
HAL Id: hal-00821852
https://hal.science/hal-00821852v1

Submitted on 13 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coloring distance graphs: a few answers and many
questions

Benoît Kloeckner

To cite this version:
Benoît Kloeckner. Coloring distance graphs: a few answers and many questions. Geombinatorics,
2015, XXIV (3), pp.117. �hal-00821852�

https://hal.science/hal-00821852v1
https://hal.archives-ouvertes.fr


COLORING DISTANCE GRAPHS: A FEW

ANSWERS AND MANY QUESTIONS

by

Benôıt R. Kloeckner

Abstract. — Given a metric space and a set of distances, one constructs
the associated distance graph by taking as vertices the points of the space
and as edges the pairs whose distance is in the given set.

It is a longstanding open question to determine the chromatic number
of the graph obtained from the Euclidean plane and a set reduced to one
distance.

Surprisingly, while many variants of this problem have been studied,
only a few non-Euclidean spaces seem to have been seriously considered.
In this paper, we consider the planar translation-invariant metrics and
the hyperbolic plane. We answer questions of Johnson and Szlam, prove
a few other results, and ask many questions.

Let X be a metric space, whose metric (or distance function) shall be
denoted by ρ, and D be a subset of R+∗. Often, D will be a singleton
and in some cases, one can restrict to D = {1}.

The distance graph defined byX andD is defined as the graphG(X,D)
whose vertices are the elements of X and where (xy) is an edge exactly
when ρ(x, y) ∈ D.

Let us say a word about the definition of the chromatic number, be-
cause we will occasionally deal with the case when it is infinite, and prefer
not to dwell on cardinals and axioms. As usual, the graph G has chro-
matic number χ(G) = k ∈ N if there is a k-coloring of G, i.e. a map from
the vertices of G to {1, . . . , k} that maps adjacent vertices to different
values, and if k is minimal with this property. Now, we shall say that
χ(G) ≤ ℵ0 if there is a coloring with values in N, and χ(G) = ℵ0 if in
addition there is no k-coloring for any finite k.
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The graph G(X,D) is usually not locally finite, but it turns out that
in many interesting cases it has finite chromatic number. Thanks to a
theorem of De Bruijn-Erdös [dBE51], under the axiom of choice a graph
is k-colorable if and only if all its finite subgraphs are k-colorable. Note
that the chromatic number of G(X, {1}) may depend on the chosen set
of axioms in some cases, see e.g. [SS03]. The chromatic number of
G(X,D) shall be denoted by χ(X,D). Every now and then, we shall
find convenient to use ρ instead of X (notably, when the underlying set
of X is fixed but the metric changes) in some notations.

A long-standing open question (see several chapters of [Soi11b]) is to
determine the chromatic number χ(E2, {1}) where E

2 is the Euclidean
plane R

2 with the usual distance. We know little more than what was
proved soon after the question was raised:

4 ≤ χ(E2, {1}) ≤ 7.

More recently, it was proved that Lebesgue-measurable colorings ofG(E2, {1})
must have at least 5 colors [Soi09, Fal81]; in particular, 5 ≤ χ(E2, {1})
under replacement axioms for the axiom of choice including the axiom
that all subsets of R are Lebesgue measurable.

The higher dimensional Euclidean spaces have been well considered
[Soi11b], as well as variations (see e.g. [Soi11a] in the above mentioned
reference) but little attention has been given to the case when X is not
Euclidean. Simmons considered the round spheres [Sim76]; Chilaka-
marri [Chi91] considered the Minkowski planes (i.e. R2 endowed with a
norm) and showed interesting relationship with the Euclidean case; and
[JS01] briefly considered the more general case when R

2 is endowed with
a translation-invariant distance that induces the usual topology. Johnson
and Szlam asked several questions, some of which we answer in Section
1. Our answers are pretty simple and show that the questions in [JS01]
may be in fact too flexible; we therefore propose a variation and give
a partial answer, where prime numbers make an intriguing appearance
(or rather, disappearance). We also propose another variation on this
question.

Then, we move further away from Euclideanness by studying in Section
2 the case when X = H

2, the hyperbolic plane. This case has been
suggested by Matthew Kahle on MathOverflow [Kah12]. As H2 has no
homothety, even when D is a singleton the choice of the value matters
a lot; as a consequence, the question of determining the behavior of
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χ(H2, {d}) when d varies seems as rich as the question of the relation
between χ(En, {1}) and n.

