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Green et al. [18], and the books [4,7]. Another way to derive one-dimensional equations of rods is to use the
thinness hypothesis and to apply a reduction procedure to three-dimensional (3D) thin rod-like bodies. This
derivation can be performed by the application of kinematical or stress hypotheses, the integration over the
rod cross-section, or within mathematical techniques like series expansions and asymptotic analysis, see for
example, [5,6,8,10,11,19]. In relation to mechanics of rods and beam, it is worth mentioning the contribu-
tion of Hans Irschik in this field, see [20–27] where the elasto-plastic behavior, vibrations, non-homogeneity,
thermal, and electric fields coupling are studied, in particular.

In most papers on rod mechanics, the purely mechanical theory is considered without derivation of rod
thermodynamics. This paper presents a thermodynamic theory for rods with two temperature fields using the
direct approach. Within the direct approach, we suggest the rod as a deformable Cosserat curve, the kinematics
of which is described by independent translations and rotations fields. In addition, we introduce two tempera-
ture fields, that is, the rod-like temperature and its deviation. In this case, it is necessary to introduce two dual
entropy fields.

Let us note that the thermomechanics of 3D continua is always based on the First and Second Law of Ther-
modynamics formulated as the energy balance equation and the Clausius–Duhem inequality [28]. Discussion
on other extended thermodynamic approaches is given in [29–33]. However, in the construction of 1D thermo-
dynamic relations for rods, one cannot simply transfer the notions of temperature, entropy, and energy from the
3D case to the 1D continuum C0. For rods, it is quite natural to introduce the temperature fields describing the
3D distribution of the temperature on the rod cross-section. The situation with the rod thermodynamics is quite
similar to the thermodynamics of shells where various sets of surface fields responsible for the temperature are
used and several formulations of the first and second law are discussed, see [35–37]. The thermomechanics
of rods has been considered earlier by DeSilva and Whitman [16], Kafadar [17], Green and Naghdi [14,15]
applying the axiomatic approach, and by Simmonds [38] on the basis of exact integration of 3D equations of
non-linear thermoelasticity. From the thermodynamic point of view, the 1D and 2D structures such as rods
and shells can be considered as examples of generalized thermomechanical models or models with internal
variables discussed for the 3D case in [29–33].

To describe the thermomechanics of general rods, we shall employ the kinematical model of directed curves
presented in [4,5,9,39]. In this approach, the thin rod-like bodies are modeled as deformable curves endowed
with a triad of vectors (also called directors) attached to each point of the curve. This triad of directors rotate
rigidly during deformation and give information about rotations of the rod’s cross-sections. In other words, we
consider the rod as a 1D Cosserat or micropolar continuum. In the case of isothermal deformation, the com-
plete purely mechanical theory is given in [5,9,39]. In this paper, we extend the model of directed curves and
present a thermodynamical theory capable of describing thermal effects in rods. In this purpose, we consider
two independent temperature fields associated to each point of the deformable curve: the absolute tempera-
ture field and the temperature deviation field. The former is a mean value of the absolute temperature in the
cross-section of the rod, while the latter measures the spatial variation of the temperature in the cross-section.
We also introduce two dual entropy fields, that is, the mean entropy and the entropy deviation, and two related
entropy fluxes.

We mention that the approach of directed curves can also be extended to account for:

– porosity effects in the mechanics of rods [40,41], using the theory of thermoelastic materials with voids
[42];

– functionally graded materials in the mechanics of rods [43] or
– electrical and magnetic fields, phase transitions, diffusion, and other coupled effects known in 3D continuum

mechanics or in 2D shell theories.

The paper begins with a short expository section, which presents the kinematical model of directed curves.
In Sect. 3, we formulate the basic laws of thermodynamics for rods with two temperature fields, and we deduce
the balance equations in local forms. In Sect. 4, we introduce the constitutive assumptions for thermoelastic
rods and obtain the reduced constitutive equations. The energy balance equation coincides with the formulation
in [38] while the second thermodynamics law differs from [38] by additional terms describing the entropy
fluxes. We derive two thermoconductivity equations for determination of rod-like temperature and its deviation.
The structure of the constitutive tensors for general rods is also discussed. In Sect. 5, we derive the linearized
equations of thermoelastic rods with two temperature fields and we prove the uniqueness of solution to the
boundary-initial-value problems. The uniqueness property in the linear setting shows that the theory is well
formulated.



