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Introduction

Arrays of coupled oscillators offer a potentially useful technique for producing higher powers at millimeterwave frequencies with better efficiency than is possible with conventional power-combining techniques [START_REF] Nogi | Mode analysis and stabilization of a spatial power combining array with strongly coupled oscillators[END_REF][START_REF] Kuhn | Power combining by means of harmonic injection locking[END_REF]. Another application is the beam steering of antenna arrays [START_REF] Health | Beam steering of nonlinear oscillator arrays through manipulation of coupling phases[END_REF], through a constant phase progression in the oscillator chain which is obtained by detuning the free-running frequencies of the outermost oscillators in the array [START_REF] Liao | A new phase-shifterless beam-scanning technique using arrays of coupled oscillators[END_REF][START_REF] Tohmé | Analysis of the Frequency Locking Region of Coupled Oscillators Applied to 1-D Antenna Arrays[END_REF]. Moreover, it is shown that the resulting inter-stage phase shift is independent of the number of oscillators in the array [START_REF] York | Nonlinear analysis of phase relationships in quasioptical oscillator arrays[END_REF][START_REF] Liao | Beam Scanning With Coupled VCOs[END_REF][START_REF] York | Injection and phase-locking techniques for beam control[END_REF]. Furthermore, synchronization phenomena in arrays of coupled oscillators are very important models to describe various higher-dimensional nonlinear phenomena in the field of natural science [START_REF] Uwate | Complex pattern in a ring of van der Pol oscillators coupled by time-varying resistors[END_REF].

Many techniques have been used to analyse the behaviour of coupled oscillators for many years such as time domain approaches [START_REF] Aoun | Computer-Aided Mode Analysis of Coupled Nonlinear Oscillators[END_REF][START_REF] Chai | Application of Graph Theory to the Synchronization in an Array of Coupled Nonlinear Oscillators[END_REF][START_REF] Kuroki | An analysis of oscillation modes of four completely coupled oscillators via integral manifolds and its experimental confirmation[END_REF][START_REF] Lanza | Analysis of nonlinear oscillatory network dynamics via timevarying amplitude and phase variables[END_REF][START_REF] Maffezzoni | Synchronization Analysis of Two Weakly Coupled Oscillators Through a PPV Macromodel[END_REF][START_REF] Buonomo | The effect of parameter mismatches on the output waveform of an LC-VCO[END_REF]. Concerning the frequency domain approaches, R. York made use of simple van der Pol oscillators to model microwave oscillators coupled through either a resistive network or a broadband network [START_REF] York | Nonlinear analysis of phase relationships in quasioptical oscillator arrays[END_REF][START_REF] York | Oscillator Array Dynamics with Broadband N-Port Coupling Networks[END_REF][START_REF] Chang | Phase Noise in Coupled Oscillators: Theory and Experiment[END_REF]. Since these works are limited to cases where the coupling network bandwidth is much greater than the oscillators' bandwidth, he used more accurate approximations based on a generalization of Kurokawa's method [START_REF] Kurokawa | Injection locking of solid state microwave oscillators[END_REF] to extend the study to the case of a narrow-band circuit [START_REF] Lynch | Synchronization of Oscillators Coupled Through Narrow-Band Networks[END_REF]. This theory allows the equations for the amplitude and phase dynamics of two oscillators coupled through many types of circuits to be derived. Since these works, only few papers present new techniques for the analysis of coupledoscillator arrays in the frequency domain [START_REF] Collado | Harmonic-Balance Analysis and Synthesis of Coupled-Oscillator Arrays[END_REF][START_REF] Suarez | Harmonic-Balance techniques for the design of coupled-oscillator systems in both unforced and injection-locked operation[END_REF][START_REF] Georgiadis | New Techniques for the Analysis and Design of Coupled-Oscillator Systems[END_REF][START_REF] Suarez | Analysis and Design of Autonomous Microwave Circuits[END_REF]. In [START_REF] Georgiadis | New Techniques for the Analysis and Design of Coupled-Oscillator Systems[END_REF], a semi-analytical formulation is presented for the design of coupled-oscillator systems, avoiding the computational expensiveness of a full harmonic balance synthesis presented in [START_REF] Collado | Harmonic-Balance Analysis and Synthesis of Coupled-Oscillator Arrays[END_REF] and [START_REF] Suarez | Harmonic-Balance techniques for the design of coupled-oscillator systems in both unforced and injection-locked operation[END_REF]. In [START_REF] Suarez | Stability and Noise Analysis of Coupled-Oscillator Systems[END_REF], a simplified closed-form of the semi-analytical formulation proposed in [START_REF] Georgiadis | New Techniques for the Analysis and Design of Coupled-Oscillator Systems[END_REF] for the optimised design of coupled-oscillator systems is presented. Nevertheless, even if this new semi-analytical formulation allows a good prediction of the coupled-oscillator solution, it is only valid for the weak coupling case whereas the York's theory [START_REF] Lynch | Synchronization of Oscillators Coupled Through Narrow-Band Networks[END_REF] provides a full analytical formulation allowing to predict the performances of microwave oscillator arrays for both weak and strong coupling. Unfortunately, although this latter theory provides simple approximate formulas for the dimensions of the locking region, for the amplitudes of the two coupled oscillators and for the inter-stage phase shift, the van der Pol model used is too simple and doesn't allow an accurate prediction of the amplitudes. Furthermore, since the theoretical limit of the phase shift obtained for an array of single-ended coupled oscillators is within the range of ±90° [START_REF] York | Nonlinear analysis of phase relationships in quasioptical oscillator arrays[END_REF], it seems to be interesting to analyse the behaviour of an array of coupled differential VCOs. Indeed, in this case, the theoretical limit of the phase shift is within 360° due to the differential nature of the array. In these conditions, a continuously controlled 360° phase shifting range can be obtained leading to a more efficient beam-scanning architecture for instance. Furthermore, differential VCOs are widely used in high-frequency circuit design due to their relatively good phase noise performances and ease of integration. Moreover, the use of a broadband coupling network, i.e. a resistor, instead of a resonant one can lead to a substantial save in chip area.