1. Translation-invariant metric on the plane

In this section, we consider X = (R2, ρ) where ρ is a metric (a pos-
itive, symmetric, definite function on (R2)2 that satisfies the triangular
inequality). To allow ρ to be completely general would let way too much
flexibility, as any metric space with the cardinality of R could be consid-
ered.

1.1. The Johnson-Szlam problem. — Following Johnson and Szlam
[JS01], we shall therefore ask that ρ is translation invariant:

ρ(x, y) = ρ(x+ v, y + v) ∀x, y, v ∈ R
2

and that ρ induces the usual topology on R
2, which means that all Eu-

clidean balls contain a ρ-ball of same center (all balls are assumed to have
positive radius) and vice-versa. We shall call such a ρ a plane metric and
(R2, ρ) a planar metric space.

Note that by open ball of ρ we mean the sets

B◦
ρ(x, r) = {y | ρ(x, y) < r}

and by closed balls the

Bρ(x, r) = {y | ρ(x, y) ≤ r};
please beware that in generalB◦

ρ(x, r) needs not be the interior of Bρ(x, r).
In [JS01], Johnson and Szlam pose the problem of determining the

set planar of all possible values of χ(X, {1}) when X runs over all
planar metric spaces, and show that 3 ∈ planar. In [Chi91] it is shown
that 4 ∈ planar (realized by the supremum norm). As subquestions,
Johnson and Szlam asked whether 2 ∈ planar and whether planar ≤
χ(E2, {1}) (by D ≤ r we mean that all elements of the set D are lesser
than or equal to the number r). We shall answer all these questions
by proving, at the end of this section, the following result (we use the
anglo-saxon convention that N does not contain 0).

Theorem 1.1. — planar = N ∪ {ℵ0}.
To this end, we use the following facts to construct ad hoc metrics.

(1) if ρ is a metric, so is
ρ

1 + ρ
,
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(2) if ρ is a metric, so is min(ρ, r) for any positive number r,
(3) if ρ and ρ′ are metrics on spaces X,X ′ then

ρ
∞
× ρ′ := ((x, x′), (y, y′)) 7→ max(ρ(x, y), ρ′(x′, y′))

is a metric on X ×X ′,
(4) if ρ and ρ′ are metrics on X , then so is max(ρ, ρ′).

All of this is elementary and most is classical. The first item follows from
concavity of the chosen function, the second from a case analysis and the
last item follows from the penultimate.

Let us start small.

Proposition 1.2. — {1, 2} ⊂ planar

Proof. — Define a metric on R
2 by

ρ1(x, y) =
|x− y|

1 + |x− y|
where |·| is the Euclidean norm. It is clearly translation invariant, defines
the usual topology and no two points are at distance 1 so χ(ρ1, {1}) = 1.

Define a metric on R
2 by

ρ2(x, y) = max(|x1 − y1|,
|x2 − y2|

1 + |x2 − y2|
)

where (x1, x2) = x and (y1, y2) = y. It is clearly translation invariant,
defines the usual topology and two points x, y are at distance 1 if and
only if |x1 − y1| = 1. It follows first that such pairs of points exist, so
that χ(ρ2, {1}) ≥ 2, second that a coloring of the plane in alternating
blue and red semi-open vertical strips of Euclidean width 1 avoids any
monochromatic pairs of point at ρ2-distance 1, so that χ(ρ2, {1}) ≤ 2.

Now, let us look at the other end of the spectrum.

Proposition 1.3. — ℵ0 ∈ planar and planar ≤ ℵ0.

Proof. — Define a metric on R
2 by

ρ∞(x, y) = min(|x− y|, 1).
A tiling of the plane by squares of Euclidean diagonal less than 1 gives

a coloring with countably many colors (map each point to the square it
is on) such that any pair of points at ρ∞-distance 1 must have different
colors, and we see that χ(ρ∞, {1}) ≤ ℵ0.



DISTANCE GRAPHS 5

Up to replacing 1 with another value, this argument in fact uses only
the property that ρ∞ induces the usual topology and is translation-
invariant: it therefore extends to every planar metric, and planar ≤ ℵ0.