Fig. 1 Reference configuration C0 and deformed configuration C of the rod

2 Kinematical model of directed curves

Let us briefly present the kinematical model of directed curves. We denote by C0 the curve in the reference
(initial undeformed) configuration and by s the material coordinate along C0. The coordinate s is taken to
be the arclength parameter along C0. The reference configuration of the rod is defined by the vector fields
(see Fig. 1)

r = r(s), di = di (s), i = 1, 2, 3, s ∈ [0, l].
Here, r is the position vector of points on C0, the triad {d1, d2, d3} specifies the 3 unit vectors (directors)
orthogonal to each other, and l is the length of the rod. The vector d3 is chosen tangent to the curve (i.e.,
d3 = dr

ds ), while d1 and d2 are usually taken along the principal axes of inertia of the cross-section, and C0 is
the line of centroid.

Let C denote the deformed (present) configuration at time t , which is determined by the position vector
R = R(s, t) and the directors Di = Di (s, t), i = 1, 2, 3. The 3 unit vectors Di remain mutually orthogonal
after deformation, but D3 is no longer tangent to the curve C, which means that the model takes into account
the transverse shear deformations in rods.

We define the rotation tensor P by the relation

P(s, t) = Dk(s, t) ⊗ dk(s). (1)

In (1) and throughout the paper, we employ the Einstein summation convention, and the direct tensor notation
in the sense of [44,45]. A superposed dot denotes the time derivative as usual, while a prime designates the
derivative with respect to the spatial coordinate s (i.e., f ′ = ∂ f

∂s ).
We introduce the velocity vector v(s, t) = Ṙ(s, t) and the angular velocity vector ω(s, t) by the well-

known relation Ṗ = ω × P , which means that ω = axial[ Ṗ · PT ] is the axial vector of the antisymmetric
tensor Ṗ · PT.

The deformation of rods is described by two Lagrangian strain measures: the vector of extension-shear ε
and the vector of bending-twisting φ is given by

ε = PT · R′ − d3, φ = PT · axial[P ′ · PT ]. (2)

We notice that (essentially) the same strain measures have been considered in other different approaches to
rod theory [4–6,38].

3 Basic laws of thermodynamics for rods

Let us denote by K (s, t) the kinetic energy density, given by

K = 1

2
ρ0 (v · v + 2v ·�1 · ω + ω ·�2 · ω) , (3)



where ρ0 is the mass density in the reference configuration C0, the second-order tensors�1(s, t) and�2(s, t)
are the tensors of inertia (per unit mass), which characterize the distribution of the material in the cross-sec-
tion. For the reference configuration, the tensors of inertia are denoted by �0

1(s) and �0
2(s), and we have:

�α = P · �0
α · PT , α = 1, 2. We mention that the expressions of �0

α in terms of the mass density of the
three-dimensional rod have been determined in [9]. In view of (3), the linear momentum K 1 and the moment
of momentum K 2 are

K 1 = ∂K

∂v
= ρ0(v +�1 · ω),

K 2 = ∂K

∂ω
+ R × ∂K

∂v
= ρ0

[
�T

1 · v +�2 · ω + R × (v +�1 · ω)
]
.

(4)

Let N(s, t) be the force vector and M be the moment vector in the rod. The balance laws of linear momentum
and moment of momentum are expressed by: for any s1, s2 ∈ [0, l], we have

s2∫

s1

K̇ 1(s, t) ds =
s2∫

s1

F(s, t) ds + N(s, t)
∣∣∣
s2

s1
,

s2∫

s1

K̇ 2(s, t) ds =
s2∫

s1

[
L(s, t) + R(s, t) × F(s, t)

]
ds + [M(s, t) + R(s, t) × N(s, t)]

∣∣∣
s2

s1
,

(5)

where F and L are the external body force and moment per unit length of C0, respectively. We mention that
the assigned body loads F and L also include the contributions of the loads acting on the lateral boundaries
of the three-dimensional rod [40].

To describe the thermal effects in thin rods, we consider two temperature fields: the absolute tempera-
ture field denoted by θ(s, t) and the temperature deviation G(s, t), with θ > 0 and G ≥ 0. In the reference
configuration C0, we assume that the temperature fields θ0, G0 are constant.

In general, the balance of energy is given by the relation

d

dt
(E + K) = A + Q, (6)

where E and K are the internal and kinetic energy functionals, respectively, A is the mechanical power, Q is
the heat supply. For rods, these quantities are expressed as follows:

E =
s2∫

s1

U ds, K =
s2∫

s1

K ds,

A =
s2∫

s1

(
F · v + L · ω)

ds + (
N · v + M · ω)∣∣∣

s2

s1
, Q =

s2∫

s1

S ds + q
∣∣
∣
s2

s1
,

(7)

where U (s, t) is the internal energy per unit length, S is the external rate of the resultant heat supply per unit
length, and q is the heat flux along the rod. Note that S consists of the internal heat supply in the rod and the
heat fluxes across the rod surface.

