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Abstract

In this paper we study Exner system and introduce a modified general definition for bedload transport

flux. The new formulation has the advantage of taking into account the thickness of the sediment layer

which avoids mass conservation problems in certain situations. Moreover, it reduces to a classical solid

transport discharge formula in the case of quasi-uniform regime. We also present several numerical

tests where we compare the proposed sediment transport formula with the classical formulation and

we show the behaviour of the new model in different configurations.

1. Introduction

We are interested in the study of sediment transport in shallow water regimes. As it is said by Simons

et al. in [1], sediment particles are transported by flow in one or a combination of ways: rolling or

sliding on the bed (surface creep), jumping into the flow and then resting on the bed (saltation), and

supported by the surrounding fluid during a significant part of its motion (suspension) (See Figure 1).

There is no sharp line between saltation and suspension, and sediments may be transported partially

by saltation and then suddenly be caught by the flow turbulence and transported in suspension.

However, this distinction is important as it serves to delimit two methods of hydraulic transportation

which follow different laws, i.e., traction and suspension. This means that sediment transport occurs

in two main modes: bedload and suspended load. Here we are going to focus on bedload transport and

neglect suspension. The bedload is the part of the total load which is travelling immediately above the

bed and is supported by intergranular collisions rather than fluid turbulence (see [2]). The suspended

load, on the other hand, is the part of the load which is primarily supported by the fluid turbulence

(c.f. [3]). Thus, bedload includes mainly sediment transport for coarse materials (saltation) or fine

material on plane beds (saltation at low shear stresses and sheet flow at high shear stresses), although

both types of transport can occur together and the limit is not always easy to define.
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Surface creep Saltation Suspension

Figure 1: Transport of particles by a flow

In this context of bedload, we are interested in writing an erosion-deposition model (see for exam-

ple [4], [5]). One could assume that the sediment layer can be decomposed in two layers: a layer that

moves due to the action of the river, whose thickness is denoted by zm, and a layer composed by sed-

iments that are not moving but are susceptible to move and denoted by zf . In other words, particles

within the layer zf can be eroded and transferred to the moving layer zm and particles moving within

the layer zm can stop and be deposed on the layer zf . In general, if zb is the thickness of the erodible

bed we have the relation (see Figure 2),

zb = zm + zf . (1)

The sediment layer is supposed to stay on a non-erodible fixed layer of thickness zr which is usually

called the bedrock layer.

Let us denote by że the erosion rate and by żd the deposition rate (see Subsection 2.2 for details). In

this situation, we may consider the following coupled system of PDE,

∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x(hu2 + gh2/2) = −gh∂x(zm + zf + zr),

∂tzm + ∂xq̂b = że − żd,

∂tzf = −że + żd,

(2)

where h is the water depth, u is the flow velocity. q̂b is the volumetric bedload sediment transport

rate per unit time and width, described by some empirical law. The sediment layer is usually assumed

to be a porous layer with porosity ϕ and the definition of q̂b includes the division by (1−ϕ). Finally,

g is the acceleration due to gravity. The conservative variable hu is also called water discharge and

noted by q.

Note that in some situations the time scale associated with the bed deformation is very long compared

with the time scale of the variations of the fluid. In these cases two time scales systems could be

considered, as in [6]. This is not the approach we chose in this paper because it may not be true in

general. In fact, many time scales can be identified in the sediment transport process (see for example

[7]).
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Figure 2: Sketch of shallow water over an erodible bed

Let us remark that, by adding up the last two equations in (2) we recover a mass conservation law

also called Exner equation [8] in the context of bedload transport (see for example [9, 10, 11, 12]).

Then, the Shallow Water-Exner system (2) may be written in the form
∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x(hu2 + gh2/2) = −gh∂x(zb + zr),

∂tzb + ∂xq̂b = 0.

(3)

Despite the strong simplification hypotheses used in the derivation of the model and the lack of some

good mathematical properties of the PDE system obtained (there is neither a momentum equation

for the sediment layer nor an entropy pair) the approach of the bedload transport by means of an

empirical solid transport discharge formula is widely spread for practical purposes: see for example

[13], [14], [15], [8], [16].

In general, the solid transport discharge may depend on all the unknowns q̂b = q̂b(h, hu, zb, zf ) but

classical formulae for this bedload transport only depend on the hydrodynamical variables h and u

(see Subsection 2.1). In these cases, instead of solving system (2), it is enough to consider the reduced

system (3). With the purpose to distinguish whether solid transport discharge depends only on the

hydrodynamical variables or on all the variables, we use the following notation:

q̂b =

 qb ≡ qb(h, hu),

q̃b ≡ q̃b(h, hu, zb, zf ).

But, let us remark that if we consider a classical formula for solid transport, q̂b = qb(h, hu), the mass

conservation law for the sediment layer may fail. For instance, let us consider a situation like the one

described in Figure 3, where the sediment layer is only present in the interior of the domain.

Suppose that no sediment comes in or out of the domain through the boundaries during the time

interval [0, T ]. By integrating the third equation of (3) over [0, T ]× [a, b], we obtain
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zb(t, x)

x = a x = b

Figure 3: Sediment layer isolated in the interior of the domain

∫ b

a

(zb)|t=T dx−
∫ b

a

(zb)|t=0dx = −
∫ T

0

(q̂b|x=b − q̂b|x=a) dt. (4)

Let us suppose that the solid flux q̂b does not take into account the sediment layer thickness and only

depends on the variables h and hu, i.e. q̂b = qb. Assume a velocity high enough in order to have that

qb is non-zero, and that h and hu are not equal at the boundaries x = a and x = b. Then we will have

qb|x=a 6= qb|x=b and non-zero. Thus, in a situation like the one described in Figure 3 the right hand

side in (4) may be non zero. This means that eventually the initial sediment mass is modified by an

artificial flux at the boundary so that mass is not preserved.

Following the structure of a continuity equation, the solid discharge can be written in the form

q̂b = zmvb, (recall that zm = zb − zf , see equation (1)), (5)

where vb is the bedload velocity. The problem is to find how to close the system by defining vb. In

fact, classical formulae define directly q̂b and not vb (see equations (7)–(12)) and the dependence on

zm is not obvious due to several assumptions and simplifications.

In [17] Fowler et al. (see also [18]) propose a form to define vb in terms of a given classical transport

discharge. Concretely, Fowler et al. propose a definition of vb in terms of the solid transport discharge

proposed by Meyer-Peter & Müller. This definition can be easily extended to any other classical

bedload discharge as follows: suppose that qb(h, hu) is given by some classical empirical formula.

Then, define

q̂b(h, hu, zb, zf ) = q̃b(h, hu, zm) = zmvb with vb =
qb(h, hu)

z̄
,

where, z̄ is a parameter of the model related to the mean value of the thickness of the sediment layer.

In this paper we focus on this problem: the definition of the solid transport discharge q̂b in terms

of the sediment thickness for a given classical bedload discharge formula. This paper is organized

as follows: first, in Subsection 2.1, we review some of the classical deterministic transport discharge

formulae and we consider a unified formulation. In Subsection 2.2 we present the definition of erosion
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and deposition rate terms. In Section 3 we propose a general formulation of the solid transport

discharge. The proposed formula depends on the moving sediment layer, then the corresponding

continuity equation preserves the sediment mass. Moreover, it reduces to a given classical solid

transport discharge formula in the case of quasi-uniform regime. In Section 4 we study the influence

of the variable zb on the eigenvalues of Exner system. First we show that Exner system is hyperbolic

at least for physical situations. Second, we study the influence on the characterization of the sign of

the eigenvalues of Exner system in terms of the hydraulic regime. In Section 5 we describe briefly

the numerical approach for the simulation of the model by finite volume methods and we present

some numerical results. Concretely, in Subsection 5.2 we compare the new sediment transport model

introduced here with the classical formulation and we show the behaviour of the new model in different

configurations (academic, realistic and also in comparison with experimental data).