Finally, for all k ∈ N, one can find k points with pairwise Euclidean
distance at least 1 (put them regularly on a large enough Euclidean
circle). These points are pairwise at ρ∞-distance 1 so that χ(ρ∞, {1}) ≥ k
for all finite k, and χ(ρ∞, {1}) = ℵ0.

The rest of the proof of Theorem 1.1 is postponed until the end of
Section 1.

1.2. A variation on the Johnson-Szlam problem. — The above
answers to Johnson and Szlam’s questions are in some sense very degen-
erate, and one wonders if there is a natural assumption one could further
ask ρ to satisfy. There is one indeed: asking ρ to induce the same topol-
ogy is linked to its small open balls, and a somewhat dual condition is to
ask it to be proper, that is asking its closed balls to be compact. Since
closed balls of ρ are closed, this amounts to ask them to be bounded in
the Euclidean metric (so that ρ(x, y) → ∞ when x is fixed and |y| → ∞).

Problem A. — Determine the set planar∗ of all possible values of
χ(X, {1}) when X runs over all proper planar metric spaces.

The above examples only show that 4 ∈ planar, as only the supre-
mum norm is proper among them. Let us give two pieces of information
with regard to this problem; first we show that Propositions 1.2 and 1.3
do not hold anymore for proper planar metrics.

Theorem 1.4. — planar∗ > 2.

Proof. — Let ρ be a proper planar metric and S = Sρ(0, 1) be the unit ρ-
sphere centered at 0. By properness, S is not empty (it contains at least
the topological frontier ∂B of B = Bρ(0, 1), which cannot be empty).
This already shows planar∗ > 1.

Let y be a point such that |y| > |x| for all x ∈ B. It may happen that
S is not connected; but since S disconnects 0 from y, there is a connected
component S ′ of S that disconnects 0 from y. This is not a triviality,
and can be found e.g. in [New51] Section 14, see also the MathOverflow
question and answer [BT11].

Moreover, by translation invariance and symmetry of ρ, S is symmetric
with respect to 0. It follows that −S ′ is a connected subset of S that
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disconnects 0 from −y; but y and −y are connected outside B, so that
both S ′ and −S ′ disconnnect 0 from y.

Let x ∈ S ′ be a point maximizing |x| and let S ′′ = −S ′ + x be the x
translate of −S ′; then S ′′ contains 0 and a point z such that |z| > |x|
(take z = x+ rx where r > 0 is such that −rx ∈ S ′).

By the definition of x, z is connected to y outside of S ′, and it follows
that S ′ must disconnect z from 0. Since S ′′ is connected, there must be
a point w ∈ S ′ ∩S ′′. Now, the points 0, x, w form a triangle of the graph
G(ρ, {1}), which must therefore have chromatic number at least 3.

Theorem 1.5. — planar∗ ⊂ N.

Proof. — Let ρ be a proper planar metric, and let us prove that χ(ρ, {1})
is finite.

Choose ε > 0 small enough that all pairs of points in the square s of
side length ε centered at 0 are at ρ-distance less than 1, and choose E
large enough that the closed ρ-ball of radius 1 is contained in the square
S entered at 0 of side length E−ε. Up to enlarge E, assume that E = nε
for some integer n, and tile R

2 with translates of s by elements of εZ2

(in order to get a genuine partition of the plane, we shall assign to each
square the points of its closed left side and of its open lower side).

Now, we label each tile s + ε(a, b) where a, b ∈ Z with the residues
of (a, b) modulo n, and color each point of the plane by its tile’s label.
By construction, pairs of points at ρ-distance 1 must be colored with
different colors, so that χ(ρ, {1}) ≤ n2.

Next, we show that Problem A can be related to the Euclidean case.

Proposition 1.6. — For all d > 1, we have

χ(E2, [1, d]) ∈ planar∗ .

Proof. — Define a metric on R
2 by

ρ∗d(x, y) = max

(

min(|x− y|, 1), 1
d
|x− y|

)

.

It is clearly translation-invariant and it defines the usual topology.
Its spheres are either Euclidean circles, when the radius is different

from 1, or the annulus

{y ∈ R
2 | |x− y| ∈ [1, d]} = Sρ(x, 1).

In particular ρ∗d is proper and G((R2, ρ∗d), 1) = G(E2, [1, d]).
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Proposition 1.6 motivates us to estimate χ(E2, [1, d]) in terms of d, a
question worth asking even without the non-Euclidean context in mind.