Hence, the balance of energy is expressed by

s2∫

s1

d

dt
(K + U ) ds =

s2∫

s1

(
F · v + L · ω + S

)
ds + (

N · v + M · ω + q
)∣∣∣

s2

s1
. (8)

We use the second law of thermodynamics (entropy inequality) in the following form:

d

dt
H ≥ J , (9)



where H is the entropy

H =
s2∫

s1

η ds,

η(s, t) designates the specific entropy function, J is the entropy supply consisting of two parts

J =
s2∫

s1

j ds + h
∣
∣
∣
s2

s1
, (10)

where j is the resultant entropy supply, and h is the entropy flux along the rod.
Following [38], we assume the following expressions for j and h:

j = S

θ
− χ G, h = q

θ
− r G, (11)

where χ and r are the additional heat supply and additional heat flux along the rod.
Hence, the second law of thermodynamics (entropy inequality) takes the following form:

s2∫

s1

η̇ ds ≥
s2∫

s1

( S

θ
− χ G

)
ds +

(q

θ
− r G

)∣∣∣
s2

s1
. (12)

Using the direct approach, two temperature fields θ and G, as well as other 1D quantities, can be introduced
only by an axiomatic way. For the interpretation of various fields in terms of three-dimensional variables, we
refer to the work of Simmonds [38], who introduced previously the beamlike temperature θ and its deviation
G. More precisely, the temperature field θ(s, t) and the temperature deviation G(s, t) are identified in [38]
with

1

θ
= 1

2

( 1

θmin
+ 1

θmax

)
, G = 1

2

( 1

θmin
− 1

θmax

)
, (13)

where θmin(s, t) and θmax(s, t) denote the minimum and maximum values of the absolute temperature in the
cross-section of the rod characterized by the spatial coordinate s at time t . We notice that θ is the harmonic
mean of θmin and θmax. Using (13) is quite natural in approximation of the 3D temperature field across the rod
cross-section, because in the three-dimensional entropy inequality, the temperature appears as coldness [28].
Since G has the same dimension as 1/θ , it can be also called the coldness deviation. If (θmax − θmin)/θ � 1,
then G � (θmax − θmin)/(2θ2) and thus G is related to the temperature deviation. From physical point of
view, θ and G describe the mean temperature at the rod cross-section and the deviation from the mean value,
respectively.

3.1 Balance equations in local forms

Under suitable smoothness assumptions, we obtain in the classical manner [9] the following local forms of the
principles (5)–(12):

– equations of motion:

N ′(s, t) + F = ρ0
d

dt
(v +�1 · ω),

M ′(s, t) + R′ × N(s, t) + L = ρ0

[
d

dt
(�T

1 · v +�2 · ω) + v ×�1 · ω
]

;
(14)

– energy balance equations:

q ′ + P + S = U̇ , (15)

where P is given by

P = N · (v′ + R′ × ω) + M · ω′ = (N · P) · ε̇ + (M · P) · φ̇ ; (16)



– entropy inequality:

θ η̇ ≥ S + q ′ − θ ′

θ
q − χ θ G − θ(rG ′ + r ′G), (17)

which must be valid for every point s and time t .

Let us consider the free energy function � defined by

� = U − θ η − G F, (18)

where F is a new variable called the entropy deviation, according to Simmonds [34,38].
Then, the energy balance equation (15) can be written in the form

q ′ + S + P − θ̇η − Ġ F − �̇ = θη̇ + G Ḟ . (19)

Inserting Eq. (19) into (17), we obtain the following form of the entropy inequality:

θ ′

θ
q + P − θ̇η − Ġ F − �̇ ≥ (Ḟ − θχ − θr ′)G − θrG ′. (20)

4 Constitutive equations for thermoelastic rods

For thermoelastic rods, we adopt the following constitutive assumptions: the fields �, N·P, M·P , η, F, r and
q depend only on the variables ε, φ, θ, G, θ ′ and G ′ (and on the point s), i.e.:

{�, N · P, M · P, η, F, r, q} = {�, N · P, M · P, η, F, r, q}( ε,φ, θ, G, θ ′, G ′ ; s
)
. (21)

We use the relation (21) to express �̇ into the entropy inequality (20) and we obtain

θ ′

θ
q + θ G ′ r +

(
N · P − ∂�

∂ε

)
· ε̇ +

(
M · P − ∂�

∂φ

)
· φ̇ −

(
η + ∂�

∂θ

)
θ̇

−
(

F + ∂�

∂G

)
Ġ − ∂�

∂θ ′ θ̇ ′ − ∂�

∂G ′ Ġ ′ +
(
θχ + θr ′ − Ḟ

)
G ≥ 0.