2. On the definition of classical bedload transport formulae, erosion and deposition rates

2.1. On the definition of classical bedload transport formulae

Many different expressions of the solid transport discharge have been proposed in the literature. In this

subsection we review some of the classical deterministic formulae and we consider a unified formulation

(equation (13)).

The bedload transport formula proposed by Grass in [13] is among the simplest ones:

qb(h, hu) =
A

1− ϕ

∣∣∣∣huh
∣∣∣∣m−1

hu

h
=

A

1− ϕ
|u|m−1u,

where A is the constant of interaction between the fluid and the sediment layer and m is a parameter

which is usually set to m = 3.

In practice, estimations of bedload transport rate are mainly based on the bottom shear stress τb, i.e.

the force of water acting on the bed during its routing. The bottom shear stress is given as

τb = ρghSf ,

where ρ is the water density and Sf is the friction term that can be quantified by different empirical

laws such as the Darcy-Weisbach or Manning formulae

• Darcy-Weisbach:

Sf =
fu|u|
8gh

,

where f is the Darcy-Weisbach coefficient.

• Manning:

Sf =
n2u|u|
h4/3

,

where n is the Manning coefficient.
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The bottom shear stress is usually used in dimensionless form, noted τ∗b , which is also called Shields

parameter. It is defined as the ratio between drag forces and the submerged weight by

τ∗b =
|τb|

(ρs − ρ)gds
, (6)

where ρs is the sediment density and ds is the diameter of sediment. The main hypothesis is that τ∗b

must exceed a threshold value τ∗cr in order to initiate motion. The threshold value τ∗cr depends on the

physical properties of the sediment and is usually computed experimentally. One of the first works on

this topic was done by Shields [19] in which τ∗cr is determined in relation with the boundary Reynolds

number.

The bedload transport rate may be represented as a function of τ∗b via a non-dimensional function q∗b

by

qb = q∗b (τ∗b )
sgn(τb)

1− ϕ
Q. (7)

In the framework of the coupling with Shallow Water equation, the definition of Q is chosen as

turbulent. Then,

Q =

√(
ρs

ρ
− 1

)
gd3

s . (8)

The following expressions have been often applied [14, 20, 16]:

Meyer-Peter & Müller (1948): q∗b (τ∗b ) = 8(τ∗b − τ∗cr)
3/2
+ , (9)

Fernández Luque & Van Beek (1976): q∗b (τ∗b ) = 5.7(τ∗b − τ∗cr)
3/2
+ , (10)

Nielsen (1992): q∗b (τ∗b ) = 12
√
τ∗b (τ∗b − τ∗cr)+, (11)

Ribberink (1998): q∗b (τ∗b ) = 11(τ∗b − τ∗cr)1.65
+ . (12)

For turbulent flows, a characteristic value of τ∗cr is 0.047.

Note that these classical bedload transport formulae can be written under the unified form

qb(h, hu) =
c

1− ϕ
(τ∗b )m1(τ∗b − τ∗cr)

m2
+ sgn(τb)Q, (13)

where c > 0, m1 ≥ 0 and m2 ≥ 1 are given constants, and Q is defined by (8) for turbulent flows.

2.2. On the definition of erosion and deposition rates

In this subsection we specify the terms of the right hand side of system (2), that is, the erosion and

deposition rate terms.

Deposition rate

In the literature we can find different definitions of the deposition rate żd, see for example [5], [21],

[22]. We can write them under the uniform structure

żd = KdV
zm
ds
, (14)
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where Kd is the deposition constant, V is the characteristic velocity, that we can define as

V =
Q

ds
, (15)

being Q the characteristic discharge. Q is defined by (8).

Erosion rate.

If erosion is possible (i.e. zf > 0), the erosion rate can be related to the shear stress, through the

relation:

że = Ke
V

(1− ϕ)
(τ∗b − τ∗cr)+, (16)

where Ke is the erosion constant and V is the characteristic velocity defined by (15).

In the following, we assume that zf does not vanish.

Remark 2.1. In [17], the erosion and deposition rates are defined in a different way, in terms of z̄, z̄

being a parameter of the model related to the mean value of the thickness of the sediment layer. It can

be written under the following structure,

że − żd = K
V̄

(1− ϕ)
(τ∗b − τ∗cr)

3/2
+

(
1− zm

z̄

)
+
, with V̄ =

√
gds

ds
z̄

√
ρs − ρ√
ρ

,

being K a constant parameter.

3. General formulation for the solid transport discharge

The solid transport discharge formula for q̂b must be in agreement with the physics of the problem: if

zm = 0, the solid transport discharge has to be 0. In this section we propose a new general formulation

of the solid transport discharge that takes into account the thickness of the sediment moving layer.

3.1. Formulation

Let us consider a classical bedload solid transport discharge, written in the form (13). Then, using

the notation of the previous section, we define the following solid transport discharge,

q̃b(h, hu, zm) = zmαc (τ∗b )m1(τ∗b − τ∗cr)
m2−1
+ sgn(τb)Q, (17)

where

α =
Kd

Keds
. (18)

That is,

q̃b(h, hu, zm) = zmvb (19)

with

vb = αc (τ∗b )m1(τ∗b − τ∗cr)
m2−1
+ sgn(τb)Q. (20)
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3.2. Properties

Theorem 3.1. The proposed formula (17) has the following properties:

i) The formula depends explicitly on zm and the continuity equation preserves the sediment mass.

ii) It coincides with a classical solid transport discharge in the case of a quasi-uniform regime.

Proof.

i) From (4), the conservation of sediment mass is obvious as whenever zm = 0 we have that the

solid flux is 0 which means that initial sediment mass is preserved in situations like the one

described in Figure 3.

ii) In a quasi-uniform regime, the deposition rate equals the erosion rate (żd = że), then from (14)

and (16), we have that
zm(1− ϕ)

ds
=
Ke

Kd
(τ∗b − τ∗cr)+. (21)

Note that zm(1 − ϕ)/ds represents a number of particles. Thus, whenever erosion and the

deposition rates are equal, we may simplify the solid transport discharge (5),

q̂b = zmvb =
Keds
Kd

vb
(1− ϕ)

(τ∗b − τ∗cr)+. (22)

Replacing α and vb by their respective values (18) and (20), we recover equation (13):

q̂b =
Keds
Kd

Kd

Keds

c

(1− ϕ)
(τ∗b )m1(τ∗b − τ∗cr)

m2
+ sgn(τb)Q = qb.

In this case we obtain a solid transport discharge that can be written without dependence on

zm.

Remark 3.1. • In the framework of Shallow Water equations, vb can be defined in terms of
√
τ∗b .

Note that if we approximate vb in terms of
√

(τ∗b − τ∗cr)+ then we obtain that qb is defined in

terms of (τ∗ − τ∗cr)3/2 corresponding, for example, to the Meyer-Peter & Müller or Fernández-

Luque and Van Beek formulae.