Problem B. — Determine the set interval of values of χ(E2, [1, d])
when d > 1.

One could want to be even more specific.

Problem C. — Determine the function d 7→ χ(E2, [1, d]) defined for
d > 1.

This problem might be too ambitious, so let us consider further sub-
problems, first in the small d regime.

1.3. On the plane with a small interval of distances. —

Problem D. — Determine χ(E2, 1+) := lim
d→1,d>1

χ(E2, [1, d]).

Note that the limit exists since χ(E2, [1, d]) is non-decreasing in d.
Moreover the proofs of the known estimates for χ(E2, {1}) apply readily
to this case, so 4 ≤ χ(E2, 1+) ≤ 7; but maybe this problem is more
tractable than to determine the chromatic number of the plane. Even
without determining the values of χ(E2, {1}) or χ(E2, 1+), one wonders:

Problem E. — Do we have χ(E2, 1+) > χ(E2, {1})?

A positive answer would be a very strong result, as it would imply
χ(E2, {1}) < 7; but a negative answer would tell that one can deter-
mine χ(E2, {1}) by considering graphs with vertices almost 1 apart, a
great flexibility! However answering Problem E may be as difficult as
determining χ(E2, {1}).

This question has been considered by Exoo [Exo05], who proves that:

for 1.3114 · · · < d < 1.3228 . . . , χ(E2, [1, d]) = 7

for 1.0172 · · · < d, χ(E2, [1, d]) ≥ 5

and conjectures χ(E2, 1+) = 7.
One can already ask the following, less ambitious question.

Problem F. — Is χ(E2, 1+) ≥ 5?
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1.4. On the plane with a large interval of distances. — Let us
see what can easily be said in the high d regime.

Proposition 1.7. — For all d > 1, we have

Pack(1, d+ 1) ≤ χ(E2, [1, d]) ≤ ⌈
√
2d+ 1⌉2

where Pack(1, r) is the maximal number of discs of diameter 1 that can
be packed in a disc of diameter r.

Proof. — The lower bound is obvious, since one can find Pack(1, d+ 1)
points in the plane whose pairwise distance are in [1, d] (take the centers
of a packing).

The upper bound is obtained as in Theorem 1.5 with ε = 1/
√
2 and

n = ⌈
√
2d+ 1⌉.

It seems inefficient to use a Z/n-indexed square tiling for the upper
bound, and indeed Exoo [Exo05] gets a better bound using an hexagonal
grid. It is well-known that

Pack(1, d+ 1) ∼ π√
12

d2

when d → ∞, and we are led to the following problem.

Problem G. — Find the values of

lim sup
d→∞

χ(E2, [1, d])

d2
and lim inf

d→∞

χ(E2, [1, d])

d2
.

Proposition 1.7 shows

lim inf
d→∞

χ(E2, [1, d])

d2
≥ π√

12
≃ 0.9069

and Exoo’s Theorem 2 implies

lim sup
d→∞

χ(E2, [1, d])

d2
≤ 4

3
.

While I am not confident enough to make a precise conjecture, my per-
sonnal guess is that one could extend Székely’s proof of χ(E2, {1}) ≤ 7
[Szé83] to improve the upper bound.

In case a precise determination could not be reached, one could ask
the following.

Problem H. — Does
χ(E2, [1, d])

d2
have a limit when d goes to infinity?
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1.5. Possible chromatic numbers of proper planar metrics. —
Back to the question of determining the set planar∗, all what precedes
gives some information: there must be elements of planar∗ in any in-
teger interval of the form Jn, αnK for α > 8

π
√
3
and n large enough. But

this is weak as it only bounds below the cardinal of planar∗ ∩J1, NK by
a multiple of logN ; in fact most integers are in planar∗.

Theorem 1.8. — planar∗ contains all non-prime integers greater than
1.

We shall construct ad-hoc metrics using the supremum product metric.

Lemma 1.9. — Let (Xi, ρi) (i = 1, 2) be two metric spaces. Then we
have

max
i

(χ(ρi, {1})) ≤ χ(ρ1
∞
× ρ2, {1}) ≤ χ(ρ1, {1}) · χ(ρ2, {1})

and

K(G(ρ1, {1}))×K(G(ρ2, {1})) ≤ K(G(ρ1
∞
× ρ2, {1}))

where K(ρ,D) is the size of a largest clique in G((X, ρ), D).

