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In order to compute electromagnetic problems in presence of thin conductive and magnetic shells, a new integral formulation is
proposed. Based on the principle of shell element, the formulation is general and enables the modeling of various problems for any
skin-depth, avoiding the air region meshing. The formulation is validated thanks to an axisymmetric FEM and compared with another
shell formulation implemented in a 3D FEM. Advantages and drawbacks of this new formulation are discussed.

Index Terms—Eddy currents, integral equation method, quasi-static, skin effect, thin shell.

I. INTRODUCTION

T HIN conductive magnetic shells are frequent in electro-
magnetic devices (such as planar conductors, electromag-

netic shielding…) and the analysis of their eddy-current distri-
butions is a complex problem in engineering.
The geometry of a thin region is characterized by a high ratio

between length and thickness. Thus, using a volume mesh for
the thin region leads to a large number of elements. Further-
more, when the frequency is high the skin depth becomes much
thinner than the thickness . It increases the size of the needed
mesh if this effect is properly modeled. Shell element formu-
lations have been developed to overcome such difficulties, e.g.,
with the boundary element method (BEM) [1], with the finite-el-
ement method [2]–[8] and with an integral method recently pro-
posed by the authors of this paper [9].
In [9], a general shell element formulation for thin conduc-

tive regions modeling has been proposed ( or
or ). As in [1]–[8], this formulation takes into account
the field variation through the depth due to the skin effect. The
shell is modeled by an integral formulation avoiding the air re-
gion meshing. Based on a simple surface discretization of the
shell averaged surface, the number of unknowns is considerably
reduced, since its depth is not meshed. However, this already
proposed shell element formulation was only suitable for con-
ductive materials and could not be applied to shells with both
magnetic and conductive properties.
This paper presents a new integral formulation which allows

the modeling of magnetic and conductive thin shells in the gen-
eral case ( or or ). This method is a nat-
ural extension of the method proposed in [9]. Moreover, we will
see that an additional advantage is its implementation simplicity
avoiding the complex computation of volume singular integrals
as in [9]. Let use notice that the formulation is currently limited
to linear cases but this assumption is often reliable for shielding
effects computations.
In the second part of the paper, the integral equation gov-

erning the thin shell regions is presented. In the third part, this
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Fig. 1. Thin conductive and magnetic region and associated notations.

equation will be coupled with an integral formulation. Finally, a
numerical example is proposed in the last part. Results obtained
with our formulation are compared with results obtained with
the Finite Element Method (FEM).

II. THIN SHELL EQUATION

Let be a thin magnetic conductive shell with thickness
(conductivity and linear permeability ) and , bound-
aries of the shell with the air region (see Fig. 1.). We consider
that a given skin depth is associated to the shell. The field vari-
ation of the tangential component across the thickness of shell
can be approximated by the analytical solution of the problem
for an infinite plane [1], [2]:

(1)
where , and are the tangential values
of the magnetic field on both sides of the shell. Applying
Galerkin’s method on the Maxell-Faraday equation for the side
“1” of the shell, we have [2], [9]:

(2)

where , ; w is a set of nodal sur-
face weighting functions; is the normal vector corresponding
to the side “1” of the shell and is the line region delimiting
the surface.
The symmetrical equation corresponding to the other side of

the shell is obtained by simply exchanging the indices “1” and
“2”:

(3)
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where is the normal vector corresponding the side “2” of the
shell and is the line region delimiting the surface.
Equations (2) and (3) represent the electromagnetic behavior

of the conductive shell itself. In order to take into account the
surrounding air region, several authors choose the Finite Ele-
ment Method [2]–[8]. Thus, the air region has to be also dis-
cretized.
In [9], we developed an integral approach based on the cou-

pling of (2) and (3) with a volume integral equation. The ob-
tained formulation presents an interesting compactness treating
different air volumes as a single physical region.
However, this formulation still suffered from drawbacks. The

first one is its application only on non magnetic materials. An-
other difficulty is the computation of volume integrals which
can become very complicated to accurately consider the expo-
nential decreasing of the current across the thickness, especially
when the influence of an element on itself is focused. The fol-
lowing section proposes an approach for solving these issues.

III. INTEGRAL FORMULATION

Equations (2) and (3) are written on the averaged surface
of the thin region. Subtracting (3) and (2) leads to:

(4)
where is the averaged induction and is
the normal vector corresponding to the surface (see. Fig. 1.).
A reduced magnetic scalar potential is now introduced on

each side of the shell. Because of the jump of the magnetic field
tangential component through the thickness, a double layer sur-
face element is necessary [2]. The expressions related to the tan-
gential magnetic fields on both sides and outside of the shell are:

(5)

where and are the tangential source fields generated
by inductors at each side of the shell and are the both
associated scalar reduced magnetic potentials.
Using (4) and (5) and assuming small variations of

through the shell, we get:

(6)

where is the scalar magnetic potential disconti-
nuity, i.e. the potential jump of the double layer.
The magnetization law of the material is linear and associ-

ated to a constant relative permeability . The (6) can thus be
rewritten as:

(7)

where is the averaged magnetization.
On the side “1” of the shell, the total magnetic field is the

sum of the inductor field , the field created by magnetization

and the field created by eddy currents flowing in the shell. Hence
an integral equation linking the local field to the magnetization
and the eddy current can be written [10]:

(8)
where is the vector linking the integration point on to the
point where the field is expressed and is the current density.
The integration of tangential magnetization through the depth

can be expressed by [1], [2]:

(9)

where .
The equivalent shell current distribution can be also ex-

pressed by [1], [2]:

(10)

Using (9) and (10), (8) becomes:

(11)

The equation on the side “2” of shell is obtained by permuting
the subscripts “1” and “2” as

(12)

If we consider that has no variation through the thickness
of the shell, we obtain:

(13)

Equations (7) and (13) have to be discretized. The easiest
way is to mesh the averaged surface , located halfway between
both boundaries of the shells (see Fig. 1.), into triangular ele-
ments. They are associated to a uniform tangential component of
the eddy current and uniform magnetization (meaning 1-order
shape functions for the potential jump and 0-order shape func-
tions for the magnetization). The algebraic linear system ob-
tained has complex unknowns (a single complex magne-
tization vector per element and a single complexmagnetic scalar
potential per node; the mesh being composed of nodes). Let
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us notice that shape functions with higher orders could be also
used.
Equation (7) can be written with the following matrix form:

(14)

where:
is a complex vector of dimension , is a complex

vector of dimension .
is a sparse matrix, expressed as follows:

(15)

is a sparse matrix and can be written as:

(16)

A matrix system representing (13) can also be written thanks
to a collocation approach or a most expensive Galerkin projec-
tion. Here a simple collocation at elements centroids can be used
to get [10]:

(17)

where represents the identity matrix; is the source fields
projected at element centroids, is a dense matrix
and is a also dense matrix. The coefficients of these
matrices are expressed as follows:

(18)

where denotes the classical scalar product operator and
is the vector basis of cell element i and is the vector linking
the integration point on to the centroid of element i.

(19)

Matrix terms (18) and (19) present singularities classically
obtained with integral formulations so particular treatments are
needed especially for the computation of the element influence
on itself. Coefficients (18) are computed thanks an equivalent
magnetic charge distribution located on edge of elements like
proposed in [10]. The integral is computed numerically. This
well-known approach avoids the superposition of Gauss points
and points where the field has to be computed and thus sup-
press the singularity. For (19), we consider that the averaged
internal field created by a conductor carrying a uniform current
on itself is globally very low. Thus, the coefficient C(i,i) is im-
posed to zeros while other coefficients are computed
with standard numerical integration. Let us observe that in the
proposed formulation, integrals are computed only thanks to a
surface numerical integration. This is an important difference
with [9] where accurate and uneasy volume integration across

Fig. 2. Thin magnetic conductive disk ( , , ,
, ).

Fig. 3. Magnetic field in the point A (0.25, 0, 0.1), calculated by 3 methods
versus .

the thickness was necessary. The method is then considerably
simpler and reliable as shown in the following part.

IV. VALIDATION

The formulation has been implemented for a 3D geometry
and has been validated by two test problems. The first case is
a thin magnetic conductive disk placed in a magnetic field
created by a current loop (Fig. 2.). This example is modeled
by three different methods on a standard computer (Intel CPU
5160@3 GHz; 16 GB). The first one is the axisymmetric FEM
using FLUX software [11] (100,000 elements, time of resolu-
tion 70 s). The second one is a shell element formulation im-
plemented in 3D FEM code [2], [7], [11] with 300,000 volume
elements. The last one is the proposed integral method, the disk
being meshed in 800 surface elements. We focus on the mag-
netic field computed in the air region for different frequencies
at the point A (0.25, 0, 0.1) (Fig. 3).
If we consider the axisymmetric FEM method as our refer-

ence, the integral method leads to an error of 1.6% for the mag-
netic field at and 0.2% at (Fig. 4). The
integral formulation leads to more accurate results than the same
implementation of the shell element but considering the air re-
gion treated with the 3D FEM. Let us notice that computation
times are similar (around 300 s for 3D FEM and 240 s for the
integral formulation).
The second test problem is the modeling of a real device pro-

posed by EDF (Electricité de France) [12]. In order to limit
short-circuit currents, the power station “Folies” is equipped
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Fig. 4. Difference in % with the axisymmetric FEM solution for magnetic field
computation versus .

Fig. 5. Three reactances and electromagnetic shielding.

Fig. 6. Surface distribution of current (A/m) in the plaque for test case “Folies”.
a) FEM 3D with shell elements; b) Integral Method.

with three reactances in series with a power transformer sec-
ondary. The current in each reactance is 1000 A phase-shifted
with 120 degree and the frequency is 50 Hz. However, in nom-
inal conditions, these three reactances create a leakage induc-
tion in the neighborhood. In order to minimize this electro-
magnetic disturbance, an electromagnetic shielding is added be-
tween the sources and the area to be protected. The skin depth

is smaller than the shielding thickness.
The Fig. 6 shows the current distribution computed by the

proposed integral method and a more classical FEM 3D. Re-
sults provided by our coupling are very encouraging, the con-
vergence being reachedwith few elements (less than 1000). This
is the strong point of integral formulations which lead to accu-
rate field computation in air regions with very low number of
unknowns. However, some matrices obtained are fully popu-
lated and compression algorithms must be used if there are a
large numbers of elements. In [13], [14], authors chose to use

the well-known “Fast Multipole Method” (FMM) to compress
matrices and .

V. CONCLUSION

In this paper, we have presented a new integral formulation
using shell elements in order to model thin conductive and mag-
netic regions. The formulation is general and various skin depths
( or or ) can be accurately modeled. It main
advantage is its simplicity of implementation and its reliability.
It drawbacks in comparison with our previous formulation pro-
posed in [9] is that results are slightly less accurate for the field
near the shell than in and we cannot compute the losses. How-
ever, the formulation remains quite efficient if problems where
the magnetic field in the air and global shell current distribution
must be evaluated. According to us, the coupling of this for-
mulation with compression algorithms does not suffer from any
difficulty.
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