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Abstract

The internal temperature of Li-ion batteries for electric or hybrid vehicles is an important factor influencing their ageing. Generally
not measured, it can be reconstructed from an external measurement and a model. This paper presents the simplified modelling of
heat transfers in a battery module, leading to a Linear Parameter-Varying (LPV) model. Then, a polytopic observer is proposed
to estimate the cell temperature and internal resistance, ensuring a tradeoff between the convergence speed and the noise of the
estimated states. Experimental results show the good quality of the estimation and the diagnosis potential offered by internal
resistance reconstruction.

Keywords: Li-ion battery, Electric Vehicle (EV), Plug-in Hybrid Electric Vehicle (PHEV), Thermal modelling, Temperature
estimation, Internal resistance estimation, Linear Parameter-Varying (LPV) system, Polytopic observer

1. Introduction

The battery is the keystone of Electric Vehicles (EV) and
Plug-in Hybrid Electric Vehicles (PHEV), which require elec-
tric traction over extended periods in charge-depleting mode. It
is a heavy, bulky, and costly device, which constitutes the main
obstacle to the mass distribution of such vehicles. Moreover,
the lifetime of a current battery is shorter than that of the car.
Improving the battery ageing is certainly the key to the durabil-
ity of the whole vehicle.

The ageing process of Li-ion batteries is highly complex and
affected by many factors: internal temperature, use, calendar
life (even unused, a battery loses little by little its capacity over
time (Ratnakumar et al., 1999), state of charge (SOC), depth
of discharge/charge (DOD/DOC), etc. Amongst the parame-
ters influencing the performance degradation of such batteries,
the internal temperature is known to be one of the most impor-
tant (Broussely et al., 2005; Vetter et al., 2005). However, in
general, due to the cost and manufacturing process, the inter-
nal temperature cannot be measured, neither at the core of the
reactions nor close to the battery cells.

The Li-ion battery pack studied in this work is made up of
numerous modules, and these modules are in turn composed
of several prismatic cells. The battery temperature is measured
in the vehicles by a thermistor mounted in an interstice of an
equipped module. The measurement gives therefore an image
of the temperature of the air trapped in the module, and the in-
formation about the cell temperature is smoothed and delayed.
The reduction can reach tens of degrees, with very long time
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delays, leading to very conservative strategies of power limita-
tion. Moreover, this means that the internal parameters, which
vary according to the internal temperature, cannot be properly
estimated.

It is therefore necessary to estimate the temperature as close
as possible to the cell. To this end, the temperature and inter-
nal resistance of the cell can be reconstructed from the exter-
nal measurement given at the module level, by using a thermal
model. A similar approach was proposed to estimate the SOC in
Hu et al. (2009) and Hu and Yurkovich (2012). Lin et al. (2013)
propose an adaptive observer of the core temperature of a cylin-
drical lithium ion battery which permits to deduce the internal
resistance. In particular, monitoring the internal resistance of
the battery would make it possible to develop diagnosis func-
tions (Hall et al., 2005). In this paper the estimation of internal
resistance is used for monitoring the battery safety by detecting
abnormal conditions.

The rest of the paper is organized as follows. Section 2
presents the control-oriented modelling of heat transfers in a
battery module, leading to a Linear Parameter-Varying (LPV)
model. Then, a so-called polytopic observer, with guaranteed
convergence, is proposed in Section 3 to estimate the cell tem-
perature and internal resistance. An approach to limit the ampli-
fication of the measurement noise for high observer gains is de-
veloped. Some results obtained from a specially instrumented
module are illustrated in Section 4, showing the good quality of
the estimation and the ease of use for real-time implementation.

The main contributions of the paper are twofold: a generic
approach for the design of an observer for LPV systems en-
suring both the convergence of the estimation and a tradeoff

between the convergence speed and the noise of the estimated
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states; the estimation of Li-ion battery internal resistance and
temperature, simple to implement and built for on board diag-
nosis of batteries for electric or hybrid vehicles.

2. Thermal model

2.1. Physical model
For the design of the cell temperature observer, a control-

oriented but representative model has to be built. In our case,
the battery module contains several prismatic cells and the
model differs from the one of Lin et al. (2013), which consid-
ers a cylindrical battery. The main assumptions of the proposed
zero-dimensional model are that the cells have the same uni-
form temperature (this has been checked from measurements)
and exchange heat with the air trapped in the module by natu-
ral convection. A thermistor, used in mass-produced vehicles,
measures this air temperature. The module is cooled down by
convection, forced or not, depending on the cooling mode of
the battery pack.