(22)

On the basis of Eq. (22), we deduce that

(
N · P − ∂(� + FG)

∂ε

)
· ε̇ +

(
M · P − ∂(� + FG)

∂φ

)
· φ̇ −

(
η + ∂(� + FG)

∂θ

)
θ̇ − ∂(� + FG)

∂G
Ġ

−∂(� + FG)

∂θ ′ θ̇ ′ − ∂(� + FG)

∂G ′ Ġ ′ + θ
(
χ + r ′)G + θ ′

θ
q + θ G ′ r ≥ 0. (23)

The standard Coleman–Noll procedure of analysis of the entropy inequality requires the independence of the
rates of strains and temperature, see [28,46]. In our case this means that within this procedure ε̇, φ̇, θ̇ , Ġ, θ̇ ′, Ġ ′
have to be considered as independent quantities. Assuming for a moment this independence let us apply the
Coleman–Noll procedure to Eq. (23). Consider the following family of deformations:

ε = ε0 + ε1(t − t0), φ = φ0 + φ1(t − t0),
θ = θ0 + θ1(t − t0) + θ2(s − s0)(t − t0),
G = G0 + G1(t − t0) + G2(s − s0)(t − t0),

(24)

where ε0, ε1,φ0,φ1, θi , Gi are constants (i = 0, 1, 2), s0 is any point at the rod curve and t0 is any time
instant. Substituting Eq. (24) into Eq. (23) and taking into account that at t = t0, s = s0 we have

ε = ε0, ε̇ = ε1, φ = φ0, φ̇ = φ1,

θ = θ0, θ̇ = θ1, θ̇ ′ = θ2,

G = G0, Ġ = G1, Ġ ′ = G2,

(25)



we obtain the inequality

ε1 ·
(

N · P − ∂(� + FG)

∂ε

)∣
∣
∣
s=s0,t=t0

+ φ1 ·
(

M · P − ∂(� + FG)

∂φ

)∣
∣
∣
s=s0,t=t0

−θ1

(
η + ∂(� + FG)

∂θ

)∣
∣
∣
s=s0,t=t0

− G1
∂(� + FG)

∂G

∣
∣
∣
s=s0,t=t0

− θ2
∂(� + FG)

∂θ ′
∣
∣
∣
s=s0,t=t0

−G2
∂(� + FG)

∂G ′
∣
∣
∣
s=s0,t=t0

+
[(

θχ + θr ′
)

G + θ ′

θ
q + θ G ′ r

] ∣
∣
∣
∣
s=s0,t=t0

≥ 0.

(26)

The left side of the inequality (26) is a linear function of the independent variables ε1,φ1, θ1, θ2, G1, G2.
Hence, from (26) it follows

N · P = ∂(� + FG)

∂ε
, M · P = ∂(� + FG)

∂φ
, η = −∂(� + FG)

∂θ
,

∂(� + FG)

∂G
= 0,

∂(� + FG)

∂θ ′ = 0,
∂(� + FG)

∂G ′ = 0,

(
θχ + θr ′

)
G + θ ′

θ
q + θ G ′ r ≥ 0.

(27)

From Eq. (27) it follows that the function �̃ = � + FG does not depend on G, θ ′, G ′, i.e.

�̃ = �̃(ε,φ, θ ; s),

and then M does not depend on G. This results seems unrealistic. Indeed, from the elementary knowledge
on the strength of materials we know that non-zero through-the-thickness gradient of temperature leads to the
beam bending. In other words, we have M �= 0 if G �= 0 in general, and thus M should depend on G. In the
case of non-linear thermoelastic shells, this fact was noted in [34,35] where Ḟ was considered as an internal
variable with additional constitutive equation. The similar approach was used also in [38] for thermoelastic
beams.

Moreover, the solution of the system of equations (27)4,5,6 has the form

F = F0(ε,φ, θ; s) − �

G
,

where F0 is an arbitrary function. Hence, F has a singularity when G → 0.
To avoid these unsatisfactory conclusions we propose a modification of Coleman–Noll procedure assuming

that not all thermodynamical processes are thermodynamically admissible. More precisely, we assume that
ε,φ, θ can be considered as the independent variables, while G is subjected to some constraints. Following
our assumption let us consider the following family of deformations:

ε = ε0 + ε1(t − t0), φ = φ0 + φ1(t − t0),
θ = θ0 + θ1(t − t0) + θ2(s − s0)(t − t0).

