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Abstract

Purpose – The aim of this paper is to model time-harmonic problems in unbounded domains with
coils of complex geometry and ferromagnetic materials.

Design/methodology/approach – The approach takes the form of a coupling between two
integrals methods: the magnetic moment method (MMM) and the partial element equivalent circuit
(PEEC) method. The modeling of conductor system is achieved thanks to PEEC method while the
MMM method is considered for the magnetic material.

Findings – The paper shows how to use the MMM/PEEC coupled method to model a problem
comprising conductors and ferromagnetic materials and compare its results with the FEM and the
FEM/PEEC coupling.

Originality/value – The two methods PEEC and MMM are well-known. The innovation here is
coupling these methods in order to take advantages from both methods. Moreover, the performances of
this coupling are studied in comparison with others (FEM, FEM/PEEC coupling).

Keywords PEEC method, Magnetic moment method, Integral volume equation, Coupling,
Electromagnetic fields, Modelling

Paper type Research paper

1. Introduction
The partial element equivalent circuit (PEEC) method is a semi-analytic method
proposed by Ruehli (1974). This method is mainly used for the modeling of complex
interconnections and can be applied to a large range of devices where the air region is
dominant (printed circuits, bus bars, etc.) (Clavel et al., 2002). However, the classical
PEEC method does not enable the 3D modeling of ferromagnetic materials widely
present in many devices (ferromagnetic shielding, disruptive magnetic masses, cores of
inductance, etc.).

The magnetic moments method is a well-known method to model ferromagnetic
devices (Harrington, 1968; Chadebec et al., 2006; Takahashi et al., 2007). It is
particularly well adapted to lightly model magnetic materials with simple geometry.
Like in the PEEC method, it does not require the meshing of the air region. Only
ferromagnetic materials are discretized and often with coarse subdivisions. It leads to
high-speed resolutions and to high accuracies for field computations. However, this
formulation is a steady state one and quasi-static effects are not modeled in the method
especially in conductors. On the other hand, the PEEC method is perfectly dedicated to
achieve this task. So, it seems natural to take advantages of the complementarities of
both approaches by coupling them. The introduction of ferromagnetic material in



PEEC method has been proposed in Antonini et al. (2006) but a study dealing with the
performances of the method in comparison with others has not been published yet.
Moreover, in this initial paper, a special care is given to the preservation of the
topology of PEEC elementary circuit. In this paper, we prefer to adopt a more classical
point of view, our goal being to study this new formulation in terms of modeling
performances (accuracy, CPU time, memory space, etc.) without considering the
problem of spice-like model extraction.

In this paper, the magnetic moment method (MMM)/PEEC coupling in order to
perform the efficient global electromagnetic simulation of complex structures
incorporating magneto-harmonic conductors and ferromagnetic material is presented
(Figure 1). The modeling of non-conductive ferromagnetic regions is achieved thanks
to the MMM. The PEEC method allows modeling the contributions of inductors fed
with alternating currents. Both approaches will be explained (Sections 2 and 3).
Coupling formulations to compute the interaction between conductors and
ferromagnetic material will be fully developed in Section 4. Finally, two numerical
examples are presented in Section 5. Results given by such method are compared with
those given by the single finite element method (FEM) and another coupling already
proposed in the literature: FEM/PEEC coupling (Tran et al., 2008, 2010). Strong and
weak points of each formulation are analyzed.

2. Magnetic moment method
Let us consider a volume composed of ferromagnetic material with unknown
magnetization M placed in a given static inductor field H0. The ferromagnetic material
is meshed into n volume elements. Magnetization is assumed to be uniform in each
element i and its value is Mi.

The total magnetic field H is the sum of H0 and the demagnetizing field created by
the whole volume V. This demagnetizing field can be expressed thanks a well-known
integral volume equation (Chadebec et al., 2006). The discretization of this integral
equation leads to:

HðPÞ ¼ H0ðPÞ þ
1

4p

Xn

i¼1

Z
Vi

3ðM i · rÞ

r 5
r2

Mi

r 3

� �
dV ð1Þ

where P is a point located everywhere in the domain region, r is the vector between the
integration point and the point P where the field is expressed, Vi is the volume of
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ferromagnetic element i. If we define an orthogonal vector basis in each volume
element in order to project the magnetization and fields, as equation (1) is linear, it can
be re-written as follows:

HðPÞ ¼ H0ðPÞ þ f ·M ð2Þ

where M is a (3n £ 1) vector define magnetizations in each local basis, f is a (3 £ 3n)
matrix.