The thermal model of the battery module is based on the
physical equations of heat flow balance using equivalent ther-
mal resistances (Pesaran, 2002; Guzzella and Sciarretta, 2007;
Debert et al., 2008; Forgez et al., 2010; Muratori et al., 2010;
Lin et al., 2012). The heat transfers are presented in Fig. 1,
where four temperatures are considered: the cell temperature
Tcell, the one given by the sensor Tsens, the temperature of the
cooled wall (casing) Tcas and the temperature of the air cooling
the module Tair. The difference between the cell edge and core
temperatures does not justify another state (confirm by the fact
that the Biot number is small).

Module 

Cell 

Figure 1: Heat flow transfers and equivalent resistance modelling.

The temperatures are in K, heat flows in W=J/s and thermal
resistances in K/W. At the first node, the temperature Tcell is
given by integrating the difference between the heat flows pro-
duced Q̇1 and lost Q̇2:

Tcell =

∫ t

0

Q̇1 − Q̇2

CV1

dt, (1)

where CV1 the heat capacity at constant volume (J/K) of the cell.
The heat flow Q̇1 is produced by the Joule effect and chemical
reaction:

Q̇1 = RI2
bat + Tcell∆S

1
nF

, (2)

with R the cell internal resistance (Ω), Ibat the charge/discharge
current of the battery (A), ∆S the entropy change of the cell
reaction, n the number of electrons exchanged and F the Fara-
day’s constant. However, as shown in Williford et al. (2009)
and confirmed by our experiments, the chemical contribution
∆S can be neglected for the considered chemistry, so that

Q̇1 ≈ RI2
bat. (3)

The heat flow Q̇2 lost by the cell is caused by the convection of
the air trapped inside the module:

Q̇2 =
Tcell − Tsens

Reff 1

, (4)

where Reff 1
= 1

h1A1
is a thermal resistance, with A1 the area

(m2) swept by the cooling air and h1 the heat transfer coefficient
(W/m2/K).

At the second node, the temperature measured by the sensor
Tsens is in turn modelled by:

Tsens =

∫ t

0

Q̇2 − Q̇3

CV2

dt, (5)

with CV2 the heat capacity at constant volume (J/K) of the air
trapped inside the module, and where again the heat flow Q̇3 is
expressed from a thermal resistance:

Q̇3 =
Tsens − Tcas

Reff 2

. (6)

Finally at the third node, the casing temperature Tcas is obtained
with the same approach:

Tcas =

∫ t

0

Q̇3 − Q̇4

Cp3

dt, (7)

where Cp3 is the heat capacity at constant pressure (J/K) of the
external air, and where

Q̇4 =
Tcas − Tair

Reff 3

. (8)

The temperature of the air cooling the module Tair is given by
the cooling system and the thermal resistance Reff 3

differs de-
pending on the cooling mode (convection forced or not).

2.2. State space model
It is known that the internal resistance is influenced by many

factors as the SOC, temperature or sign of the current. For the
sake of estimator design, it is assumed that battery internal re-
sistance variations are rather slow for a wide range of battery
operating conditions, because SOC and battery temperature are
typically slowly-changing as well. When the battery is nearly
fully charged or deeply discharged, these variations tend to be
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much more emphasized. However, these operating conditions
are not likely to occur, because the battery management system
needs to prevent them beforehand. On the other hand, detecting
abnormal battery state from the estimated internal resistance is
also aimed. Therefore, in order to avoid the non detection of
an abnormal situation due to an incorrect value of a parameter
like SOC, temperature, cell voltage, the cell internal resistance
R is simply assumed to vary slowly. This simplification has
been also proposed in Plett (2004) for estimating the State Of
Health (SOH) with a Kalman filter. However, if necessary, a
more complex model could be used for the internal resistance.
Thus, finally the thermal model can be written as a state space
model

Ṫcell = k1

(
RI2

bat − k4 (Tcell − Tsens)
)

Ṫsens = k2 (k4 (Tcell − Tsens) − k5 (Tsens − Tcas))
Ṫcas = k3 (k5 (Tsens − Tcas) − k6 (Tcas − Tair))
Ṙ = 0,

(9)

with the parameters k1 = 1
CV1

, k2 = 1
CV2

, k3 = 1
Cp3

,

k4 = 1
Reff1

, k5 = 1
Reff2

, k6 = 1
Reff3

.
(10)

These parameters, assumed to be constant because of the tem-
perature variation considered, can be theoretically calculated,
e.g. from Nusselt numbers (Cheron, 1999). They will be iden-
tified here from experiments, as presented below in Section 2.3.

