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 related to the case of general linear viscoelastic behaviour and to discuss how the effective viscoelastic properties of the plate depends on the plate structure in the thickness direction and the three-dimensional viscoelastic behavior.

Introducion

Foams are a very perspective class of materials for modern engineering applications. Metallic and polymeric foams are applied as a material for lightweight structures which are used in civil engineering, in the automotive or airspace industries since they combine low weight, high specific strength, and excellent possibilities to absorb energy, see [START_REF] Gibson | Cellular Solids: Structure and Properties, 2nd Edition[END_REF], [START_REF] Mills | Polymer Foams Handbook. Engineering and Biomechanics Applications and Design Guide[END_REF]. The technical realization is mostly performed as sandwich panels (plates or shells with hard and stiff face sheets and a core layer made of a foam). From the mechanical point of view, a foam is a very complex material. The nonhomogeneous foam itself can be modeled as a functionally graded material (FGM) with "smeared" mechanical properties changing over the thickness direction.

The analysis of plates and shell structures can be performed applying of theories deduced by various approaches. Here we present a new theory of viscoelastic plates with changing properties in the thickness direction based on the direct approach in the plate theory and added by the effective properties concept. We consider plates made of polymer foams with highly nonhomogeneous structure through the thickness (see, for example Fig. 1). From the direct approach point of view a plate or a shell is modeled as a material surface each particle of which has five degrees of freedom (three displacements and two rotations, the rotation about the normal to plate is not considered as a kinematically independent variable). Such a model can be accepted in the case of plates with constant or slow changing thickness. For the linear variant the identification of the elastic stiffness tensors considering changing properties was proposed in [START_REF] Altenbach | Determination of elastic moduli of anisotropic plates with nonhomogeneous material in thickness direction[END_REF]- [START_REF] Altenbach | On the determination of transverse shear stiffnesses of orthotropic plates[END_REF], see also [START_REF] Altenbach | Direct approach based analysis of plates composed of functionally graded materials[END_REF], [START_REF] Altenbach | Eigen-vibrations of plates made of functionally graded material[END_REF]. Some extensions of the proposed theory of plates to the case of viscoelastic material are given in [START_REF] Altenbach | Analysis of the viscoelastic behavior of plates made of functionally graded materials[END_REF], [START_REF] Altenbach | On the bending of viscoelastic plates made of polymer foams[END_REF], [START_REF] Altenbach | On the time dependent behaviour of FGM plates[END_REF].

The dependence of the relaxation functions on the plate through-the-thickness structure as well as the bulk material viscoelastic properties is analyzed. We show that for the FGM plate the effective viscoelastic properties essentially depend on the bulk properties as functions of the thickness coordinate z . In particular, we discuss the influence of the plate geometry on the spectrum of the relaxation time. As a special case the viscoelastic behavior of a sandwich plate with a core made of FGM is regarded. (5) q and m are the vectors of surface loads (forces and moments), × T is the vector invariant of the force tensor, ∇ is the nabla (Hamilton) operator, 1 Θ and 2 Θ are the first and the second tensor of inertia, ρ is the density (effective property of the deformable surface), upper index T denotes transposed, and ( ) ⋅

ϕ ⋅ + ⋅ = + + ⋅ ∇ × 2 1 ρ ρ u m T M T , (2) 
L the time derivative.

In the case of orthotropic behaviour it follows the constitutive equations for the stress resultants:

• In-plane forces: , ) ( ) ( ∫ ∫ ∞ - ∞ - ⋅ ⋅ - + ⋅ ⋅ - = ⋅ t t d t d t τ τ τ τ κ µ & & B A a T (6) 
• Transverse shear forces:

, ) ( ∫ ∞ - ⋅ ⋅ - = ⋅ t d t τ τ γ Γ & n T (7) 
• Moments:

, ) ( ) ( ∫ ∫ ∞ - ∞ - ⋅ ⋅ - + - ⋅ ⋅ = t t T d t d t τ τ τ τ κ µ & & C B M (8) 
where A, B, C are fourth-order tensors, Γ is a second-order tensor which describe the relaxation functions of the plate, µ , κ , and γ are the tensor of in-plane strains, the tensor of the out-of-plane strains, and the vector of transverse shear strains, respectively. They are given by the relations