• To obtain (22) we have used the relation (21). Actually, the relation between the number of

particles of the moving layer and (τ∗b − τ∗cr)+ is used in the deduction of some of the most known

classical formulae for the solid transport discharge. Bagnold obtained such a linear relation by

studying the momentum transfer due to the interaction of the particles with the fixed bed (see

[23], [5]). At the fixed bed the fluid shear stress is reduced to the threshold value τcr. That is, the

momentum transfer within the moving layer zm is (τ∗b − τ∗cr)+. That implies a limitation in the

erosion rate. Consequently, a relation similar to (21) can be obtained. Moreover, such a linear

relation has been also observed experimentally by Fernández-Luque and Van Beek (see [20]).
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Remark 3.2. The solid transport discharge depends on the hydrodynamical variables only through the

shear stress or the Shields parameter. Thus, in what follows, it will be useful to rewrite

qb ≡ φ(τ∗b )
sgn(τb)

1− ϕ
Q,

where

φ(τ∗b ) = c(τ∗b )m1(τ∗b − τ∗cr)m2 ,

and

q̃b ≡ zmvb

with

vb ≡ α
φ(τ∗b )

τ∗b − τ∗cr
sgn(τb)Q.

To sum up, we have that the right hand side of the last two equations of (2) can be considered to

be zero for uniform flows where the rate of erosion and deposition are equal. In this case we may

consider a solid transport discharge formula that is independent of zm (classical bedload transport

flux). Consequently, if the rate of erosion and deposition are not equal, in the case of a non-uniform

flow, definition of a solid transport discharge independent of zm cannot be valid. For example, this is

the case that we have shown in Figure 3, and that implies the non conservation of the sediment mass

when classical formulae for q̂b, independent of zm, are applied.

4. Eigenvalues of Exner system for modified bedload transport formulae

We are interested in the study of the eigenvalues of system (2). The PDE system (2) can be written

in vectorial form as

∂tW̃ + ∂xF̃ (W ) = B̃(W )∂xW̃ + S̃(W )∂xzr + G̃, (23)

where

W =


h

q

zm

 ∈ R3, W̃ =

 W

zf

 ∈ R4

is the state vector in conservative form, where q = hu, and

F̃ (W ) =

 F (W )

0

 , F (W ) =


hu

hu2 +
g

2
h2

zmvb(h, hu)

 , B̃(W ) =

 B(W ) S(W )

0 0

 ,

B(W ) =


0 0 0

0 0 −gh

0 0 0

 , S(W ) =


0

−gh

0

 , S̃(W ) =

 S(W )

0

 ,
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G̃ =

 G

−że + żd

 , G =


0

0

że − żd

 .

The definition of vb(h, q) can be considered following the proposed model by (20). Let us remark that

with these notations system (23) can be rewritten as ∂tW + ∂xF (W ) = B(W )∂xW + S(W )∂x(zr + zf ) +G,

∂tzf = −że + żd.
(24)

System (23) can also be written in quasi-linear form as

∂tW̃ + Ã(W )∂xW̃ = S̃(W )∂xzr + G̃

where Ã(W ) = D
W̃
F̃ − B̃(W ) is the matrix of transport coefficients. More explicitly, taking into

account that vb = vb(τb) with τb ≡ τb(h, q), we have

Ã(W ) =

 A(W ) S(W )

0 0


where A(W ) = DWF (W )−B(W ),

A(W ) =


0 1 0

gh− u2 2u gh

zm
∂vb
∂h

zm
∂vb
∂q

vb

 . (25)

An important property of such systems is hyperbolicity [24] which requires that the matrix Ã(W ) is

R diagonalizable (or strictly hyperbolic when eigenvalues are distinct). Given the definition of Ã(W ),

we are concerned whether A(W ) is diagonalizable.

In what follows, we shall consider a classical bedload transport flux qb in the form (13) and we shall

assume that qb satisfies the following hypothesis:

• The solid transport flux is an increasing function of the discharge

∂qb
∂q
≥ 0, (H1)

• There exists a constant k > 0 such that

∂qb
∂h

= −k q
h

∂qb
∂q

. (H2)

Remark 4.1.
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• (H1) is equivalent to
∂τb
∂q
≥ 0

To show this, remark that from (6) we have

τ∗b = β|τb|,

where β = ((ρs − ρ)gds)
−1 and

∂τ∗b = βsgn(τb)∂τb.

Now, considering the case τ∗b > τ∗cr, (the other case being trivial), we have

∂qb
∂q

= k (m1(τ∗b − τ∗cr) +m2τ
∗
b ) (τ∗b )m1−1(τ∗b − τcr)m2−1β

∂τb
∂q

, (26)

and the result follows.

• (H2) is equivalent to
∂τb
∂h

= −k q
h

∂τb
∂q

.

This can be easily shown by comparing (26) with

∂qb
∂h

= k (m1(τ∗b − τ∗cr) +m2τ
∗) (τ∗b )m1−1(τ∗b − τcr)m2−1β

∂τb
∂h

.

• In [25], it was shown that classical formulae satisfy in general the relation

∂qb
∂h

= −k q
h

∂qb
∂q

, (27)

where k is a given positive constant. For instance, for Grass model [13] we have k = 1 and for

Meyer-Peter&Müller [14] we have k = 7/6.

Proposition 4.1. Consider any classical flux qb in the form (13) that satisfies (H1) and (H2), then

vb given by (20) satisfies

• ∂vb
∂q
≥ 0

• ∂vb
∂h

= −k q
h

∂vb
∂q

Proof. From Remark 3.2, a simple calculation shows

∂vb = α
φ′(τ∗b )(τ∗b − τ∗cr)− φ(τ∗b )

(τ∗b − τ∗cr)2
β∂τ∗b

and from (H1) - (H2) the result follows.

�
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Figure 4: Hyperbolicity of Exner system

As a consequence, the matrix A(W ) defined by (25) can be written as

A(W ) =


0 1 0

gh− u2 2u gh

−kub b vb

 , (28)

where b = zm
∂vb
∂q

.

The characteristic polynomial of A(W ) can then be written as

pA(λ) = (vb − λ)

∣∣∣∣∣∣ −λ 1

−u2 + gh 2u− λ

∣∣∣∣∣∣− gh
∣∣∣∣∣∣ −λ 1

−kub b

∣∣∣∣∣∣
= (vb − λ)[(u− λ)2 − gh)] + ghb(λ− ku).

(29)

In what follows, let us denote by

{µ1, µ2, µ3} = {vb, u±
√
gh} with µ1 < µ2 < µ3.

System (23) is thus strictly hyperbolic if and only if pA(λ) has three different solutions noted by

λ1 < λ2 < λ3. In other words if the curve f(λ) = (λ−vb)[(u−λ)2−gh)] and the line d(λ) = ghb(λ−ku)

have three distinct points of intersection (see Figure 4). We have the following result:

Proposition 4.2. Consider system (23) with (13) satisfying (H1) - (H2).

For a given state (h, q), the system is strictly hyperbolic if and only if

α− < ku < α+,

where α± will be defined later by expression (57). More explicitly,

• In the case k = 1 , the system is always strictly hyperbolic.

• In the case k = 7/6 , a sufficient condition for system (23) to be strictly hyperbolic is

|u| < 6
√
gh.

12
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Let us remark that we obtain a similar result to the case where bedload sediment transport formula

does not depend on zm, as it is shown in [25]. The proof is not exactly the same but can be done by

following similar steps as in [25]. The proof is included in Appendix A for the sake of completeness.

We are interested in classifying the different roots of the polynomial pA(λ). More explicitly, in the

case of classical bedload transport flux, it is a known fact (see [25] and references therein) that we

have always two eigenvalues of the same sign and a third one of opposite sign. We intend to show

that the behaviour with the modified bedload flux (17) is quite different. Assume that the system is

strictly hyperbolic and denote by λ1 < λ2 < λ3 the three roots of pA(λ).

