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Abstract

In this paper we study Exner system and introduce a modified general definition for bedload transport
flux. The new formulation has the advantage of taking into account the thickness of the sediment layer
which avoids mass conservation problems in certain situations. Moreover, it reduces to a classical solid
transport discharge formula in the case of quasi-uniform regime. And as a particular case we obtain
a model that introduces saturated effects. We also present several numerical tests where we compare
the proposed sediment transport formula with the classical formulation and we show the behaviour of
the new model in different configurations.

1. Introduction

We are interested in the study of sediment transport in shallow water regimes. As it is said by Simons
et al. in [1], sediment particles are transported by flow in one or a combination of ways: rolling or
sliding on the bed (surface creep), jumping into the flow and then resting on the bed (saltation), and
supported by the surrounding fluid during a significant part of its motion (suspension) (See Figure 1).
There is no sharp line between saltation and suspension, and sediments may be transported partially
by saltation and then suddenly be caught by the flow turbulence and transported in suspension.
However, this distinction is important as it serves to delimit two methods of hydraulic transportation
which follow different laws, i.e., traction and suspension. This means that sediment transport occurs
in two main modes: bedload and suspended load. Here we are going to focus on bedload transport and
neglect suspension. The bed load is the part of the total load which is travelling immediately above the
bed and is supported by intergranular collisions rather than fluid turbulence (see [2]). The suspended
load, on the other hand, is the part of the load which is primarily supported by the fluid turbulence
(c.f. [3]). Thus, bed load includes mainly sediment transport for coarse materials (saltation) or fine
material on plane beds (saltation at low shear stresses and sheet flow at high shear stresses), although
both types of transport can occur together and the limit is not always easy to define.
In the context of bedload transport, a mass conservation law also called Exner equation [4] is used to
update the bed elevation. This equation is often coupled with the shallow water equations describing
the overland flows (see for example [5, 6, 7, 8]). The complete system of PDE may be written in the
form  ∂th+ ∂x(hu) = 0

∂t(hu) + ∂x(hu2 + gh2/2) = −gh∂x(zb + zr)
∂tzb + ∂xq̂b = 0

(1)

where h is the water depth, u is the flow velocity, and zb is the sediment layer that moves with the
fluid. This sediment layer is supposed to stay on a non-erodible fixed layer of thickness zr which is
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Surface creep Saltation Suspension

Figure 1: Transport of particles by a flow

usually called the bedrock layer (see Figure 2). The sediment layer is usually assumed to be a porous
layer with porosity ϕ. q̂b is the volumetric bedload sediment transport rate per unit time and width,
described by some empirical law, and g is the acceleration due to gravity. The definition of q̂b includes
the division by (1− ϕ). The conservative variable hu is also called water discharge and noted by q.
Most classical models for sediment transport only consider a sediment layer that is transported by the
fluid, including sometimes a bedrock layer zr which is not modified by the fluid. One could assume
that the sediment layer can be decomposed in two layers: a layer that moves due to the action of
the river, whose thickness is denoted by zm, and a layer composed by sediments that are not moving
but are susceptible to move and denoted by zf . In other words, particles within the layer zf can be
eroded and transferred to the moving layer zm and particles moving within the layer zm can stop and
be deposed on the layer zf . In general, we will have the relation

zb = zm + zf . (2)

Figure 2: Sketch of shallow water over an erodible bed.

Despite the strong simplification hypotheses used in the derivation of the model and the lack of some
good mathematical properties of the PDE system obtained (there is neither a momentum equation
for the sediment layer nor an entropy pair) the approach of the bedload transport by means of an
empirical solid transport discharge formula is widely spread for practical purposes: see for example
[9], [10], [11], [4], [12].
In general, the solid transport discharge may depend on all the unknowns q̂b = q̂b(h, hu, zb, zf ) but
classical formulae for this bedload transport only depend on the hydrodynamical variables h and u.
With the purpose to distinguish whether solid transport discharge depends only on the hydrodynamical
variables or on all the variables we use the following notation,

q̂b =

{
qb ≡ qb(h, hu),
q̃b ≡ q̃b(h, hu, zb, zf ).
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Many different expressions of the solid transport discharge have been proposed in the literature. The
formula proposed by Grass in [9] is among the simpler ones:

qb(h, hu) =
A

1− ϕ

∣∣∣∣huh
∣∣∣∣m−1 huh =

A

1− ϕ
|u|m−1u,

where A is the constant of interaction between the fluid and the sediment layer and m is a parameter
which is usually set to m = 3.
In practice, estimations of bedload transport rate are mainly based on the bottom shear stress τb, i.e.
the force of water acting on the bed during its routing. The bottom shear stress is given as

τb = ρghSf ,

where ρ is the water density and Sf is the friction term that can be quantified by different empirical
laws such as the Darcy-Weisbach or Manning formulae

• Darcy-Weisbach:

Sf =
fu|u|
8gh

,

where f is the Darcy-Weisbach’s coefficient.

• Manning:

Sf =
n2u|u|
h4/3

,

where n is the Manning’s coefficient.

The bottom shear stress is usually used in dimensionless form, noted τ∗b , which is also called Shields
parameter. It is defined as the ratio between drag forces and the submerged weight by

τ∗b =
|τb|

(ρs − ρ)gds
, (3)

where ρs is the sediment density and ds is the diameter of sediment. The main hypothesis is that τ∗b
must exceed a threshold value τ∗cr in order to initiate motion. The threshold value τ∗cr depends on the
physical properties of the sediment and is usually computed experimentally. One of the first works on
this topic was done by Shields [13] in which τ∗cr is determined in relation with the boundary Reynolds
number.
The bedload transport rate may be represented as a function of τ∗b via a non-dimensional function q∗b
by

qb = q∗b (τ∗b )
sgn(τb)

1− ϕ
Q. (4)

where:

• for viscous laminar flows

Q =
(ρs − ρ)gd3s

µ
, (5)

where µ is the dynamic viscosity. In [14] Charru et al. proposed the solid transport formula
defined by

q∗b (τ∗b ) =
0.85

18
τ∗b (τ∗b − τ∗cr)+.

