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ABSTRACT

Transductive inference techniques are nowadays becoming standard

in machine learning due to their relative success in solving many

real-world applications. Among them, kernel-based methods are

particularly interesting but their success remains highly dependent

on the choice of kernels. The latter are usually handcrafted or de-

signed in order to capture better similarity in training data. In this

paper, we introduce a novel transductive learning algorithm for ker-

nel design and classification. Our approach is based on the mini-

mization of an energy function mixing i) a reconstruction term that

factorizes a matrix of input data as a product of a learned dictio-

nary and a learned kernel map ii) a fidelity term that ensures consis-

tent label predictions with those provided in a ground-truth and iii)

a smoothness term which guarantees similar labels for neighboring

data and allows us to iteratively diffuse kernel maps and labels from

labeled to unlabeled data. Solving this minimization problem makes

it possible to learn both a decision criterion and a kernel map that

guarantee linear separability in a high dimensional space and good

generalization performance. Experiments conducted on object class

segmentation, show improvements with respect to baseline as well

as related work on the challenging VOC database.

1. INTRODUCTION

Existing machine inference techniques may be categorized into in-

ductive and transductive [1]. The former consists in finding a deci-

sion function from a labeled training set, and uses that function in

order to generalize across unlabeled data. Among popular inductive

techniques support vector machines (SVMs) [1, 2] are well studied

and proved to be performant in many real-world applications includ-

ing object recognition, text analysis and bioinformatics [3, 4, 5]. The

success of SVMs is highly dependent on the choice of kernels; exist-

ing ones include the linear, the gaussian and the histogram intersec-

tion. However, usual kernels may not be appropriate in order to cap-

ture the actual and the “semantic” similarity between data for some

specific tasks. Variants known as multiple kernels (MKL) [6, 7, 8]

consider convex (and possibly sparse) linear combinations of ele-

mentary kernels and proved to be more suitable.

Even-though performant, the success of these methods, also de-

pends on cardinality of the labeled data. In many applications such

as object class segmentation [9], labeled data is rare and expensive;

only a very small fraction of training data is labeled and the unla-

beled data may not follow the same distribution as the labeled one, so

learning kernels using inductive inference techniques is clearly not

appropriate. Alternative approaches [10] may include the unlabeled

data as a part of the learning process and this is known as trans-

ductive inference. The concept of transductive inference, or trans-

duction, was pioneered by Vapnik [1]. It relates to semi-supervised

learning and relies on the i) smoothness assumption which states that

close data in a high-density area of the input space, should have simi-

lar labels [10, 11] and ii) the cluster assumption which finds decision

rules in low density areas of the input space [12, 9]. In that context,

transductive versions of SVMs were also introduced [13, 11]; they

build decision functions by optimizing the parameters of a learning

model together with the labels of the unlabeled data. This turned out

to be very useful in order to overcome the limited cardinality of the

labeled data w.r.t the number of training parameters.

In this paper we introduce a novel transductive learning algo-

rithm, for classification and kernel learning, based on constrained

matrix factorization. Our factorization produces a kernel map that

takes data from the input space into a high dimensional space in

order to guarantee their linear separability while maximizing their

margin. This margin property, however, does not necessarily guar-

antee good generalization performance on the unlabeled set, if the

latter is drawn from a different probability distribution compared to

the labeled data [1, 9]. Therefore and beside maximizing the mar-

gin, our transductive approach includes a regularization term that

enforces smoothness in the resulting kernel map in order to correctly

diffuse labels to the unlabeled data. Following our formulation, and

in contrast to MKL, our learning model is not restricted to only con-

vex linear combinations of existing kernels; indeed it is model-free.

Furthermore, it also takes advantage of both labeled and unlabeled

data and this results into better generalization performances as cor-

roborated by our experiments.

The remainder of this paper is organized as follows. We intro-

duce our transductive learning approach and kernel design in Section

2 and the implementation of our optimization procedure in Section

3. We illustrate the application of our method to object class seg-

mentation in Section 4. We conclude the paper in Section 5 while

providing a possible extension for a future work.

2. INFERENCE AND KERNEL DESIGN

Define X ⊆ R
n as an input space corresponding to all the possible

image features and let S = {x1, . . . ,xℓ, . . . ,xm} be a finite subset

of X with a particular order. This order is defined so only the first ℓ
labels of S, denoted {y1, . . . , yℓ} (with yi ∈ {−1,+1}), are known.

In many real-world applications only a few data is labeled (i.e., ℓ≪
m) and its distribution may be different from the unlabeled data.

We can view S as a matrix X in which the ith row corresponds to

xi. Our objective is to build both a decision criterion and an optimal

kernel map in order to infer the unknown labels {yℓ+1, . . . , ym}.