( ) T u u ∇ + ∇ = µ 2 , ϕ κ ∇ = , ϕ γ × - ∇ = a u . ( 9 
)
Here a is the first metric tensor. The component form of ( 9) is given by In Cartesian coordinates the constitutive equations are For the orthotropic material behaviour the effective tensors have the form In the case of isotropic and symmetric over the thickness plates the effective stiffness tensors have a reduced structure
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Effective properties

Using the same technique as for the elastic plates below we compute the viscoelastic stiffness tensor components. Let us consider the three-dimensional viscoelastic constitutive equations , ) (

∫ ∞ - ⋅ ⋅ - = t d t τ τ ε R σ & ( 10 
) or in the inverse form , ) ( ∫ ∞ - ⋅ ⋅ - = t d t τ τ σ J ε & (11) 
where σ and ε are the stress and strain tensors, R and J are the 4th order tensors of relaxation and creep functions, respectively.

Further we consider two cases:

• Case 1. Homogeneous plates --all properties are constant (no dependency of the thickness coordinate z). • Case 2. Inhomogeneous plates (sandwich, multilayered, functionally graded) -all properties are functions of z.

That means that in general R and J depend on the thickness coordinate z and on the time t.

Using the Laplace transform of a function

) (t f , ) ( ) ( ∫ ∞ - - = t st dt e t f s f
one can write Eqs [START_REF] Altenbach | Eigen-vibrations of plates made of functionally graded material[END_REF], [START_REF] Lakes | The time-dependent Poisson's ratio of viscoelastic materials can increase or decrease[END_REF] 

in the form ε R σ ⋅ ⋅ = s , σ J ε ⋅ ⋅ = s . ( 12 
)
Using the correspondence principle (the analogy between [START_REF] Lakes | On Poisson's ratio in linearly viscoelastic solids[END_REF] and the Hooke's law) we can extend the identification procedure [START_REF] Altenbach | Determination of elastic moduli of anisotropic plates with nonhomogeneous material in thickness direction[END_REF]- [START_REF] Altenbach | On the determination of transverse shear stiffnesses of orthotropic plates[END_REF] to the Laplace mapping of the effective relaxation or creep functions, see [START_REF] Altenbach | Analysis of the viscoelastic behavior of plates made of functionally graded materials[END_REF], [START_REF] Altenbach | On the bending of viscoelastic plates made of polymer foams[END_REF]. For the orthotropic viscoelastic material the in-plane and the out-of-plane stiffness tensor components are 
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h is the thickness of the plate.

In the case of isotropic material behaviour these formulas are simplified, see [START_REF] Altenbach | Analysis of the viscoelastic behavior of plates made of functionally graded materials[END_REF] for details. The non-zero components of the relaxation tensors are given by

• the in-plane relaxation functions ν - = 1 2 1 11 E A , µ ν = = + = 44 22 1 2 1 A E A ,
• the coupling relaxation functions
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• the out-of-plane relaxation functions 2 33 1 2
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• the transverse shear relaxation function 44
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For the plate which is symmetrically to the midplane the relation 0 B = holds true. The relaxation functions of the isotropic viscoelastic plate with symmetric cross-section was considered in [START_REF] Altenbach | Analysis of the viscoelastic behavior of plates made of functionally graded materials[END_REF]. Note that for isotropic viscoelastic material we introduced three functions )

) ( 1 ) ( 2 ) ( s s s E ν µ + = . ( 14 
) Following [START_REF] Lakes | The time-dependent Poisson's ratio of viscoelastic materials can increase or decrease[END_REF], [START_REF] Lakes | On Poisson's ratio in linearly viscoelastic solids[END_REF] we use Eq. ( 14) as the definition of the Poisson's ratio for isotropic viscoelastic material.

In the theory of viscoelasticity of solids the assumption const ) ( = = ν ν t is often used. It is fulfilled in many applications (see arguments in [START_REF] Christensen | Theory of Viscoelasticity. An Introduction[END_REF]- [START_REF] Tschoegl | The Phenomenological Theory of Linear Viscoelastic Behavior[END_REF] concerning const ) ( ≈ t ν

). For example, 5 . 0 = ν for an incompressible viscoelastic material. In the general case, ν is a function of t. ) (t ν was considered as an increasing function of t [START_REF] Tschoegl | The Phenomenological Theory of Linear Viscoelastic Behavior[END_REF]- [START_REF]Polymer Viscoelasticity: Stress and Strain in Practice[END_REF] or non-monotonous function of t, see [START_REF] Lakes | The time-dependent Poisson's ratio of viscoelastic materials can increase or decrease[END_REF], [START_REF] Lakes | On Poisson's ratio in linearly viscoelastic solids[END_REF]. The latter case may berealized for cellular materials or foams. Further we consider the influence of ) (t ν on the deflection of viscoelastic plate and its effective relaxation functions.