The value of τ∗cr is of order of 0.1 for viscous laminar flows. Concretely, Charru et al. consider
τ∗cr = 0.12.
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• For turbulent flows we have

Q =

√(
ρs
ρ
− 1

)
gd3s . (6)

The following expressions have been often applied [10, 15, 12]:

Meyer-Peter & Müller (1948): q∗b (τ∗b ) = 8(τ∗b − τ∗cr)
3/2
+ (7)

Fernández Luque & Van Beek (1976): q∗b (τ∗b ) = 5.7(τ∗b − τ∗cr)
3/2
+ (8)

Nielsen (1992): q∗b (τ∗b ) = 12
√
τ∗b (τ∗b − τ∗cr)+ (9)

Ribberink (1998): q∗b (τ∗b ) = 11(τ∗b − τ∗cr)1.65+ (10)

In this case a characteristic value of τ∗cr is 0.047.

Note that these classical bedload transport formulae can be written under the unified form

qb(h, hu) =
c

1− ϕ
(τ∗b )m1(τ∗b − τ∗cr)

m2
+ sgn(τb)Q, (11)

where c > 0, m1 ≥ 0 and m2 ≥ 1 are given constants. Q is defined by (5) for viscous laminar flows
and by (6) for turbulent flows.
But given that classical formulae for solid transport flux only depend on the hydrodynamical vari-
ables, they do not take into account the thickness of the sediment layer. As a consequence the mass
conservation law for the sediment layer may fail. For instance, let us suppose a situation like the one
described in Figure 3, where the sediment layer is only present in the interior of the domain.

zb(t, x)

x = a x = b

Figure 3: Sediment layer isolated in the interior of the domain

For instance, assume that we consider Meyer-Peter & Müller formula (7) and suppose that no sediment
comes in or out of the domain through the boundaries during the time interval [0, T ]. By integrating
the third equation of (1) over [0, T ]× [a, b], we obtain∫ b

a

(zb)|t=T dx−
∫ b

a

(zb)|t=0dx = −
∫ T

0

(q̂b|x=b − q̂b|x=a) dt. (12)

Let us suppose that the solid flux q̂b does not take into account the sediment layer thickness and
only depends on the variables h and hu, i.e. q̂b = qb. Assume a velocity high enough in order to
have τ∗b (h, hu) > τ∗cr in (7) so that qb is non-zero, and that h and hu are not equal at the boundaries
x = a and x = b. Then we will have qb|x=a 6= qb|x=b and non-zero. Thus, in a situation like the one
described in Figure 3 the right hand side in (12) may be non zero. This means that eventually the
initial sediment mass is modified by an artificial flux at the boundary so that mass is not preserved.

In this paper we focus on the definition of the solid transport discharge q̂b in terms of the sediment
thickness zb. First, in Section 2 we review some of the results presented in the bibliography on the
definition of the solid transport discharge q̂b in terms of zb, erosion and deposition terms. In Section 3
we propose a new general formulation of the solid transport discharge. The proposed formula depends
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on the moving sediment layer and the corresponding continuity equation preserves the sediment mass.
Moreover, it reduces to a classical solid transport discharge formula in the case of quasi-uniform regime.
In Subsection 3.2 we see that as a particular case of the proposed model we can obtain another one
which is considered in the literature (see for example [16], [17], [18]) to introduce saturated effects in
a classical model. In Section 4 we study the influence of the variable zb on the eigenvalues of Exner
system. First we show that Exner system is hyperbolic at least for physical situations. Second, we
study the influence on the characterization of the sign of the eigenvalues of Exner system in terms of
the hydraulic regime. In Section 5 we describe briefly the numerical approach for the simulation of
the model by finite volume methods and we present some numerical results. Concretely, in Subsection
5.2 we compare the new sediment transport model introduced here with the classical formulation and
we show the behaviour of the new model in different configurations.

2. On the definition of the solid transport discharge

We are interested here in the study of the evolution of the sediment layer at the bottom. In the
evolution of the sediment layer zb we can distinguish two different zones: a first layer that is moving
due to the action of the fluid, zm, and a second layer which is fixed, zf , but consists of particles that
could be entrained into movement within the moving layer zm. Note that the thickness of the moving
sediment layer is usually very small, of the order of one or two diameters of grains (see [19] and [20]).
The total height of the sediment layer that can be affected by the fluid is denoted by zb = zm + zf .
The moving sediment layer is usually modeled as a whole by a continuity equation

∂tzb + ∂xq̂b = 0, (13)

where q̂b = q̃b(h, hu, zb, zf ) is the solid transport discharge.

2.1. Dependence of the transport discharge on zm
Following the structure of a continuity equation, the solid discharge can be written in the form

q̂b = zmvb, (recall that zm = zb − zf , see equation (2)), (14)

where vb is the bedload velocity. The problem is to find how to close the system by defining vb. In
fact, classical formulae define directly q̂b and not vb (see equations (4)–(10)) and the dependence on
zm is not obvious due to several assumptions and simplifications.
The work by Fowler et al. in [19] (see also [21]) can be seen as a particular case of this idea of defining
q̂b in the form (14). They propose a modified Meyer-Peter & Müller model which depends on the
thickness of the sediment layer. This approach can be easily extended to any other classical bedload
discharge. Suppose that qb(h, hu) is given by some classical empirical formula. Then, define

q̂b(h, hu, zb, zf ) = q̃b(h, hu, zm) =
zm
z̄
qb(h, hu)

where, z̄ is a parameter of the model related to the mean value of the thickness of the sediment layer.
We may replace (1) by  ∂th+ ∂x(hu) = 0

∂t(hu) + ∂x(hu2 + gh2/2) = −gh∂x(zb + zr)
∂tzb + ∂xq̃b = 0.

(15)

In other words, we are considering a solid transport discharge in the form

q̃b = zmvb

with

vb =
qb(h, hu)

z̄
.

These definitions of the bedload velocity and the solid transport discharge grant that if the thickness
of the moving sediment layer vanishes then the solid transport discharge is equal to zero.
We will retake the idea of defining solid transport flux in the form (14) in Section 3.
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2.2. Transport discharge in terms of erosion and deposition rates

In an erosion-deposition model (see for example [14], [22]), when sediment particles that are in the
fixed bed are entrained into movement, they are considered to be part of the moving layer zm. On
the contrary, if the particles stop moving they are considered as part of the fixed layer zf .
Let us denote by że the erosion rate and by żd the deposition rate. In this situation, instead of the
simple continuity equation (13), we may consider a more complex model which takes into account the
transfer of particles between the fixed erodible layer zf and the moving layer zm. Then (1) can be
generalized as 

∂th+ ∂x(hu) = 0
∂t(hu) + ∂x(hu2 + gh2/2) = −gh∂x(zb + zr)
∂tzm + ∂xq̂b = że − żd,
∂tzf = −że + żd.