2.1. Max-margin Inference and Kernel Design

Inductive learning aims to build a decision function f that predicts

a label y for any given input data x; this function is trained on

S ′ = {x1, . . . ,xℓ} and used in order to infer labels on S\S ′. In

the max-margin classification [1], we consider φ as a mapping of the

input data (in X ) into a high dimensional space H. The dimension

of H is usually sufficiently large (possibly infinite) in order to guar-

antee linear separability of data.



Assuming data linearly separable in H, the max-margin induc-

tive learning finds a hyperplane f (with a normal w and shift b) that

separates ℓ training samples {(xi, yi)}
ℓ
i=1 while maximizing their

margin. The margin is defined as twice the distance between the

closest training samples w.r.t f and the optimal (ŵ, b̂) correspond to

argmin
w,b

1
2
‖w‖22 s.t yi (w

′φ(xi) + b) ≥ 1, i = 1, . . . , ℓ, (1)

which is the primal form of the hard margin support vector ma-

chine [1], ‖.‖22 is the L2 norm and w
′ is the transpose of w. Given

xi ∈ S\S
′, the class of xi in {−1,+1} is decided by the sign of

f(xi) = w
′φ(xi)+b. Following the kernel trick [1], one may show

that f(xi) can also be expressed as
∑ℓ

j=1 αjyj κ(xi,xj) + b, here

(α1 . . . αℓ)
′ is a vector of positive real-valued training parameters

and κ(xi,xj) = 〈φ(xj), φ(xi)〉 is a symmetric, continuous, posi-

tive (semi-definite) kernel function [2]. The closed form of κ(xi,xj)
is defined among a collection of existing kernels including linear,

gaussian and histogram intersection; but the underlying mapping

φ(x) ∈ H is usually implicit, i.e., it does exist but it is not nec-

essarily known and may be infinite dimensional.

We propose in the remainder of this section a new approach that

builds explicit and finite dimensional kernel map. In contrast to usual

kernels, such as the gaussian, the VC-dimension [1], related to a fi-

nite dimensional kernel map, is finite1. According to the Vapnik’s

VC-theory [14], the finiteness of the VC-dimension avoids loose

generalization bounds and may guarantee better performance.

Now, we turn the problem into finding the hyperplane f as well

as a Gram (kernel) matrix K = Φ
′
Φ where each column Φi corre-

sponds to an explicit mapping of xi into a high dimensional space

(i.e., φ(xi) = Φi). This mapping is designed in order to i) guaran-

tee linear separability of data in S, ii) to ensure good generalization

performance by maximizing the margin, iii) to approximate the input

data, and also iv) to ensure positive definiteness of K by construc-

tion, i.e., without adding further constraints. This results into the

following constrained minimization problem

min
B,Φ,w

1
2
‖w‖22 +

1
2
‖X−BΦ‖2F

s.t yiw
′
Φi ≥ 1, i = 1, . . . , ℓ,

(2)

here ‖A‖2F = tr(AA
′) stands for the square of the Frobenius norm

and X ≈ BΦ is factorized using an overcomplete basis B ∈ R
n×p

(i.e., p > n) and a new kernel map Φ ∈ R
p×m. Without a loss of

generality b is omitted in the above expression as it can be induced

from w and the mapping Φ.

By choosing the dimension p sufficiently large; for instance max (ℓ, n)+
1, one may show that inequality constraints can be satisfied and the

right-hand side term tends to zero for an infinite number of solu-

tions, so the above constrained minimization problem is guaranteed

to have a solution; nevertheless it is under-conditioned.

2.2. Transductive Setting

For a better conditioning of (2), we implement in this section the

smoothness assumption discussed in Section 1. This makes it possi-

ble to design smooth kernel maps and to assign similar predictions

to neighboring data for a better generalization on the unlabeled ones

(see toy example in Fig. 1).

We model the input data S using an adjacency graph G = (V, E)
where nodes V = {v1, . . . , vm} correspond to samples {xi}

1The VC-dimension is the maximum number of data samples, that can be
shattered, whatever their labels.

and edges E = {eij} are the set of weighted links of G. In

the above definition, xi ∈ R
n is a feature vector (color, tex-

ture, etc.) while eij = (vi, vj ,Aij) defines a connection be-

tween vi, vj weighted by Aij . The latter is defined as Aij =
1{vj∈Nk(vi)} · exp

(

−‖xi − xj‖
2
2 /σ

2
)

, here the neighborhood

Nk(vi) of a given node vi, includes the set of the k-nearest neigh-

bors of vi. Notice that this neighborhood system is designed in order

to guarantee that ∀vi, vj ∈ V , vj ∈ Nk(vi) implies vi ∈ Nk(vj)
and vice-versa.

