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Introduction

With the exponential growth of multimedia sharing spaces, such as social networks, visual contents are nowadays abundant. Searching these large collections requires a preliminary step of image annotation that translates visual contents into labels also known as keywords or concepts (see for instance [START_REF] Duygulu | Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary[END_REF]). Automatic image annotation is challenging due to the perplexity when assigning many possible labels to images and the difficulty to analyze rich and highly semantic contents. In annotation, image observations are first described using lowlevel features (color, texture, shape, etc.), and labels are then assigned to images using variety of inference techniques such as hidden Markov models [START_REF] Ephraim | A minimum discrimination information approach for hidden markov modeling[END_REF], latent Dirichlet allocation [START_REF] Blei | Latent dirichlet allocation[END_REF], probabilistic latent semantic analysis [START_REF] Hofmann | Probabilistic latent semantic analysis[END_REF], and support vector machines (SVMs) [START_REF] Cristianini | An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[END_REF][START_REF] Schölkopf | Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond[END_REF][START_REF] Vapnik | Statistical Learning Theory[END_REF]. These inference techniques are used in order to model the correspondence between low level features and labels and allow us to predict keywords for unlabeled images.

Among existing image annotation approaches, machine learning ones are particularly successful and may be categorized into generative and discriminative. Generative methods model a priori knowledge and dependencies between image observations and their possible c 2012. The copyright of this document resides with its authors. It may be distributed unchanged freely in print or electronic forms. labels using for instance graphical models [START_REF] Farhadi | Attribute-Centric Recognition for Cross-category Generalization[END_REF][START_REF] Fei | What , Where and Who ? Telling the Story of an Image by Activity Classification , Scene Recognition and Object Categorization[END_REF][START_REF] Ferrari | Learning Visual Attributes[END_REF][START_REF] Socher | Towards total scene understanding: Classification, annotation and segmentation in an automatic framework[END_REF]. In these models, the annotation process is based on maximizing a posterior probability using a variety of network inference techniques. This category of methods even though relatively successful suffers from complexity in modeling and inference especially when labels are taken from a large scale vocabulary. Alternative approaches are discriminative and consider image annotation as a classification problem [START_REF] Deng | Hierarchical Semantic Indexing for Large Scale Image Retrieval[END_REF][START_REF] Deng | What Does Classifying More Than 10 , 000 Image Categories Tell Us ?[END_REF][START_REF] Farhadi | Describing Objects by their Attributes[END_REF][START_REF] Russakovsky | Attribute learning in large-scale datasets[END_REF]. A vocabulary of labels is first defined, and a decision criterion is then learned for each label and used in order to identify images belonging to that label.