(16)

As we have zb = zf + zm, by adding up the last two equations in (16) we recover (13). Let us remark
that Charru et al. (see [14], [23], [22]) describe this model in terms of n instead of zm, where n is the
number of particles per unit time and unit bed area. These two quantities can be related together in
terms of the diameter of the particles ds and the porosity in the moving layer ψ: nd3s = (1 − ψ)zm.
For the sake of simplicity we consider ψ = ϕ, where ϕ can be seen as an averaged value of the porosity
in the sediment layer. Anyway, recall that the moving layer is very small, then we can set ϕ as the
porosity of the fixed sediment layer.
Now we specify the terms of the right hand side of system (16), that is, the erosion and deposition
rate terms.

Deposition rate
In the literature we can find different definitions of the deposition rate żd, see for example [22], [17],
[24]. We can write them under the uniform structure

żd = KdV
zm
ds
, (17)

where Kd is the deposition constant, V is the characteristic velocity, that we can define as

V =
Q

ds
, (18)

being Q the characteristic discharge. Q is defined by (5) for the case of laminar flows or by (6) for the
case of turbulent flows. Let us remark that for viscous laminar flows, it is usual to consider V = Us
the settling velocity. But, for the sake of simplicity, authors (see for example [22]) replace it by the
Stokes velocity

Us =
(ρs − ρ)gd2s

18µ
. (19)

Note that except the constant value 18 of the denominator – which can be introduced in the constant
Kd of (17)– for the case of viscous laminar flows, the definition of V (18) coincides with the Stokes
velocity definition (19).

Erosion rate.
If erosion is possible (i.e. zf > 0), the erosion rate can be related to the shear stress, through the
relation:

że = Ke
V

(1− ϕ)
(τ∗b − τ∗cr)+, (20)

where Ke is the erosion constant and V is the characteristic velocity defined by (18).
In the following, we assume that zf does not vanish.

6



Remark 2.1. In [19], the erosion and deposition rates are defined in a different way, in terms of z̄, z̄
being a parameter of the model related to the mean value of the thickness of the sediment layer. It can
be written under the following structure,

że − żd = K
V̄

(1− ϕ)
(τ∗b − τ∗cr)

3/2
+

(
1− zm

z̄

)
+
, with V̄ =

√
gds

ds
z̄

√
ρs − ρ√
ρ

,

being K a constant parameter.

3. General formulation for the solid transport discharge

The solid transport discharge formula for q̂b must be in agreement with the physics of the problem: if
zm = 0, the solid transport discharge has to be 0. In this section we propose a new general formulation
of the solid transport discharge that takes into account the thickness of the sediment moving layer.
Let us consider a classical bedload solid transport discharge, written in the form (11). Then, using
the notation of the previous section, we define the following solid transport discharge,

q̃b(h, hu, zm) = zmαc (τ∗b )m1(τ∗b − τ∗cr)
m2−1
+ sgn(τb)Q, (21)

where

α =
Kd

Keds
. (22)

That is,
q̃b(h, hu, zm) = zmvb (23)

with
vb = αc (τ∗b )m1(τ∗b − τ∗cr)

m2−1
+ sgn(τb)Q. (24)

3.1. Properties

Theorem 3.1. The proposed formula (21) has the following properties:

i) The formula depends explicitly on zm and the continuity equation preserves the sediment mass.

ii) It coincides with a classical solid transport discharge in the case of a quasi-uniform regime.

Proof.

i) From (12), the conservation of sediment mass is obvious as whenever zm = 0 we have that the
solid flux is 0 which means that initial sediment mass is preserved in situations like the one
described in Figure 3.

ii) In a quasi-uniform regime, the deposition rate equals the erosion rate (żd = że), then from (17)
and (20), we have that

zm(1− ϕ)

ds
=
Ke

Kd
(τ∗b − τ∗cr)+. (25)

Note that zm(1 − ϕ)/ds represents a number of particles. Thus, whenever erosion and the
deposition rates are equal, we may simplify the solid transport discharge (14),

q̂b = zmvb =
Keds
Kd

vb
(1− ϕ)

(τ∗b − τ∗cr)+. (26)

Replacing α and vb by their respective values (22) and (24), we recover equation (11):

q̂b =
Keds
Kd

Kd

Keds

c

(1− ϕ)
(τ∗b )m1(τ∗b − τ∗cr)

m2
+ sgn(τb)Q = qb.

In this case we obtain a solid transport discharge that can be written without dependence on
zm.
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Remark 3.1. • Charru et al. propose in [14] to define vb in terms of (τb ds/µ) for viscous laminar
flows. For turbulent flows vb can be defined in terms of

√
τ∗b . Note that if we approximate vb in

terms of
√

(τ∗b − τ∗cr)+ then we obtain that qb is defined in terms of (τ∗− τ∗cr)3/2 corresponding,
for example, to the Meyer-Peter & Müller or Fernández-Luque and Van Beek formulae.

• To obtain (26) we have used the relation (25). Actually, the relation between the number of
particles of the moving layer and (τ∗b − τ∗cr)+ is used in the deduction of some of the most known
classical formulae for the solid transport discharge. Bagnold obtained such a linear relation by
studying the momentum transfer due to the interaction of the particles with the fixed bed (see
[25], [22]). At the fixed bed the fluid shear stress is reduced to the threshold value τcr. That is,
the momentum transfer within the moving layer zm is (τ∗b − τ∗cr)+. That implies a limitation
in the erosion rate. Consequently, a relation similar to (25) can be obtained. Moreover, such
a linear relation has been also observed experimentally by Fernández-Luque and Van Beek (see
[15]).

Remark 3.2. The solid transport discharge depends on the hydrodynamical variables only through the
shear stress or the Shields parameter. Thus, in what follows, it will be useful to rewrite

qb ≡ φ(τ∗b )
sgn(τb)

1− ϕ
Q,

where
φ(τ∗b ) = c(τ∗b )m1(τ∗b − τ∗cr)m2 ,

and
q̃b ≡ zmvb

with

vb ≡ α
φ(τ∗b )

τ∗b − τ∗cr
sgn(τb)Q.

To sum up, we have that the right hand side of the last two equations of (16) can be considered to
be zero for uniform flows where the rate of erosion and deposition are equal. In this case we may
consider a solid transport discharge formula that is independent of zm (classical bedload transport
flux). Consequently, if the rate of erosion and deposition are not equal, in the case of a non-uniform
flow, definition of a solid transport discharge independent of zm cannot be valid. For example, this is
the case that we have shown in Figure 3, and that implies the non conservation of the sediment mass
when classical formulae for q̂b, independent of zm, are applied.

