
HAL Id: hal-00821526
https://hal.science/hal-00821526

Submitted on 10 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SALT: a Simple Application Logic description using
Transducers for Internet of Things

Sylvain Cherrier, Yacine Ghamri-Doudane, Stephane Lohier, Gilles Roussel

To cite this version:
Sylvain Cherrier, Yacine Ghamri-Doudane, Stephane Lohier, Gilles Roussel. SALT: a Simple Appli-
cation Logic description using Transducers for Internet of Things. IEEE International Conference on
Communications ICC, Jun 2013, Budapest, Hungary. pp.8. �hal-00821526�

https://hal.science/hal-00821526
https://hal.archives-ouvertes.fr

SALT: a Simple Application Logic description using Transducers for Internet of
Things

Sylvain Cherrier∗, Yacine M. Ghamri-Doudane∗§, Stéphane Lohier∗, and Gilles Roussel∗
∗ Université Paris-Est , Laboratoire d’Informatique Gaspard-Monge (LIGM), 77454 Marne-la-Vallée Cedex 2

§ ENSIIE, 1 square de la résistance, 91025 Evry Cedex
Email: [firstname.lastname]@univ-paris-est.fr

Abstract—As the Internet of Things (IoT) grows in interest
from both research and industrial parts, the lack of standard
solutions to quickly and easily build and install IoT applications
becomes a topic of high interest. In this paper, we introduce
a language called SALT (Simple Application Logic descrip-
tion using Transducers) that allows describing and deploying
the distributed logic needed in order to fulfil a complete
desired application. This language aims at giving extended
functionalities by filling the gap between the logical capabilities
offered by services orchestration and the closeness efficiency
of services choreography. SALT is interpreted by a virtual
machine running on devices that introduces an abstraction
layer in order to simplify access to hardware capabilities. SALT
implements several mechanisms to comply with organisation
issues presented in the Services Oriented Computing realm
dealing with Services interactions, adapted to the specific
constraints of the IoT. This work details SALT’s concepts,
formalism and implementation.

Keywords-Internet of Things; Architecture Design; Choreog-
raphy; Distributed application logic.

I. INTRODUCTION

Because everyday connected objects are promised to
become the major user of public networks in a near future,
Internet of Things is a main subject of interest for research
and industry. Bringing Internet to Things adds a computa-
tional and digital dimension to users’ physical environment.
Interactions between Things, or with users, may have a great
impact on individual relationships with the real world, thanks
to the object connectivity.

The lack of standard and universal development platforms
is one of the biggest barrier that impends the development
of this new field. Users are facing a "tower of Babel" due
to multiple involved technologies. Building an application
using different objects leads to learn specific programming
paradigms and/or languages and many other skills from
various fields. Furthermore, applications are strongly linked
to devices. Any hardware upgrade/failure may terminate
the application, because replacement parts are probably
incompatible. Currently, users are forced to limit themselves
to a single manufacturer and/or hardware. These obvious and
justified mistrusts greatly hamper the popularization of IoT.

Designing an Internet of Things app can be considered as
building a collaboration of small independent elements. Each

of these Things has a level of autonomy. SALT, proposed in
this paper, is a programming language to take advantage
of Object’s autonomy. SALT’s approach helps to design
full distributed applications. In such an architecture, pieces
of algorithms are spread all over the network. There is
no central point. Each participant executes its own part of
the work, acting or reacting to events or queries. Things
have their own behaviour limited to their local perspective
but coherent from their point of view. This organization is
defined as Choreography.

On the contrary, any application under the control of a
central point is built according to an architectural paradigm
referred to as Orchestration. Data are centralized, computed
and organized under the unique management of the central
point. Each participant answers received requests from the
central point and is not following a logic on its own.

To override constraints related to the strong coupling be-
tween hardware and software, we can consider setting a uni-
versal platform giving full hardware abstraction. Application
creation, maintenance and evolution will be easier, quicker,
scalable and loosely coupled to real elements at stake (see
Fig 1). Our previous work, D-LITe [3], is a solution of
this type. It is a framework running on Objects, introducing
a hardware abstraction and discovering/deploying/executing
services. Each object is seen as source of a logical service,
and can subscribe to any other D-LITe object in order to
build complex interactions.