Example of effective properties

Homogeneous plate

The simplest test for the correctness of the estimated stiffness properties is the homogeneous isotropic plate. The basic geometrical property is the thickness h. The plate is symmetrically with respect to the mid-plane. All material properties are constant over the thickness, that means they do not depend on the thickness coordinate.

For the sake of simplicity, at first let us first consider the case const ) ( = = ν ν t

. That means that the following relations hold true:
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The bending stiffness D results in ) 1 ( 12

) ( ) ( 2 3 ν - = h t E t D .
The transverse shear relaxation function follows from [START_REF] Christensen | Theory of Viscoelasticity. An Introduction[END_REF]. The solution of [START_REF] Christensen | Theory of Viscoelasticity. An Introduction[END_REF] and the Reissner's estimate 5/6 one concludes that the direct approach yields in the same value like in the Mindlin's theory (note that Mindlin's shear correction is based on the solution of a dynamic problem, here was used the solution of a static problem). The Reissner's value slightly differs. The graphs of ) (t D are given in Fig. 2 for two values of ν . At second, let us consider the general case

) (t ν ν = . In this case D is reconstructed from ) 1 ( 12 3 ν - = h E D .
as follows
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Using the initial value theorem and the final value theorem that

) ( lim ) 0 ( s f f s ∞ → = , ) ( lim ) ( lim ) ( 0 s f t f f s t → ∞ → = ≡ ∞ we establish that )] 0 ( 1 [ 12 ) 0 ( ) 0 ( 2 3 ν - = h E D , )] ( 1 [ 12 ) ( ) 0 ( 2 3 ∞ - ∞ = ν h E D .
where the values
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µ ν E may be considered as the Poisson's ratio in the initial state and in the relaxed state, respectively. In the general case 

) (t ν ν =

FGM plate

In this section we consider small deformations of a FGM plate made of a viscoelastic polymer foam. For the panel made from a porous polymer foam the distribution of the pores over the thickness can be inhomogeneous (see, for example, Fig. 1). Let us introduce s ρ as the density of the bulk material and p ρ as the minimum value of the density of the foam. For the description of the symmetric distribution of the porosity we assume the power law [START_REF] Altenbach | Direct approach based analysis of plates composed of functionally graded materials[END_REF] 

n h z z V 2 ) 1 ( ) ( α α - + = , (16) 
where

s p ρ ρ α / =
is the minimal relative density, n is the power. n = 0 corresponds to the homogeneous plate described in the previous paragraph.

The properties of the foam strongly depend on the porosity and the cell structure. For the polymer foam in [START_REF] Gibson | Cellular Solids: Structure and Properties, 2nd Edition[END_REF] [START_REF] Mills | Polymer Foams Handbook. Engineering and Biomechanics Applications and Design Guide[END_REF] the modification of the standard linear viscoelastic solid is proposed. For the open-cell foam the constitutive law has the form

[ ] ε ε τ σ τ σ & & 0 2 1 ) ( E E z V C E E + = + ∞ , (17) 
while for the closed-cell foam the constitutive equation has the form

[ ] [ ] ε ε τ φ φ σ τ σ & & 0 2 2 2 ) ( ) 1 ( ) ( E E z V z V C E E + - + = + ∞ . ( 18 
)
Here From Eqs [START_REF]Polymer Viscoelasticity: Stress and Strain in Practice[END_REF], (18) one can see that the corresponding relaxation function is given by the relations
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for the open-cell foam, and
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for the closed-cell foam, respectively. Here we assume that

1 1 = C , 1 2 = C
, and that φ does not depend on z.

From Eqs (21) -( 25) it is easy to see that the classical relaxation functions differ only by factors from the shear relaxation function. Note that one can easily extend Eqs ( 17), (18) to the case of general constitutive equations, used in the linear viscoelasticity [START_REF] Christensen | Theory of Viscoelasticity. An Introduction[END_REF] - [START_REF] Tschoegl | The Phenomenological Theory of Linear Viscoelastic Behavior[END_REF]. Thus, using assumption that const = ν , one can calculate the classical effective stiffness relaxation functions for general viscoelastic constitutive equations multiplying the shear relaxation function ) (t µ with the corresponding factor similar to Eqs (22) -(25). In the general situation and taking into account other viscoelastic phenomena, for example, the filtration of a fluid in the saturated foam, the effective stiffness relaxation functions may be more complex then for the pure solid polymer discussed here.