3.2. Application to saturated flows

In this subsection we study the model defined by
∂th+ ∂x(hu) = 0,
∂t(hu) + ∂x(hu2 + gh2/2) = −gh∂x(zb + zr),
∂tzb + ∂xq̂b = 0,
(sgn(τb) ls)∂xq̂b + q̂b = qb.

(27)

where ls is the saturation length. It is considered to introduce saturated effects in a classical model
defined in terms of a solid transport discharge qb. See for example [16], [17], [18], [26].
In what follows we see that model (27) can be obtained as a particular case of the one proposed in
this paper, with a saturation length defined in terms of the erosion constant Ke.
Let us consider the erosion-deposition model that we propose, defined by (16) with q̂b = q̃b where
q̃b is given by (21). And assume that ∂xq̃b = że − żd, what implies ∂tzm = 0, that is, the flux is
saturated. Then, by adding up the last two equations and by using this assumption we obtain the
following system {

∂tzb + ∂xq̃b = 0,
∂xq̃b = że − żd.
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If we substitute the expressions (17), (20), and (23) the system becomes
∂tzb + ∂xq̃b = 0,

∂xq̃b =
−KdV

vbds
q̃b +

KeV

(1− ϕ)
(τ∗b − τ∗cr)+.

(28)

If we denote

ls = c (τ∗b )m1(τ∗b − τ∗cr)
m2−1
+

ds
Ke

and ve =
KeV (τ∗b − τ∗cr)+

(1− ϕ)
, (29)

then the second equation of system (28) can be expressed as

∂xq̃b = − sgn(τb)

ls
q̃b + ve. (30)

Finally, as we have the equality lsve = |qb|, we can rewrite (30) in the following form,

(sgn(τb) ls)∂xq̃b + q̃b = qb. (31)

Equation (31) is an intrinsic property of the model we propose, namely system (15)-(21). Note that
ls can be seen as a relaxation parameter, which is inversely proportional to the erosion constant Ke.
Several definitions of the saturation length ls can be found in the literature, see for example [18], [16],
[23]. It is estimated (see [27]) to be of the order of (ρs/ρ)ds. It is obtained with definition (29) if, for
example, Ke is proportional to (ρ/ρs).
And qb can be seen as the equilibrium value towards which the solid transport discharge q̃b converges.
Let us remark that qb is a classical bedload transport formula that here we write under the form of
equation (11).

Remark 3.3. If we are interested in a model of the form (27) to introduce saturated effects in a classical
model defined by qb, we can consider the following relaxation version of the model,

∂th+ ∂x(hu) = 0,
∂t(hu) + ∂x(hu2 + gh2/2) = −gh∂x(zm + zf + zr),

∂tzm =
1

ε

(
− ∂xq̃b + że − żd

)
,

∂tzf = −że + żd.

being ε the relaxation parameter and q̃b defined by (21) in terms of the given classical solid transport
discharge formula qb.

4. Eigenvalues of Exner system for modified bedload transport formulae

We are interested in the study of the eigenvalues of system (16). The PDE system (16) can be written
in vectorial form as

∂tW̃ + ∂xF̃ (W ) = B̃(W )∂xW̃ + S̃(W )∂xzr + G̃, (32)

where

W =

 h
q
zm

 ∈ R3, W̃ =

(
W
zf

)
∈ R4

is the state vector in conservative form, where q = hu, and

F̃ (W ) =

(
F (W )

0

)
, F (W ) =

 hu

hu2 +
g

2
h2

zmvb(h, hu)

 , B̃(W ) =

(
B(W ) S(W )

0 0

)
,
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B(W ) =

 0 0 0
0 0 −gh
0 0 0

 , S(W ) =

 0
−gh

0

 , S̃(W ) =

(
S(W )

0

)
,

G̃ =

(
G

−że + żd

)
, G =

 0
0

że − żd

 .

The definition of vb(h, q) can be considered following the proposed model by (24). Let us remark that
with these notations system (32) can be rewritten as{

∂tW + ∂xF (W ) = B(W )∂xW + S(W )∂x(zr + zf ) +G,
∂tzf = −że + żd.

(33)

System (32) can also be written in quasi-linear form as

∂tW̃ + Ã(W )∂xW̃ = S̃(W )∂xzr + G̃

where Ã(W ) = D
W̃
F̃ − B̃(W ) is the matrix of transport coefficients. More explicitly, taking into

account that vb = vb(τb) with τb ≡ τb(h, q), we have

Ã(W ) =

(
A(W ) S(W )

0 0

)
where A(W ) = DWF (W )−B(W ),

A(W ) =

 0 1 0
gh− u2 2u gh

zm
∂vb
∂h

zm
∂vb
∂q

vb

 . (34)

An important property of such systems is hyperbolicity [28] which requires that the matrix Ã(W ) is

R diagonalizable (or strictly hyperbolic when eigenvalues are distinct). Given the definition of Ã(W ),
we are concerned whether A(W ) is diagonalizable.
In what follows, we shall consider a classical bedload transport flux qb in the form (11) and we shall
assume that qb satisfies the following hypothesis:

• The solid transport flux is an increasing function of the discharge

∂qb
∂q
≥ 0, (H1)

• There exists a constant k > 0 such that

∂qb
∂h

= −k q
h

∂qb
∂q

. (H2)

Remark 4.1.

• (H1) is equivalent to
∂τb
∂q
≥ 0

To show this, remark that from (3) we have

τ∗b = β|τb|,

where β = ((ρs − ρ)gds)
−1 and

∂τ∗b = βsgn(τb)∂τb.

Now, considering the case τ∗b > τ∗cr, (the other case being trivial), we have

∂qb
∂q

= k (m1(τ∗b − τ∗cr) +m2τ
∗
b ) (τ∗b )m1−1(τ∗b − τcr)m2−1β

∂τb
∂q

, (35)

and the result follows.
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• (H2) is equivalent to
∂τb
∂h

= −k q
h

∂τb
∂q

.

This can be easily shown by comparing (35) with

∂qb
∂h

= k (m1(τ∗b − τ∗cr) +m2τ
∗) (τ∗b )m1−1(τ∗b − τcr)m2−1β

∂τb
∂h

.

• In [29], it was shown that classical formulae satisfy in general the relation

∂qb
∂h

= −k q
h

∂qb
∂q

, (36)

where k is a given positive constant. For instance, for Grass model [9] we have k = 1 and for
Meyer-Peter&Müller [10] we have k = 7/6.