Due to these considerations, the aim of this paper is to present a new formulation of the equations describing the locked states of two van der Pol oscillators coupled through a broadband network using an accurate model allowing a good prediction of the oscillators' amplitudes. The accuracy of the theory will be validated by simulations for the practical case of two NMOS differential VCOs coupled through a resistive network. To do so, an overview of the equations developed by R. York giving the dynamics for two van der Pol oscillators coupled through a resonant network will be provided in section 2. The details concerning the van der Pol model used in [START_REF] Lynch | Synchronization of Oscillators Coupled Through Narrow-Band Networks[END_REF] will be given showing the limitations of such an approach. In section 3, a new expression of the York's equations using a more accurate van der Pol model will be presented. Then, the case of a resistive coupling circuit will be treated. In section 4, the theory is verified using Agilent's software ADS for an array made of two differential VCOs coupled through a resistive network.

Overview of the dynamics of two van der Pol oscillators coupled through a resonant network

The theory elaborated by J. Lynch and R. York in [START_REF] Lynch | Synchronization of Oscillators Coupled Through Narrow-Band Networks[END_REF] is exemplified using an architecture made of two parallel resonant circuits containing nonlinear negative conductance devices and coupled through a series resonant circuit, as shown in Fig. 1. These oscillators are considered identical, except for their free-running frequencies. Thus, starting from the admittance transfer functions (Y 1 , Y 2 , Y c ) binding the coupling current (I c ) to the oscillators voltages (V 1 and V 2 ), and relying on Kurokawa's substitution [START_REF] Kurokawa | Injection locking of solid state microwave oscillators[END_REF], the authors cited previously described the oscillators dynamic equations, as well as those for the amplitude and phase of the coupling current. Then, by setting the derivatives equal to zero, the algebraic equations describing the oscillators' frequency locked states were obtained. This system of four equations with four unknowns (A 1 , A 2 , φ ∆ and ω ) is presented as follows: ω , and the synchronization frequency of the system, ω , are referred to the resonant frequency of the coupling circuit, oc ω , using the following substitution :
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Thus, a solution to [START_REF] Nogi | Mode analysis and stabilization of a spatial power combining array with strongly coupled oscillators[END_REF] indicates the existence of a frequency-locked state and provides the user with the amplitudes A 1 and A 2 of the two oscillators as well as the inter-stage phase shift φ ∆ and the synchronization pulsation ω for a combination ( 02 01 , ω ∆ ω ∆

).