Considering f(xi) = w
′
Φi and f(xj) = w

′
Φj , we define

our regularizer as γs

4

∑m

i,j=1 (w
′
Φi −w

′
Φj)

2
Aij , which may

be rewritten as γs

2
w

′
ΦLΦ

′
w, here γs ≥ 0 and L is the graph

Laplacian defined by L = D − A and D = diag(A1) where 1

is all-ones vector. When adding this regularizer in objective func-

tion (2) and replacing inequality constraints with the squared loss
γc

2
(Y −Φ

′
w)′C(Y −Φ

′
w), we obtain the complete form of our

transductive learning problem

min
B,Φ,w

1
2
w

′
(

I+ΦL̃Φ
′
)

w + 1
2
‖X−BΦ‖2F − γcY

′
CΦ

′
w,

(3)

where I is p×p identity matrix, L̃ = (γcC+γsL), C is the diagonal

m×m matrix for which the ith diagonal element is fixed to 1 for a

labeled sample and 0 for an unlabeled one, Y is the m-dimensional

vector for which the i-th element is yi for a labeled data and 0 for an

unlabeled one.

(a) t = 0 (b) t = 3 (c) t = 10

(d) t = 47 (e) t = 216 (f) t = 1000

Fig. 1: This figure shows the evolution of the learned kernel map

through different iterations of our method (see Algorithm 1). This

map is found for the popular “two moon” example in [11]. The

underlying 2D input data are not linearly separable, while the learned

kernel map makes them linearly separable in a 3D space. In these

experiments, only ℓ = 4 samples were labeled (shown in blue and

yellow resp. for the positive and the negative classes).

3. OPTIMIZATION

It is clear that the constrained minimization problem in (3) is not

convex jointly w.r.t B,Φ,w. We consider an alternating optimiza-

tion procedure by solving three subproblems: we first maximize the

margin 2/ ‖w‖2 w.r.t w, then we minimize the regularization crite-

rion and the reconstruction error w.r.t Φ and finally, we update the

basis B. This process is repeated until convergence; i.e., all the un-

knowns remain unchanged from one iteration to another. Different

steps of the algorithm are shown in Algorithm (1); the superscript

(t) is added to w, B and Φ in order to show the evolution of their



Algorithm 1 TransRMF

Input: labeled {(xi, yi)}
ℓ
i=1 and unlabeled data {xi}

m

i=ℓ+1

Initialization: set the adjacency matrix A, t ← 0 and set Φ(0),

B
(0) to random full rank matrices.

Repeat steps (1+2) until convergence

1. Update w
(t+1) and B

(t+1) using (4), (7) resp.

2. Update Φ
(t+1) iteratively using (8).

Output: kernel maps {Φi} and labels {yi} with yi = w
′
Φi.

values through different iterations of the learning process.

Updating basis and classifier. considering iteration t+1 of the opti-

mization algorithm, we assume fixed B
(t) and Φ

(t). Now enforcing

the gradient of (3) to vanish (w.r.t w) leads to

w
(t+1) = γc

(

I+Φ
(t)

L̃Φ
(t)′

)−1

Y
′
CΦ

(t)′ . (4)

Similarly, assuming Φ
(t) fixed, we find B

(t+1) as

argmin
B

1

2

∥

∥

∥
X−BΦ

(t)
∥

∥

∥

2

F
. (5)

Expressing the Frobenius norm using the trace operator

1
2

∥

∥

∥
X−BΦ

(t)
∥

∥

∥

2

F

= 1
2

tr

(

(

X−BΦ
(t)

)(

X−BΦ
(t)

)
′
)

,
(6)

and enforcing the gradient of (6) to vanish (w.r.t B) leads to

B
(t+1) = XΦ

(t)′
(

Φ
(t)

Φ
(t)′

)−1

. (7)

Learning kernel map. considering fixed B and w, (3) is solved w.r.t

{Φi} by fixing the m kernel maps Φ(t) at step t and finding the new

maps Φ
(t+1). Following this reasoning, conditions for optimality

lead to a solution Φ
(t+1) = Ψ̃ as the limit of

Ψ
(k+1)
i =

(

B
′
B+ (γsDii + γcCii)ww

′

)−1

.