The two aforementioned categories of machine learning techniques are highly dependent on the learned concepts and may fail when the latter are highly semantic and difficult to model. In order to overcome these issues, recent discriminative approaches consider a priori knowledge and relationships between data and the learned concepts (context, shared features, etc.) [START_REF] Farhadi | Attribute-Centric Recognition for Cross-category Generalization[END_REF][START_REF] Feng | Multiple bernoulli relevance models for image and video annotation[END_REF][START_REF] Ferrari | Learning Visual Attributes[END_REF][START_REF] Jeon | Automatic image annotation and retrieval using cross-media relevance models[END_REF][START_REF] Lampert | Learning to detect unseen object classes by between-class attribute transfer[END_REF][START_REF] Victor Lavrenko | A model for learning the semantics of pictures[END_REF][START_REF] Li | Image Annotation Using Multi-Correlation Probabilistic Matrix Factorization[END_REF][START_REF] Li | Image Annotation Using Multi-Correlation Probabilistic Matrix Factorization[END_REF][START_REF] Hariharan | Efficient Max-Margin Multi-Label Classification with Applications to Zero-Shot Learning[END_REF]. The success of these image annotation methods, also depends on cardinality of the labeled data and the choice of the appropriate setting for learning. The inductive setting [START_REF] Deng | Hierarchical Semantic Indexing for Large Scale Image Retrieval[END_REF][START_REF] Deng | What Does Classifying More Than 10 , 000 Image Categories Tell Us ?[END_REF][START_REF] Farhadi | Describing Objects by their Attributes[END_REF][START_REF] Russakovsky | Attribute learning in large-scale datasets[END_REF] consists in building a decision function for each concept using labeled images, and uses that function in order to generalize across unlabeled images. In these methods, labeled data are usually scarce and expensive; only a very small fraction of training images is labeled and the unlabeled images may not follow the same distribution as the labeled ones, so learning using inductive techniques is clearly not appropriate. Alternatives [START_REF] Belkin | Manifold regularization: A geometric framework for learning from labeled and unlabeled examples[END_REF][START_REF] Vapnik | On structural risk minimization or overall risk in a problem of pattern recognition[END_REF] may include the unlabeled data as a part of the learning process and this is known as transductive inference. The concept of transductive inference, or transduction, was pioneered by Vapnik (see for instance [START_REF] Vapnik | On structural risk minimization or overall risk in a problem of pattern recognition[END_REF]). It relates to semi-supervised learning [START_REF] Chapelle | Semi-Supervised Learning[END_REF] and relies on the i) smoothness assumption which states that close data in a highdensity area of the input space, should have similar labels [START_REF] Chapelle | Semi-Supervised Learning[END_REF] and ii) the cluster assumption which finds decision rules in low density areas of the input space [START_REF] Chapelle | Semi-Supervised Learning[END_REF]. Learning consists in building decision functions by optimizing the parameters of a learning model together with the labels of the unlabeled data (see for instance [START_REF] Belkin | Manifold regularization: A geometric framework for learning from labeled and unlabeled examples[END_REF][START_REF] Joachims | Transductive inference for text classification using support vector machines[END_REF][START_REF] Joachims | Learning to Classify Text Using Support Vector Machines -Methods, Theory, and Algorithms[END_REF][START_REF] Melacci | Laplacian support vector machines trained in the primal[END_REF]). When applied, these transductive methods turned out to be very useful in order to overcome the limited cardinality of the labeled images in image annotation [START_REF] Chen | Towards multi-semantic image annotation with graph regularized exclusive group lasso[END_REF][START_REF] Fergus | Semi-supervised Learning in Gigantic Image Collections[END_REF][START_REF] Ma | Exploiting the Entire Feature Space with Sparsity for Automatic Image Annotation[END_REF][START_REF] Wang | Multi-label sparse coding for automatic image annotation[END_REF][START_REF] Yuan | Image Annotation by Composite Kernel Learning with Group Structure[END_REF].

Among popular learning techniques support vector machines [START_REF] Cristianini | An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[END_REF][START_REF] Schölkopf | Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond[END_REF][START_REF] Vapnik | Statistical Learning Theory[END_REF] are well studied and proved to be performant in image annotation [START_REF] Grangier | A discriminative kernel-based approach to rank images from text queries[END_REF]; in SVMs, kernels are used in order to model visual similarity between images, and only images sharing the same concepts are expected to have high kernel values. The success of SVMs is therefore, highly dependent on the choice of kernels and usual ones, such the linear, the gaussian and the histogram intersection, may not be appropriate in order to capture the actual and the semantic similarity between images for some specific concepts. Better kernels based on tuning Mahalanobis distances were obtained by minimizing the ratio between intra and inter class distances [START_REF] Chatpatanasiri | A new kernelization framework for Mahalanobis distance learning algorithms[END_REF][START_REF] Jain | Metric and Kernel Learning using a Linear Transformation[END_REF][START_REF] Kulis | Inductive Regularized Learning of Kernel Functions[END_REF] while others were designed using semidefinite programming [START_REF] Lanckriet | Learning the Kernel Matrix with Semidefinite Programming[END_REF]. In order to take extra advantage from different settings, multiple kernels (MKL) were also introduced [START_REF] Francis | Consistency of the group lasso and multiple kernel learning[END_REF][START_REF] Francis | Multiple kernel learning, conic duality, and the smo algorithm[END_REF][START_REF] Rakotomamonjy | [END_REF][START_REF] Sonnenburg | Large scale multiple kernel learning[END_REF][START_REF] Wu | A Direct Method for Building Sparse Kernel Learning Algorithms[END_REF] and consider convex (and possibly sparse) linear combinations of elementary kernels and proved to be more suitable [START_REF] Varma | More generality in efficient multiple kernel learning[END_REF]. With the current state of the art, MKL are considered as one of the most effective kernel design and combination techniques. Nevertheless, MKL based design hits at least two major limitations; On the one hand, and as mentioned earlier, these methods are limited by the cardinality of labeled data and they do not rely on any extra information in order to overcome that limitation, on the other hand they are mainly restricted to linear combinations of existing kernels only.