Nevertheless, to simplify the analysis, J. Lynch and R. York made use of cases of practical interest according to the tunings of oscillators 1 and 2. Indeed, for equal tunings, i.e. for 02 01

ω ∆ ω ∆ =
, one can show, using the second and fourth equations of (1), that the phase difference φ ∆ equals zero and the oscillators will lock on a bandwidth depending on the value of the coupling circuit bandwidth (ω ac ) with equal amplitudes ( 

2 1 A A = ) [19].
c C c L c Coupling circuit L 1 C L 2 C -G(A 1 )=-G 0 (1-A 1 2 ) Oscillator 1 Oscillator 2 V 1 V 2 I c Y 1 Y c (V 2 =0) Y 2 -G(A 2 )=-G 0 (1-A 2 2 )
On the other hand, when the coupling circuit resonance ( oc ω ) is located exactly between the two oscillators free-running frequencies, i.e. for 02 01

ω ∆ ω ∆ - =
, one can show, again using the second and fourth equations of (1), that 0 = c ω ∆

, which implies 0 = Φ and 2 1 A A = . In these conditions, the frequency difference between the two free-running frequencies of oscillators 1 and 2 can be expressed, by subtracting the fourth and second equations, as follows:

( ). sin 2 0 0 φ ∆ ω λ ω ∆ a = (2) 
with
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as mentioned previously.

Furthermore, in the same conditions, the amplitudes are equal and found from [START_REF] Nogi | Mode analysis and stabilization of a spatial power combining array with strongly coupled oscillators[END_REF], by combining the first and third equation, as follows:

.
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As explained in [START_REF] Lynch | Synchronization of Oscillators Coupled Through Narrow-Band Networks[END_REF], the amplitude will remain close to the unity for weak coupling, i.e. when 0 λ << 2 1 .

Nevertheless, for weak coupling, the amplitudes of the oscillators will remain close to their free-running values. Thus, with the van der Pol model used in this theory, the free-running amplitudes of the oscillators are always equal to unity showing the limitations of this theory regarding the prediction of the amplitudes of the two coupled oscillators.

To illustrate this affirmation, let us explain the assumptions and approximations made by J. Lynch and R. York for the modelling of a van der Pol oscillator. Indeed, let us first consider the schematic of a van der Pol oscillator as shown in Fig. 2 for which the current in the nonlinear conductance G NL is equal to

( ) ( ) ( ) t bv t av t i 3 1 + - =
with -a the negative conductance necessary to start the oscillations and b a parameter used to model the saturation phenomenon. In this case, according to the Kirchhoff's current law, the current i(t) can be written as

( ) ( ) ( ) ( ). . . 3 t v b t v G a t i + + - = (4) 
Figure 2 : van der Pol oscillator model Now, using the assumption of a perfectly sinusoidal oscillation so that ( ) ( )
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Furthermore, let us recall that such an oscillator topology can be modelled by a quasi-linear representation allowing a very simple analytical calculation [START_REF] Odyniec | RF and microwave oscillator design[END_REF]. In this case, the expression in the first bracket in [START_REF] Tohmé | Analysis of the Frequency Locking Region of Coupled Oscillators Applied to 1-D Antenna Arrays[END_REF] represents the negative conductance presented by the active part. Nevertheless, in York's model [START_REF] Lynch | Synchronization of Oscillators Coupled Through Narrow-Band Networks[END_REF], this negative conductance is equal to
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In these conditions, the expression in the first bracket in ( 5) and ( 6) leads to . 4

3 0 b G a G = - = (7) 
This result clearly shows the limitations of the van der Pol model used by Lynch and York in [START_REF] Lynch | Synchronization of Oscillators Coupled Through Narrow-Band Networks[END_REF] since this model is valid only for van der Pol parameters values a and b for which ( 7) is fulfilled. Furthermore, one can show that, in this case, the free-running amplitude of the van der Pol oscillator is always equal to unity. Indeed, the condition of free-running oscillation of one of the oscillators of Fig. 1 at a frequency f 0 can be written as
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)
where the subscripts "NL" and "L" denote the nonlinear and linear portions of the circuit and with ( ) ( )
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Thus, according to [START_REF] York | Injection and phase-locking techniques for beam control[END_REF], the frequency of oscillations is found to be

LC f π 2 1 0 = and the amplitude is 1 = A .
As a consequence, a new formulation of (1) using a more accurate van der Pol model will be presented in the next section. The case of a resistive coupling circuit will then be deduced from the obtained system of equations.