Proof. — Write X = X1 × X2 and ρ = ρ1
∞
× ρ2. The lower bound on

χ(ρ, {1}) is obvious, as X contains isometric copies of X1 and X2. The
upper bound is obtained by taking colorings ci of the Xi and defining
c(x1, x2) = (c1(x1), c2(x2)). If x = (x1, x2) and y = (y1, y2) are at ρ-
distance 1, then ρi(xi, yi) = 1 for some i. Then ci(xi) 6= ci(yi) and
therefore c(x) 6= c(y).

The lower bound on K is also obvious, as the strong product of cliques
of G(X1, {1}) and G(X2, {1}) is a clique in G(X, {1}).

Lemma 1.10. — We have

⌊d⌋+ 1 ≤ K(G(E1, (1, d])) and χ(E1, [1, d]) ≤ ⌈d⌉+ 1.

Proof. — The lower bound on the clique number is obtained by taking
the k vertices 0, 1, . . . , k − 1 where k − 1 ≤ d is an integer. The upper
bound on the chromatic number is given by coloring R in sequences of n
half-open intervals of length 1, where n− 1 ≥ d.

We leave as an exercise to the reader to determine the precise value of
χ(E1, [1, d]).
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Proof of Theorem 1.8. — Let n > 1 be an non-prime integer and con-
sider on R the metrics defined by

ρi(x, y) = max

(

min(|x− y|, 1), 1
di
|x− y|

)

where i = 1, 2 and the di are positive integers such that (d1+1)(d2+1) =

n. Let ρ = ρ1
∞
× ρ2; It is a proper planar metric and by the above lemmas

we have

χ(ρ, {1}) ≤ χ(ρ1, {1}) · χ(ρ2, {1})
= χ(E1, [1, d1]) · χ(E1, [1, d2])

= (d1 + 1)(d2 + 1) = n

and

χ(ρ, {1}) ≥ K(ρ, {1})
≥ K(ρ1, {1}) ·K(ρ2, {1})
= (d1 + 1)(d2 + 1) = n

In view of Theorems 1.4 and 1.8, the following is an interesting and
probably reasonable sub-question of Problem A.

Problem I. — Does it hold planar∗ > 3?

One could try to adapt the proof of [Chi91] that χ(ρ, {1}) > 3 when
ρ comes from a norm, but as can be seen in the proof of Theorem 1.4 the
general case can be more tedious.

Last, let us prove our first stated result.

Proof of Theorem 1.1. — For any integer d > 0, consider the metric de-
fined on R

2 by

ρ(x, y) = max

(

min(|x1 − y1|, 1),
1

d
|x1 − y1|,

|x2 − y2|
1 + |x2 − y2|

)

.

It is a (non-proper) planar metric and χ(ρ, {1}) = χ(E1, [1, d]) = d + 1.
Propositions 1.2 and 1.3 conclude the proofs.
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1.6. Another variation. — In the determination of χ(ρ,D) where ρ
is a proper planar metric and D is compact, all that matters is of course
the union of spheres ∪d∈DSρ(0, d), a compact that does not contain 0.
The metric axioms impose further restriction on this compact, which we
can wave to obtain the following definition.

Definition 1.11 (graph and chromatic number of a compact set)
Given a compact set K of the plane R2 such that 0 /∈ K and −K = K,

let G(K) be the graph whose vertices are the points of R2 and where
x ∼ y whenever y − x ∈ K. This will be called the graph of K, and its
chromatic number will be denoted by χ(K)

Note that to ensures that∼ is a symmetric relation, we need to ask that
K is symmetric; this together with translation invariance and properness
are the sole axioms we kept from proper planar metrics.

All previous problems are particular cases of the problem of determin-
ing χ(K); for example χ(E2, {1}) = χ(Seuc(0, 1)). It would therefore be
a bit rough to ask the value of χ(K) for all K.

Let us denote by compact the set of possible values of χ(K) when K
runs over symmetric compact sets of the plane avoiding 0.

Let us now denote by compact(2k) the possible values of χ(K) when
K is assumed to have 2k elements. Then using the De Bruijn-Erdös theo-
rem (and thus the axiom of choice), one easily proves that compact(2k) ≤
2k + 1, but this bound is probably not tight.