Mixing D-LITe hardware abstraction and SALT Chore-
ography design allows IoT applications to gain flexibility
and versatility, acquiring standardized and universal for-
malization to express the programmer’s needs while being
understood by multiple devices.

This paper presents the SALT language design and im-
plementation to express fully distributed applications over
a hardware abstraction layer. The reminder is organized
as follows: Section II presents the related work attached
to Services Composition over the Internet, and then from
the IoT point of view. Section III details the needs that
SALT must be able to express, the language organisation
and formalization. Section IV describes our implementation
of SALT and our tools to validate the concept. Finally,
concluding remarks and future research directions are given.

II. BACKGROUND AND RELATED WORK

A. Services Oriented Architecture on Internet

In the Internet field, Service Oriented Architecture (SOA)
becomes increasingly important as a solution because it
hides the details of the different technologies by introducing
abstraction. Abstraction provides the universality needed
by programming languages to wrap all hardware/vendors
specificities. The loosely coupling ability given by this
approach helps to build applications easily.

[5] presents an analysis of Internet web services com-
position. The issue of checking the whole functionality
arises because asynchronism appears in this composition.
Authors checked that they obtain the same results using their
proposed translation from a BPEL description (a normalized
executable language used to build applications implying web
services) to a more distributed and asynchronous collabora-
tion. To move from Orchestration to Choreography, authors
in [5] transform the centralized application BPEL description
to a Finite State Machines (FST) combination. They propose
to use a specific form of FST, called guarded automata
(presented in [6]). Guarded automata introduce the notion
of predicate which aims at adding more semantic in the
exchanged messages. Authors transpose a central description
into a distributed composition "embed[s] the control flow
[...] to the transitions of the guarded automata." [5]

Designing a Choreography needs to reproduce a majority
of Orchestrated services interactions. In their paper deal-
ing with services choreography versus orchestration [2],
Barros et al identify 13 significant interaction patterns. If
unicast communications can easily be described in both
architectures, Orchestration introduces the possible use of
enumeration functions and time-bound. These needs call
for the introduction of management variables and timers on
each participant when using a Choreographed architecture.
Authors describe each case and propose a discussion about
issues and design choices to achieve it. They don’t propose
any implementation of assessment.

The "Let’s dance" language proposed in [7] is directly
inspired by [2]. This choreographed language is a formal
graphic language describing interactions between services
according to patterns proposed in [2]. Emphasis is laid on
the structural sides of services interaction. It consists in a
description language used by Internet web services architects
for the composition of pre-existing and not mutable web
services. But it is more a tool to design a solution and to
express the needs than an executable language. The same
authors propose in [8] to fill the gap between the global
view offered by their language and the local view (i.e
the algorithm providing the service). Authors pointed out
that "some global models may not be translatable into a
collection of local models such that the sum of the local
models equals the original global model". They propose an
algorithm able to transform the "Let’s Dance" global view

Figure 1. Use-Case: To build an Internet Of Things application, a user
accesses in a universal way to his objects, discovers theirs capabilities,
describes his needs, and deploys the code on each element

to real algorithms to be executed at local points. Therefore,
when validated by their checking process, the combination
of local actions gives expected results at the global level.
This is a proof of concept and not a real executable language.
Its potential enforcement to IoT is also questionable because
of its heavy design which is not adapted to tiny devices.

Research work about Internet Services Composition is of
great interest in the perspective of Internet of Things. In
their survey [1], Atzori et al. present the IoT as a pervasive
collaboration of objects "that are able to interact with each
other and cooperate with their neighbours to reach common
goals". By using widely spread and standardized Internet
protocols, this paradigm gives Things the ability to com-
municate among each others and with Internet stakeholders
(servers, applications, etc). But IoT applications also need
to abstract the particularities of the hardware.

B. D-LITe

Our framework D-LITe (presented in [3]) implements
a Choreographed design for Internet of Things devices.
It also introduces a hardware abstraction to get rid of
language/operating system/technical constraints. This frame-
work is able to execute an algorithm expressed as a Finite
State Transducer (FST). FST are automata with an additional
output Alphabet, used in Natural Language Processing. A
Finite State Transducer has a formal representation as a
6-tuple T (Q,Σ,Γ, I, F, δ). D-LITe defines the meaning of
each element as follows:

• Q represents all States for a particular node,
• Σ are Input Messages handled by a particular node,
• Γ are Output Messages a particular node can send,
• I is the Initial State (only one in D-LITe),
• F stands for Final States,
• δ contains transitions (the distributed “logic”).