New expression of the equations describing the locked states of two van der Pol coupled oscillators

Two van der Pol oscillators coupled through a resonant network

In order to obtain the new system of four equations with four unknowns describing the locked states of two van der Pol oscillators coupled through a resonant network, the theory of J. Lynch and R. York [START_REF] Lynch | Synchronization of Oscillators Coupled Through Narrow-Band Networks[END_REF] will be adapted to the case of a more accurate van der Pol model. To do so, let us consider the circuit of Fig. 3 made of two van der Pol oscillators coupled through a series RLC circuit. These oscillators are considered identical, except for their free-running frequencies. In this case, the frequency-domain equations, using the admittance transfer function binding the coupling current to the oscillators voltages, can be written as follows:
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where A 1 , ω 1 , represents the amplitude and pulsation of oscillator 1, etc… and the subscripts "NL" and "L" denote the nonlinear and linear portions of the circuit. Let us now determine the oscillator admittance function for oscillator 1 which can be written as follows: [START_REF] Aoun | Computer-Aided Mode Analysis of Coupled Nonlinear Oscillators[END_REF] where C L 1 01 1 = ω is the tank resonant frequency of oscillator 1 and ( )
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2 1 1 4 3 bA a A G NL + - = -
is the negative conductance presented by the active part as explained in (5) leading to sinusoidal oscillation. Now, if the frequency of oscillator 1 remains close to its "free running" frequency or uncoupled value 01 ω , then, the admittance function can be written as
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which represents the resonator "bandwidth" and using the substitution ( ) ( )
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in order to simplify the notation, we have
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In the same way, the admittance function for oscillator 2 is found to be
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Furthermore, let us note that the admittance functions for oscillators 1 and 2 are similar to those obtained by Lynch and York in [START_REF] Lynch | Synchronization of Oscillators Coupled Through Narrow-Band Networks[END_REF] except that L G and ( )

i A S replace 0 G and ( ) 2 1 i i A A f - =
. Nevertheless, let us recall that a more accurate van der Pol model is used in ( 12) and ( 13) since ( ) ( )
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Figure 3: Two van der Pol oscillators coupled through a series RLC circuit

R c C c L c Coupling circuit L 1 C L 2 C -G NL (A 1 ) Oscillator 1 Oscillator 2 G L G L -G NL (A 2 ) V 1 V 2 I c Y 1 Y c (V 2 =0) Y 2
Thus, following the same steps as in [START_REF] Lynch | Synchronization of Oscillators Coupled Through Narrow-Band Networks[END_REF] but using ( 12) and ( 13) for the admittance functions of oscillators 1 and 2 and replacing 0 G by L G , the new system of four equations with four unknowns describing the locked states of two van der Pol oscillators coupled through a resonant network is the following: 
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Thus, for the specific case of 02 01

ω ∆ ω ∆ - =
for which the coupling circuit resonance is located exactly between the two oscillators free-running frequencies, one can show, using [START_REF] Maffezzoni | Synchronization Analysis of Two Weakly Coupled Oscillators Through a PPV Macromodel[END_REF], that 0

= c ω ∆ , which implies 0 = Φ , 1 = ε and A A A = = 2 1
. As a consequence, the frequency difference between the two free-running frequencies of oscillators 1 and 2 can also be expressed using (2) but with

c L R G 1 0 = λ and C G L a 2 = ω .
Nevertheless, since, in these conditions, the amplitudes are equal, the following condition needs to be satisfied:
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by its expression we have
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)
One can notice that this expression is different from the one obtained in (3) and allows the prediction of the amplitudes of the two coupled van der Pol oscillators for values of parameters a and b of the van der Pol non linearity leading to a sinusoidal waveform.

