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publications. Except the interest immediately following Rabinow’s work, there has been little new information about and
publications on MS media. Recently however, MS elastomers have been recognized as a commercially viable product.
Therefore, this wide range of potential applications and associated economic benefits are the reason for the intense research
on these materials in recent years, see, for example [1, 3–6, 9–12, 24–26, 28–32, 35, 44, 47, 51–53]. A number of MS elas-
tomers and various MS elastomer-based systems have successfully been brought into the market, including adaptive tuned
vibration absorbers, sensors, actuators, medicine devices, stiffness tunable mounts, suspensions, and automotive bushing.

Structurally, field responsive elastomers can be thought of as the solid analogs of field responsive non-colloidal suspen-
sions or fluids, see for example [28]. There are however some distinct differences in the way in which these two classes of
materials are intended to be used. The most important one is that the field sensitive particles within the elastomer composite
are intended to always operate in the pre-yield regime, see [10]. Therefore, field responsive elastomers can best be described
by a field dependent modulus, see for example [6, 14, 31, 32, 44].

Non-linear theory of elasticity of magneto-elastomers was developed in [7, 8, 14–17, 20, 21, 33]. The similar problems
for the electro-elastomers were considered in [18,19,43]. Mechanics of thin-walled magneto-elastic structures like a mem-
branes was considered in [2, 46]. Example of practical using of magneto-elastic membranes is given in [37]. Magneto-
elastomers and electro-elastomers are special examples of electro-magneto-sensitive materials. For full details of the gen-
eral theory of electrodynamics of continua, we refer to, for example, [13, 22, 23, 40, 41].

In the paper we consider the spherically symmetric deformation of an isotropic elastic MS sphere in a homogeneous
magnetic field. Following [7,14–17], in Sect. 1 we recall the general statement of dynamics of magneto-sensitive elastomers.
In Sects. 2 and 3 we investigate the oscillations of magneto-elastic sphere in the case of finite (nonlinear) and infinitesimal
(linear) deformations, respectively. We present the appropriate differential equations of dynamics for sphere inflated by
the inner pressure, where the magnetic field is an external parameter changing the stiffness of the sphere. For the case
of nonlinear constitutive relation, in Sect. 2 we investigated oscillations of magneto-sensitive sphere. Appropriate phase
portraits are presented and analyzed. In Sect. 3 for the linear Hook’s constitutive relation the problem of the parametric
control and damping of oscillations for the appropriate linear dynamical system is solved by the Lyapunov method [27].
The presented theoretical results are based on the theorem about asymptotic stability in reference to the part of variables [45]
and the Barbashin–Krasovski theorem [36].

1 Basic equations of incompressible magneto-elastomers

Following [7,14–17], let us recall the basic relations of the theory of finite magneto-elasticity. For definiteness we consider
an incompressible material in the absence of external body forces. The motion of the body is described by the position-
vector in the actual configuration xx

xx = xx(X, t), (1)

while X is the position-vector in the reference configuration. We use standard notations

FF = (∇∇XX x)T, J = detF ,

where FF is the gradient of the position-vector, ∇X is the nabla operator with respect to XX. For rubber-like materials we
use the incompressibility condition

J = 1 (2)

The constitutive equations of an incompressible isotropic magneto-elastic solid are given by

W = W (I1, I2, I4, I5, I6),

σσ = −pII + F · ∂W

∂F
,

MM e = − ∂W

∂B
,

(3)

where W is the specific free energy given as a function of the following set of invariants [7, 15, 17]

I1 = tr b, I2 =
1
2

[
(tr b)2 − tr bb2

]
, I4 = B2 ≡ |B|2, I5 = (bb · B) ·· B, I6 = (bb2 ··BB) · B,

b = FF · FFT is the left Cauchy-Green deformation tensor, BB is the vector of magnetic induction, σσ is the Cauchy stress
tensor, MMe is the normalized vector of magnetization (see [15]), p is a Lagrange multiplier associated with the constraint
(2), and II is the second-order identity tensor. From the physical point of view p is the hydrostatic pressure [39].