ε element stands for empty. The main adaptation is the
use of Input Messages and Output Messages in place of
alphabets. These messages are used to exchange stimuli
with other Objects, or to give access to hardware functions
(see Fig 2). They abstract complex programming calls under

simple words provided by alphabet. The compact Trans-
ducer’s description allows the transmission of the whole
program through the network, changing dynamically the
targeted Object’s behaviour without any intervention on the
device nor physical access. D-LITe offers only the hardware
abstraction layer without describing the Transducers. SALT
is the language describing such Transducers in order to give
a syntax to IoT applications.

III. SALT: SIMPLE APPLICATION LOGIC USING
TRANSDUCERS

A. Identifying the Choreography needs

As we are interested in considering Objects as providers of
web services, the SOA research community gives us several
guidelines to orient our own solution. For IoT applications,
we consider a rather top-down approach instead of compos-
ing already existing piece of software. SOA uses already
existing Web Services and focuses on their combination.
Usually, SOA applications are developed using a general
approach, combining data provided by already-made and
unalterable Web Services. In IoT application, the behaviour
of each element is not as rigid, and so strictly pre-defined. It
may depend on the context, on previous given reactions or
on user’s need. In IoT, many Objects are used by a reduced
number of users (one user owned many Objects, while one
Web Service is used by many people).

We can build new applications by describing needed
services, creating and then deploying them. The result is a
composition of distributed on-the-fly made services, dynam-
ically created by the description of what is expected from
Objects. That requires each participant to have sufficient
capabilities to provide a result equivalent in terms of control
structure to those offered by Orchestration. In addition,
the more decisions are taken locally, on the spot, where
events/stimuli are detected, the better it is for reactivity,
energy consumption and reliability, especially if multi-hop
wireless sensors networks are involved (see [4]).

Services Orchestration [2] may count how many answers
a central application gets from a request, loops on a resource
until a value is reached, or sets a period of time during which
this algorithm waits for events. As a Choreographed design
alternative, SALT must propose solutions to transfer all these
constraints at the Object level.

To solve the possible lacks caused by moving the appli-
cation logic from a central point to Things themselves, IoT
Choreographies needs can be summarized as:

• being able to count, compute and test variable values.
A choreographed Object not only provides atomic
answers inferred from its environment, but rather more
elaborated mechanisms, needed for its autonomy.

• being able to limit these more complex reactions over
time in order to achieve greater independence and
decision-making capacity.

Table I
CHOREOGRAPHY ISSUES, AND SALT PROPOSALS

Describe an
algorithm in each
Thing

SALT can express a Transducer (an automaton
embellished with an Output Alphabet) understood
by Objects

Make Things coop-
erate

Transducer’s Output alphabet is sent to other
Things, becoming their Input alphabet. Things then
react to each others, in cascade.

Algorithms’ update
(the application
evolves), or change
(new application)

The whole configuration description of an object’s
role through SALT has a very limited size, because
it uses the framework installed on each Object.
It can be totally reprogrammed with few network
messages, quickly and without any physical access

Independence from
hardware

SALT proposes an hardware abstraction. Hardware
specificities are accessible through the Input or
Output alphabet of the Transducer.

Need for computa-
tion and timers

Adding variables management and time control
allows the object to gain in autonomy. SALT adds
predicate as Input and Output alphabet to offer a
greater level of reaction and expressibility.

[6] introduces the use of predicates in automata in Web
Services Choreography. A predicate is a sentence containing
a subject and information related to that subject. Unlike
simple words of an alphabet, predicates have inner mean-
ings. We use them to express mathematical operations and to
test variables. Predicates in SALT can express the sentence
“=(count,1)” which stands for create a variable “count” to
store the value 1, or “>(i,7)” that means if the variable i
contains more than 7.

As it extends use of predicates to Input and Output
alphabets, SALT offers variable management and timers
definition. This new use of predicates increases SALT ex-
pressibility. Each transition may describe logical expressions
in a local scope. With SALT, decisions usually made at the
top-level can be achieved at end-points (see Table I). Most
of Orchestrated application control structures can therefore
be distributed on a Choreography of Things.