Proposition 4.1. Consider any classical flux qb in the form (11) that satisfies (H1) and (H2), then
vb given by (24) satisfies

• ∂vb
∂q
≥ 0

• ∂vb
∂h

= −k q
h

∂vb
∂q

Proof. From Remark 3.2, a simple calculation shows

∂vb = α
φ′(τ∗b )(τ∗b − τ∗cr)− φ(τ∗b )

(τ∗b − τ∗cr)2
β∂τ∗b

and from (H1) - (H2) the result follows.

�

As a consequence, the matrix A(W ) defined by (34) can be written as

A(W ) =

 0 1 0
gh− u2 2u gh
−kub b vb

 , (37)

where b = zm
∂vb
∂q

.

The characteristic polynomial of A(W ) can then be written as

pA(λ) = (vb − λ)

∣∣∣∣ −λ 1
−u2 + gh 2u− λ

∣∣∣∣− gh ∣∣∣∣ −λ 1
−kub b

∣∣∣∣
= (vb − λ)[(u− λ)2 − gh)] + ghb(λ− ku).

(38)

In what follows, let us denote by

{µ1, µ2, µ3} = {vb, u±
√
gh} with µ1 < µ2 < µ3.

System (32) is thus strictly hyperbolic if and only if pA(λ) has three different solutions noted by
λ1 < λ2 < λ3. In other words if the curve f(λ) = (λ−vb)[(u−λ)2−gh)] and the line d(λ) = ghb(λ−ku)
have three distinct points of intersection (see Figure 4). We have the following result:

11



Figure 4: Hyperbolicity of Exner system

Proposition 4.2. Consider system (32) with (11) satisfying (H1) - (H2).
For a given state (h, q), the system is strictly hyperbolic if and only if

α− < ku < α+,

where α± will be defined later by expression (41). More explicitly,

• In the case k = 1 , the system is always strictly hyperbolic.

• In the case k = 7/6 , a sufficient condition for system (32) to be strictly hyperbolic is

|u| < 6
√
gh.

�
Let us remark that we obtain a similar result to the case where bedload sediment transport formula
does not depend on zm, as it is shown in [29]. The proof is not exactly the same but can be done by
following similar steps as in [29]. The proof is included in Appendix A for the sake of completeness.

We are interested in classifying the different roots of the polynomial pA(λ). More explicitly, in the
case of classical bedload transport flux, it is a known fact (see [29] and references therein) that we
have always two eigenvalues of the same sign and a third one of opposite sign. We intend to show
that the behaviour with the modified bedload flux (21) is quite different. Assume that the system is
strictly hyperbolic and denote by λ1 < λ2 < λ3 the three roots of pA(λ).
Remark that (38) may be written in the form

pA(λ) = −λ3 + a2λ
2 + a1λ+ a0,

where a0, a1, a2 are the corresponding coefficients of the polynomial. In what interests us, we remark
that

a0 = vb(u
2 − gh)− kbhug.

Moreover, we also have pA(λ) = −(λ− λ1)(λ− λ2)(λ− λ3) and a0 = λ1λ2λ3.
We have 4 different cases:

Case 1: 0 < µ1. Then two possibilities arise (see Figure 5)

• a0 < 0. We have two positive eigenvalues and one negative (Figure 5(a))

• a0 > 0. We have three positive eigenvalues (Figure 5(b)))

Remark that a0 > 0 is equivalent to

1 <
vb(u

2 − gh)

kbhug
=

vb(u
2 − gh)

kzm
∂vb
∂(hu)

hug

.

12



(a) (b)

Figure 5: Case 0 < µ1

(a) (b)

(c)

Figure 6: Case µ1 < 0 < µ2 < µ3

As µ1 > 0, we are in a supercritical regime u2−gh > 0. Moreover, vb/(hu) > 0 and
∂vb
∂(hu)

> 0.

Thus

zm <
vb(u

2 − gh)

k
∂vb
∂(hu)

hug

is satisfied if and only if zm is small enough.

Case 2: µ1 < 0 < µ2 < µ3. Then we have three possibilities:

• λ1 < λ2 < 0 < λ3 (Figure 6(a))

• λ1 < 0 < λ2 < λ3 (Figure 6(b))

• 0 < λ1 < λ2 < λ3 (Figure 6(c))

But now remark that sgn(vb) = sgn(u), and as µ1 < 0 < µ2 < µ3, we have necessarily u > 0
(otherwise we would have vb < 0 and u−

√
gh < 0). This means that we are in a subcritical

regime u2 − gh < 0,
a0 = vb(u

2 − gh)− kbhug < 0,

and sgn(a0) = sgn(λ1λ2). As a consequence, the only possible case is λ1 < 0 and λ2, λ3 > 0.

13



(a) (b)

(c)

Figure 7: Case µ1 < µ2 < 0 < µ3

Case 3: µ1 < µ2 < 0 < µ3 Then we have three possibilities (Figure 7)

• λ1 < λ2 < λ3 < 0 (Figure 7(a))

• λ1 < λ2 < 0 < λ3 (Figure 7(b))

• λ1 < 0 < λ2 < λ3 (Figure 7(c))

As sgn(vb) = sgn(u) we should have u < 0, otherwise we would have u+
√
gh > 0 and vb > 0.

This means we are in a subcritical region u2 − gh < 0. Thus

a0 = vb(u
2 − gh)− kbhug > 0,

and we have sgn(a0) = −sgn(λ2λ3). As a consequence the only possible case is λ1, λ2 < 0 and
λ3 > 0.

Case 4: µ1 < µ2 < µ3 < 0 Then two possibilities arise (see Figure 8)

• a0 < 0. We have two negative eigenvalues and one positive (Figure 5(a))

• a0 > 0. We have three negative eigenvalues (Figure 5(b)))

Remark that a0 > 0 is equivalent to

1 <
vb(u

2 − gh)

kbhug
=

vb(u
2 − gh)

kzm
∂vb
∂(hu)

hug

.

In this case, we have u2 − gh > 0 (supercritical regime) and a0 > 0 is equivalent to

vb(u
2 − gh)

k
∂vb
∂(hu)

hug

> zm,

which is satisfied if and only if zm is small enough.

To summarize the results:

14



(a) (b)

Figure 8: Case µ1 < µ2 < µ3 < 0

• In the subcritical case (u2 − gh < 0), we have two eigenvalues of the same sign and one of
opposite sign.

• In the supercritical case (u2 − gh > 0), we have two possibilities:

– Three eigenvalues of the same sign,

– Two eigenvalues of the same sign and one of opposite sign.