Remark that (29) may be written in the form

pA(λ) = −λ3 + a2λ
2 + a1λ+ a0,

where a0, a1, a2 are the corresponding coefficients of the polynomial. In what interests us, we remark

that

a0 = vb(u
2 − gh)− kbhug.

Moreover, we also have pA(λ) = −(λ− λ1)(λ− λ2)(λ− λ3) and a0 = λ1λ2λ3.

We have 4 different cases:

Case 1: 0 < µ1. Then two possibilities arise (see Figure 5)

• a0 < 0. We have two positive eigenvalues and one negative (Figure 5(a))

• a0 > 0. We have three positive eigenvalues (Figure 5(b)))

(a) (b)

Figure 5: Case 0 < µ1

Remark that a0 > 0 is equivalent to

1 <
vb(u

2 − gh)

kbhug
=

vb(u
2 − gh)

kzm
∂vb
∂(hu)

hug

.
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(a) (b)

(c)

Figure 6: Case µ1 < 0 < µ2 < µ3

As µ1 > 0, we are in a supercritical regime u2−gh > 0. Moreover, vb/(hu) > 0 and
∂vb
∂(hu)

> 0.

Thus

zm <
vb(u

2 − gh)

k
∂vb
∂(hu)

hug

is satisfied if and only if zm is small enough.

Case 2: µ1 < 0 < µ2 < µ3. Then we have three possibilities:

• λ1 < λ2 < 0 < λ3 (Figure 6(a))

• λ1 < 0 < λ2 < λ3 (Figure 6(b))

• 0 < λ1 < λ2 < λ3 (Figure 6(c))

But now remark that sgn(vb) = sgn(u), and as µ1 < 0 < µ2 < µ3, we have necessarily u > 0

(otherwise we would have vb < 0 and u−
√
gh < 0). This means that we are in a subcritical

regime u2 − gh < 0,

a0 = vb(u
2 − gh)− kbhug < 0,

and sgn(a0) = sgn(λ1λ2). As a consequence, the only possible case is λ1 < 0 and λ2, λ3 > 0.

Case 3: µ1 < µ2 < 0 < µ3 Then we have three possibilities (Figure 7)

• λ1 < λ2 < λ3 < 0 (Figure 7(a))

• λ1 < λ2 < 0 < λ3 (Figure 7(b))

14



(a) (b)

(c)

Figure 7: Case µ1 < µ2 < 0 < µ3

• λ1 < 0 < λ2 < λ3 (Figure 7(c))

As sgn(vb) = sgn(u) we should have u < 0, otherwise we would have u+
√
gh > 0 and vb > 0.

This means we are in a subcritical region u2 − gh < 0. Thus

a0 = vb(u
2 − gh)− kbhug > 0,

and we have sgn(a0) = −sgn(λ2λ3). As a consequence the only possible case is λ1, λ2 < 0 and

λ3 > 0.

Case 4: µ1 < µ2 < µ3 < 0 Then two possibilities arise (see Figure 8)

• a0 < 0. We have two negative eigenvalues and one positive (Figure 5(a))

• a0 > 0. We have three negative eigenvalues (Figure 5(b)))

Remark that a0 > 0 is equivalent to

1 <
vb(u

2 − gh)

kbhug
=

vb(u
2 − gh)

kzm
∂vb
∂(hu)

hug

.

In this case, we have u2 − gh > 0 (supercritical regime) and a0 > 0 is equivalent to

vb(u
2 − gh)

k
∂vb
∂(hu)

hug

> zm,

which is satisfied if and only if zm is small enough.
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(a) (b)

Figure 8: Case µ1 < µ2 < µ3 < 0

To summarize the results:

• In the subcritical case (u2 − gh < 0), we have two eigenvalues of the same sign and one of

opposite sign.

• In the supercritical case (u2 − gh > 0), we have two possibilities:

– Three eigenvalues of the same sign,

– Two eigenvalues of the same sign and one of opposite sign.

Remark that the supercritical region presents a major difference compared to classical bedload trans-

port formulae. In the classical case, we always have two eigenvalues of the same sign and one of

different sign, but here there is a new possibility of having three eigenvalues of the same sign due to

the new solid transport discharge.

In this paper, we have presented two forms to obtain a solid transport discharge depending on zm.

The first one was proposed by Fowler et al. in [17] as an extension of the Meyer-Peter & Müller

formula (see Section 1). Although the idea can be easily extended for other classical models. The

second one has been proposed in Section 3. If we consider a classical model that can be written as

qb(h, u) = c (τ∗b )m1(τ∗b − τ∗cr)
m2
+ ,

then, we can resume both models as follows,

q̃(h, u, zb) = zmvb,

with vb defined as follows:

• In the case of the extension proposed by Fowler et al. we have:

vb = c1(τ∗b )m1(τ∗b − τ∗cr)
m2
+ .

• In the case of the extension proposed in Section 3 we have:

vb = c2 (τ∗b )m1(τ∗b − τ∗cr)
m2−1
+ ,
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being c1 and c2 two different constant values. The value of these constants does not have any influence

on the condition

zm <
vb(u

2 − gh)

k
∂vb
∂(hu)

hug

. (30)

In order to study the influence of the considered model in condition (30), it is enough to study the

ratio vb/
∂vb
∂(hu) . When we consider the extension proposed by Fowler et al. we obtain,

vb
∂vb
∂(hu)

=
1

2

hu

m1 +m2
τ∗b

(τ∗b−τ∗cr)+

.

For the model proposed in Section 3 we obtain the same result but by substituting m2 by m2 − 1.

Consequently, if we consider the Meyer-Peter & Müller formula, corresponding to m1 = 0, m2 = 3/2,

we obtain that the maximum value of zm verifying condition (30) for the case of the model proposed

by Fowler et al. is 3 times smaller than for the case of the model proposed in Section 3.

5. Numerical results

5.1. Numerical approach by finite volume methods

As usual, we consider a set of computing cells Ii = [xi−1/2, xi+1/2], i ∈ Z. We shall assume that these

cells have a constant size 4x and that xi+1/2 = i4x. The point xi = (i− 1/2)4x is the center of the

cell Ii. Let 4t be the time step and tn = n4t.

We denote by Wn
i = (hni , q

n
i , z

n
m,i)

T the approximation of the cell averages of the exact solution

Wn
i
∼=

1

4x

∫ xi+1/2

xi−1/2

W (x, tn)dx,

and

Hn
i = znf,i + zr,i, with znf,i

∼=
1

4x

∫ xi+1/2

xi−1/2

zf (x, tn)dx, zr,i ∼=
1

4x

∫ xi+1/2

xi−1/2

zr(x)dx.

Following the ideas presented in [26], we propose a two-step numerical scheme by solving first the

pure hydrodynamical part and then by treating the transfer terms between the static layer and the

rolling particles layer in a second step.