The equation of motion and the field equation have the following form

∇∇x · σ + (∇xxBB) ··MM e = ρv̇v,

∇∇x · B = 0,
(4)

where ∇x is the nabla operator in the actual configuration, ρ is the density, v = ẋ is the velocity, ˙(. . .) is the material
derivative with respect to the time t. Further we assume that B is homogeneous and depends only on t. The assumption
B = B(t) means that there is no backward influence of the oscillating sphere on the surrounding magnetic field. Then
Eqs. (4) reduce to the standard one

∇∇x · σ = ρv̇v . (5)

The static boundary conditions have the standard form too

σσ ··nn = f, (6)

where nn is a unit outer normal to the boundary of the body and ff is an external surface load.
Let us specify the form of the energy given by

W =
1
2

μ(I4)(I1 − 3) (7)

with μ(I4) = μ0(1 + ηI4), η > 0. For small deformations μ0 is the shear modulus in the absence of the magnetic field, η
describes the influence of the magnetic field on the shear modulus. Equation (7) is the classical neo-Hookean model, which
is widely used in the mechanics of elastomers (see, for example, [38,48]) with an elastic modulus highly depending on the
magnetic field induction intensity. More general constitutive equations were considered, for instance, in [7, 15, 17]. Using
(7) we obtain

σσ = −pII + μ(I4)bb .

Thus, the boundary-value problem (5), (6) describes the deformations of MS elastomers under action of both the external
forces and the magnetic field. Let us note that Eqs. (5), (6) contain BB(t) only as a parameter. On the other hand, the
dependence B on t posses one to generate and control the vibrations of MS elastomer based devices. To illustrate this idea
we consider an one-dimensional problem for MS elastomers in the next section.

2 Nonlinear oscillations of a magneto-elastic sphere

Let us consider the oscillations of a hollow magneto-elastic sphere under action of a homogenous magnetic field BB = BBB(t)
and a inner hydrostatic pressure p̃. In the reference configuration the sphere has the inner and the outer radii r0 and r1,
respectively. In the spherically symmetric case the position-vector is given by

xx = R(r, t)er, (8)

where r ∈ [r0, r1] is the radial component of the spherical Lagrangian coordinates and eer is the appropriate base vector
(see, e.g. [38, 39]), R is an unknown function. In the actual configuration the inner and the outer radii are R0 = R(r0, t)
and R1 = R(r1, t), respectively.

From (2) we immediately find that

R(r, t) = (r3 + x(t))1/3, (9)

where x(t) is a new unknown function. Thus, R1 = (r3
1 + x(t))1/3, R0 = (r3

0 + x(t))1/3. Equation (9) is one of the
well-known so-called universal solutions for incompressible solids (see, e.g. [38,50]. For magneto-elastomers the universal
solutions were studied in [20]. From (9) it follows that the volume of the sphere is constant, i.e.

R3
1 − R3

0 = r3
1 − r3

0 . (10)

For the universal solution (9) Eq. (5) is satisfied identically by choosing of function p = p(r, t).
For spherically symmetric deformations the boundary conditions are given by

σRR(R1, t) = 0, σRR(R0, t) = −p̃, (11)



where σRR = eer · σ · eer. For brevity, we omitted the awkward computations, see, for details, [38], p. 348. Finally, Eqs. (5),
(11) can be reduced to the ordinary differential equation (ODE) with respect to x(t)

ρ

[
ẍ

R1 − R0

R1R0
− 1

6
ẋ2 R4

1 − R4
0

R4
1R

4
0

]
+ 12x

r1∫

r0

R3 + r3

R7

(
∂W

∂I1
+

R2

r2

∂W

∂I2

)
dr = 3p̃ . (12)

Using (7) Eq. (12) is reduced to

α(x)ẍ − β(x)ẋ2 + μγ(x)x = p̃, (13)

where

α(x) =
1
3
ρ

R1 − R0

R1R0
> 0, β(x) =

1
18

ρ
R4

1 − R4
0

R4
1R

4
0

> 0 ,

and

γ(x) = 4

r1∫

r0

x + 2r3

(x + r3)7/3
dr

are essentially nonlinear functions, γ(x) cannot be expressed in elementary functions. Let us note that under assumptions of
incompressibility, B = B(t), spherical symmetry and constitutive equations (7), we reduce exactly the system with infinite
number of degrees of freedom to a mechanical system with one degree of freedom. The analysis of the general case may be
performed applying more complex methods (see, for example, [34, 49]). Even for the considered simple example we show
that the system with one degree of freedom presented by Eq. (13) behaves similar as the system with infinite number of
degrees of freedom.