Remark that the supercritical region presents a major difference compared to classical bedload trans-
port formulae. In the classical case, we always have two eigenvalues of the same sign and one of
different sign, but here there is a new possibility of having three eigenvalues of the same sign due to
the new solid transport discharge.
In Section 2 we have presented two forms to obtain a solid transport discharge depending on zm.
The first one, was proposed by Fowler et al. in [19] as an extension of the Meyer-Peter & Müller
formula. Although the idea can be easily extended for other classical models. The second one has
been proposed at the end of Section 2. If we consider a classical model that can be written as

qb(h, u) = c (τ∗b )m1(τ∗b − τ∗cr)
m2
+ ,

then, we can resume both models as follows,

q̃(h, u, zb) = zmvb,

with vb defined as follows:

• In the case of the extension proposed by Fowler et al. we have:

vb = c1(τ∗b )m1(τ∗b − τ∗cr)
m2
+ .

• In the case of the extension proposed in Section 2 we have:

vb = c2 (τ∗b )m1(τ∗b − τ∗cr)
m2−1
+ ,

being c1 and c2 two different constant values. The value of these constants does not have any influence
on the condition

zm <
vb(u

2 − gh)

k
∂vb
∂(hu)

hug

. (39)

In order to study the influence of the considered model in condition (39), it is enough to study the
ratio vb/

∂vb
∂(hu) . When we consider the extension proposed by Fowler et al. we obtain,

vb
∂vb
∂(hu)

=
1

2

hu

m1 +m2
τ∗
b

(τ∗
b−τ∗

cr)+

.

For the model proposed in Section 2 we obtain the same result but by substituting m2 by m2 − 1.
Consequently, if we consider the Meyer-Peter & Müller formula, corresponding to m1 = 0, m2 = 3/2,
we obtain that the maximum value of zm verifying condition (39) for the case of the model proposed
by Fowler et al. is 3 times smaller than for the case of the model proposed in Section 2.

15



5. Numerical results

5.1. Numerical approach by finite volume methods

As usual, we consider a set of computing cells Ii = [xi−1/2, xi+1/2], i ∈ Z. We shall assume that these
cells have a constant size 4x and that xi+1/2 = i4x. The point xi = (i− 1/2)4x is the center of the
cell Ii. Let 4t be the time step and tn = n4t.
We denote by Wn

i = (hni , q
n
i , z

n
m,i)

T the approximation of the cell averages of the exact solution

Wn
i
∼=

1

4x

∫ xi+1/2

xi−1/2

W (x, tn)dx,

and

Hn
i = znf,i + zr,i, with znf,i

∼=
1

4x

∫ xi+1/2

xi−1/2

zf (x, tn)dx, zr,i ∼=
1

4x

∫ xi+1/2

xi−1/2

zr(x)dx.

We propose a two-step numerical scheme to treat the transference terms between the static layer and
the rolling particles layer.
Let us suppose that the values Wn

i and Hn
i are known. In order to advance in time we proceed as

follows:

• First Step. We define W
n+1/2
i = (h

n+1/2
i , q

n+1/2
i , z

n+1/2
m,i )T as

W
n+1/2
i = Wn

i −
∆t

∆x

(
Dn,+
i−1/2 +Dn,−

i+1/2

)
,

where Dn,±
i+1/2 = D(Wn

i ,W
n
i+1, H

n
i , H

n
i+1)±, being

D(Wi,Wi+1, Hi, Hi+1)± =
1

2

(
I ± sgn(Ai+1/2)

) (
F (Wi+1)− F (Wi) +Bi+1/2(Wi+1 −Wi)

+Si+1/2(Hi+1 −Hi)
)
.

where I is the identity matrix and sgn(Ai+1/2) is the matrix sign of Ai+1/2. Moreover,

Bi+1/2 = B

(
Wi +Wi+1

2

)
, Si+1/2 = S

(
Wi +Wi+1

2

)
and

Ai+1/2 =

 0 1 0
ghi+1/2 − u2i+1/2 2ui+1/2 ghi+1/2

−kui+1/2bi+1/2 bi+1/2 vb,i+1/2

 ,

is assumed to be a Roe matrix for (33) in the particular case that

∂qb
∂h

= −k q
h

∂qb
∂q

,

that is a Roe matrix in the form (37). In particular, the usual definitions

hi+1/2 =
hi + hi+1/2

2
, ui+1/2 =

√
hiui +

√
hi+1ui+1√

hi +
√
hi+1

,

are taken, which corresponds to the choice of segments as the path connecting two different
states. See [30, 31, 32] for further details. As it was stated in [5] it is possible to write a Roe
matrix for the Grass model. Nevertheless, it is not possible or it is very costly to write a Roe
matrix for other models, such as Meyer-Peter&Müller or some other models considered in this
work. So, in practice the following approximation is used

bi+1/2 =
zm,i + zm,i+1

2

∂qb
∂(hu)

(hi+1/2, hi+1/2ui+1/2).
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(b) Solution at t = 0.3

Figure 9: Comparison between the approximate and the analytic solution: free surface, bottom surface (zb) and layer
of sediments that are not moving (zf )

• Second step.

We define
Wn+1
i = (h

n+1/2
i , q

n+1/2
i , zn+1

m,i )T , Hn+1
i = zn+1

f,i + zr,i,

where 
zn+1
m,i = znm,i + ∆t(ż

n+1/2
e,i − żn+1/2

d,i ),

zn+1
f,i = znf,i + ∆t(−żn+1/2

e,i + ż
n+1/2
d,i ),

and ż
n+1/2
e,i = że,i(W

n+1/2
i ), ż

n+1/2
d,i = żd,i(W

n+1/2
i ).

5.2. Numerical tests

All the numerical tests have been performed with 800 finite volumes.

5.2.1. Validation thanks to an analytical solution

In the spirit of [33], we obtained a family of analytical solutions, given by equations (43)–(44). The
derivation is detailed in Appendix B. With these solutions, we validate our code for the new bedload
formula. We plot in Figure 9 the analytical solution and the approximate solution for q = 0.5, A = 0.1,
B = 0.005, C = 0.1, Kd = 1, Ke = 1, V = 5 · 10−3 m/s, ds = 5.8 · 10−3 m, ϕ = 0, m2 = 3/2, C1 = 100

and
(
u2

2 + g (h+ zb)
)
|t=0

= 20 (recall that m1 = 0, zr = 0 and τ∗cr = 0). On the left boundary, we

impose q = 0.5 and zm = 0.0107, and on the right boundary the discharge is fixed q = 0.5.
The two solutions (exact and approximate) coincide.