In this paper we introduce a novel transductive learning algorithm, for kernel learning and image classification and annotation. Our method is based on a constrained matrix fac-torization which produces a kernel map that takes image data from the input space into a high dimensional space in order to guarantee their linear separability while maximizing their margin. This margin property, however, and as known [START_REF] Vapnik | Statistical Learning Theory[END_REF], does not necessarily guarantee good generalization performance on the unlabeled set, if the latter is drawn from a different probability distribution compared to the labeled data. Therefore and beside maximizing the margin, our transductive approach includes a regularization term that enforces smoothness and low rankness in the resulting kernel map in order to correctly diffuse labels to the unlabeled data. Following our formulation, and in contrast to MKL, our learning model is not restricted to only convex linear combinations of existing kernels; indeed it is model-free. Furthermore, it also takes advantage from both labeled and unlabeled data and this results into better generalization performances as corroborated by our image annotation experiments.

The remainder of this paper is organized as follows. We introduce our transductive learning approach and kernel design in Section 2 and the implementation of our optimization procedure in Section 3. We illustrate in Section 4 the application of our method to image annotation using two datasets; MSRC and Corel5K. We conclude the paper in Section 5 while providing a possible extension for a future work.

Problem Formulation

Define X ⊆ R n as an input space corresponding to all the possible image features and let S = {x 1 , . . . , x l , . . . , x m } be a finite subset of X with an arbitrary order. This order is defined so only the first l label vectors of S, denoted {y 1 , . . . , y l } are given; here y i ∈ {-1, +1} r and r is the number of possible labels used for annotation. In many real-world applications only a few data is labeled (i.e., l ≪ m) and its distribution may be different from the unlabeled data.

We can view S as a matrix X in which the i th column X i corresponds to x i and Y is the label matrix of X where its i th column Y i corresponds to y i . Different from binary classification, in multi-label classification, a sample X i may have more than one label, i.e., r > 1, with Y ik = +1 iff X i has the k th label and Y ik = -1 otherwise. Our objective is to build both a decision criterion and an optimal kernel map in order to infer the unknown label vectors {Y l+1 , . . . , Y m }.

Max Margin Inference for Multi-label Classification

The general classification problem aims to learn a classifier f , that minimizes training error and also generalize well on test data, as

argmin f R( f ) + γ c l ∑ i=1 ℓ ( f (x i ), y i ) , (1) 
R is a regularizer that controls model complexity, ℓ( f (x i ), y i ) is the loss associated with a prediction f (x i ) when the true output is y i and γ c > 0 balances these two terms. In the max-margin classification [START_REF] Vapnik | Statistical Learning Theory[END_REF], f (x i ) = W ′ φ (x i ) (for a well chosen W) and φ is a mapping of the input data (in X ) into a high dimensional space H. The dimension of H is usually sufficiently large (possibly infinite) in order to guarantee linear separability of data.

Assuming data linearly separable in H, the max-margin inductive learning finds W (and

hence f ) as argmin W 1 2 W 2 F + γ c l ∑ i=1 ℓ W ′ φ (x i ), y i (2)
here W ′ is the transpose of W and W 2 F denotes the Frobenius norm. Following the kernel trick [START_REF] Schölkopf | Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond[END_REF], one may show that the classification function f may also be expressed as a linear combination of symmetric, continuous and positive semi-definite functions (called kernels). A kernel (denoted κ) is defined on two samples x i , x j as κ(x i , x j ) = φ (x i ), φ (x j ) . The closed form of κ(x i , x j ) may also be defined among a collection of existing kernels including linear, polynomial and histogram intersection; but the underlying mapping φ (x) ∈ H is usually implicit, i.e., it does exist but it is not necessarily known and may be infinite dimensional. We propose in the remainder of this section a new approach that builds explicit and finite dimensional kernel map. In contrast to usual kernels, such as the gaussian, the VCdimension [START_REF] Vapnik | Statistical Learning Theory[END_REF], related to a finite dimensional kernel map, is finite 1 . According to Vapnik's VC-theory [START_REF] Vapnik | Statistical Learning Theory[END_REF], the finiteness of the VC-dimension avoids loose generalization bounds and may guarantee better performance.