Defining the system state vector, input and output respec-
tively as x = [Tcell Tsens Tcas R]T , u = Tair and y = Tcell, a
Linear Parameter-Varying (LPV) model in continuous time t:{ .

x(t) = Ac(ρ(t))x(t) + bcu(t)
y(t) = cx(t) (11)

can be written, with

Ac(ρ(t)) =


−k1k4 k1k4 0 k1I2

bat(t)
k2k4 −k2(k4+k5) k2k5 0

0 k3k5 −k3(k5+k6) 0
0 0 0 0

 ,
(12)

bc =


0
0

k3k6
0

 , c =
[
0 1 0 0

]
, (13)

where the varying parameter ρ(t) = I2
bat(t) is available because

the current of battery charge or discharge Ibat is measured.
Approximating

.
x(t) by (xk+1 − xk)/ts, with the sampling pe-

riod ts, a discrete-time model is finally obtained:{
xk+1 = A(ρk)xk + buk

yk = cxk,
(14)

with A = I + tsAc and b = tsbc.

2.3. Parameter identification

For the parameter identification of the proposed thermal
model (14), an experimental module was introduced in a bat-
tery pack. This module, shown in Fig. 2, is instrumented with
a thermocouple placed between the most internal cells (in red,
giving Tcell), the mass production temperature sensor (in green,
giving Tsens), and a thermocouple placed on the casing (in blue,
giving Tcas). A cycle of battery use was carried out, with a
charge followed by a typical Electric Vehicle (EV) charge de-
pleting. The gathered data have been divided in two parts, an
identification set only used for parameter estimation and a vali-
dation set for model testing. The parameters were identified by

mass production 

thermistor 

Thermocouple 

thermocouple 

a cell 
4 cell pack 

Figure 2: Specially equipped module for parameter identification.

a Nelder-Mead simplex (direct search) algorithm minimizing
the Root Mean Squared Errors (RSME) between the predicted
and measured values, giving k1 = 0.0008, k2 = 0.4657, k3 =

0.0041, k4 = 1.1461, k5 = 3.8434, k6 = 0.3801. Several ini-
tialisations have been performed to ensure satisfactory conver-
gence. For a sampling period ts = 0.1 s, this leads for system
(14) to the following matrices

A =


0.999908 9.169e−4 0 8e−4I2

bat(k)
0.533738 0.767638 1.78987 0

0 0.01575 0.998268 0
0 0 0 1

 ,
(15)

b =


0
0

1.5584e−4

0

 , c =
[
0 1 0 0

]
. (16)

Data and estimation results are shown in Fig. 3. The model
is then simulated on the validation data as shown in Fig. 4. It
is worth noting that the simulation is a N-step ahead prediction
based only on the battery current, included in the time-varying
parameter, and constant air external temperature Tair. Table 1
shows the Root Mean Squared Error and the correlation coeffi-
cient for the estimation of the three temperatures Tcell, Tsens and
Tcas on the identification data and on the validation data. The
model gives quite good results on the identification data. On
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the validation data, the errors are bigger but the dynamics are
respected. Therefore a (closed loop) observer is necessary to
compensate these estimation errors and accomodate the ageing
and parameter dispersion of batteries.
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Figure 3: Identification of the thermal model.
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Figure 4: Validation of the thermal model.

3. Observer for LPV system

This section is devoted to the design of an observer for sys-
tem (14), with guaranteed convergence while limiting the effect
of the noise measurement on the reconstructed state.

Table 1: Root Mean Squared Error (RMSE) and correlation coeffi-
cient with the thermal model for the estimation of the three tempera-
tures Tcell, Tsens and Tcas.

Data Temperature RMSE (◦C) Corr. coef.
Tcell 0.17 0.998

Identification Tsens 0.10 0.999
Tcas 0.10 0.999
Tcell 1.6 0.959

Validation Tsens 1.3 0.961
Tcas 1.2 0.957

3.1. Principle
Consider the discrete time Linear Parameter-Varying (LPV)

system subject to measurement noise{
xk+1 = A(ρk)xk + Buk

yk = Cxk + Dvk
(17)

where xk ∈ Rn, uk ∈ Rp, yk ∈ Rm are respectively the state,
input and output vectors of the system, vk ∈ Rq the zero-mean
measurement noise, and ρk a measurable time varying parame-
ter vector.