[

B
′
X+ γcwY

′
C+ γsww

′
Ψ

(k)
A

]

i

,
(8)

for i = 1, . . . ,m, with Ψ
(0) = Φ

(t) and [.]i stands for the ith

column of a matrix. Here we omit the superscript (t+1) for variables

B and w for brief. The process described in the above equation

allows us to recursively diffuse the kernel maps from the labeled to

the unlabeled data, through the neighborhood system defined in the

graph G. This process is iterative and may require many steps before

convergence. The latter is reached when ‖Φ(k+1) −Φ
(k)‖ ≤ ǫ; (in

practice, ǫ = 10−2, and convergence usually happens in less than

k = 100 iterations, see Fig. 2, bottom-right).

4. EXPERIMENTS

4.1. Database and Setting

We use the Pascal VOC 2011 dataset2 in order to evaluate the per-

formance of our transductive inference method on object class seg-

mentation (OCS). For that purpose, we use 556 images from this

2http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2011/index.html

dataset belonging to 21 categories; given an image, the goal is to as-

sign each group of pixels (referred to as superpixel) to one of these

21 categories. In practice, a given image is subdivided into an ir-

regular grid (neighborhood system) of 700 superpixels, each one is

processed in order to extract various features [15] including texture

(texton histograms), color (3D RGB mean, standard deviation and

3D RGB histograms) and bag-of-word SIFT descriptors, resulting

into a final feature vector of 305 dimensions.

For each image in VOC, we turn OCS into a transductive inference

problem where only a small fraction of its underlying superpixels is

labeled (see Fig. 3, third column). We train one transductive clas-

sifier (referred to as TransRMF) for each category and we combine

these classifiers using the “winner-take-all” strategy in order to infer

the category of a given unlabeled superpixel.

Following the evaluation protocol of Pascal VOC 2011, we use the

standard segmentation accuracy for assessment. This measure is de-

fined for each category C using intersection/union score, defined as

the number of correctly labeled pixels of C, divided by the number

of pixels labeled with that category into different images and the

ground truth. This accuracy is expressed as

accuracy =
true pos.

true pos. + false pos. + false neg.
(9)

A mean accuracy is also considered as the expectation through dif-

ferent categories.

4.2. Performance and Comparison

Fig. (2, top-left) reports average accuracy for different values of the

regularization parameter γs; note that γs = 0 corresponds to the

baseline inductive setting (i.e., no regularization is applied). Fig. 3,

shows the evolution of the underlying segmentation results w.r.t γs.

According to these results, an underestimated γs results into noisy

segmentation while an overestimated γs makes the segmentation re-

sults very smooth (with possibly lost details). It is also clear that the

transductive setting of our method (i.e., γs > 0) outperforms the in-

ductive one (i.e., γs → 0). Fig. 2 (top-right) also reports the average

accuracy as an increasing function of γc (almost quasi-constant for

larger values of γc). According to these experiments, we found that

the best performance are achieved when γs = 0.1 and γc = 10.

Finally, we compare our TransRMF approach w.r.t to inductive

as well as transductive approaches. Fig. (2, middle) shows the aver-

age accuracies and comparison. Inductive approaches include SVM

classifiers with different kernels (linear, RBF, χ2, and histogram

intersection) and their combination using multiple kernel learning3

(Fig. 2, bottom-left). Transductive approaches include Laplacian-

SVM4 and transductive SVM5. Our TransRMF method shows a clear

and a consistent gain w.r.t both inductive and transductive methods

as well as multiple kernel learning (see also Fig. 4).

5. CONCLUSION

We introduced in this paper, a new transductive learning approach

for kernel design and classification. The strength of our contribution

resides in the variational framework that allows us to explicitly de-

sign an optimal kernel map as a part of the learning process. When

compared to baseline inductive methods, multiple kernel learning

and also transductive methods, our approach shows superior accu-

racy on the challenging object class segmentation task.

As a future extension of this work, we will investigate the application

of this method to other tasks including interactive image retrieval.

3http://asi.insa-rouen.fr/enseignants/ arakotom/code/mklindex.html
4http://www.dii.unisi.it/ melacci/lapsvmp/
5http://svmlight.joachims.org/



Fig. 3: Left to right: original image; ground truth; labeled data; segmentation results with γs = 10−3, 10−2, 10−1, 1, 10.
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Fig. 2: Diagrams in top show the evolution of the average accuracy

w.r.t the regularization term (i.e. γs) and the fidelity term (i.e. γc)

respectively. Diagrams in middle and (bottom, left) show compar-

ison of TransRMF w.r.t inductive, transductive and MKL learning

respectively. Note that all the performances are shown for different

percentages of labeled data. Figure in (bottom, right) illustrates the

convergence process, i.e., the difference between current and previ-

ous estimate of kernel maps through different iterations.

Fig. 4: 1st col: original image; 2nd col: ground truth; 3rd col:

TransRMF; 4th col: MKLSVM; 5th col: LapSVM.
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