Learning Low-Rank Kernel

Now, we turn the problem into finding the hyperplane parameters W as well as a Gram (kernel) matrix K = Φ ′ Φ where each column Φ i corresponds to an explicit mapping of x i into a high dimensional space (i.e., φ (x i ) = Φ i ). This mapping is designed in order to i) guarantee linear separability of data in S, ii) to ensure good generalization performance by maximizing the margin, iii) to approximate the input data, and also iv) to ensure positive definiteness of K by construction, i.e., without adding further constraints. This results into the following constrained minimization problem min

B,Φ,W µ 2 Φ 2 F + 1 2 W 2 F + γ c 2 X Y - B 0 n×p 0 r×p W ′ Φ ΦC 2 F s.t B i 2 2 = 1, ∀i = 1, . . . , p , (3) 
here C ∈ R m×m is a diagonal matrix with C ii = 1 {1≤i≤l} , 0 n×p and 0 r×p are n × p and r × p zeros matrices respectively, X ≈ BΦ is factorized using an overcomplete basis B ∈ R n×p (i.e., p > n) and a new kernel map Φ ∈ R p×m . As discussed earlier, and according to [START_REF] Vapnik | Statistical Learning Theory[END_REF], the VC-dimension (related to a family of classifiers) depends also on the dimension of the learned kernel map and this may affect generalization, especially if this dimension is very high. Since the actual (intrinsic) dimension of the learned kernel map Φ is unknown, we choose the number of basis p to be sufficiently large such that the factorization term (in the right-hand side term of Eq. 3) tends to zero for an infinite number of solutions. In practice, p is overestimated and set to max (l, n) + 1, and this guarantees that the above constrained minimization problem has a solution. Then, the actual (intrinsic) dimension is found by regularizing Eq. 3 by the Frobenius norm Φ 2 F which has similar effect as the nuclear norm where µ ≥ 0 controls the rank of K. Indeed, the squared Frobenius norm is exactly the ℓ 2 -norm on the eigenvalues of K and it is less likely to shrink these eigenvalues into zeros compared to the ℓ 1 -norm (which is the nuclear norm). Nevertheless, it provides a closed form kernel solution and our experiments show that it indeed reduces the rank of the kernel map while allowing to learn effective classifiers. 

Transductive Setting

For a better conditioning of Eq. 3, we implement in this section the smoothness assumption discussed in Section 1. This makes it possible to design smooth kernel maps and to assign similar predictions to neighboring data (see toy example in Fig. 1).

We model the input data S using an adjacency graph G = (V, E) where nodes V = {v 1 , . . . , v m } correspond to samples {x i } and edges E = {e i, j } are the set of weighted links of G. In the above definition, x i ∈ R n is a feature vector (color, texture, etc.) while e i, j = (v i , v j , A i j ) defines a connection between v i , v j weighted by A i j . The latter is defined as here s(•,•) is a visual similarity function and the neighborhood N k (v i ) of a given node v i , includes the set of the k-nearest neighbors of v i . Notice that the neighborhood system is designed in order to guarantee that ∀v i , v j ∈ V, v j ∈ N k (v i ) implies v i ∈ N k (v j ) and vice-versa. Considering f (x i ) = W ′ Φ i and f (x j ) = W ′ Φ j , we define our regularizer as

A i j = 1 {v j ∈N k (v i )} • s(x i , x j ),
γ s 4 m ∑ i=1, j=1 W ′ Φ i -W ′ Φ j 2 A i j (4)
which can be rewritten as γ s 2 tr (W ′ ΦLΦ ′ W), here γ s ≥ 0 and L is the graph Laplacian defined by L = D -A and D = diag(A1) where 1 is the all-ones vector of length m. We obtain the complete form of our transductive learning problem as min

B,Φ,W µ 2 Φ 2 F + 1 2 tr W ′ (I p + γ s ΦLΦ ′ ) W + γ c 2 X Y - B 0 n×p 0 r×p W ′ Φ ΦC 2 F , s.t B i 2 2 = 1, ∀i = 1, . . . , p (5) 
with I p the p × p identity matrix and again C is the diagonal m × m matrix for which the i th diagonal element is fixed to 1 for a labeled sample, and 0 for an unlabeled one.