Problem J. — Determine compact(2k) in ZFC.

If one wants to avoid the axiom of choice, one should determine the
possible values of supχ(G′) where the sup is over the finite subgraphs G′

of G(K) and K is assumed to have 2k elements.

Problem K. — Determine compact(2k) in any given axiom system
consistent with ZF?

Problem L. — Is it true that N ⊂ compact?

Problem M. — What are the tightest comparisons between χ(K1), χ(K2)
and χ(K1 ∪K2), χ(K1 ∩K2) ?
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2. The hyperbolic plane

Let us now consider the case X = H
2, the hyperbolic plane. We shall

from now on use ρ only to denote its metric.
One can simply ask:

Problem N. — Determine χ(H2; {d}) for some d > 0.

Problem O. — Determine χ(H2; {d}) for all d.

Of course even the first of these problem seems difficult.
Note that it is the same to fix the curvature of X to −1, as we do,

and let d vary or to fix d = 1 and consider hyperbolic planes of various
(constant) curvature. As a consequence, the large d regime will be called
the “high curvature case” (high meaning highly negative) and the small
d regime the “low curvature case”.

2.1. Lower bound. — A lower bound is obtained just like in the Eu-
clidean case: For all d > 0, we have χ(H2; {d}) ≥ 4.

Let indeed x be a point in H
2 and y, z be such that (x, y, z) form an

equilateral triangle of side d. Let x′ be the other point such that (x′, y, z)
is an equilateral triangle. If G(H2; {d}) where 3-colorable, x′ would have
to be colored in the same color as x, say red. Then the whole circle of
center x and radius ρ(x, x′) should be colored red.

Here, something is to be checked: for all d, ρ(x, x′) > d. This does
hold, but barely when d → ∞; we omit the (simple) proof. Now, this
implies that two points on this red circle are d apart, a contradiction.

This leaves open the following natural question, raised by Kahle [Kah12]

Problem P (Kahle). — Do we have χ(H2; {d}) ≥ 5 for at least one
explicit d?

2.2. Hyperbolic checkers. — For upper bounds, we shall adapt the
method of Székely: another approach would be to use lattices of large
systole, but they are inefficient because their fundamental domains are
necessarily large, and one would have to use exponentially many colors
for large d.

We use the half-plane model H2 = {(x, y) ∈ R
2 | y > 0} with Rie-

mannian metric y−2(dx2 + dy2) to design a checkerboard tiling of the
hyperbolic plane.

Let h, ℓ be positive reals. First, tile the upper half-plane by horizontal
strips Sn defined by y ∈ [enh, e(n+1)h) for n ∈ Z. The boundaries of these
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strips are not geodesics, but they are horocircles (limit of geodesic circles)
and lie precisely at distance h one to the next.

Next, tile each strip Sn by Euclidean rectangle Rn,k defined by x ∈
[krenh, (k + 1)renh) where k ∈ Z and r is chosen so that

ρ((x, 1), (x+ r, 1)) = ℓ.

Each Rn,k has geodesic vertical sides of hyperbolic length h, its bottom
vertices are at hyperbolic distance ℓ one from the other, and its top
vertices are at distance e−hℓ one from the other. Its diameter is easily
seen to be bounded above by max(ℓ, h+ e−hℓ) and is not realized.

There is some choice left in the definition of this tiling, but we shall
not use this extra liberty here. A tiling R constructed as above will be
said to be a (h, ℓ)-checkerboard.

2.3. Upper bound in high curvature. — First we give a linear
bound on the chromatic number of the hyperbolic plane for large d.

Theorem 2.1. — For all d ≥ 3 ln 3 ≃ 3.296 we have

χ(H2, {d}) ≤ 4

⌈

d

ln 3

⌉

+ 4.

Proof. — Let R = (Rn,k) be a (ln 3, d)-checkerboard, and color the tile
Rn,k by (n mod N, k mod 4) where

N =

⌈

d

ln 3

⌉

+ 1.

The diameter of a tile is at most max(d, ln 3 + d/3) = d, and two
points of the same color in different tiles are either in the same slice but
in tiles of horizontal indices k, k′ at least 4 apart, therefore at distance
> (4−1)e− ln 3d = d, or in different slices Sn, Sn′ with n′ ≥ n+4, therefore
at distance > (N − 1) ln 3 ≥ d.