Let us assume that the magnetization law of the material is linear and associated to
a constant susceptibility xr. Thanks to a point matching approach at the center of each
element, we get a linear matrix system to solve (Chadebec et al., 2006):

ðId=xr 2 FÞ ·M ¼ h0 ð3Þ

with M a 3n unknowns component vector to determine and where Id is the identity
matrix; h0 is the source fields at each barycenter projected in local basis and F is a
(3n £ 3n) matrix. If we compute the influence of element j at the barycenter of element i,
the coefficient Fij can be expressed as follows:

F ij ¼
1

4p

Z
V j

3ðuj · r ijÞ

r5
ij

r ij 2
uj

r3
ij

 !
dV j

 !
;ui

* +
ð4Þ

where k; l denotes the classical scalar product operator and ui is the vector basic of
element i. Let us notice that equation (4) is a (3 £ 3) matrix for volume element.

System (3) is solved to obtain the magnetization of each ferromagnetic element. This
method is usually called MMM. If the material law is non linear, a Newton-Raphson
algorithm can be easily used (Elleaume et al., 1997). Let us notice that this formulation
suffers from well-known drawback if the susceptibility of the material is high. Indeed, in
such cases, the identity matrix term becomes very low in comparison with F matrix
which is most part of time singular. This problem mainly appears when closed magnetic
circuits are modeled; however this method leads to accurate results if simple magnetic
volume shapes are considered. It should be pointed out that for the linear case, more
simple formulations can be used. If the susceptibility is constant, Laplace equation
applies in the whole material volume. Magnetostatic equations can be accurately solved
by an integral equation governed by charge distributions (Coulombian approach) or
current distributions (Amperian approach) located only on the surface delimiting the
volume V. In such configuration, only this surface has to be meshed and not the volume
like in the proposed formulation. It results in lower degrees of freedom in the obtained
matrix system. The coupling of this kind of surface integral formulation and the PEEC
approach has been recently proposed for the Coulombian approach in Kovacevic et al.
(2011) but in a less general way than in this paper and for the Amperian approach in
Keradec et al. (2005) but limited to 2D problem. It must be pointed out that both proposed
methods in these papers are strongly limited to linear case. Even if all the results
presented in this work deals with linear material, we preferred to use volume integral
equation enabling the future introduction of non-linear material in our models.

3. PEEC method
Let us consider m volume conductors fed with alternating sources placed in a
surrounding air region without any magnetic materials. The well-known PEEC



method is particularly reliable to solve this kind of problem. It is based on the
determination of partial voltage generated on each conductor by electromagnetic
sources. To compute these voltages, volume integration on the considered conductor of
the magnetic vector potential created by all other conductor is provided (Ruehli, 1974;
Wollenberg and Kochetov, 2011). Let us assume that the current density in each
conductor is uniform. The expression of the magnetic vector potential A j created by
conductor j is:

AjðPÞ ¼
m0

4p

I j

Sj

Z
V j

lj

r
dV j ð5Þ

where r is the distance between the integration point and the point P, Ij is the current in
the conductor j, Sj is the cross-section of the current flow and Vj is the volume of
conductor and lj is the unit vector oriented in the direction of current Ij.

The flux created by Ij through the conductor k is calculated with:

Fkj ¼
1

Sk

Z
V k

Aj · lkdV k

¼
m0

4p

I j

SjSk

Z
V k

Z
V j

lj · lk

r
dV jdV k

ð6Þ

The mutual inductance between the two conductors is defined by:

mkj ¼
Fkj

I j

¼
m0

4p

1

SjSk

Z
V k

Z
V j

lj · lk

r
dV jdV k ð7Þ

The partial mutual inductance mkj only depends on the dimensions and positions of
conductor k and j, and, thus, it can be calculated by well-known analytic formulas
(Clavel et al., 2002; Roudet et al., 2004).

Thus, the voltage appearing on the conductor k is given by:

Uk_cond ¼ I kRk þ jv
Xm

j¼1

I jmkj ð8Þ

where v is the angular frequency, Rk is the resistance of kth conductor. Equation (8)
links partial voltages of conductors to currents flowing in them. Writing this equation
for all passive and active conductors, we get a matrix system known as impedance
matrix system:

Z · I ¼ U ð9Þ

where Z is a (m £ m) matrix, I is a (m £ 1) vector and U is a (m £ 1) vector.

4. Coupling PEEC method with MMM method
Let us consider a system composed of ferromagnetic material with unknown
magnetization M placed in a magnetic field created by m conductors fed with
non-static but now unknown alternating currents. The ferromagnetic material is
meshed into n volume elements and magnetization is assumed to be uniform in each
element like in Section 2 (Figure 1).



In such configuration, the interactions between each ferromagnetic element are
calculated thanks the MMM. The PEEC method is used to model interconnection
between conductors. It remains to write explicitly the couplings matrix between both
formulations (Le Duc et al., 2009; Mokhtari et al., 2010).