Let us suppose that the values Wn
i and Hn

i are known. In order to advance in time we proceed as

follows:

• First Step. We solve first the hyperbolic non-conservative system (2) where we neglect the

erosion and deposition terms which will be treated in the second step. To solve the system, we

propose here a scheme based on the theory of path-conservative numerical schemes introduced

in [27]. In particular, we propose here a Roe scheme based on a Roe linearization of the matrix

A(W ) in the sense introduced in [28, 29, 30]. For the sake of completeness, we give here the

main ideas of the scheme.
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Given a family of paths Φ, a matrix function AΦ : Ω×Ω→MN (R) is called a Roe linearization

if it satisfies:

– for any Wl,Wr ∈ Ω, AΦ(Wl,Wr) has N real eigenvalues;

– AΦ(W,W ) = A(W ), for all W ∈ Ω;

– for any Wl,Wr ∈ Ω:

AΦ(Wl,Wr)(Wr −Wl) =

∫ 1

0

A
(
Φ(s;Wl,Wr)

)
∂sΦ(s;Wl,Wr) ds. (31)

The simplest choice of paths is the family of segments Φ(s,Wl,Wr) = Wl + s(Wr −Wl). Once a

Roe linearization has been selected, a path-conservative Roe scheme can be defined as follows:

We define W
n+1/2
i = (h

n+1/2
i , q

n+1/2
i , z

n+1/2
m,i )T as

W
n+1/2
i = Wn

i −
∆t

∆x

(
Dn,+
i−1/2 +Dn,−

i+1/2

)
,

where Dn,±
i+1/2 = D(Wn

i ,W
n
i+1, H

n
i , H

n
i+1)±, being

D(Wi,Wi+1, Hi, Hi+1)± =
1

2

(
I ± sgn(Ai+1/2)

) (
F (Wi+1)− F (Wi) +Bi+1/2(Wi+1 −Wi)

+Si+1/2(Hi+1 −Hi)
)
.

where I is the identity matrix, Ai+1/2 = AΦ(Wi,Wi+1), sgn(Ai+1/2) is the matrix sign of Ai+1/2

and

Bi+1/2 = B

(
Wi +Wi+1

2

)
, Si+1/2 = S

(
Wi +Wi+1

2

)
. (32)

As it was stated in [9] it is possible to write an exact Roe matrix for the Grass model for the

family path of segments. Nevertheless, it is not possible or it is very costly to write a exact Roe

matrix for other models, such as Meyer-Peter&Müller or some other models considered in this

work. So, in practice the following approximation can be used

Ai+1/2 =


0 1 0

ghi+1/2 − u2
i+1/2 2ui+1/2 ghi+1/2

−kui+1/2bi+1/2 bi+1/2 vb,i+1/2

 , (33)

where we assume
∂qb
∂h

= −k q
h

∂qb
∂q

,

that is a Roe matrix in the form (28). In particular, the usual definitions

hi+1/2 =
hi + hi+1

2
, ui+1/2 =

√
hiui +

√
hi+1ui+1√

hi +
√
hi+1

,

are taken, which corresponds to the choice of segments as the path connecting two different

states. See [28, 29, 30] for further details.
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The term bi+1/2 is approximated by

bi+1/2 =
zm,i + zm,i+1

2

∂qb
∂(hu)

(hi+1/2, hi+1/2ui+1/2).

An other possibility in approaching the matrix Ai+1/2 is to use the technique proposed in

[31, 32, 33]. In order to compute an approximation of the Roe linearization for the family of

segments we should have

Ai+1/2 =

∫ 1

0

A(Φ(s,Wi,Wi+1))ds. (34)

The right hand side of (34) can be approximated directly via a Gaussian quadrature rule of

suitably high order of accuracy. This purely numerical procedure does not require the explicit

computation of the Roe averages. Therefore, using a Gaussian quadrature rule with M points on

the unit interval [0, 1], weights ωi and positions µi respectively, we compute an approximation

of Ai+1/2 by

Ai+1/2 ≈
M∑
j=1

ωiA(Φ(µi,Wi,Wi+1)). (35)

• Second step.

Next, we take into account the erosion and deposition rates.

We define

Wn+1
i = (h

n+1/2
i , q

n+1/2
i , zn+1

m,i )T , Hn+1
i = zn+1

f,i + zr,i,

where 
zn+1
m,i = znm,i + ∆t(ż

n+1/2
e,i − żn+1/2

d,i ),

zn+1
f,i = znf,i + ∆t(−żn+1/2

e,i + ż
n+1/2
d,i ),

and ż
n+1/2
e,i = że,i(W

n+1/2
i ), ż

n+1/2
d,i = żd,i(W

n+1/2
i ).

5.1.1. High order extension

In order to extend the numerical scheme to high order, let us consider a state reconstruction operator

P t, that is, an operator that associates, to a given sequence {Wi(t)}, two new sequences
{
W−i+1/2(t)

}
,{

W+
i+1/2(t)

}
in such a way that, whenever

Wi(t) =
1

∆x

∫
Ii

W (x, t)dx, ∀i ∈ Z;

for some regular function W , then

W±i+1/2(t) = W (xi+1/2, t) +O(∆xp), ∀i ∈ Z.

For conservative hyperbolic systems it is enough with these reconstructions, nevertheless for non-

conservative terms it is necessary to know the state reconstruction over the interval Ii.
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Then, firstly, over each control volume Ii, at each instant t > 0, we define regular functions P̃i and

P zri such that

lim
x→x+

i−1/2

P̃i(x) = W̃+
i−1/2(t), lim

x→x−
i+1/2

P̃i(x) = W̃−i+1/2(t), (36)

lim
x→x+

i−1/2

P zri (x) = (zr)
+
i−1/2(t), lim

x→x−
i+1/2

P zri (x) = (zr)
−
i+1/2(t). (37)

We shall denote by Pi(x) and P
zf
i (x) the first 3 components and the last component of P̃i(x) respec-

tively and PHi = P
zf
i + P zri

Then, following [34], we propose the numerical scheme:



d

dt
Wi = − 1

∆x

(
D+
i−1/2 +D−i+1/2

+

∫
Ii

A(Pi(x))
d

dx
Pi(x)dx+

∫
Ii

S(Pi(x))
d

dx
PHi (x)dx

)
+G(Wi),

d

dt
(zf )i = −że + żd

(38)

where

D±i+1/2 = D(W̃−i+1/2, W̃
+
i+1/2) =

1

2

(
I ± sgn(Ai+1/2)

)(
F (W+

i+1/2)− F (W−i−1/2)

+Bi+1/2(W+
i+1/2 −W

−
i+1/2) + Si+1/2(H+

i+1/2 −H
−
i+1/2)

)
, (39)

and now Bi+1/2, Si+1/2, Ai+1/2 are defined in a similar way as in (32) - (33) but using the reconstructed

states W±i+1/2.

For the time evolution, we use a high order TVD Runge-Kutta as the one proposed in [35].

5.1.2. Application to the 2D case

The 2D version of system (2) writes

∂th+ ∂x(hux) + ∂y(huy) = 0,

∂t(hu
x) + ∂x(h(ux)2 + gh2/2) + ∂y(huxuy) = −gh∂x(zm + zf + zr),

∂t(hu
y) + ∂x(huxuy) + ∂y(h(uy)2 + gh2/2) = −gh∂y(zm + zf + zr),

∂tzm + ∂xq̃b
x + ∂y q̃b

y = że − żd,

∂tzf = −że + żd,

(40)

where u = (ux, uy) are the components of the velocity vector and

q̃b = (q̃b
x, q̃b

y) = q̃b(h, h |u| , zm) sgn(u),

where q̃b(h, hu, zm) is given by the 1D model (17). Here we are using the notation

|v| =
√

(vx)2 + (vy)2, sgn(v) =
v

|v|
, for any vector v = (vx, vy) ∈ R2. (41)
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It is easy to define a numerical scheme for the 2D problem (40) from a 1D numerical scheme. The

point is to follow the ideas presented in [36].