Resistive coupling circuit case

The case of a resistive coupling circuit is found by letting the coupling circuit bandwidth approach infinity so that ∞ → ac ω leading to 1 = ε and 0 = Φ according to [START_REF] Nogi | Mode analysis and stabilization of a spatial power combining array with strongly coupled oscillators[END_REF]. In these conditions, the new equations describing the locked states can be deduced from ( 14) as follows :
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Thus, we have
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Hence, knowing the parameters λ 0 , ω a , a, and b, a solution to the system ( 16) provides the user with the amplitudes A 1 and A 2 of the two oscillators as well as the inter-stage phase shift φ ∆ and the synchronization pulsation ω for a combination ( 02 01 , ω ω

). Nevertheless, since the two oscillators are considered identical and for a broadband or resistive coupling circuit, the synchronization frequency is expected to be located between the two oscillators' free-running frequencies [START_REF] Lynch | Synchronization of Oscillators Coupled Through Narrow-Band Networks[END_REF], so that:

2 02 01 ω ω ω + =
Thus, according to the second and fourth equations of ( 16), this implies 2 1 A A = . In these conditions, the form of the phase difference φ ∆ is found again from ( 16) by subtracting the fourth and second equations leading to the same equation as [START_REF] Kuhn | Power combining by means of harmonic injection locking[END_REF] with

c L R G 1 0 = λ and C G L a 2 = ω .
Furthermore, the amplitudes, which are equal in this case, are found from ( 16) by combining the first and third equation leading to exactly the same result as in [START_REF] Buonomo | The effect of parameter mismatches on the output waveform of an LC-VCO[END_REF].

Simulations and verification

In order to verify the accuracy of the presented theory regarding the prediction of the oscillators' amplitudes, simulations using Agilent's ADS software will be performed for the practical case of two identical differential VCOs coupled through a resistor R c /2 equal to 260 Ω, as shown in Fig. 4. The VCO structure is based on a cross-coupled NMOS differential topology using a 0.35 µm BiCMOS SiGe process. The cross connected NMOS differential pair provides the negative resistance to compensate for the tank losses and the tail current source is a simple NMOS current mirror which draws 12 mA under Vcc = 2.5 V. The frequency of oscillation is determined by the LC tank at the drains and is chosen to be close to 6 GHz with an inductance value, L, close to 0.8 nH with a quality factor, Q, equal to 15 at 6 GHz. The tuning range depends on the global capacitance C variation and thus on the C max /C min ratio of the P+/N varactor diodes and on the AC coupling capacitor. A tail capacitor C T is used to attenuate both the high-frequency noise component of the tail current and the voltage variations on the tail node [START_REF] Hajimiri | Design Issues in CMOS Differential LC Oscillators[END_REF]. Furthermore, to ensure a proper start-up of the VCO, the following condition needs to be satisfied:

R g m 1 〉

where: -g m is the transconductance of the NMOS transistor ; -R is the resistive part of the resonator.

In these conditions, the sizes of NMOS transistors T 1 to T 4 are identical and chosen to be µm 35 . 0

µm 70 L W =         .
The simulated tuning characteristic of one uncoupled VCO is presented in Fig. 5. As shown on this figure, the VCO is tuned from 5.55 GHz to 7 GHz with a tuning voltage varying from 0 to 2.5 V.

Since the presented theory uses van der Pol oscillators to model microwave coupled oscillators, we performed the modelling of this structure as two differential van der Pol coupled oscillators as presented in [START_REF] Ionita | Analysis and Design of an Array of Two Differential Oscillators Coupled Through a Resistive Network[END_REF], using ADS simulation results for one differential NMOS VCO at the required synchronization frequency. As a consequence, the two coupled VCOs of Fig. 4 can be reduced into two differential van der Pol coupled oscillators as shown in Fig. 6. In this case, let us note that the value of the coupling resistor on each path is equal to Rc/2 to match well with the theory based on the use of two single-ended van der Pol oscillators.