4.1 Influence of current conductor in ferromagnetic material
The term h0 of equation (3) can be computed by Biot and Savart law. The magnetic
field created by m conductors is given by:

H0ðPÞ ¼
Xm

j¼1

1

4p

I j

Sj

Z
Vj

lj £ r

r 3
dV j ð10Þ

where P is a point located everywhere in the domain region, r is the vector between
the integration point and the point P where the field is expressed, Vj is the volume of jth
conductor and lj is the unit vector whose direction is the direction of conventional
current Ij.

We write equation (10) at barycenter of each ferromagnetic element to obtain a
matrix block:

h0 ¼ BS · I ð11Þ

where I is a (m £ 1) vector and BS is a (3n £ m) matrix. If we compute the magnetic
field of conductor j at the barycenter of ferromagnetic element i, the coefficient BSij will
have the following expression:

BS ij ¼
1

4p

1

Sj

Z
V j

lj £ rij

r3
ij

dV j ð12Þ

where rij is the vector between the integration point and the barrycenter of
ferromagnetic element i. Let us notice that equation (12) is a (3 £ 1) vector.

We substitute equation (11) into equation (3) and obtain:

ðId=xr 2 FÞ ·M2 BS · I ¼ 0 ð13Þ

4.2 Influence of ferromagnetic material magnetization on conductors
Equation (5) has to be modified in order to take into account the influence of the field
created by the ferromagnetic materials. Like in the standard PEEC method, we have to
integrate the magnetic vector potential Ami created by each magnetized elements i on
the volume of conductor k. The expression of this magnetic vector potential is:

AmiðPÞ ¼
m0

4p

Z
V i

M i £ r

r 3
dV i ð14Þ

where r is the vector between the integration point and the point P, Vi is the volume of
ferromagnetic element i. The magnetization being uniform in Vi, equation (14) can be
re-written as:

AmiðPÞ ¼
m0

4p

Z
Si

2½ni £M i�

r
dSi ð15Þ



where Si is the boundary surface of element i and ni are its external normal. The flux
created by Mi through the conductor k is then given by:

Fki ¼
1

Sk

Z
V k

Am i · lkdV k ð16Þ

where Vk is the volume of conductor k, lk is the unit vector oriented in the direction of
the flowing current and Sk is the cross-section of the conductor. Let us define u i as a
vector basis of magnetizations. Thus, equation (16) can be re-written as:

Fki ¼
m0

4p

Mi

Sk

Z
V k

Z
Si

2½n i £ ui�

r
dSilkdV k ð17Þ

We define mfki as the mutual inductance between the magnetization Mi of
ferromagnetic element and the conductor k. Its expression is:

mf ki ¼
Fki

Mi

¼
m0

4p

1

Sk

Z
V k

Z
Si

2½n i £ ui�

r
dSilkdV k ð18Þ

Let us notice that the mutual mfki only depends on relative dimensions and positions of
conductor k and ferromagnetic element i. It must be pointed out that equation (18) is
equivalent to the mutual inductance between an equivalent surface conductor Si

carrying a tangential current and a volume one Vk. Analytical expressions of this
mutual can be found in Roudet et al. (2004). A new voltage has to be defined, not
generated by the current but by the magnetization:

Uf k ¼ jv
X3n

i¼1

Mi · mf ki ð19Þ

The total voltage of the conductor k is given by:

Uk ¼ I kRk þ jv
Xm

j¼1

I j · mkj þ
X3n

i¼1

Mi · mf ki

 !
ð20Þ

If we write this equation for all conductors, we get a new impedance matrix system:

U ¼ Z · Iþ Lmat ·M ð21Þ

Finally, equations (13) and (21) are brought together in a global square
(3n þ m) £ (3n þ m) following matrix system:

MMM 2BS

Lmat Z

" #
£

M

I

" #
¼

0

U

" #
ð22Þ

where MMM is the standard magnetic moment matrix (MMM ¼ Id/x r –F,
see equation (3)), BS is the Biot and Savart integral term, Z is the classical
inductive and resistive PEEC matrix, Lmat is the mutual magnetic matrix.

Besides, by taking into account circuit equations, it is possible to reduce
equation (22) to get a more simple system and to solve it to get magnetizations and
currents in conductors.



Let us notice that a non-linear equivalent permeability can be used for a non-linear
material (Vassent et al., 1989).

5. Numerical examples
In this section, we consider two numerical examples. For both, three numerical
methods are compared. The first one is a scalar magnetic potential FEM formulation
coupled with circuit equations in FLUX3D software (Le Floch et al., 2003). In this
modeling, a special care is given to the mesh around conductors to ensure accurate
results. The second one is a coupling between PEEC to model inductances and FEM to
take into account the ferromagnetic material (FEM/PEEC coupling). This approach has
already shown its good accuracy with a reduced number of elements in comparison
with standard FEM (Tran et al., 2008). The last one is the considered MMM/PEEC
coupling.