System (40) can be written in the form

∂tW̃ + ∂xF̃1(W ) + ∂yF̃2(W ) = B̃1(W )∂xW̃ + B̃2(W )∂yW̃ + S̃1(W )∂xzr + S̃2(W )∂yzr + G̃, (42)

where W = (h, hux, huy, zm)T is the state vector, W̃ = (WT , zf )T ,

F1(W ) = (hux, h(ux)2 + 1/2gh2, huxuy, q̃b
x)T , (43)

F2(W ) = (huy, huxuy, h(uy)2 + 1/2gh2, q̃b
y)T , , (44)

F̃j(W ) = (Fj(W )T , 0)T , j = 1, 2, (45)

B̃j(W ) =

 Bj(W ) Sj(W )

0 0

 , j = 1, 2, B1(W ) = −ghE2,4, B2(W ) = −ghE3,4, (46)

where Eij denotes the canonical base of matrices of size 4× 4 and

S̃j(W ) = (Sj(W )T , 0), j = 1, 2, S1(W ) = (0,−gh, 0, 0)T , S2(W ) = (0, 0,−gh, 0)T . (47)

G̃ denotes the erosion and deposition terms

G̃ = (GT ,−że + żd)
T , G = (0, 0, 0, że − żd)T . (48)

Equation (42) can also be written in the form given by ∂tW +A1(W )∂xW +A2(W )∂yW = S1(W )∂x(zf + zr) + S2(W )∂y(zf + zr) +G,

∂tzf = −że + żd,
(49)

where Aj(W ) = DWFj(W )−Bj(W ) for j = 1, 2.

System (40) is invariant under rotations. More explicitly: for any unit vector ~n = (n1, n2), let us

define the matrix

T~n =


1 0 0 0

0 n1 n2 0

0 −n2 n1 0

0 0 0 1

 (50)

and denote by F~n = n1F1 + n2F2 and B(W ) = (B1(W ), B2(W )). Then, we have

F~n = T−1
~n F1(T~nW ), (51)

T~n(B(W ) · ~n) = B1(T~nW ), (52)

and system (42), without erosion/deposition terms, is written equivalently in the form

∂t(T~nW ) + F1(T~nW ) = B1(T~nW )∂~nW + T~n
(
−∂~n⊥F~n⊥(W ) + (B(W ) · ~n⊥)∂~n⊥W

)
. (53)
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The design of the numerical scheme is done by using (53) at each edge of a mesh, being ~n the normal

vector to the edge. We begin by defining a mesh of the considered domain Ω into control volumes.

We denote the volumes that define the mesh by Ki. Let Eij denote the common edge between the

volumes Ki and Kj and ~nij the unitary normal vector to Eij pointing from Ki to Kj . The structure

of a 2D finite volume method is given by

Wn+1
i = Wn

i −
∆t

|Ki|
∑
j∈Ki

|Eij |Ψ(Wn
i ,W

n
j , ~nij) +

∆t

2|Ki|
∑
j∈Ki

|Eij |B~nij
(Wn

j −Wn
i ), (54)

where Ψ(Wn
i ,W

n
j , ~nij) is an approximation of the normal flux associated to the edge Eij and B~nij

is

an approximation of B(W ) · ~nij . The 2D numerical flux Ψ(Wn
i ,W

n
j , ~nij) can be computed by

Ψ(Wn
i ,W

n
j , ~nij) = T−1

~nij
Ψ(T~nij

Wi, T~nij
Wj). (55)

where Ψ(Wi,Wj) is the numerical flux function of a 1D system, obtained from the 2D system by a

projection over ~nij . This can be defined following the ideas presented previously for the 1D case.

5.2. Numerical tests

We present in this section several numerical tests. We have performed some purely academic tests,

in order to validate the code, but also some more realistic tests (e.g. dune in two dimensions), and a

comparison with experimental data.

Unless otherwise specified, the numerical tests have been performed using a first order scheme with

800 finite volumes.

5.2.1. Eigenvalues in a supercritical case

In this section, we give examples to illustrate the sign of eigenvalues for supercritical flows. We proved

in section 4 that in the classical case, we always have two eigenvalues of the same sign and one of

different sign, but here there is a new possibility of having three eigenvalues of the same sign due to

the new solid transport discharge.

The first results are given in Figures 9–10: we plot the eigenvalues for a supercritical case where both

transport discharges have the same behavior, namely two eigenvalues of the same sign and one of

different sign. We obtain in both cases an antidune, moving towards inflow. The parameters are the

following: ρ = 1000 kg/m3, ρs = 2612.9 kg/m3, ds = 5.8 · 10−3 m, n = 0.04, τcr = 0, V = 10−3 m/s,

c = 8, Kd = 0.1, Ke = 1. The topography is taken as zb = 0.5 + 0.1 exp(−(x − 5)2), zm = 0.45, and

zf = zb − zm (zr = 0), ϕ = 0, m1 = 0, m2 = 3/2 and the flow is initially defined by
q = 0.4,

u2

2
+ g (h+ zb) = 10.13.

Open boundary conditions have been used.

22



0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

t = 0.00

Surface
zb
zf

(a) Initial conditions

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

t = 5.00

Surface
zb
zf

(b) Solution at t = 5

Figure 9: Free surface, bottom surface (zb) and layer of sediments that are not moving (zf ) in a supercritical case for

which there are two positive and one negative eigenvalues with the new bedload transport discharge
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(b) Solution at t = 5

Figure 10: Comparison between the eigenvalues of System (2) and the one of the Shallow Water system in a supercritical

case for which there are two positive and one negative eigenvalues with the new bedload transport discharge

We also run another test where we only change the value of zm: zm = 0.1.

In this case, we obtain three positive eigenvalues, see Figures 11–12. The bump is going upstream:

it is a case of antidune. But this configuration cannot be obtained with a classical formula for the

transport discharge.

5.2.2. Validation thanks to an analytical solution

In the spirit of [37], we obtained a family of analytical solutions, given by equations (59)–(60). The

derivation is detailed in Appendix B. With these solutions, we validate our code for the new bedload

formula. We plot in Figure 13 the analytical solution and the approximate solution for q = 0.5,

A = 0.1, B = 0.005, C = 0.1, Kd = 1, Ke = 1, V = 5 · 10−3 m/s, ds = 5.8 · 10−3 m, ϕ = 0, m2 = 3/2,

C1 = 100 and
(
u2

2 + g (h+ zb)
)
|t=0

= 20 (recall that m1 = 0, zr = 0 and τ∗cr = 0). On the left
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Figure 11: Free surface, bottom surface (zb) and layer of sediments that are not moving (zf ) in a supercritical case for

which there are three positive eigenvalues with the new bedload transport discharge
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Figure 12: Comparison between the eigenvalues of System (2) and the one of the Shallow Water system in a supercritical

case for which there are three positive eigenvalues with the new bedload transport discharge

boundary, we impose q = 0.5 and zm = 0.0107, and on the right boundary the discharge is fixed

q = 0.5.

The two solutions (exact and approximate) coincide.

5.2.3. Case of a rectangular dune: value of τ∗cr

We carry on the numerical tests with a rectangular dune, as in [9]. When we consider a value τ∗cr, we

observe that there is a point at the beginning of the dune that distinguish into two different zones:

the part of the dune that does not move and the one that is moving. The goal of this test is to study

this point, which we may call the rupture point, and its relation with the value of τ∗cr.