As ρk is bounded, it evolves in a compact set and can always
be included in a convex polytope Dρ. Hence, ρk admits the
polytopic decomposition

ρk =

N∑
i=1

ξi
kθi, (18)

where the vector ξk = [ξ1
k . . . ξ

N
k ]T belongs to the convex set

S = {ξk ∈ RN , ξi
k ≥ 0 ∀i,

∑N
i=1 ξ

i
k = 1}. The constant vectors

θi, . . . , θN are the N vertices of the convex polytope Dρ. Note
that, at each time k, ξk depends on the available time-varying
parameter ρk. It will be noted ξk(ρk) to recall this dependence.

Then, as the state matrix A(ρk) for LPV systems depends lin-
early on ρk, it can be rewritten in a polytopic form (Millérioux
et al., 2005; Halimi et al., 2013) as

A(ρk) =

N∑
i=1

ξi
k(ρk)Ai. (19)

The constant matrices Ai, i = 1, · · · ,N, are the vertices of the
convex hullDA including the compact set where A(ρk) evolves.

The state reconstruction for system (17) can be achieved by
a so-called polytopic observer{

x̂k+1 = A(ρk)x̂k + Buk + K(ρk)(yk − ŷk)
ŷk = Cx̂k

, (20)

where the observer gain can be time varying, i.e.

K(ρk) =

N∑
i=1

ξi
k(ρk)Ki, or constant, i.e. K(ρk) = K, which

is simpler for further use, but will constrain the LMIs to be
solved.

From (17), (20) and (19), it can be shown that the state re-
construction error εk = xk − x̂k is governed by

εk+1 = A(ρk)εk −K(ρk)Dvk. (21)
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whereA(ρk) =

N∑
i=1

ξi
k(ρk)(Ai −KiC), with Ki = K for constant

gain.
Consider first the noise free case, i.e. vk = 0 and

εk+1 = A(ρk)εk. (22)

The conditions of global convergence toward zero of the state
reconstruction error (22) are ensured from the following Theo-
rem (Millérioux et al., 2004).

Theorem 1. The global convergence of (22) is achieved when-
ever the following set of Linear Matrix Inequalities[

Pi AT
i GT

i − CT FT
i

GiAi − FiC Gi + GT
i − P j

]
> 0 (23)

where the positive-definite matrices Pi, the matrices Fi and Gi

are unknown, is feasible for all (i, j) ∈ {1, . . . ,N} × {1, . . . ,N}.

The matrices Fi and Gi are determined when solving (23) by
convex optimization.

Consider now noisy measurements, i.e. vk , 0. Although the
stability of the state reconstruction error is ensured by Theorem
1, high gain values which can be obtained by solving the LMIs
(23) can lead to unusable estimated states. Indeed, as can be
seen in (21), the observer gain K also acts on the measurement
noise. Thus, there is a need to balance the speed of convergence
and the influence of measurement noise.

To this end, let us define the upper bound σ of the L2 gain as
a scalar verifying:

sup
||v||2,0

||z||2
||v||2

< σ (24)

where zk = C̃εk. Considering zk instead of εk directly allows for
instance to select particular reconstructed states through C̃. The
following Theorem 2 can thus be stated, with a proof, based on
(Millérioux and Daafouz, 2006), given in the appendix.

Theorem 2. The global convergence of (21), with vk , 0 and
the constraint (24), is ensured if there exist symmetric matrices
Pi and matrices Gi and Fi such that, for (i, j) ∈ {1 . . .N} ×
{1 . . .N}, the following matrix inequalities are feasible

Pi 0 (GiAi − FiC)T C̃T

0 σ1 (−FiD)T 0
GiAi − FiC −FiD Gi + GT

i − P j 0
C̃ 0 0 σ1

 > 0. (25)

For both noise free and noisy cases, the time varying observer
gain is given by

K(ρk) =

N∑
i=1

ξi
kKi,with Ki = G−1

i Fi (26)

and, replacing the matrices Fi by F and Gi by G in (23) or (25),
the constant gain K simply by

K = G−1F. (27)

3.2. Limiting the noise effect

From the thermal system (14) with (15) and (16), the detri-
mental effect of the measurement noise on the estimated cell
temperature and the interest of limiting this effect are illustrated
in simulation. Note that, near zero current, the observability
matrix is not of full rank so that the system is not observable.
Thus for |Ibat | < 0.5A (maximum considered sensor error), the
observer is not active and only the open loop model (14) is run.
Another solution could be to estimate only a part of the states
and so to consider a constant internal resistance at low load.