It is important to note that our approach is event-centric.
SALT is based on actions/reactions in order to represent an
algorithm with a Transducer. If the hardware does not offer
threshold setting for sensed values, SALT provides a way
to manage these sensed values as logical variables. SALT
expressibility offers to test these value and to react, moving
from a data-centric approach to an event-centric’s one.

B. SALT Language Description

SALT makes a widespread use of predicates in Input Mes-
sages and Output Messages instead of usual Transducer’s
alphabets. In SALT, the programmer expresses his reasoning
by the semantic he gives in messages content. A service on
each Object receives the SALT description of the Transducer
(see Fig 3). Then, the framework executes it and makes the
link between this logical expression and actions offered by
each specific hardware. In our vision of IoT applications,
a Transducer always starts with one and only one Initial
State. Then, it receives messages (considered as Transducer

Figure 2. SALT Graphical representation, counting 4 "push" messages
before sending "reached". For that purpose, a predicate creates a variable
named count and another decrements it. 0 is detected by the last predicate.

Table II
SALT TEXTUAL REPRESENTATION OF EXAMPLE FIG 2

x ?e/push !l/=(count,3) counting
counting ?e/push !l/-=(count,1) counting
counting ?l/==(count,0) !e/reached etc

Input), checks if there is a Transition matching that input
and the given state of the Transducer. If so, the framework
obeys the transition and goes in the new state described
in the Transducer. As a Transducer, it sends the Output
Message as specified in the transition. Here, a transition has
4 items: The Start State, the Received Message, the Next
State, and the Output Message. Finally, no End state is
defined (IoT application has often no end). It is however
possible to express such End State (i.e “alarm” in Fig. 5).

To do basic processing operations, to sense or actuate the
real world, or to exchange with other Objects of an IoT
application, we use Input and Output alphabets (See Fig 3).
These messages are of 3 different kinds:

• external messages are used to organize the collaboration
between Things. Content of exchanged messages will
be analysed by transducers running on listening Objects
(i.e. communication with other Objects)

• hardware messages make the link between the Thing’s
hardware and the programmer’s logic. Messages are
hardware specific and accessible via SALT’s API.

1) Sensing generates a SALT message for the Trans-
ducer Input,

2) Things having actuating capabilities (e.g. switch-
ing on/off) react to Transducer’s Output.

3) Some sensing and actuating capabilities are vir-
tual, such as timers. An Output hardware message
starts the timer and defines the delay. At the end
of this delay, the Transducer is alerted by an Input
message that the timer has expired.

• logical messages are used to define, alter and test
variables. The definition of a variable, its value or any
operation are logical Output messages of the Trans-
ducer. On the contrary, testing the value of this variable

Figure 3. SALT architecture overview. After receiving user’s description of
the application logic, a SALT compliant Object reacts to external, hardware
(sensing) or logical messages (testing variables). It may then send messages,
alter variable, or actuate hardware.

is an Input message. The test becomes an event when
its result is true.

Another way of understanding these different kinds of
messages is to consider that external messages are intended
for object’s environment (useful to make others Things
react) while hardware and logical messages are intended for
object’s internal use (sensing, actuating, or computing) as
depicted in Fig 3.

C. SALT Language formalism

SALT uses Transducers and adds predicates to Input and
Output Alphabet. Predicates are assertions or denials. It
gives SALT more semantic on messages. SALT mixes the
algorithmic usage of Transducers with the expressiveness of
predicates to achieve a distributed logic.

The whole Transducer can be express as a set of Transi-
tions. The formalism of a Transition description is given by
Table III. As States are content free, a programmer can use
any word that represents phases in his own reasoning. Input
and Output Alphabets have a more constrained formalism,
because of SALT’s extended use of predicates. For each
Transition, there is usually 1 Input message (Empty Input ε is
a special case used to set variables or the Object’s hardware).
A transition can have 0 to many Output Messages:

• no Output message when the programmer wants to
change state without altering anything,

• one or many messages depending on the actions to do.
A message is (e)xternal, (l)ogical, or (h)ardware, preceded
by a question mark (if it’s an input message) or an excla-
mation mark (in the case of an output message). It contains

Table III
SALT LANGUAGE: TRANSITION STRUCTURE

Transition Formalisation : State Input Output . . . State
State
xxxx

A single word xxxx, giving semantic to programmer’s reasoning.
Has no effect on anything. It’s only for naming the current stage
in the Object’s logic.