For this numerical experiment, we consider Darcy-Weisbach friction term with f = 0.1, the characteris-

tic velocity V = 10−2 m/s; the porosity is ϕ = 0, and the diameter of the sediments is ds = 5.8·10−2 m.
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Figure 13: Comparison between the approximate and the analytic solution: free surface, bottom surface (zb) and layer

of sediments that are not moving (zf )

For the bedload transport formula (13), we take c = 8, m1 = 0 and m2 = 3/2, and, for the erosion

and deposition rates, we take Kd = 0.1 and Ke = 1.

The initial conditions are given by the subcritical solution of
q = 0.2,

u2

2
+ g (h+ zb) = 10.42,

(56)

with zm = 0, zr = 0 and zb = 0.1 + 0.5 · 1[4,6](x). We impose q = 0.2 on the left boundary, and we

run several tests with τ∗cr varying from 0.008 to 0.027, see Figure 14.

At the rupture point, which is located at x = 3, one expects that τ∗b = τ∗cr for long times and that the

Shallow Water relations (56) are satisfied. This is shown in Figure 15. Remark that these relations

are equivalent for the classical and new model.

5.2.4. Case of a dune in one dimension

The first goal of this test is to study the respective localizations of erosion and deposition. In [38], the

authors claims that bumps and upwind slopes get more eroded than dips and downwind faces; that

is what we want to check.

We split this test in two parts, depending on the flow regime.

Subcritical case. We choose to run the code over a submerged dune over a flat bottom. More precisely,

we take the following parameters: we consider (8) and a Manning formula with coefficient n = 0.04, the

characteristic velocity V = 10−3 m/s; the porosity is ϕ = 0, the densities are ρ = 1000 kg/m3 for the

water and ρs = 2612.9 kg/m3 for the sediments, and the diameter of the sediments is ds = 5.8·10−5 m.

For the bedload transport formula (13), we take c = 8, m1 = 0 and m2 = 3/2, and, for the erosion

and deposition rates, we take Kd = 0.1 and Ke = 1.
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Figure 14: Bottom surface (zb) with the new bed load transport formula for the evolution of a rectangular dune, with

three different values of τ∗cr
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Figure 15: Comparison between theoretical an numerical values at rupture point x = 3

We start from a stationary state for Shallow Water, namely the subcritical solution of:
q = 0.5,

u2

2
+ g (h+ zb) = 10.42,

and we impose the value of q = 0.5 on the left boundary (subcritical flow).

The bottom zb is chosen as zb|t=0 = 0.1+0.1 exp
(
−(x− 5)2

)
, without non-erodible fixed layer (zr = 0),

and we take zm|t=0 = Ke

Kd
ds

(
τ∗b |t=0 − τ

∗
cr

)
+

in order to even out erosion and deposition at the initial

time.

We give in Figure 16 the results at time t = 50. The difference between erosion and deposition rates

is drawn. A positive value means that erosion is predominant, whereas when the value is negative,

deposition is predominant. The dashed line represents the values of the bottom zb (values given by
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Figure 16: Erosion and deposition rates for a dune (left axis). Bottom is drawn (right axis) to show its influence

the right scale). As said by Andreotti et al., erosion is predominant on the left part of the dune (the

flow is accelerated, there is an increase of the shear), and deposition is effective on the right part of

the dune.

In that case, we can compare the behavior of the new and the classical solid transport discharges.

Indeed, this one-dimensional dune is a test case that returns non-physical results for a lot of numerical

models, giving a straight front of the dune. The usual way to get acceptable results is to change the

numerical resolution by adding some numerical viscosity.

We present in Figure 17 the results at times 300, 1000, 2000, 4000 with the two formulations for the

solid discharge.

We notice that the new formulation is more realistic than the classical one. On the right part of the

dune indeed, the straight line given by the classical model is not physical, which is corrected by the

deposition in the proposed model.

We can also plot the boundary between the layer of moving particles and the layer of sediments that

are not moving, see Figure 18.

Supercritical case. We turn out to study this dune case for a supercritical regime, choosing the char-

acteristic velocity V = 10−5 m/s, the diameter of the sediments is ds = 10−4 m and for the erosion

and deposition rates, we take Kd = 0.04 and Ke = 0.1 (other parameters remain unchanged).

We start from a supercritical stationary state for Shallow Water, solution of:
q = 1.25,

u2

2
+ g (h+ zb) = 10.42,

and we impose the value of q = 1.25 on the left boundary.
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Figure 17: Bottom surface (zb) with the new and classical bedload transport formulae for the evolution of a dune
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Figure 18: Bottom surface (zb) and layer of sediments that are not moving (zf ) with the new bedload transport formula

for the evolution of a dune

Results are given in Figures 19-20: in Figure 19, we plotted the two bottom layers, the water height

and the difference between erosion and deposition rates for various values of the time. In Figure 20,

we complete the previous results with the square of the Froude number, giving a visual criterion to

known the flow regime (whether it is greater than one or not).

For small time values, the deposition is greater than the erosion at the top of the dune and reversed far

from the top of the dune. As a consequence the thickness of the sediment layer zm increases faster at

the top of the dune which generates a hydraulic jump which propagates upstream. As the shock leaves

the domain, the fluid changes from subcritical (upstream of the dune) to supercritical (downstream).

Erosion is then grater than deposition downstream of the dune while it is reversed upstream. The

assertion given by Andreotti et al. in not valid in this supercritical case anymore: deposition is now

predominant on the left part of the dune (upwind slope).

5.2.5. Case of a rectangular dune in two dimensions

We carry on the numerical tests with a rectangular dune, in two dimensions. For this numerical

experiment, we consider the rectangular domain [1, 10] × [−0.5, 0.5] with 80 finite volumes in the

x-direction and 50 finite volumes in the y-direction. A second order scheme has been used for the

simulations. We have performed this test for a non-trivial zr, given by zr = 0.5 − 0.01x, with

zf = 0.15 ·1[3,5](x) ·1[−0.2,0.2](y), zm = 0.05 ·1[3,5](x) ·1[−0.2,0.2](y). The values of the parameters are:

ds = 5.8 · 10−4 m, V = 10−3 m/s, Kd = 0.5 and Ke = 5, c = 40, m1 = 0, m2 = 3/2 and τ∗cr = 0.5. We

choose a Manning friction term with n = 0.04. On the left boundary, we impose q = 0.25 and zm = 0,

on the right boundary, we impose h = 0.6101, and the initial solution corresponds to a subcritical
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(b) Evolution at t = 100
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(c) Evolution at t = 130
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(d) Evolution at t = 160
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(e) Evolution at t = 200
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(f) Evolution at t = 500

Figure 19: Evolution of a dune in an initial supercritical regime. The left axis represents the height for surface and

bottom and the right axis represents the difference between erosion and deposition rates
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Figure 20: Square of the Froude number (i.e. u2/(gh)) for the dune in an initial supercritical regime, at several times.

When it is greater than 1, the flow is supercritial, whereas on the contrary, the flow is subcritical

regime satisfying 
q = 0.25,

u2

2
+ g (h+ zb) = 10.

The results are given in Figure 21, and we can see erosion effects on the left part of the dune, deposition

effects on the right part. More precisely, this test shows several results. First, starting from a quite

large moving layer (zm = 0.05 m while the dune is 0.2 m high), the moving layer becomes smaller to

attain a size of the order of the diameter of grains. Concerning the profile of the dune, the front was

sharp at the initial time but, thanks to deposition, the layer of sediments that are not moving (zf )

increases and it creates a smooth profile.