For a battery current switching from 0.5A to 100A at 100s
during 100s and a temperature of the air cooling the module
Tair = 30◦C, the observers are simulated when a white Gaus-
sian measurement noise, with a rather weak standard deviation
of 0.1◦C, is added to the air temperature Tsens given by the
thermistor. A wide range of variation 0.5A ≤ |Ibat | ≤ 400A
is considered for the charge/discharge current. Since the time
varying parameter ρk = I2

bat(k) is scalar, the polytopic decom-
position (18) reduces to elementary computations. Indeed, ρk

evolves between the minimal ρmin and maximal ρmax values,
which are the N = 2 vertices θ1 and θ2 of the convex poly-
tope Dρ. Thus, (18) turns into ρk = ξ1

kρmin + ξ2
kρmax. Since∑N

i=1 ξ
i
k = 1, ρk = ξ1

kρmin + (1 − ξ1
k )ρmax, and (19) is reduced to

A(ρk) = ξ1
k A1 + (1− ξ1

k )A2, where A1 and A2 are obtained from
A (15) by replacing I2

bat(k) by ρmin = 0.52 and ρmax = 4002.
By applying Theorem 1 ignoring the measurement noise

and solving the LMIs (23) with the toolbox Yalmip1, a time
varying gain observer gain K(ρk) (26) is obtained by linear
interpolation between the gains K1 = [16.3139 1.6241 −

0.0738078 0.528547]T and K2 = [23.2229 1.65147 −

0.0700501 0.519493]T . Nevertheless, as illustrated in Fig. 5,
the observer yields noisy estimates, particularly for Tcell.
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Figure 5: Simulation results with noise using Theorem 1.

By using now Theorem 2 with C̃(1, 1) = 1, C̃(i, j) = 0, i, j ,
1, in order to limit the noise effect on the reconstruction of

1http://users.isy.liu.se/johanl/yalmip
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Tcell, the gains K1 and K2 are found to be similar. Then Theo-
rem 2 is applied to find a constant observer gain (27). Solving
the corresponding LMIs with, for (24), σ = 7.8 then yields
K = [0.41883 0.12281 0.03594 0.00010075]T . The results
given in Fig. 6 show that the observer with a constant gain,
easier to implement in real time, is suitable for the considered
application, and is robust to noise. Recall that the high level
bound σ (24) can be tuned in order to decrease the noise effect.
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Figure 6: Simulation with noise using Theorem 2 (constant gain, σ =

7.8).

4. Experimental Results

The observer proposed in Theorem 2, with a constant gain
(27), is now applied on two real data sets (a normal use and a
battery overcharge) for the reconstruction of the cell tempera-
ture and internal resistance, still based on model (14) with (15)
and (16).

4.1. Normal use

The first real cycle, shown on Fig. 7, concatenates a typical
EV charge depleting and a complete charge of the battery. Note
that this State Of Charge (S OC) estimation is not used by the
observer, that allows the battery monitoring unit to be indepen-
dant of this estimated variable. Again, for the state reconstruc-
tion, a wide range of variation 0.5A ≤ |Ibat | ≤ 400A is consid-
ered for the charge/discharge current. With σ = 7.8, a constant
observer gain K = [0.41883 0.12281 0.03594 0.00010075]T is
obtained. Fig. 8 shows that the temperatures Tsens and Tcas are
very well estimated, and that the cell temperature Tcell is es-
timated with a good accuracy, at least sufficient for real time
reconstruction and monitoring of the internal battery temper-
ature. The corresponding estimated time varying cell internal
resistance is shown in Fig. 9 compared with the estimation

R̂ = f (Tsens, S OC) (28)
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Figure 7: Battery current (A) (solid line) and State Of Charge (%)
(dashed line) versus time (s) for the first experimental test.

where f is commonly given by a look-up table. This table is
illustrated on Fig. 10 and the estimation R̂ is calculated from
data shown on Fig. 8 for Tsens, and Fig. 7 for S OC. The trends
of both the estimations are similar. The differences can be at-
tributed to the fact that the look-up table was built from a cell at
the beginning of its life with a static identification of the inter-
nal resistance whereas the module used for the observer design
of internal cell temperature and resistance was equipped with
cells in the middle of their lifecycle. Moreover, the observed
internal resistance represents the overall impedance of the cell
which is not the same as the static resistance (Jossen, 2006).
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Figure 8: Real and estimated temperatures (constant gain, σ = 7.8).