Hence, the passive part corresponding to the resonator of the VCO is modeled by a parallel RLC circuit. Thus, they must have the same behavior, i.e. the same resonance frequency and the same quality factor, within the frequency band of operation of the VCO. This modeling was realized using a S-parameters simulation with ADS software, as shown in Fig. 7. Therefore, the resonator parameters of the Van der Pol oscillator were

V tune1 V tune2 R c /2 R c /2 T 1 vd 1 T 2 T 3 T 4 vd 2 vd 3 vd 4 T 5 T 6 T 7 C T C T Vcc I
set so that the impedances presented by the VCO's resonator, Z 11 , and the Van der Pol resonator, Z 22 , will be equal. Hence, since the inductor value on each side is equal to 0.8 nH, the differential inductor of the Van der Pol resonator will be L = 1.6 nH. The resistor value, R, corresponds to the real part of Z 11 at the resonance frequency and was found to be equal to 260 Ω as shown in Fig . 8. The corresponding value of G L is thus 0.0038 S. Then, the capacitor value C was tuned so that Z 11 = Z 22 . Hence, for C = 0.456 pF, the real and imaginary part of the two impedances, Z 11 and Z 22 match well as illustrated in Fig 8. Frequency (GHz) For the modelling of the active part, the I = f(V diff )= f(Vd 1 -Vd 2 ) characteristic of one differential NMOS VCO of Fig. 4 at the required synchronization frequency was performed leading to the typical cubic non linearity of a van der Pol oscillator as shown in Fig. 9. Imag(Z11) = 0 @ F0 = 5.87 GHz The equivalent RLC

R c /2 L C L C -G NL (A 1 ) = -a + 4 3 b 2 1 A Oscillator 1 Oscillator 2 G L G L V 1 V 2 I c -G NL (A 2 ) = -a + 4 3 b 2 2 A R c /2 -G NL (A 2 ) -G NL (A 1 ) vosc1 vosc2 vosc3 vosc4

VCO passive part

Let us now remind the general expression of the current in a Van der Pol oscillator as already mentioned in section 2 :

3 diff diff b v a v i + - = (17)
The parameter a is given by the slope of the Van der Pol characteristic of Fig. 9 when V diff = 0, so that: . Furthermore, since the synchronization frequency is located between the two oscillators free-running frequencies, the amplitudes are equal and found from (15) as V. 55 . 1

2 1 = = = A A A
In these conditions, the coupled system of Fig. 6 simulated with ADS leads to two sinusoidal waves at a synchronization frequency of 5.84 GHz with a phase shift equal to -61.27° and two equal amplitudes of 1.556 V as shown in Fig. 10.

Let us now compare the previous results with those obtained with the two identical differential coupled VCOs of Fig. 4 under the same simulation conditions. To do so, the tuning voltages V tune1 and V tune2 have been adjusted in order to obtain the same free-running frequencies i.e. . In these conditions, the two differential NMOS coupled VCOs of Fig. 4 simulated with ADS has lead to two sinusoidal waves at a synchronization frequency of 5.86 GHz, a phase shift of -65.6° and an amplitude close to 1.5 V at the output of each oscillator, as presented in Fig. 11. As a consequence, a good agreement was found between the theoretical prediction of the phase shift as well as of the amplitude and the simulation results of the two coupled differential VCOs.

In order to generalize these results, the VCOs' tunings are moved apart so that the synchronization frequency will remain halfway between. In these conditions, Fig. 12.a shows a comparison between the theoretical amplitude calculated using [START_REF] Buonomo | The effect of parameter mismatches on the output waveform of an LC-VCO[END_REF] and the simulated amplitude for the two coupled differential van der Pol oscillators and for the two coupled differential NMOS VCOs as a function of As can be seen on this figure, a good agreement is found between the theoretical prediction of the amplitude as well as of the phase shift and the simulation results over the entire range of VCOs' tunings. For the phase shift prediction, equation (2) was already found by J. Lynch and R. York in [START_REF] Lynch | Synchronization of Oscillators Coupled Through Narrow-Band Networks[END_REF] for the case of a narrow-band coupling network and shows that, as the oscillator tunings are moved apart, but the synchronization frequency is halfway between, the phase shift increases until the locking-region boundary is encountered. This theoretical behaviour is verified in simulation as shown in Fig. 12.b. Concerning the prediction of the amplitudes given by [START_REF] Buonomo | The effect of parameter mismatches on the output waveform of an LC-VCO[END_REF] and derived from the proposed system of equations found in ( 14), the amplitude is at a minimum at the locking-region boundaries (i.e. when the phase shift is at the extreme values) and equal to the oscillators' free-running amplitude for equal tunings (i.e. when the phase shift is equal to zero). As can be seen in Fig. 12.a, this behaviour is also verified in simulation. Furthermore, these results show that the proposed theory can be used to design an array made of two differential VCOs coupled through a resistive network. Indeed, after the modelling step of one differential NMOS VCO at the required synchronization frequency, equations ( 2) and ( 15) can be used to adjust, with a relatively high accuracy, the free-running frequencies of the two differential NMOS VCOs required to achieve the desired phase shift and 