Input
?x/yyyy

a question mark, follow by (x) (e, l or h for external, logical or
hardware message). Predicate (yyyy) has different formalism. In
external message, it is the expected message. In logical message,
it is a predicate about a variable (a test). In hardware message,
it is a pre-defined command using Object’s sensing capabilities
(described during Object’s discovering phase).

Output
!x/yyyy

a exclamation mark, follow by (x) (e, l or h). An external
message is sent to all listeners, a logical predicate creates or
alters a variable inside the Thing, while a hardware predicate
actuates something. This action can be parametrised if needed,
for example to set the hardware (i.e. led(on) or led(off)) or for
processing operation (i.e =(nb,5) or +=(count,2)).

. . . A transition may have multiple output messages (for hardware,
listeners or variable management)

State
zzzz

A simple word, describing the step reached by the application in
programmer’s mind.

a single word or something more semantic (a predicate: i.e.
timer’s duration, variable’s value or test, external text to be
displayed, etc).

• External messages contain a word of the alphabet (re-
ceived for input messages, or sent for output messages).

• Hardware messages give the keyword corresponding to
the event being managed. This complete set of managed
keywords is provided during the Object’s discovering
phase. These words are either events sensed and/or
generated by the hardware (in an Input message), or
actions to trigger (in an Output Message). They can
have zero to many parameters. Parameters are also
presented during the discovery phase.

• Logical messages contain predicates for variable man-
agement and testing. They describe the operation and
the variable to compute (see Table IV). As output
predicate, SALT uses common expression (=, +=,-=,*=
or /=) to set or modify the variable content (see Fig 2).
As input predicate, tests use common expressions as
well (==, !=,>,<,>= or <=).

SALT messages have the following roles:
• External messages are totally open and free texts,

representing programmer’s semantic (the interaction
semantic between objects). They have no effect on
hardware or logical functionalities.

• Hardware messages are very specific because they are
responsible for interactions between SALT program’s
description and the hardware. Hardware messages are
related to each different kind of devices, and pro-
vided during Object’s discovery phase. They give the
application the ability to sense/actuate, and hide the
programming skills needed to use them.

• Logical messages are in charge of the definition of
variables and the computation of theirs values. Cre-

Table IV
SALT LANGUAGE: PREDICATE TO EXPRESS VARIABLE MANAGEMENT

Input predicate (testing variables)
?l/==(var,value) Testing if "var" is equal to "value"... If true, the

transition using < > <= >= and != is executed
Output predicate (setting or computing variables)

!l/=(var,value) give "value" to "var" variable. The variable is created
if unknown.

!l/+=(var,value) adding "value" to "var" variable. Value can be another
variable. The result is store in "var". 4 operations
supported (+=,-=, *= and /=)

Figure 4. SALT GUI tool. On this example, a button (top left) controls a
light (top right), but is also observed by a counter (counting 3 pushes) that
triggers an indicator led (bottom right). The Transducer is displayed near
its targeted Object. The “publish rules” button deploys the application.

ating/altering a given variable is always an output
message, resulting of a transition. Testing the value
is always a SALT input message. SALT manages the
logical test result as an event: if true, the transition is
triggered (see Fig 2 and 5)

IV. SALT IMPLEMENTATION AND EXAMPLES

We propose a tool to describe an application and exper-
iment SALT1. This tool helps a programmer to declare his
Objects, and to generate his complete SALT description. The
resulting application can be executed (as the tool simulates
Objects’ behaviour). New applications involving the same
Objects can be designed and executed on-the-fly, thanks to
the expressiveness of SALT.

We also provide D-LITe implementation supporting SALT
for real devices, in order to execute the Transducers. At
the moment, we only support TelosB2 sensors and Android
phones (new devices will be supported in the future).

The first example presented in this paper (Fig 2) is
actually running on Fig 4. The opened window shows
the Transducer running on the selected Object “counter”.
Our tool gives the possibility to create Objects, and to

1http://www-igm.univ-mlv.fr/PASNet/SALT/
2A wireless sensor for research/experimentation http://www.memsic.com

Figure 5. If the button is pressed twice ("push" messages are sent by inner
hardware, because our object is a sensor) within one second, this alarm
button gets locked (it’s also an actuator) and sends an "alarm" message.