Optimization

It is clear that the minimization problem in Eq. 5 is not convex jointly w.r.t B, Φ, W. We consider an alternative optimization procedure by solving three subproblems: we first optimize the matrix W and we update the basis B, then we minimize the regularization criterion, the rank and the reconstruction error w.r.t Φ. This process is repeated until convergence; i.e., all the unknowns remain unchanged from one iteration to another. Different steps of the algorithm are shown in Algorithm 1; the superscript (t) is added to W, B and Φ in order to show the evolution of their values through different iterations of the learning process.

Algorithm 1 Transductive Kernel Map Learning

Input: labeled {(x i , y i )} l i=1 and unlabeled data {x i } m i=l+1
Initialization: set the adjacency matrix A, t ← 0 and set Φ (0) to a random full rank matrix.

Repeat steps (1+2) until convergence 1. Update W (t+1) and B (t+1) using Eq. 6,7 respectively.

2. Update Φ (t+1) by taking the limit Ψ of Eq. 8, with Ψ (0) = Φ (t) .

Output: kernel maps { Φi } and labels {y i } with y i = W ′ Φi .

Learning Basis and Classifier. Assuming fixed Φ (t) (denoted simply as Φ) and enforcing the gradient of Eq. 5 to vanish (w.r.t W) leads to

W (t+1) = γ c I p + Φ (γ c C + γ s L) Φ ′ -1 ΦCY ′ . (6) 
Similarly, we find B (t+1) by solving the dual problem

argmax Λ argmin B 1 2 X -BΦ 2 F + tr B ′ ΛB -tr(Λ) , ( 7 
)
where Λ is the diagonal matrix whose entry Λ ii is equal to the Lagrange multiplier λ i associated with the i th equality constraint in Eq. 5. After maximizing Eq. 7 w.r.t Λ, we obtain the optimal basis

B (t+1) = XΦ ′ (ΦΦ ′ + Λ * ) -1 .
Learning Kernel Map. Considering fixed B (t+1) and W (t+1) (denoted simply as B, W in the remainder of this section), and the previous kernel map solution Φ (t) , our goal is to find Φ (t+1) by solving Eq. 5. The optimization problem in Eq. 5 admits a unique solution

Φ (t+1) = Ψ where Ψ = lim k→∞ Ψ (k) and Ψ (k) i = γ c B ′ B + (γ s D ii + γ c C ii )WW ′ + µI p -1 . γ c B ′ X + γ c WYC + γ s WW ′ Ψ (k-1) A i , (8) here Ψ 
(k) i and [.] i stand for the i th column of a matrix. Proof about this kernel map solution and its convergence to a fixed point are detailed in [START_REF] Vo | Transductive kernel learning[END_REF]. The process described in Eq. 8 allows us to recursively diffuse the kernel maps from the labeled to the unlabeled data, through the neighborhood system defined in the graph G. The algorithm convergences when

Ψ (k) -Ψ (k-1) ≤ ε; (in practice, ε = 10 -2
, and convergence usually happens in less than 100 iterations).