Finally, we should mention that in the case of constant Poisson's ratio and with the assumption (19), (20) the determination of the effective in-plane, bending and transverse shear stiffness tensors of a symmetric FGM viscoelastic plate made of a polymer foam can be realized by the same method as for elastic plates [START_REF] Altenbach | Direct approach based analysis of plates composed of functionally graded materials[END_REF], [START_REF] Altenbach | An alternative determination of transverse shear stiffnesses for sandwich and laminated plates[END_REF] - [START_REF] Altenbach | Eigen-vibrations of plates made of functionally graded material[END_REF]. The relaxation functions for viscoelastic FGM plates can be found from the values of the corresponding effective stiffness of an elastic FGM plate by multiplication with the normalized shear relaxation function of the polymer solid.

Bending of a symmetric isotropic plate

Using [START_REF] Altenbach | On the bending of viscoelastic plates made of polymer foams[END_REF] and the Laplace transform, one can reduce Eqs (1), [START_REF] Altenbach | Direct approach based analysis of plates composed of functionally graded materials[END_REF] to

n eff n eff q D q w D s ∆ Γ - = ∆∆ ,. ( 26 
)
where w is the deflection, and n q is the transverse load. Here we consider the symmetry of the material properties with respect to the mid-plane and 0 m = . Using assumption const = ν we transform Eq. (26) to the form . For the FGM plate the bounds for K are given in [START_REF] Altenbach | On the bending of viscoelastic plates made of polymer foams[END_REF].

n n eff q q w D s ∆ - - = ∆∆ ) 1 (
Figure 3 The dimensionless maximal deflection in dependence on time.

General case -solid line. Constant Poisson's ratio -dashed lines.

For the viscoelastic plate both the qualitative and the quantitative influence of the shear stiffness is the same as in [START_REF] Altenbach | Direct approach based analysis of plates composed of functionally graded materials[END_REF]. . That means that for the functionally graded plates the influence of transverse shear stiffness may be significant. As well as for elastic FGM plates for the cases of other types of boundary conditions the influence of the structure of viscoelastic plate on the deflection may be greater than for the used simple support type boundary conditions. The example of the maximal deflection on time is given in Fig. 3 

Figure 1

 1 Figure 1 Non-homogeneous foam.

  Here u and ϕ are the vectors of displacements and rotations, n is the unit outer normal vector at the plate surface,21 , e e are the ortonormal vectors in the tangent plane, T and M are the tensors of forces and moments,

12 µκ

 12 is the shear strain, α γ are the transverse shear strains, is the twist deformation.

  λ and η are the minimal nonzero eigen-values following from the Sturm-Liouville problems 0

  are interlinked by the formula (

Figure 2

 2 Figure 2 Dimensionless bending stiffness in dependence on time. General case -solid line. Constant Poisson's ratio -dashed lines.

  is a non-monotonous function of t, while ) (t D is the monotonous decreasing function for constant Poisson's ratio, see Fig.2.

τ

  describes the relative volume of the solid polymer concentrated near the cell ribs. Usually, are material constants of the polymer used in manufacturing of the foam.

,

  where a and b are length and width of the plate, simple support boundary conditions, and the sinusoidal load factor K determines the maximum deflection. For the Kirchhoff's plate theory 1 = K , for the homogeneous plate modeled in the sense of Mindlin's plate theory

  For example, let us consider a open-cell foam and following values calculation of[START_REF] Altenbach | Direct approach based analysis of plates composed of functionally graded materials[END_REF] we obtain the following values of λ :
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Conclusions

Here we presented the new model of the linear viscoelastic plates made of such FGM as a polymer foam with the non-homogeneous distribution of porosity. The so-called direct approach is applied to the statement of the boundary value problem of the viscoelastic plates. Within this approach the plate is considered as a deformable surface. The balance laws and the constitutive equations are formulated as for 2D continuum. The procedure of the identification of the viscoelastic material properties is described and the example of the bending of a FGM viscoelastic plate is given.