One wonders what is the true asymptotic behavior of the chromatic
number for large d, in particular:
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Problem Q. — Does χ(H2, {d}) increase linearly in d? That is: do we
have

lim sup
d→∞

χ(H2, {d})
d

> 0?

lim inf
d→∞

χ(H2, {d})
d

> 0?

Quantitatively, we ask:

Problem R. — Improve the constant 4/ ln 3 in Theorem 2.1 or prove it
is best possible.

In the opposite direction, Matthew Kahle [Kah12] suggested that the
chromatic number could be bounded.

Problem S (Kahle). — Is χ(H2, {d}) bounded independently of d?

If this turns out not to be the case, then an even more Ramsey-like
question would make much sense.

Problem T. — Which finite graphs H appear as (not necessarily in-
duced) monochromatic subgraphs of all r-colorings of G(H2, {d}) for all
d > D(H, r)? Give estimates on the function D.

That χ(H2, {d}) → ∞ when d → ∞ would exactly mean that the
graph with two vertices and an edge would be an example of valid H in
Problem T.

2.4. Upper bound in low curvature. — Let us now give a uniform
upper bound for small values of d.

Theorem 2.2. — For all d ≤ 2 ln(3/2) ≃ 0.81, we have

χ(H2, {d}) ≤ 12.

Proof. — Let R = (Rn,k) be a (d/2, d/2)-checkerboard, and color the tile
Rn,k by (n mod 3, k mod 4).

The diameter of a tile is at most d, and two points of the same color
in different tiles are either in the same slice but in tiles of horizontal
indices k, k′ at least 4 apart, therefore at distance > (4 − 1)e−d/2d/2 ≥
d, or in different slices Sn, Sn′ with n′ ≥ n + 3, therefore at distance
> (3− 1)d/2 = d.
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Note that by using checkerboard tilings, one can prove that χ(H2, {d})
is finite for all d. One would think that for very small d, a (h, h)-
checkerboard tiling with h of the order of d/

√
2 could be made to look

very much like the Székely tiling. There is a difficulty here, as one cannot
arrange the top and bottom sides to have the same size, and successive
slices can therefore not be “synchronized”.

Problem U. — Improve the value 12 in Theorem 2.2 for small enough
d.

It is likely that such an improvement is possible, but down to what
number can we push this method? Since at low curvature the hyperbolic
plane looks more and more flat, one would like to relate the hyperbolic
case to the Euclidean one.

Problem V. — Does it exist d0 > 0 such that for all d ∈ (0, d0),
χ(H2, {d}) ≤ 7? Determine as great a value of d0 as you can.

Problem W. — Do we have χ(H2, {d}) → χ(E2, {1}) when d → 0? If
we do, what is the greatest d1 such that χ(H2, {d}) = χ(E2, {1}) for all
d < d1 ?

Let us stress another question, once again probably ambitious.

Problem X (Kahle). — Is χ(H2, {d}) non-decreasing in d?

At least, one can wonder whether a partial combination of the last two
problems holds.

Problem Y. — Do we have χ(H2, {d}) ≥ χ(E2, {1}) for all d?

2.5. For the road: what about an interval of distances?— If
one wants to estimate for example χ(H2, [d, d(1 + ε)]) for a positive ε,
an important phenomenon to take into account is the concentration: in
a hyperbolic circle of radius r ≫ 1, most pairs of points are at distance
roughly 2r. It follows that G(H2, [d, d(1+ε)]) contains large cliques when
d is large. One can more precisely prove that

eεd . K(H2, [d, d(1 + ε)]) ≤ χ(H2, [d, d(1 + ε)])

Given we arrive at the end of our numerotation, we let the last problem
quite vague.
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Problem Z. — Study the behaviour of

χ(H2, [d, d+ f(d)]) and K(H2, [d, d+ f(d)])

for various functions f .
In particular, can one find a f (to be searched in the ln d regime) such

that these numbers stay very close one to the other as d → ∞?
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[Szé83] L. A. Székely – “Remarks on the chromatic number of geomet-
ric graphs”, Graphs and other combinatorial topics (Prague, 1982),
Teubner-Texte Math., vol. 59, Teubner, Leipzig, 1983, p. 312–315.
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