5.1 Validation on a simple example
In the first example, two coils are considered with a ferromagnetic bar (dimension
75 £ 75 £ 80 mm, mr ¼ 1,000) placed between them (Figure 2). The first conductor is
fed by a voltage source (1V, 1 kHz). The second one is a passive loop. To compare
different approaches, we focus on the computed current in the second coil and the
magnetic field in the air region close to the device (calculated on the same line 1 in
Figure 2) with different meshes for the three approaches.

The problem needs a very fine mesh to be accurately solved with FEM (Table I
and Figure 3) because of the high variation of the field created by the conductor
(Tran et al., 2008). The currents values strongly vary according to the number of
elements. On the contrary, the convergence is quickly reached with the FEM/PEEC
coupling because of the accurate computation of conductor effect thanks to the
PEEC method. In such modeling, the mesh refinement around conductors is
dispensable.

Figure 2.
Geometry of the

first example

U

A (0, 75, –75)

B (0, 75, 75)
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a

b

lc
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Results of the MMM/PEEC hybrid approach are similar to those of both FEM and
FEM/PEEC methods. We can notice small differences between current computed
values (0.06 percent with FEM/PEEC and 0.3 percent with FEM, see Table I).
Thus, results provided by the coupling are very encouraging, not only the coupling
gives stable results but also it needs very less considerably memory space than the
FEM and FEM/PEEC method. Of course, the obtained matrix is fully dense, but the
CPU time is reduced up to a factor of 100 in comparison with FEM and of ten with
FEM/PEEC (Table II). Moreover, no specific mesh refinement has been needed
(Figure 4).

5.2 A more complicated example: micro-converter inductance
The second test case is an inductance of micro-converter. It is composed of a
complex-shaped conductor and of two ferrite parts (Figure 5). In our study, the
conductor is fed by a voltage source (1V, 10 kHz) and the ferrite is considered to be
linear with a permeability of 1,000. Values of currents and the magnetic field

FEM method
Number of volume element 230,000 570,000 1,000,000
Current values 236.25 þ 6.00i 2 32.47 þ 7.94i 232.61 þ 7.87i
FEM/PEEC method
Number of volume element 60,000 90,000 120,000
Current values 232.60 þ 8.38i 232.60 þ 8.35i 2 32.50 þ 8.34i
MMM/PEEC method
Number of volume element 32 126 392
Current values 235.90 þ 8.89i 232.78 þ 8.28i 2 32.54 þ 8.26i

Table I.
Currents values in the
passive loop (A)

Figure 3.
Magnetic field on
line 1 calculated by
three methods
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(calculated on the same line 2 in Figure 5) are still compared. Let us notice that this kind
of devices is very difficult to model with a simple FEM approach regarding the
complex shape of conductors.

Both MMM/PEEC and FEM/PEEC couplings converge to quite close current values
(Figure 6). Figures 7 and 8 also show that the outside computed magnetic fields are
very close for all methods. If we consider that FEM/PEEC coupling as our reference,
the MMM/PEEC leads to an error of 0.1 percent for the real part of the current and of
3.8 percent for the imaginary one. This small inaccuracy is mainly due to the small
distance between conductors and the magnetic material, leading to important variation
of magnetization in the neighborhood of currents. Therefore, the current value of
MMM/PEEC method will be more accurate if the mesh of magnetic material is
refined. Let us notice that the problem fully dense matrix and the memory need could
be solved with the well-known fast multipole method (FMM) (Buchau et al., 2008;
Of et al., 2009).

6. Conclusion
In this paper, we have presented a coupling between PEEC and MMM. This coupling
enables the introduction of linear magnetic materials in PEEC 3D methodology.
Moreover, the used of an integral volume equation will enable the future integration

Method CPU time (s) Memory space (MB)

MMM/PEEC (392 volume elements) 320 11
FEM/PEEC (120,000 volume elements) 3,750 112
FEM (570,000 volume elements) 41,560 2,538

Table II.
Memory space and CPU

time for convergence
results (using computer

Intelw CPU 5160 @
3 GHz; 16 GB RAM)

Figure 4.
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of non-linear material laws. Through a simple example, we have validated this
formulation. The result has shown that the coupling can be very fast, accurate with
respect to a pure FEM method or FEM/PEEC coupling on the simple geometry. Through
the modeling of a micro-converter inductance, we have demonstrated that the
MMM/PEEC coupling is capable of modeling conductors with complex shape and
magnetic materials with simple geometry.

Figure 5.
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Figure 7.
Magnetic field on line 2

calculated by
three methods
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