Conclusion

A new formulation of the equations describing the locked states of two van der Pol oscillators coupled through a broadband network using an accurate model allowing a good prediction of the oscillators' amplitudes was presented in this paper. To do so, the system of nonlinear equations presented in [START_REF] Lynch | Synchronization of Oscillators Coupled Through Narrow-Band Networks[END_REF] by J. Lynch and R. York and giving the dynamics for two van der Pol oscillators coupled through a resonant network was first overviewed to show the limitation of this theory regarding the prediction of the amplitudes of the two coupled oscillators. After that, the York's theory was adapted to the case of a more accurate van der Pol model in order to obtain the new system of four equations with four unknowns describing the locked states of two van der Pol oscillators coupled through a resonant network. The case of a resistive coupling circuit was then deduced from this system of equations. This has led to a new expression allowing the prediction of the amplitudes of the two coupled van der Pol oscillators for values of parameters a and b of the van der Pol non linearity leading to a sinusoidal waveform. The presented theory regarding the prediction of the oscillators' amplitudes was verified using Agilent's ADS software for the practical case of an array made of two differential VCOs coupled through a resistive network. The obtained results are consistent with the theory showing the usefulness of such a theoretical approach for the design of an array of differential VCOs coupled through a resistive network.

  constant, where G 0 is the nonlinear device conductance at zero voltage ; -running frequencies or tunings of oscillators 1 and 2, respectively ;• oc ω : resonant frequency of the coupling circuit ; phase. Furthermore, the free-running frequencies of the oscillators,
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 1 Figure 1: Two oscillators coupled through a resonant circuit

R

  

Figure 4 :

 4 Figure 4: Two differential VCOs coupled through a resistor
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 567 Figure 5: Tuning characteristic of the VCO
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 8 Figure 8: The real and imaginary part of the two impedances Z11 and Z22
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 9 Figure 9: The cubic non linearity of a VCO

  Now according to the theory of a Van der Pol oscillator[START_REF] Van Der Pol | The nonlinear theory of electric oscillations[END_REF], the amplitude of the oscillation is equal to the free-running amplitude of the differential voltage of one VCO of Fig.4at the required synchronization frequency is equal to 1.941V, we can deduce the value of parameter b so that: 941 ⇒ b = 0.000976. Now, using (2), the phase difference φ ∆ can be found for a given parameter 0 ω ∆ . For instance, if the free-running frequencies of the two oscillators are GHz

∆

  .12.b shows a comparison between the theoretical phase shift calculated using (2) and the simulated phase shift always as a function of . 0 f These results are also summarized in TableI.
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 1011 Figure 10: Waveforms of the output voltages of the two van der Pol oscillators for ∆φ = -61.27° and A1=A2=A = 1.556 V

Figure 12 :

 12 Figure 12: Comparison between the theoretical and simulated results for (a) the amplitude and (b) the phase shift

  equations can of course be used for others differential oscillators architectures and for a narrow-band coupling network.

Table I .

 I Theoretical and simulated results summary for the amplitude and the phase shift

	f o1	f o2	Amplitude (V)	φ ∆ (°)
	(GHz)	(GHz)	Simulations	Theory	Simulations	Theory
			(VCOs)		(VCOs)	
	6.217	5.569	1.383	1.36	-81.78	-75.23
	6.205	5.58	1.47	1.458	-73.61	-68.7
	6.129	5.66	1.71	1.743	-47.83	-44.69
	6.07	5.72	1.82	1.845	-34.03	-31.83
	5.952	5.83	1.93	1.938	-10.74	-10.12
	5.89	5.89	1.94	1.95	0	0
	5.78	6.011	1.89	1.905	22.04	20.58
	5.66	6.129	1.71	1.743	47.83	44.69
	5.6	6.188	1.55	1.557	65.7	61.53
	5.59	6.2	1.5	1.496	70.78	66.1
	5.569	6.217	1.38	1.36	81.8	75.23