Equation (13) is essentially nonlinear non-autonomous ODE with respect to x(t) which can be solved only numerically.
Let us assume a sinusoidal behavior of B: B(t) = B0 sin ωt, where B0 is the magnitude, while ω is the frequency.
Example of numerical simulations is presented in Figs. 1, 2. In Fig. 1 the phase portrait of (13) in the absence of magnetic
field (BB = 0) is shown. Here the following dimensionless parameters r̄0 = 0.9, r̄1 = 1 (r̄ = r/r1), p̄ ≡ p̃/μ = 0.01
were used, and we keep notation x for new dimensionless variable x/r3

1 . Two closed trajectories correspond to the initial
data x(0) = 0.01, ẋ(0) = 0, and x(0) = 0.1, ẋ(0) = 0, respectively. In Fig. 2 two trajectories correspond to initial data
x(0) = 0.01, ẋ(0) = 0, and x(0) = 0.1, ẋ(0) = 0, respectively. Here η̄ = ηB2

0 and ω̄ = ωT , T =
√

ρ/μ0, and the time
interval is [0, 300T ]. The trajectories of (13) can demonstrate complex behavior. For the case of low values of η̄ describing
the dependence of the shear modulus on B one can see the weak influence on the oscillations (see top row in Fig. 2). In
this case we have the behavior similar to Fig. 1. The middle and bottom rows in Fig. 2 demonstrate more complex behavior
for small frequencies, one can see some type of instabilities. The increase of the frequency of B leads to the stabilization
of oscillations near the solutions with constant BB similar to the behavior shown in Fig. 1. It means that using the external
magnetic field we can “control” in some sense the motion of the sphere.

Further strict mathematical analysis of the oscillations on MS elastic sphere may be proved using additional assumption.
In the next section we assume that the deformations are small.

3 Oscillations of a linear elastic sphere

We consider an isotropic linear elastic sphere of the inner radius r0 and outer radius r1 in the reference configuration. The
spherically symmetric mapping is described by

xx(t, r) = X(r) + uu, uu = U(t, r)er,

where x and X are again the actual and reference position-vectors as functions of the time t and the radius r only, U is the
field of the full radial displacements of the sphere. We assume that U(t, r) = R0(t) − r0 + u(t, r), where u is the relative
field of radial displacements such that u(t, r0) ≡ 0.

For the case of small deformations we have no need to distinguish the Lagrangian and Eulerian coordinates, etc. The
incompressibility condition reduces to ∇ · u = 0. Using latter relation in the case of radially symmetric deformation with
the condition u(t, r0) ≡ 0, we obtain

U(t, r) = (R0(t) − r0)
( r0

r

)2

. (14)



x(t)

ẋ(t)

Fig. 1 Phase portrait of (13) in the absence of magnetic field.

For brevity, further we use the notation a(t) = R0(t).
In the considered problem the full displacements are finite but deformations are small, therefore, for description of the

actual configuration we can use the linear elasticity theory. As a result, for the Cauchy strain tensor having in the spherical
coordinates the form

εεε(t, r) = (a(t) − r0)
r2
0

r3

(−2eeereeer + eeθeeθ + eeφeeφ

)
,

and the Cauchy stress tensor σ, the Hooke’s law for incompressible materials is valid

σσ =
2
3
Eε − p II, (15)

where E is the Young modulus, p is the hydrostatic pressure.
Neglecting the weight of the sphere, in a homogeneous magnetic field the equilibrium equation has the classical form

