitude and the simulation 

results of the two coupled differential VCOs.  

In order to generalize these results, the VCOs’ tunings are moved apart so that the synchronization 

frequency will remain halfway between. In these conditions, Fig.12.a shows a comparison between the 

theoretical amplitude calculated using (15) and the simulated amplitude for the two coupled differential van 

der Pol oscillators and for the two coupled differential NMOS VCOs as a function of 01020 fff −=∆ . 

Moreover, Fig.12.b shows a comparison between the theoretical phase shift calculated using (2) and the 

simulated phase shift always as a function of .0f∆  These results are also summarized in Table I. 
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Figure 10: Waveforms of the output voltages of the two van der Pol oscillators for ∆φ = -61.27° and A1=A2=A = 1.556 V 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Waveforms of the output voltages of the two differential NMOS VCOs for ∆φ = -65.6° and A ≈ 1.5 V 
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Figure 12: Comparison between the theoretical and simulated results for (a) the amplitude and (b) the phase shift 

 

As can be seen on this figure, a good agreement is found between the theoretical prediction of the 

amplitude as well as of the phase shift and the simulation results over the entire range of VCOs’ tunings. For 

the phase shift prediction, equation (2) was already found by J. Lynch and R. York in [19] for the case of a 

narrow-band coupling network and shows that, as the oscillator tunings are moved apart, but the 

synchronization frequency is halfway between, the phase shift increases until the locking-region boundary is 

encountered. This theoretical behaviour is verified in simulation as shown in Fig.12.b. Concerning the 

prediction of the amplitudes given by (15) and derived from the proposed system of equations found in (14), 

the amplitude is at a minimum at the locking-region boundaries (i.e. when the phase shift is at the extreme 

values) and equal to the oscillators’ free-running amplitude for equal tunings (i.e. when the phase shift is 

equal to zero). As can be seen in Fig.12.a, this behaviour is also verified in simulation. Furthermore, these 

results show that the proposed theory can be used to design an array made of two differential VCOs coupled 

through a resistive network. Indeed, after the modelling step of one differential NMOS VCO at the required 

synchronization frequency, equations (2) and (15) can be used to adjust, with a relatively high accuracy, the 

free-running frequencies of the two differential NMOS VCOs required to achieve the desired phase shift and 

(a) 

(b) 
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amplitudes. These equations can of course be used for others differential oscillators architectures and for a 

narrow-band coupling network. 

Table I. Theoretical and simulated results summary for the amplitude and the phase shift 

Amplitude (V) φ∆  (°) fo1 

(GHz) 
fo2  

(GHz)       
Simulations 

(VCOs) 

Theory Simulations 

(VCOs) 

Theory 

6.217 5.569 1.383 1.36 -81.78 -75.23 

6.205 5.58 1.47 1.458 -73.61 -68.7 

6.129 5.66 1.71 1.743 -47.83 -44.69 

6.07 5.72 1.82 1.845 -34.03 -31.83 

5.952 5.83 1.93 1.938 -10.74 -10.12 

5.89 5.89 1.94 1.95 0 0 

5.78 6.011 1.89 1.905 22.04 20.58 

5.66 6.129 1.71 1.743 47.83 44.69 

5.6 6.188 1.55 1.557 65.7 61.53 

5.59 6.2 1.5 1.496 70.78 66.1 

5.569 6.217 1.38 1.36 81.8 75.23 

5.   Conclusion 

A new formulation of the equations describing the locked states of two van der Pol oscillators coupled 

through a broadband network using an accurate model allowing a good prediction of the oscillators’ 

amplitudes was presented in this paper. To do so, the system of nonlinear equations presented in [19] by J. 

Lynch and R. York and giving the dynamics for two van der Pol oscillators coupled through a resonant 

network was first overviewed to show the limitation of this theory regarding the prediction of the amplitudes 

of the two coupled oscillators. After that, the York’s theory was adapted to the case of a more accurate van 

der Pol model in order to obtain the new system of four equations with four unknowns describing the locked 

states of two van der Pol oscillators coupled through a resonant network. The case of a resistive coupling 

circuit was then deduced from this system of equations. This has led to a new expression allowing the 

prediction of the amplitudes of the two coupled van der Pol oscillators for values of parameters a and b of the 

van der Pol non linearity leading to a sinusoidal waveform. The presented theory regarding the prediction of 

the oscillators’ amplitudes was verified using Agilent’s ADS software for the practical case of an array made 

of two differential VCOs coupled through a resistive network. The obtained results are consistent with the 

theory showing the usefulness of such a theoretical approach for the design of an array of differential VCOs 

coupled through a resistive network. 
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