(28)

Substituting Eq. (28) into Eq. (22) we obtain the inequality

ε1 ·
(

N · P − ∂�

∂ε

)∣∣∣
s=s0,t=t0

+ φ1 ·
(

M · P − ∂�

∂φ

)∣∣∣
s=s0,t=t0

−θ1

(
η + ∂�

∂θ

)∣∣∣
s=s0,t=t0

− θ2
∂�

∂θ ′
∣∣∣
s=s0,t=t0

+
[
θ ′

θ
q + θ G ′ r

] ∣∣∣∣
s=s0,t=t0

+
[
−

(
F + ∂�

∂G

)
Ġ − ∂�

∂G ′ Ġ ′ +
(
θχ + θr ′ − Ḟ

)
G

] ∣∣∣∣
s=s0,t=t0

≥ 0.

(29)

From Eq. (29) it follows that

η = −∂�

∂θ
, N = ∂�

∂ε
· PT , M = ∂�

∂φ
· PT , (30)



while the free energy density � is independent of θ ′. The inequality (22) reduces to the relation

θ ′

θ
q + θ G ′ r −

(
F + ∂�

∂G

)
Ġ − ∂�

∂G ′ Ġ ′ +
(
θχ + θr ′ − Ḟ

)
G ≥ 0. (31)

The latter inequality can be considered as the constraint for the temperature deviation function G, as well as
the further constraints for admissible constitutive equations for �, F, q , and r . Inequality (31) implies that

∂�

∂G ′ = 0.

Hence, � takes the form � = �(ε,φ, θ, G).
In what follows we assume the constitutive relation for F in the form

F = −∂�

∂G
,

which is analogue to (30)1. Thus, F = F(ε,φ, θ, G).
The entropy inequality (31) now reduces to

q θ ′ + θ2r G ′ +
(
χ + r ′ − θ−1 Ḟ

)
θ2G ≥ 0. (32)

The inequality (32) should be fulfilled for any constitutive relations and any possible values of the state variables
at any point of the rod. In particular, assuming θ ′ = G ′ = 0 we obtain

[
θ(χ + r ′) − Ḟ

]
θ G ≥ 0.

Since θ > 0, G ≥ 0, to satisfy this inequality we obtain that

θ(χ + r ′) − Ḟ ≥ 0.

Introducing a new constitutive function c = c(ε,φ, θ, G, θ ′, G ′) ≥ 0 we transform the last relation in the
form

θ(χ + r ′) − Ḟ = c, (33)

where c should be determined by experiments, see [34–36,38]. The quantities χ, r , and F relate to the temper-
ature deviation field G. It is quite natural to assume that r = 0, F = 0 in the case of homogeneous temperature
and the absence of extra heat supply χ , i.e. in the case of G = 0 and χ = 0. Hence, we assume that c = 0
when G = 0. The simplest case is c = c0G with c0 = const, which is assumed in the sequel. This case is also
considered in [38].

Thus, the inequality (32) yields the results

r ′ + χ − θ−1 Ḟ = c0 θ−1G, (34)

and

q θ ′ + θ2r G ′ ≥ 0, (35)

which is a Fourier inequality of heat conduction augmented by a term which represents heat flux in the cross-
section 	, cf. Simmonds [38]. Equation (34) plays the role of second thermoconductivity equation in the
theory of thermoelastic rods and extends the analogous equation obtained in [38] where Ḟ was considered as
the internal variable.

Summarizing the constitutive equations of the thermoelastic rods we have

� = �
(
ε,φ, θ, G ; s

)
,

η = −∂�

∂θ
, F = −∂�

∂G
, N = ∂�

∂ε
· PT , M = ∂�

∂φ
· PT ,

{r, q} = {r, q}( ε,φ, θ, G, θ ′, G ′ ; s
)
.

(36)



In view of the constitutive equations (36), the reduced form of the energy balance equation (19) can be
written as

q ′ + S = θ η̇ + G Ḟ . (37)

The similar procedure of derivation of thermoconductivity equations for thermoelastic and thermovisco-
elastic shells was proposed by Eremeyev and Pietraszkiewicz [36].

To complete the presentation of the constitutive equations we have to specify the expression for the free
energy function. As an example, let us consider the following quadratic form:

� = �0 + N0 · ε + M0 · φ + 1

2
ε · A · ε + ε · B · φ + 1

2
φ · C · φ

−(k1 · ε) (θ − θ0) − (k2 · φ) (θ − θ0) − (k3 · ε) G − (k4 · φ) G

−k (θ − θ0) G − 1

2
a (θ − θ0)

2 − 1

2
b G2,

(38)

where �0, k, a and b are scalars, θ0 is the reference temperature, N0, M0, k1, k2, k3, k4 are vectors, and
A, B, C are tensors of second order. All properties are defined in the reference configuration. The vectors
N0, M0 describe the initial forces and moments acting in the reference configurations, A and C are the tensors
of tangential and bending stiffness, respectively, B is t he tensor describing the coupling between stretching
and bending, k1, k2, k3, and k4 correspond to the thermoelastic coefficients.