Table V
SALT TEXTUAL REPRESENTATION OF EXAMPLE FIG 5

initialState=ready
ready ?e/push !l/=(count,1) !h/time(1) warning
warning ?e/push !l/-=(count,1) warning
warning ?h/timer ready
warning ?l/==(count,0) !e/alarm !h/lock(on) alarm

describe Transducers and relationships between Objects. The
programmer describes the transitions with the formalism
presented in Tables IV, III, II and V and Fig 2 and 5.
The tool stores an XML description of each Transducer and
allows to run, change and re-deploy a simulated application.
Transducers can also be sent on real hardware for real use.

A second example in Fig 5 shows a Transducer sending
an alarm and locking a device if its button is pressed twice
within a time frame of one second. It presents the main
features of SALT:

• logical message: a variable (named "count") is defined
and set to one, then decreased, and tested.

• parametrized hardware message: when reaching the
end state, the device freezes (lock(on))

• multiple output (setting the timer to one second, and
creating the "count" variable containing 1)

Starting from previous example, this new one can be
quickly defined and deployed on the same Objects. Fig 5
shows the graphical form of our language while Table V
gives the full program sent over the network. The whole
program is 178 bytes long. A compressed version of the
language for constrained network (such as Wireless Sensors
and Actuators Network) is also proposed in order to further
decrease the program size. In this version, state name are
translated into numbers (states name are useless inside
Objects, only useful in the programmer’s mind) and alphabet
strings become reference. This will thus lead to a 84 bytes
program size for the example of Fig 5 when this one is
deployed in constrained networks.

V. CONCLUSION

Creating quickly and easily universal applications fully
editable and scalable is necessary for the wide adoption and

the rise of the Internet of Things promising field, considering
that the focus must be on easy creation of applications
that fit to user’s needs, deployed in a standardized way.
Currently, interacting objects tend to promote a model in
which there is no central point of reasoning, but rather a set
of reflex actions spread all over the network. Because real
applications may need more than a combination of simple
reactions, our solution, the SALT language, offers rather
an elaborated scale of actions in response to stimuli, more
complex and richer, but still local. SALT is able to express
the application’s distributed logic, allowing each Thing to act
and react from his own, thus meeting the expectations of all
other elements in order to achieve the global application’s
goal. The hardware abstraction offered by SALT and the
associated software platform give independence from the
hardware manufacturer own API/OS/language, while provid-
ing mechanisms similar to usual algorithmic structures found
in centralized architectures (variables, loops and tests). As
for future works, our objective is to extend the language
to introduce more external controls as well as coherence
verifications, which are not considered in SALT for the
moment.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito. The internet of things: A
survey. Computer Networks, 54(15):2787 – 2805, 2010.

[2] A. Barros, M. Dumas, and A. Ter Hofstede. Service interaction
patterns. Business Process Management, pages 302–318, 2005.

[3] S. Cherrier, Y. Ghamri-Doudane, S. Lohier, and G. Roussel. D-
lite : Distributed logic for internet of things services. In 2011
IEEE International Conferences on Internet of Things, and
Cyber, Physical and Social Computing, pages 16–24. IEEE,
2011.

[4] S. Cherrier, Y. Ghamri-Doudane, S. Lohier, and G. Rous-
sel. Services Collaboration in Wireless Sensor and Actuator
Networks: Orchestration versus Choreography. In 17th IEEE
Symposium on Computers and Communications (ISCC’12),
page 8 pp, Cappadocia, Turquie, July 2012.

[5] X. Fu, T. Bultan, and J. Su. Analysis of interacting bpel web
services. In Proceedings of the 13th international conference
on World Wide Web, pages 621–630. ACM, 2004.

[6] X. Fu, T. Bultan, and J. Su. Model checking interactions of
composite web services. UCSB Computer Science Department
Technical Report (2004-05), 2004.

[7] J. Zaha, A. Barros, M. Dumas, and A. Ter Hofstede. Let’s
dance: A language for service behavior modeling. On the Move
to Meaningful Internet Systems 2006: CoopIS, DOA, GADA,
and ODBASE, pages 145–162, 2006.

[8] J. Zaha, M. Dumas, A. Ter Hofstede, A. Barros, and G. Decker.
Service interaction modeling: Bridging global and local views.
In Enterprise Distributed Object Computing Conference, 2006.
EDOC’06. 10th IEEE International, pages 45–55. IEEE, 2006.