5.2.2. Erosion and deposition rates for a dune

The goal of this test is to study the respective localizations of erosion and deposition. In [26], the
authors claims that bumps and upwind slopes get more eroded than dips and downwind faces; that
is what we want to check.
We choose to run the code over a submerged dune over a flat bottom. More precisely, we take
the following parameters: we consider (6) and a Manning formula with coefficient n = 0.04, the
characteristic velocity V = 10−3 m/s; the porosity is ϕ = 0, the densities are ρ = 1000 kg/m3 for the
water and ρs = 2612.9 kg/m3 for the sediments, and the diameter of the sediments is ds = 5.8·10−5 m.
For the bedload transport formula (11), we take c = 8, m1 = 0 and m2 = 3/2, and, for the erosion
and deposition rates, we take Kd = 0.1 and Ke = 1.
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We start from a stationary state for Shallow Water, namely the subcritical solution of:q = 0.5,
u2

2
+ g (h+ zb) = 10.42,

and we impose the value of q = 0.5 on the left boundary.
The bottom zb is chosen as zb|t=0 = 0.1+0.1 exp

(
−(x− 5)2

)
, without non-erodible fixed layer (zr = 0),

and we take zm|t=0 = Ke

Kd
ds

(
τ∗b |t=0 − τ

∗
cr

)
+

in order to even out erosion and deposition at the initial

time.
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Figure 10: Erosion and deposition rates for a dune (left axis). Bottom is drawn (right axis) to show its influence

We give in Figure 10 the results at time t = 50 s. The difference between erosion and deposition rates
is drawn. A positive value means that erosion is predominant, whereas when the value is negative,
deposition is predominant. The dashed line represents the values of the bottom zb (values given by
the right scale). As said by Andreotti et al., erosion is predominant on the left part of the dune, and
deposition is effective on the right part of the dune.

5.2.3. Comparison with the classical formula for a dune

We complete the previous numerical case with a comparison with the classical formula for the solid
transport discharge (the parameters remain unchanged). We present in Figure 11 the results at times
300 s, 1000 s, 2000 s, 4000 s with the two formulations for the solid discharge.
We notice that the new formulation is more realistic than the classical one. On the right part of the
dune indeed, the straight line given by the classical model is not physical, which is corrected by the
deposition in the proposed model.
We can also plot the boundary between the layer of moving particles and the layer of sediments that
are not moving, see Figure 12.

5.2.4. Case of a rectangular dune: value of τ∗cr
We carry on the numerical tests with a rectangular dune, as in [5]. When we consider a value τ∗cr, we
observe that there is a point at the beginning of the dune that distinguish into two different zones:
the part of the dune that does not move and the one that is moving. The goal of this test is to study
this point, which we may call the rupture point, and its relation with the value of τ∗cr.
For this numerical experiment, we consider Darcy-Weisbach friction term with f = 0.1, the characteris-
tic velocity V = 10−2 m/s; the porosity is ϕ = 0, and the diameter of the sediments is ds = 5.8·10−2 m.
For the bedload transport formula (11), we take c = 8, m1 = 0 and m2 = 3/2, and, for the erosion
and deposition rates, we take Kd = 0.1 and Ke = 1.
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(d) Comparison at t = 4000 s

Figure 11: Bottom surface (zb) with the new and classical bed load transport formulae for the evolution of a dune
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Figure 12: Bottom surface (zb) and layer of sediments that are not moving (zf ) with the new bed load transport formula
for the evolution of a dune
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Figure 13: Bottom surface (zb) with the new bed load transport formula for the evolution of a rectangular dune, with
three different values of τ∗cr
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Figure 14: Comparison between theoretical an numerical values at rupture point x = 3

The initial conditions are given by the subcritical solution ofq = 0.2,
u2

2
+ g (h+ zb) = 10.42,

(40)

with zm = 0, zr = 0 and zb = 0.1 + 0.5 · 1[4,6](x). We impose q = 0.2 on the left boundary, and we
run several tests with τ∗cr varying from 0.008 to 0.027, see Figure 13.
At the rupture point, which is located at x = 3, one expects that τ∗b = τ∗cr for long times and that the
shallow water relations (40) are satisfied. This is shown in Figure 14. Remark that these relations are
equivalent for the classical and new model.

We have also performed this test for a non-trivial zr, given by zr = 0.5−0.01x, with zf = 0.15·1[3,5](x),
zm = 0.05 · 1[3,5](x). The values of the parameters are: ds = 5.8 · 10−4 m, V = 10−3 m/s, Kd = 0.5
and Ke = 5, c = 40, m1 = 0, m2 = 3/2 and τ∗cr = 0.5. On the left boundary, we impose q = 0.25 and
zm = 0, and the initial solution satisfiesq = 0.25,

u2

2
+ g (h+ zb) = 10.
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Figure 15: Free surface, bottom surface (zb), layer of sediments that are not moving (zf ) and bedrock layer (zr) with
the new bed load transport formula for the evolution of a rectangular dune on an inclined plane

The results are given in Figure 15, and we can see erosion effects on the left part of the dune, deposition
effects on the right part. More precisely, this test shows several results. First, starting from a quite
large moving layer (zm = 0.05 m while the dune is 0.2 m high), the moving layer becomes smaller to
attain a size of the order of the diameter of grains. Concerning the profile of the dune, the front was
sharp at the initial time but, thanks to deposition, the layer of sediments that are not moving (zf )
increases and it creates a smooth profile. This test also illustrates the obtention of the rupture point
at x = 3.

5.2.5. Eigenvalues in a supercritical case

In this section, we give examples to illustrate the sign of eigenvalues for supercritical flows. We proved
in section 4 that in the classical case, we always have two eigenvalues of the same sign and one of
different sign, but here there is a new possibility of having three eigenvalues of the same sign due to
the new solid transport discharge.
The first results are given in Figures 16–17: we plot the eigenvalues for a supercritical case where
both transport discharges have the same behavior, namely two eigenvalues of the same sign and
one of different sign. The parameters are the following: ρ = 1000 kg/m3, ρs = 2612.9 kg/m3,
ds = 5.8 · 10−3 m, n = 0.04, τcr = 0, V = 10−3 m/s, c = 8, Kd = 0.1, Ke = 1. The topography
is taken as zb = 0.5 + 0.1 exp(−(x − 5)2), zm = 0.45, and zf = zb − zm (zr = 0), ϕ = 0, m1 = 0,
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Figure 16: Free surface, bottom surface (zb) and layer of sediments that are not moving (zf ) in a supercritical case for
which there are two positive and one negative eigenvalues with the new bed load transport discharge
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Figure 17: Comparison between the eigenvalues of System (16) and the one of the Shallow-Water system in a supercritical
case for which there are two positive and one negative eigenvalues with the new bed load transport discharge

m2 = 3/2 and the flow is initially defined byq = 0.4,
u2

2
+ g (h+ zb) = 10.13.