4.1 Structure of the constitutive tensors

Let us choose the vectors d1 and d2 to be directed along the principal axes of inertia for any cross-section, i.e.
we assume that

∫

	

ρ∗x1 dx1dx2 =
∫

	

ρ∗x2 dx1dx2 = 0,

∫

	

ρ∗x1x2 dx1dx2 = 0,

where ρ∗ denotes the mass density in the three-dimensional rod, and 	 is the plane domain of the cross-section.
To determine the structure of the constitutive tensors for thermoelastic non-homogeneous rods, we employ

the same method as in [9,47,48], where Zhilin extends the theory of tensor symmetry to the special cases
of shells and rods. For simplicity, in the remaining of this section we consider straight rods without natural
twisting. In this case, we impose that the orthogonal tensor 1 − 2d3 ⊗ d3 belongs to the symmetry group of
any constitutive tensor. Then, the structure of the constitutive tensors k1, k2, k3 and k4 is given by

k1 = k1d3, k2 = k1
2 d1 + k2

2 d2, k3 = k1
3 d1 + k2

3 d2, k4 = k4d3. (39)

For the tensors A, B and C we have the following structures

A = A1d1 ⊗ d1 + A2d2 ⊗ d2 + A3d3 ⊗ d3 + A12(d1 ⊗ d2 + d2 ⊗ d1),
B = B13d1 ⊗ d3 + B31d3 ⊗ d1 + B23d2 ⊗ d3 + B32d3 ⊗ d2,
C = C1d1 ⊗ d1 + C2d2 ⊗ d2 + C3d3 ⊗ d3 + C12(d1 ⊗ d2 + d2 ⊗ d1).

(40)

From the comparison of solutions (direct approach and three-dimensional approach) for non-homogeneous
rods [43] we have found that the following constitutive coefficients should be taken zero:

B13 = B23 = 0, A12 = 0. (41)

Inserting Eqs. (38–41) into Eq. (36) we find the explicit form of the constitutive equations for N · P, M · P, η
and F . For instance, the constitutive equations for η and F are expressed by

η = k1 ε · d3 + kα
2 φ · dα + a (θ − θ0) + k G,

F = kα
3 ε · dα + k4 φ · d3 + k (θ − θ0) + b G.

From these equations we can observe the coupling of the entropy fields η, F with the extension-shear and
bending-twisting deformations ε,φ.



Remark The structure of the constitutive tensors can be derived also in the more general case of curved rods
with natural twisting. In this case, the constitutive coefficients depend on the angle of natural twist (which is
a function of s), and the expressions corresponding to (39) and (40) have to be supplemented with additional
terms.

In Sects. 2–4 we have presented the basic field equations for the non-linear theory of thermoelastic rods.

5 Linear theory of thermoelastic rods

Let us consider the deformation of curved rods in which the displacements, rotations and variations of tem-
perature fields are all infinitesimal. Then the rotation tensor can be represented as P = 1 + ψ × 1 within
the approximation of the linear theory, where ψ(s, t) is the vector of small rotations. In the linear theory, we
assume that

u(s, t) = R(s, t) − r(s) = ε ũ(s, t), ψ(s, t) = ε ψ̃(s, t),

T (s, t) ≡ θ(s, t) − θ0 = ε T̃ (s, t), τ (s, t) ≡ G(s, t) − G0 = ε τ̃ (s, t),
(42)

where ε is a small non-dimensional parameter such that the quantities of order O(ε2) are neglected. The
function τ(s, t) is the variation of the deviation of temperature, while T (s, t) is the variation of the mean
temperature. Since the absolute temperature field in the reference configuration of the three-dimensional rod
is considered to be constant, then it is natural to assume that G0 = 0.

The vectors of deformation become

e ≡ u ′ + d3 × ψ = ε, κ ≡ ψ ′ = φ, (43)

where e denotes the extension-shear vector and κ the bending-twisting vector in the linear theory.
The fields N, M, η, F, q and r are assumed to be quantities of order O(ε) which vanish in the reference

configuration. Moreover, the free energy function � is a quadratic form of the arguments { e, κ, T, τ }. The
constitutive equations for q and r have the forms

q = ς T ′, r =  τ ′ with ς ≥ 0,  ≥ 0, (44)

where the scalars ς and  characterize the thermal conductivity in the rod. Then, the entropy inequality (35)
is satisfied, since it can be put in the form

ς (T ′)2 +  θ 2
0 (τ ′)2 ≥ 0.