ρẍx = ∇ · σσ . (16)

Substituting relations (14), (15) into Eq. (16) we obtain the condition σθθ = σφφ and the differential equation for functions
a(t) and p(t, r)

ρ0ä
( r0

r

)2

+
∂p

∂r
= 0 , (17)

which is true for every radius r ∈ (r0, r1) and time t > 0.
On the inner surface of the sphere we have the surplus pressure p̃ > 0 and the outside surface is free, therefore, the

following boundary conditions are true

σRR(r0, t) = −p̃ , σRR(r1, t) = 0 . (18)

After integration of Eq. (17) in r and taking into account the boundary conditions (18) we obtain a differential equation for
the current inside radius of the sphere

ä + c (a − r0) = f , (19)

where c and f are the effective stiffness and the external force, respectively. They have the following form

c =
4
3

(
E

ρ0

)
D0

r2
0r

2
1 (r1 − r0)

> 0 , f =
(

p̃

ρ

)
r1

r0 (r1 − r0)
> 0 , D0 = r3

1 − r3
0 .



Fig. 2 Examples of trajectories of (13) for different parameters η̄ and ω̄.

For a constant internal pressure p̃0 > 0 the inflated sphere has the inner and the outer radii

a∗ = r0

[
1 +

3
4

(
p̃0

E

)
r3
1

D0

]
> r0 , b∗ =

(
a3
∗ + D0

)1/3
> r1 . (20)

For example, the sphere with initial radii r0 = 0.1 and r1 = 0.11 m prepared from the elastomer with the Young’s modulus
E ≈ 1.8 MPa inflates to sizes a∗ ≈ 0.15 m and b∗ ≈ 0.155 m.

It was proven [7] that in a magnetic field the Young’s modulus of MS elastomers only increases according to the follow-
ing relation

E = E0

(
1 + ηB2

)
, (21)

where E0 is the Young modulus corresponding to zero magnetic flux density B, η > 0 is the MS coefficient. From
experiments it is well known that η = η(λ), where λ ∈ [0, 0.5] is the MS particle volume fractions in an elastomer [10,35].
For commercially available MS elastomers η(0) = 0 and η(0.5) ≈ 0.5 [7].

For example, the examined above initially inflated sphere from a MS elastomer with λ ≈ 0.3 in a homogeneous magnetic
field B ≈ 0.8 T shrinks to sizes R0 ≈ 0.14 m and R1 ≈ 0.146 m.

In the following section we will consider oscillations of a MS elastic sphere near the static equilibrium state (20). After
the standard replacements y = a − a∗ and τ =

√
c0 t, where c0 is the the effective stiffness corresponding to zero magnetic

field, Eq. (19) is transformed into the following simple form

ÿ +
(
1 + ηB2

)
y = 0 . (22)



3.1 Control of oscillations

Consider the problem of generation of harmonic oscillations with the desired frequency ωd and amplitude Ad in the system
(22). The coefficient of the effective stiffness is given by the formula cd = ω2

d. The multiplier with y can be represented as

1 + ηB2 = cd + ug, (23)

where ug is the new control input. Let Bmax be the magnetic saturation of the MS elastomer, typically Bmax is about 1 T [7].
Then

1 < cd < 1 + ηB2
max (24)

or

cd = 1 . (25)

The last conditions impose restrictions on the desired frequency. Introducing the function of energy

E =
1
2
(ẏ2 + cdy

2)

and the desired energy

Ed =
1
2

cdA
2
d,

it is easy to check that

Ė = −yẏu.

Let us consider the Lyapunov function

V =
1
2

(E − Ed)2.

Then we can synthesize the control input from the condition of decreasing the Lyapunov function on the trajectories of the
closed loop system [27]. Differentiating we get that V̇ = −yẏ(E − Ed)u. Under the condition (24) let us choose as the
control input

ug = F (yẏ(E − Ed)), (26)

where F (t) is a continuous, monotonously increasing function, F (0) = 0. It may be bounded. It is reasonable to choose F
so, that

1 − cd < F < 1 − cd + ηB2
max .