Open boundary conditions have been used.
We also run another test where we only change the value of zm: zm = 0.1. In this case, we obtain
three positive eigenvalues, see Figures 18–19. This configuration cannot be obtained with a classical
formula for the transport discharge.

6. Conclusions

We have introduced a general formulation for solid transport flux that takes into account the thick-
ness of the sediment layer. Compared to classical formulae this one has the advantage of preserving
sediment mass in situations where sediment is isolated inside the considered domain. This new for-
mulation reduces to the classical one when we consider quasi-uniform regimes. Moreover, it considers
two layers of sediment: one that is actually moving due to the fluid and one that is not moving but
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Figure 18: Free surface, bottom surface (zb) and layer of sediments that are not moving (zf ) in a supercritical case for
which there are three positive eigenvalues with the new bed load transport discharge
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Figure 19: Comparison between the eigenvalues of System (16) and the one of the Shallow-Water system in a supercritical
case for which there are three positive eigenvalues with the new bed load transport discharge
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could be entrained into the moving layer. As a consequence, the ideas taken into account are closer
to the physics of the problem. Numerical simulations show that this generalization of solid transport
flux is very promising. In particular, we remark that the vertical profiles on the front of an advancing
dune (characteristic when using a classical formulation) are avoided and smoothed in a more realistic
way.

Appendix A

Proof of Proposition 4.2

We define the two tangents of the curve f(λ) which are parallel to d(λ). Their intersections with f(λ)
are characterized by f ′(λ) = ghb which yields to two values of λ of the form

λ±
def
=

2u+ vb ±
√

(u− vb)2 + 3(gh+ ghb)

3
.

The two tangents are such that d±(λ±) = f(λ±). This implies the equations for the tangents are
given by

d±(λ) = ghb(λ− α±)

with

α±
def
= λ± −

f(λ±)

ghb
. (41)

The roots of pA(λ) which correspond to the eigenvalues of A(W ) are given as the intersection of f(λ)
and d(λ) (see Figure 4).
Recall that f(λ) is a third order polynomial with roots {µ1, µ2, µ3} =

{
vb, u±

√
gh
}

. The equation
pA(λ) = d(λ) − f(λ) will have 3 distinct solutions if and only if the line d(λ) lies in between d−(λ)
and d+(λ). This can be equivalently written as α− < ku < α+.
It can be checked that we always have α− < u −

√
gh < u < u +

√
gh < α+ so the system is always

hyperbolic in the case k = 1. In the case k = 7/6, if |u| < 6
√
gh, we have u−

√
gh < 7

6u < u+
√
gh

and thus the hyperbolicity condition is verified which concludes the proof.
�

Appendix B

Analytical solutions

Following [33], we can obtain analytical solutions for System (16). Considering the new solid transport
discharge, a constant water discharge q = hu and a water height that only depends on x (i.e. h = h(x)),
then u = u(x) = q/h(x), System (16) reduces to:

q = cst,

∂th = 0,

∂x

(
u2

2
+ g (h+ zb)

)
= 0,

∂tzb + ∂xq̃b = 0,

∂tzf = żd − że.

(42)

Differentiating the third equation of System (42) with respect to time, we get: ∂txzb = 0. Then,
differentiating the fourth equation with respect to space, we obtain: ∂xxq̃b = 0, and

q̃b = A(t)x+B(t) = zmαcQsgn(τb)(τ
∗
b )m1(τ∗b − τ∗cr)

m2−1
+ = zmC(τ∗b )m1(τ∗b − τ∗cr)

m2−1
+ .

In order to simplify the computations, we use Darcy-Weisbach friction law (in this case, Sf is a function
of u only and does not depend on h) and we rewrite τ∗b as :

τ∗b =
fu2

8
(
ρs
ρ − 1

)
gds

= C1u
2.
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Let us assume that m1 = 0, τ∗cr = 0; then

q̃b = A(t)x+B(t) = zmC(C1u
2)m2−1.

As (C1u
2)m2−1 does not depend on the time, we have:

0 = ∂t
A(t)x+B(t)

zm
=

(A′(t)x+B′(t))zm + (A(t)x+B(t))∂tzm
z2m

,

and

∂tzm =
A′(t)x+B′(t)

A(t)x+B(t)
zm,

The last equation of System (42) reads:

∂tzf = −że + żd = −Ke
V

1− ϕ
(τ∗b − τ∗cr)+ +KdV

zm
ds

= −Ke
V

1− ϕ
C1u

2 +KdV
zm
ds

then

−A(t) = −∂xq̃b = ∂tzb = ∂t(zf + zm) = −Ke
V

1− ϕ
C1u

2 +KdV
zm
ds

+
A′(t)x+B′(t)

A(t)x+B(t)
zm.

If we choose A(t) = A and B(t) = B two constants, then zm does not depend on time and we obtain:−A = −Ke
V

1− ϕ
C1u

2 +KdV
zm
ds
,

Ax+B = zmC(C1u
2)m2−1,

that isKe
V

1− ϕ
C1u

2 = A+KdV
zm
ds
,

Ax+B = zmC(C1u
2)m2−1,

or


C1u

2 =

(
A+KdV

zm
ds

)
1− ϕ
V Ke

,

Ax+B = zmC

((
A+KdV

zm
ds

)
1− ϕ
V Ke

)m2−1

.

Let us summarize the formulae: at the initial time,

q = cst,

zm is the solution of Ax+B = zmC

((
A+KdV

zm
ds

)
1− ϕ
V Ke

)m2−1

,

u =

√(
A+KdV

zm
ds

)
1− ϕ
V Ke

1

C1
,

h =
q

u
,

∂tzb = −A with zb|t=0 given by

(
u2

2
+ g (h+ zb)

)
|t=0

= cst,

(43)

and the evolution in time is performed as

zf = −At+ zf |t=0 = −At+ zb|t=0 − zm. (44)
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Yves Lagrée for the fruitful discussions. The numerical computations have been performed at the
Laboratory of Numerical Methods of the University of Málaga.

25



References
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