In this section, we evaluate the performance of our transductive kernel map learning (denoted TKML) in image annotation and we compare it to closely related work. For that purpose, we use two standard datasets for experiments and comparison. The MSRC dataset includes 591 images from 23 categories excluding the category "horse" (as it has a very low cardinality). This dataset is divided into two subsets with equal cardinality; the first one is used for training and the other one for testing. Corel5K dataset contains 5000 images which are annotated with 260 keywords and each image has up to 5 keywords. This dataset is divided into 4500 images for training and 500 images for testing. Features. Images in MSRC and Corel5K are processed using a rectangular grid in order to extract densely sampled SIFT features. These features are assigned to their nearest visual words using a trained codebook of size N (N = 512 in practice). Spatial information is also considered using a three-level pyramid including 1 × 1, 2 × 2, 1 × 3 cells, and one bag-of-word histogram is computed for each cell. Consequently, each image is encoded by a concatenated descriptor of length (1 × 1 + 2 × 2 + 1 × 3)N. In order to capture various visual informations, we combine various local features [START_REF] Van De Sande | Evaluating color descriptors for object and scene recognition[END_REF] including SIFT, rgbSIFT, rgSIFT, hsvSIFT, cSIFT, opponentSIFT resulting into a final visual representation joining the six SIFT features. Learning and Annotation. Given training and test images, we define our neighborhood system using an adjacency graph where each node corresponds to an image and an edge connects two images if they are visually similar. Using this neighborhood system, we run TKML in order to measure the membership of each keyword to different test images; these memberships correspond to the scores of the underlying classifiers. A keyword is then assigned to a test image iff the score associated to that keyword is among the 5 largest values. We also applied a variant of our TKML algorithm, that weights, for each keyword, the loss of positive and negative data differently especially when they are unbalanced. This variant is referred to as weighted TKML (wTKML). Our method uses following settings in all the experiments: i) the smoothness term is γ s = 1 , ii) the fidelity coefficient is γ c = 1, iii) the low-rank coefficient is µ = 10 -8 , iv) the convergence threshold is ε = 10 -2 , v) the max number of iterations is 5, and vi) the max number of iterations for diffusion is 100. Graph construction parameters, however, depend on data sets. For MSRC, the neighborhood size k = 6, euclidean metric s(•, •); for Corel5K, the neighborhood size k = 3, histogram intersection metric s(•, •). More details about the setting of these parameters are given in [START_REF] Vo | Transductive kernel learning[END_REF]. Evaluation Criteria. Different evaluation criteria are used in order to measure the quality of this annotation process including precision (denoted P), recall (denoted R) and positive recall (denoted N+); these criteria are defined as

P = E ω
number of images correctly annotated with a keyword ω number of images annotated with ω R = E ω number of images correctly annotated with a keyword ω number of images annotated with ω in the ground truth N+ = ∑ ω 1 {(number of images correctly annotated with a keyword ω) ≥ 1} , here the expectation E ω is with respect to all possible keywords {ω} in our dataset. We further benchmark the quality of keyword assignment using break-even point (denoted BEP [START_REF] Grangier | A discriminative kernel-based approach to rank images from text queries[END_REF]), with BEP = E ω number of images correctly annotated with a keyword ω in a sorted list of N ω images N ω here N ω is the number of images annotated with ω in the ground truth and the list of N ω images is sorted by decreasing classification scores. By varying the size of the sorted lists and taking the expectation of precision, with respect to this size, we obtain the mean average precision (denoted mAP).

Performance & Comparison

Inductive methods. We consider 3 state-of-the-art methods for comparison: (i) SVM classifiers [START_REF] Vapnik | Statistical Learning Theory[END_REF]; (ii) MKL via SMO-MKL [START_REF] Hariharan | Efficient Max-Margin Multi-Label Classification with Applications to Zero-Shot Learning[END_REF]; (iii) structured SVM for multi-label classification via M3L [START_REF] Hariharan | Large Scale Max-Margin Multi-Label Classification with Priors[END_REF]. All of these methods are tested against four choices of kernels linear, RBF, χ2 , and histogram intersection. Parameters of each method are optimally tuned. For SMO-MKL, we use SMO solver with ℓ 2 regularization. Note that SMO-MKL has been extensively trained using 36 Gram matrices resulting from the combination of the 6 kernels (linear, χ 2 , Histogram Intersection, and RBF with 3 bandwidth values) and the 6 descriptors mentioned earlier. We use libSVM 2 as the standard implementation for SVM while M3L and MKL implementations are taken from their original authors.