5.2.6. Propagation of a sediment bore

We intend now to apply the new model presented here to a experiment shown in [32] and [39]. The

experiment consists in a steep-sloped, rectangular channel of finite length. The bed profile is in quasi-

equilibrium and a constant sediment supply is fed upstream. At reference time t = 0, this equilibrium

situation is perturbed by the rapid raise of a submerged weir at the downstream end of the flume,

imposing a subcritical condition. The water and sediment discharges at the upstream section are kept

constant. This hydraulic configuration gives rise to a hydraulic jump and a sediment bore. The flume

is 6.9 m long, 0.50 m wide and the slope is equal to 3.02%. The sediment and water discharges are

qb = 0.136 L/s and q = 12 L/s, respectively. Uniform coarse sand with a mean diameter of 1.65 mm

and with a porosity of 0.42 is considered. Finally, Manning coefficient is n = 0.0165 m−1/3s. We refer

to [32] and [39] for a detailed description of the experiments. We remark that we lack some of the

information needed when applying the new solid transport discharge introduced here as we do not

know information such as the thickness of the sediment layer zm or the parameters that define the
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(c) Solution for y = 0 at t = 1
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(d) Solution for y = 0 at t = 10
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Figure 21: Free surface, bottom surface (zb), layer of sediments that are not moving (zf ) and bedrock layer (zr) with

the new bedload transport formula for the evolution of a two dimensional rectangular dune on an inclined plane
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Figure 22: Position of the bore (left) every 35s from t = 100 to t = 205 and erosion-deposition rates (right). In left

picture, dashed and continuous lines represent the bottom surface (zb) and the layer of sediments that are not moving

(zf ) respectively. In right picture, positive values correspond to regions where erosion is predominant over deposition

erosion (16) and deposition (14) rates. For practical purposes we set an initial thickness zm = 0.01.

We then run the test for different ratios between erosion and deposition rates. Then, the position of

the bore is obtained as in [32] and compared to experimental data. Evolution of the bore and erosion-

deposition rates are shown in Figure 22 and the front position is shown in Figure 23 for different ratios

of erosion and deposition (18). In general, we see that in spite of uncertainty of some parameters, the

numerical results agree with experimental data. Nevertheless, we remark that the speed of the bore

is reduced for long times. This is due to the fact that deposition is stronger than erosion downstream,

which means that zm is progressively reduced which means that the velocity of the sediment layer

is reduced. We conclude thus that a correct parametrization of the erosion and deposition rates is

crucial as the speed of the bore strongly depends on them.

6. Conclusions

We have introduced a general formulation for solid transport flux that takes into account the thick-

ness of the sediment layer. Compared to classical formulae this one has the advantage of preserving

sediment mass in situations where sediment is isolated inside the considered domain. This new for-

mulation reduces to the classical one when we consider quasi-uniform regimes. Moreover, it considers

two layers of sediment: one that is actually moving due to the fluid and one that is not moving but

could be entrained into the moving layer. As a consequence, the ideas taken into account are closer

to the physics of the problem. Numerical simulations show that this generalization of solid transport

flux is very promising. In particular, we remark that the vertical profiles on the front of an advancing

dune (characteristic when using a classical formulation) are avoided and smoothed in a more realistic

way.
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Appendix A

Proof of Proposition 4.2

We define the two tangents of the curve f(λ) which are parallel to d(λ). Their intersections with f(λ)

are characterized by f ′(λ) = ghb which yields to two values of λ of the form

λ±
def
=

2u+ vb ±
√

(u− vb)2 + 3(gh+ ghb)

3
.

The two tangents are such that d±(λ±) = f(λ±). This implies the equations for the tangents are

given by

d±(λ) = ghb(λ− α±)

with

α±
def
= λ± −

f(λ±)

ghb
. (57)

The roots of pA(λ) which correspond to the eigenvalues of A(W ) are given as the intersection of f(λ)

and d(λ) (see Figure 4).

Recall that f(λ) is a third order polynomial with roots {µ1, µ2, µ3} =
{
vb, u±

√
gh
}

. The equation

pA(λ) = d(λ) − f(λ) will have 3 distinct solutions if and only if the line d(λ) lies in between d−(λ)

and d+(λ). This can be equivalently written as α− < ku < α+.

It can be checked that we always have α− < u −
√
gh < u < u +

√
gh < α+ so the system is always

hyperbolic in the case k = 1. In the case k = 7/6, if |u| < 6
√
gh, we have u−

√
gh < 7

6u < u+
√
gh

and thus the hyperbolicity condition is verified which concludes the proof.

�
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Appendix B

Analytical solutions

Following [37], we can obtain analytical solutions for System (2). Considering the new solid transport

discharge, a constant water discharge q = hu and a water height that only depends on x (i.e. h = h(x)),

then u = u(x) = q/h(x), System (2) reduces to:

q = cst,

∂th = 0,

∂x

(
u2

2
+ g (h+ zb)

)
= 0,

∂tzb + ∂xq̃b = 0,

∂tzf = żd − że.

(58)

Differentiating the third equation of System (58) with respect to time, we get: ∂txzb = 0. Then,

differentiating the fourth equation with respect to space, we obtain: ∂xxq̃b = 0, and

q̃b = A(t)x+B(t) = zmαcQsgn(τb)(τ
∗
b )m1(τ∗b − τ∗cr)

m2−1
+ = zmC(τ∗b )m1(τ∗b − τ∗cr)

m2−1
+ .

In order to simplify the computations, we use Darcy-Weisbach friction law (in this case, Sf is a function

of u only and does not depend on h) and we rewrite τ∗b as :

τ∗b =
fu2

8
(
ρs
ρ − 1

)
gds

= C1u
2.

Let us assume that m1 = 0, τ∗cr = 0; then

q̃b = A(t)x+B(t) = zmC(C1u
2)m2−1.

As (C1u
2)m2−1 does not depend on the time, we have:

0 = ∂t
A(t)x+B(t)

zm
=

(A′(t)x+B′(t))zm + (A(t)x+B(t))∂tzm
z2
m

,

and

∂tzm =
A′(t)x+B′(t)

A(t)x+B(t)
zm,

The last equation of System (58) reads:

∂tzf = −że + żd = −Ke
V

1− ϕ
(τ∗b − τ∗cr)+ +KdV

zm
ds

= −Ke
V

1− ϕ
C1u

2 +KdV
zm
ds

then

−A(t) = −∂xq̃b = ∂tzb = ∂t(zf + zm) = −Ke
V

1− ϕ
C1u

2 +KdV
zm
ds

+
A′(t)x+B′(t)

A(t)x+B(t)
zm.
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If we choose A(t) = A and B(t) = B two constants, then zm does not depend on time and we obtain:
−A = −Ke

V

1− ϕ
C1u

2 +KdV
zm
ds
,

Ax+B = zmC(C1u
2)m2−1,

that is
Ke

V

1− ϕ
C1u

2 = A+KdV
zm
ds
,

Ax+B = zmC(C1u
2)m2−1,

or


C1u

2 =

(
A+KdV

zm
ds

)
1− ϕ
V Ke

,

Ax+B = zmC

((
A+KdV

zm
ds

)
1− ϕ
V Ke

)m2−1

.

Let us summarize the formulae: at the initial time,

q = cst,

zm is the solution of Ax+B = zmC

((
A+KdV

zm
ds

)
1− ϕ
V Ke

)m2−1

,

u =

√(
A+KdV

zm
ds

)
1− ϕ
V Ke

1

C1
,

h =
q

u
,

∂tzb = −A with zb|t=0 given by

(
u2

2
+ g (h+ zb)

)
|t=0

= cst,

(59)

and the evolution in time is performed as

zf = −At+ zf |t=0 = −At+ zb|t=0 − zm. (60)
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