Under the condition (25) we choose as control

ug = F+(yẏ(E − Ed)), (27)

where F+(t) is a continuous function, F+(t) = 0 for t ≤ 0, and it monotonously increases for positive t. It may be
bounded.

For the deviation of energy the following equation holds true

(E − Ed)̇ = −ẏyF (yẏ(E − Ed)) . (28)

Proposition 3.1. The closed loop system (22), (23), (24) (or (25), (26), (27)) has the desired harmonic oscillation as
the solution. The extended systems (22), (28) with conditions (23) and (24) (or (25)), and the control input in the form (26)
or (27) are asymptotically stable with respect to the variable E − Ed. The closed loop system has also the equilibrium
y = 0, ẏ = 0, which is unstable.

P r o o f. The asymptotic stability follows from the application of the theorem on asymptotic stability with respect
to the part of variables [45] to the function V . Because Ė ≥ 0 in the small neighborhood of the point (0, 0) then this
equilibrium is unstable in accordance to the Chetaev theorem on instability [36].
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Fig. 3 Phase portrait of the closed loop system
described in the Proposition 3.1 for the initial data
(0.5, 0) in the time interval [0, 200]

The example of phase portrait of the closed loop system described in the Proposition 3.1 is given in Fig. 3. Here we used
dimensionless variables which are analogous to the ones used in the previous section.

Consider also the problem of oscillation damping. Construct the control input from the condition of decreasing E.
Represent the multiplier with y as

1 + ηB2 = c + u0 , (29)

where c = 1 or c > 1. In first case define as control input

u0 = F+(yẏ) (30)

and in the second case

u0 = F (yẏ) , (31)

where the functions F and F+ were mentioned above.

Proposition 3.2. The closed loop system (22), (29), (30) (or (31)) is globally asymptotic stable with respect to the
variables y, ẏ.

P r o o f. It follows from the application of the Barbashin-Krasovski theorem [36] to the function E.

We integrated numerically the closed loop system described in Proposition 3.1 with the following parameters: cd = 1,
Ad = 1, F (p) = arctanp/π on time interval [0, 100] with different initial data (y0, ẏ0): (0.5, 0), (0.8,−1), (1, 1), (2, 1),
(2, 0). In addition, we integrated the system described in Proposition 3.2 on time interval [0, 200] with the parameter c = 1.5
and different initial data (1, 0) and (1, 1). In all cases the desired convergence was observed.

3.2 Non-stationary oscillations

Rewrite the equation (22) as

ÿ + Uy = 0, (32)

where U is a new control. Try to find the desired oscillations as yd(t) = A(t) sin(φp(t)), where A(t), φp(t) are sufficiently
smooth functions. Differentiate and substitute in (32), then the coefficients with the harmonics equal to zero. We get the
following differential equations

2Ȧφ̇p + Aφ̈p = 0, Ä − Aφ̇2
p + UA = 0 .



If we express the desired frequency as an exponential function of time φp = κ exp(kt) + μ, (κ, k 	= 0), then these
differential equations have the following solutions

U(t) = k2κ2t exp(2kt) − k2

4
, A = c exp

(
− k

2
t

)
, c = const.
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Fig. 4 Graphics of the functions y(t) and ẏ(t)

In Fig. 4 there are the graphics of the functions y(t), ẏ(t) for the given parameters κ = 1, k = 1, μ0 = 1, y(0) = 1, and
ẏ(0) = 0 under the considered control.

Conclusions

In the paper the dynamic statement of the boundary-value problems of MS elastomers under homogeneous with respect to
space but time-dependent magnetic field is given. The special property of the boundary-value problem is that the coefficients
of the equations of motion may depend on time. As an example, we considered the radially symmetric oscillations of a
MS incompressible elastic sphere. It was shown that using the external magnetic field one can generate and control the
oscillations of the sphere. On the other hand, the considered system demonstrates complex behavior which highly depends
on the type of external excitation. Such MS elastic sphere under internal pressure may be used, for example, as an actuator
or working element of a microengine, based on MS elastomers.
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