Transductive Methods. LapSVM [START_REF] Melacci | Laplacian support vector machines trained in the primal[END_REF] and TranSVM [START_REF] Joachims | Transductive inference for text classification using support vector machines[END_REF] are accounted for comparison. While they are based on large margin approach, LapSVM is more related to our method since both share smoothness regularization term. The two methods are also tested against four choices of kernels mentioned above. The implementation of LapSVM is taken from [START_REF] Melacci | Laplacian support vector machines trained in the primal[END_REF] and that of TranSVM from SVM light3 . Fig. 2 and Table 1 show results and comparison on the MSRC data set. A first conclusion indicates that methods relying on labeled training data as well as unlabeled test data provide better performance. The performance of our method, as shown in Fig. 2, is equivalent to the top one, i.e., structured SVMs (M3L) even though the latter takes also into account label interactions that help improving image annotation performance. Differences between methods become clearer on the Corel5K database (see Fig. 3). As expected inductive methods (including SVMs) perform worse than transductive ones and structured SVM (M3L) in terms of recall and mAP. Better recall, mAP and N+ performances are obtained by our method (wTKML) (see Fig. 3-right).

Finally, Table 2 shows results reported in the related work including the baseline JEC [START_REF] Makadia | A new baseline for image annotation[END_REF], the sparse coding method in [START_REF] Zhang | Automatic image annotation using group sparsity[END_REF], the graph-based method in [START_REF] Liu | Unified Tag Analysis With Multi-Edge Graph[END_REF][START_REF] Wang | Multi-label sparse coding for automatic image annotation[END_REF] and the TagProp [START_REF] Guillaumin | Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation[END_REF]. Compared to these state-of-the-art methods, our method is very competitive in at least three out of the five evaluation criteria.

Conclusion

We introduced in this paper, a new transductive learning approach for kernel design and multi-label classification. Our contribution resides in the variational framework that allows us to explicitly design an "optimal" kernel map as a part of the learning process. When compared to baseline inductive methods as well as related transductive ones, our approach shows competitive performance on the challenging image annotation task. As a future work, we will investigate the application of our method to other tasks including interactive image retrieval. CRM [START_REF] Victor Lavrenko | A model for learning the semantics of pictures[END_REF] InfNet [START_REF] Metzler | An inference network approach to image retrieval[END_REF] NPDE [START_REF] Jeon | Automatic image annotation and retrieval using cross-media relevance models[END_REF] MBRM [START_REF] Feng | Multiple bernoulli relevance models for image and video annotation[END_REF] SML [START_REF] Carneiro | Supervised learning of semantic classes for image annotation and retrieval[END_REF] TGLM [START_REF] Liu | Image annotation via graph learning[END_REF] MEG [START_REF] Liu | Unified Tag Analysis With Multi-Edge Graph[END_REF] MSC [START_REF] Wang | Multi-label sparse coding for automatic image annotation[END_REF] JEC [START_REF] Makadia | A new baseline for image annotation[END_REF] GS [START_REF] Zhang | Automatic image annotation using group sparsity[END_REF] TagProp [START_REF] Guillaumin | Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation[END_REF] TKML wTKML 
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 21 Figure 1: (a) This figure shows the input data where different colors stand for different classes; red-colored data are annotated with (1 -1) ′ , blue-colored data with (-1 1) ′ and green-colored data with (1 1) ′ . Note that just one training sample per class (diamond-shaped) is labeled while others are unlabeled. Our algorithm is initialized with p = 10 and after 5 iterations (before convergence) it reduces the ranks to 4. Figures (b,c,d) are the learned kernel maps (shown in 3d) and the obtained decision hyperplanes for different setting of the parameters γ c and γ s .

Figure 2 :

 2 Figure 2: Image annotation performance w.r.t baseline methods on the MSRC database.

Figure 3 :

 3 Figure 3: Image annotation performance w.r.t baseline methods on the Corel5K database.

Table 1 :

 1 χ 2 lin rbf hi χ 2 lin rbf hi χ 2 lin rbf hi χ 2 This table shows the positive recall (N+) for different methods on the Corel5K database. As for MSRC, all the keywords are recalled.

	SVM lin rbf hi N+ 80 97 91 85 133 122 119 124 113 M3L MKL	LapSVM 126 129 112 129 155 150 157 155 133 TranSVM TKML wTKML 173

Table 2 :

 2 This table shows the performances (with different evaluation criteria) of our proposed method and related work on the Corel5K dataset.

The VC-dimension is the maximum number of data samples, that can be shattered, whatever their labels.

http://www.csie.ntu.edu.tw/ cjlin/libsvm/

http://svmlight.joachims.org/
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