The constitutive equations become

η = −∂�

∂T
, F = −∂�

∂τ
, N = ∂�

∂e
, M = ∂�

∂κ
,

�
(
e, κ, T, τ ; s

) = 1

2
e · A · e + e · B · κ + 1

2
κ · C · κ − (

k1 ·e + k2 ·κ)T

−(
k3 ·e + k4 ·κ)τ − k T τ − 1

2
a T 2 − 1

2
b τ 2.

(45)

The equations of motion (14) in the linear theory are

N ′ + F = ρ0(ü +�0
1 · ψ̈), M ′ + d3 × N + L = ρ0

(
ü ·�0

1 +�0
2 · ψ̈)

, (46)

the reduced equation of energy balance (37) becomes

q ′ + S = θ0 η̇, (47)

while the second thermoconductivity equation (34) reduces to

r ′ + χ = θ−1
0 Ḟ + c0θ

−1
0 τ. (48)



We present the boundary conditions and the initial conditions associated to the above field equations.
Consider that the endpoints of the rod are characterized by the spatial coordinates s̄1 = 0 and s̄2 = l. Then we
take the boundary conditions of mixed type

u(s̄γ , t) = u(γ )(t) or N(s̄γ , t) = N(γ )(t),
ψ(s̄γ , t) = ψ (γ )(t) or M(s̄γ , t) = M(γ )(t),
T (s̄γ , t) = T (γ )(t) or q(s̄γ , t) = q(γ )(t),
τ (s̄γ , t) = τ (γ )(t) or r(s̄γ , t) = r (γ )(t), for γ = 1, 2,

(49)

and the initial conditions

u(s, 0) = u0(s), u̇(s, 0) = v0(s), ψ(s, 0) = ψ0(s), ψ̇(s, 0) = ω0(s),
T (s, 0) = T0(s), τ (s, 0) = τ0(s) for s ∈ [0, l], (50)

where the functions in the right-hand sides of Eqs. (49) and (50) are prescribed.
The relations (43)–(50) represent the boundary-initial-value problem for the deformation of thermoelastic

rods. In view of the constitutive equations (45) and the structure of constitutive tensors (39), (40) we notice that
the temperature fields are coupled also with the bending deformation of rods. This is an important advantage
of considering two temperature fields for describing thermal effects in rods. In this sense, our approach is an
improvement of the theory presented in [41], where the temperature field was coupled only with the extensional
deformation in the linear theory of straight rods.

5.1 Uniqueness results

In this section we show that under certain conditions the boundary-initial-value problem of thermoelastic rods
(43)–(50) admits at most one solution {u,ψ, T, τ }. To this aim, we introduce the functions K(t) and U(t) by

K(t) = 1

2

∫

C0

ρ0
(
u̇·u̇ + 2u̇·�0

1 ·ψ̇ + ψ̇ ·�0
2 ·ψ̇)

ds, U(t) =
∫

C0

(
� + T η + τ F

)
ds. (51)

We note that K(t) represents the kinetic energy of the rod, and U(t) can be also written in the form

U(t) =
∫

C0

(
W + 1

2
a T 2 + 1

2
b τ 2 + k T τ

)
ds, (52)

where W is the strain energy function defined by

W = 1

2
e · A · e + e · B · κ + 1

2
κ · C · κ . (53)

Then, on the basis of the governing equations, we obtain by a straightforward calculation the following result.

Theorem 1 For every solution { u,ψ, T, τ } of the boundary-initial-value problem (43)–(50), the following
relation holds true

d

dt

[K(t) + U(t)
] =

∫

C0

[(
F · u̇ + L · ψ̇ + 1

θ0
S T + θ0χ τ

) − ς

θ0

(
T ′)2

−c0τ
2 − θ0

(
τ ′)2] ds + (

N · u̇ + M · ψ̇ + 1

θ0
q T + θ0r τ

)∣∣∣
l

0
.

(54)

Relation (54) enables us to prove the classical theorem of uniqueness stated as follows.

Theorem 2 Assume that the mass density ρ0 is positive and the strain energy function A satisfies the inequal-
ity A ≥ 0. Moreover, assume that the constitutive coefficients for the thermal part: a, b and k verify the
inequalities

a > 0, b > 0, ab − k2 > 0. (55)

Then, the boundary-initial-value problem of thermoelastic rods has at most one solution.