Table 2 shows the Root Mean Squared Error and the correlation
coefficient for the observation of the three temperatures Tcell,
Tsens and Tcas on the validation data of Section 2.3. The ob-
server improves the previous “open loop” estimation shown on
Table 1. Note that it gives relevant results even with a reduced
thermal model and the assumption of slowly varying internal
resistance.

4.2. Overcharge
The observer is now applied in a second real test, a battery

overcharge with a constant current of 8A. The real and esti-
mated temperatures are shown on Fig. 11 and the corresponding
estimated cell internal resistance on Fig. 12. Because the look-
up table does not include overcharge conditions, no comparison
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ternal resistances: proposed observer (blue solid line) and look-up-
table (28) (green dash line).
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Figure 10: Look-up table of the internal resistance (normalized w.r.t.
minimum and maximum) w.r.t. temperature and State Of Charge.

Table 2: Root Mean Squared Error (RMSE) and correlation coeffi-
cient with the polytopic observer for the estimation of the three tem-
peratures Tcell, Tsens and Tcas on the validation data.

Temperature RMSE (◦C) Correlation coef.
Tcell 0.38 0.997
Tsens 0.14 0.998
Tcas 0.14 0.998

is given. However it is known that in the case of overcharge the
internal resistance increases (Hall et al., 2005). Hence, the si-
multaneous reconstruction of the cell temperature and internal
resistance makes it possible to detect overcharges by checking
a threshold crossing of the estimated resistance. For example,
as the resistance is normalized, it must be always less than 1,
which is not the case on Fig. 12 due to the overcharge. The
proposed overcharge detection from the estimation of internal
resistance increases the battery safety since overcharge can be
monitored by two independant modules of the Battery Man-
agement System (BMS), the standard one using a cell voltage
sensor and the proposed one based on current and temperature
sensors.
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Figure 11: Real and estimated temperatures during a battery over-
charge.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time (s)

N
or

m
al

iz
ed

 in
te

rn
al

 r
es

is
ta

nc
e

 

 

Figure 12: Estimated cell internal resistance (normalized) during a
battery overcharge.
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5. Conclusion

For the simultaneous estimation of the cell temperature and
internal resistance of a Li-ion battery pack, a control-oriented
thermal modelling has been carried out. This led to a LPV
model from which an observer, with guaranteed convergence,
can be designed. A generic approach for LPV systems limiting
the influence of measurement noise on the estimates has been
proposed. Considering the quality of the estimation which has
been demonstrated on real data, the proposed observer could be
included in the battery management systems of electric vehicles
to increase availability, longevity and safety of the batteries. In-
deed, the simultaneous reconstruction of the cell temperature
and internal resistance makes it possible to develop diagnosis
functions in order for example to detect overcharges increasing
the safety during the battery charge procedure.

6. Appendix : Proof of Theorem 2

Proof. Let us define matrices Gi, Pi et Mi:

Gi =

[
Gi 0
0 σ1

]
,Pi =

[
Pi 0
0 σ1

]
,Mi =

[
Ai − FiC −FiD
σ−1C̃ 0

]
(29)

Equation (25) can be rewritten as:[
Pi (GiMi)T

GiMi Gi + GT
i − P j

]
> 0. (30)

As Pi is strictly positive, then:

GiP−1
j GT

i ≥ Gi + GT
i − P j (31)

and thus: [
Pi (GiMi)T

GiMi GiP−1
j GT

i

]
> 0. (32)

This inequality is identical to:[
1 0
0 GiP−1

j

]  Pi

(
P jMi

)T

P jMi P j

 [1 0
0 (GiP−1

j )T

]
> 0 (33)

and thus:  Pi

(
P jMi

)T

P jMi P j

 > 0 (34)

because Gi et P j are full rank matrices.
Finally, for each i = 1 . . .N, the j = 1 . . .N inequalities (34)

are multiplied by ξ j
k+1 and summed. Then, the i = 1 . . .N in-

equalities are multiplied by ξi
k and summed again. Then:[

Pk (Pk+1M)T

Pk+1M Pk+1

]
> 0 (35)

with Pk =
∑N

i=1 ξ
i
kPi et Pk+1 =

∑N
i=1 ξ

i
k+1Pi. With the Schur

complement, one has directly:

MTPk+1M − Pk < 0 (36)

with

Pk+1 =

[
Pk+1 0

0 σ1

]
,Pk =

[
Pk 0
0 σ1

]
,M =

[
A B

σ−1C̃ 0

]
(37)

and finally A =
∑N

i=1 ξ
i
k (Ai − FiC) and B =

∑N
i=1 ξ

i
k (−FiD).

Equation (36) can be then rewritten as:A
TPk+1A + σ−1C̃T C̃ − Pk ATPk+1B 0

BTPk+1A BTPk+1B − σ1 0
0 0 −σ1

 < 0.

(38)
Multiplying, respectively left and right, by [εkvk] and its trans-
pose, leads to:

V(εk+1, ξk+1)−V(εk, ξk) +σ−1(C̃εk)T (C̃εk)−σvT
k vk < 0. (39)

Considering this equation for k = 0 . . .N and summing leads
to:

V(εN+1, ξN+1) + σ−1
N∑

k=0

(C̃εk)T (C̃εk) − σ
N∑

k=0

vT
k vk < 0 (40)

. Because V(εN+1, ξN+1) = εT
N+1PkεN+1 > 0, then :

σ−1
N∑

k=0

(C̃εk)T (C̃εk) < σ
N∑

k=0

vT
k vk (41)

and, when N → ∞, this expression is equivalent to (24).

Broussely, M., Biensan, P., Bonhomme, F., Blanchard, P., Herreyre, S., Nechev,
K., Staniewicz, R., 2005. Main aging mechanisms in Li ion batteries. Journal
of Power Sources 146 (1-2), 90–96.

Cheron, B., 1999. Transferts thermiques. Ellipses.
Debert, M., Colin, G., Mensler, M., Chamaillard, Y., Guzzella, L., 2008. Li-

ion battery models for HEV simulator. In: IFP (Ed.), Advances in hybrid
powertrains. Rueil-Malmaison, France.

Forgez, C., Do, D. V., Friedrich, G., Morcrette, M., Delacourt, C., 2010. Ther-
mal modeling of a cylindrical LiFePO4/graphite lithium-ion battery. Journal
of Power Sources 195 (9), 2961–2968.

Guzzella, L., Sciarretta, A., 2007. Vehicle Propulsion Systems. Introduction to
Modeling and Optimization, 2nd Edition. Springer.

Halimi, M., Millérioux, G., Daafouz, J., 2013. Polytopic observers for LPV
discrete-time systems. In: Robust Control and Linear Parameter Varying
Approaches. Vol. 437 of Lecture Notes in Control and Information Sciences.
pp. 97–124.

Hall, J., Schoen, A., Powers, A., Liu, P., Kirby, K., 2005. Resistance growth in
lithium ion satellite cells. I. Non destructive data analyses. In: 208th Elec-
trochemical Society Meeting. Los Angeles, CA, October 16-21.

Hu, Y., Yurkovich, S., 2012. Battery cell state-of-charge estimation using linear
parameter varying system techniques. Journal of Power Sources 198, 338–
350.

Hu, Y., Yurkovich, S., Guezennec, Y., Yurkovich, B. J., 2009. A technique for
dynamic battery model identification in automotive applications using linear
parameter varying structures. Control Engineering Practice 17 (10), 1190–
1201.

Jossen, A., 2006. Fundamentals of battery dynamics. Journal of Power Sources
154 (2), 530–538.

Lin, X., Perez, H. E., Siegel, J. B., Stefanopoulou, A. G., Li, Y., Anderson,
R. D., Ding, Y., Castanier, M. P., 2013. Online parameterization of lumped
thermal dynamics in cylindrical lithium ion batteries for core temperature
estimation and health monitoring. IEEE Transactions on Control System
Technology, to appear.

8



Lin, X., Stefanopoulou, A. G., Perez, H. E., Siegel, J. B., Li, Y., Anderson,
R. D., 2012. Quadruple adaptive observer of the core temperature in cylin-
drical li-ion batteries and their health monitoring. In: Proc. American Con-
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