Proof If there exist two solutions of the problem then their difference, denoted also by {u,ψ, T, τ } satisfies
the boundary-initial-value problem corresponding to null data. Consequently, from Theorem 1 we deduce the
following relation for the difference of solutions:

d

dt

[K(t) + U(t)
] +

∫

C0

[ ς

θ0

(
T ′)2 + c0τ

2 + θ0
(
τ ′)2

]
ds = 0.

From the last relation and Eq. (52) we obtain

K(t) +
∫

C0

(
W + 1

2
a T 2 + 1

2
b τ 2 + k T τ

)
ds +

t∫

0

∫

C0

[ ς

θ0

(
T ′)2 + c0τ

2 + θ0
(
τ ′)2

]
ds dt = 0.

Next, taking into account the inequalities W ≥ 0, ς ≥ 0,  ≥ 0, c0 ≥ 0, the hypothesis (55), and the fact
that �0

2 −�0 T
1 ·�0

1 is a positive definite tensor, we deduce that

u = 0, ψ = 0, T = 0, τ = 0.

Hence, the two solutions coincide and the proof is complete. �
In what follows we show that the uniqueness result remains valid even if we drop the hypothesis W ≥ 0. To

this aim, we first prove a theorem which is the counterpart of a well-known result in classical thermoelasticity
(see for example, [49], Sect. 21).

Theorem 3 Let R(t, z) be the function

R(t, z) =
∫

C0

(
F(t) · u̇(z) + L(t) · ψ̇(z) − 1

θ0
S(t)T (z) − θ0χ(t)τ (z)

)
ds

+
(

N(t) · u̇(z) + M(t) · ψ̇(z) − 1

θ0
q(t)T (z) − θ0r(t)τ (z)

)∣∣∣
l

0
,

(56)

where t, z ≥ 0 are two arbitrary moments of time, and the dependence on s has been omitted for brevity. Then,
any solution {u,ψ, T, τ } of the boundary-initial-value problem satisfies the relation

2
[U(t) − K(t)

] =
t∫

0

[R(t + ζ, t − ζ ) − R(t − ζ, t + ζ )
]

dζ

+
∫

C0

[
N(0) · e(2t) + M(0) · κ(2t) + η(2t) T (0) + F(2t) τ (0)

]
ds

−
∫

C0

ρ0
[
u̇(2t) · (

u̇(0)+�0
1 ·ψ̇(0)

) + ψ̇(2t) · (
u̇(0)·�0

1+�0
2 ·ψ̇(0)

)]
ds.

(57)

The proof of Eq. (57) can be pursued following the same procedure as in the classical case. On the basis
of Theorems 1 and 3, we can prove the main uniqueness result.

Theorem 4 If the mass density ρ0 is positive and the constitutive coefficients a, b, k satisfy the conditions
(55), then the boundary-initial-value problem of thermoelastic rods admits at most one solution.

Proof Assuming that there exist two solutions, it follows that their difference { u,ψ, ϕ, T } verify the relations
(54) and (57) corresponding to null data. Thus, from Eq. (54), we find that

K(t) + U(t) +
t∫

0

∫

C0

[ ς

θ0

(
T ′)2 + c0τ

2 + θ0
(
τ ′)2

]
ds dt = 0, (58)



and from Eq. (57) we get

U(t) − K(t) = 0, ∀ t ≥ 0. (59)

Since ς ≥ 0,  ≥ 0 and c0 ≥ 0, from Eqs. (58) and (59), we deduce

U(t) = 0, K(t) = 0, ∀ t ≥ 0.

Finally, using the relations (52) and the hypotheses (55), we obtain that u = 0,ψ = 0, T = 0, τ = 0 and the
two solutions coincide. �

6 Conclusions

In the paper, we present the thermodynamic theory of thermoelastic rods and consider the mathematical prop-
erties of the corresponding boundary-value problems. The rod is considered as a deformable Cosserat curve
with two 1D temperature fields, two 1D entropy fields, and two 1D heat fluxes. These fields describe the
temperature and entropy distributions on the rod cross-section. The full set of rod equations consist of two
vectorial equations of motion related to the balances of linear momentum and moment of momentum, two
thermoconductivity equations for the mean temperature and temperature deviation, and the reduced entropy
inequality. For the linear case, we prove the uniqueness of solutions. The above results are valid for gen-
eral curved rods made of thermoelastic non-homogeneous materials, which are not restricted by any material
symmetry. Since these boundary-initial-value problems in the linear setting possess the desirable property of
uniqueness, we may infer that the proposed thermodynamic theory for rods is well formulated.
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