of statics). The condition of existence of accelerations waves can be reduced to the problem of positivity of all eigenvalues of the algebraic spectral problem for the acoustic tensor for an arbitrary direction of propagation. From the physical point of view, the hyperbolicity of the equations of motion is a natural property of elastic media as well as ellipticity is a natural property of statics. Violation of hyperbolicity (or elipticity) means that discontinuous solutions may appear. Such solutions may model shear-bands, phase transitions, interfaces, fracture, defects, slip surfaces and other phenomena. So, the algebraic criterion for such phenomena is important in the mechanics of materials.

The investigations of acceleration waves in nonlinear elastic and thermoelastic media were performed in many works (see, e.g., the original papers [START_REF] Chen | Growth of acceleration waves in isotropic elastic materials[END_REF][START_REF] Chen | One dimensional acceleration waves in inhomogeneous elastic non-conductors[END_REF][START_REF] Fu | Acceleration wave propagation in an inhomogeneous heat conducting elastic rod of slowly varying cross section[END_REF][START_REF] Ogden | Growth and decay of acceleration waves in incompresible elastic solids[END_REF][START_REF] Scott | Acceleration waves in constrained elastic materials[END_REF] The main results are summarized in the classical monographs [START_REF] Eringen | Elastodynamics[END_REF][START_REF] Truesdell | A First Course in Rational Continuum Mechanics[END_REF][START_REF] Truesdell | Rational Thermodynamics, 2nd edn[END_REF][START_REF] Truesdell | The nonlinear field theories of mechanics[END_REF] where the generalization to materials with memory was also presented.

Acceleration waves in a more complex media such as porous media, fluids with complex constitutive equations, etc, have been considered in a number of papers. The acceleration waves in elastic micropolar media were considered in [START_REF] Kafadar | Micropolar media-I. The classical theory[END_REF]. A generalization is presented in [START_REF] Maugin | Acceleration waves in simple and linear viscoelastic micropolar materials[END_REF], where acceleration waves in elastic and viscoelastic micropolar media are studied. The relation between the existence of acceleration waves and the condition of strong ellipticity of the equilibrium equations is established in [START_REF] Eremeyev | Acceleration waves in micropolar elastic media[END_REF]. The derivation of acoustic tensor for micropolar media was done in [START_REF] Dietsche | Micropolar elastoplasticity and its role in localization[END_REF] with application to localization phenomena in micropolar elastoplasticity. It is worth mentioning the monographs [START_REF] Eringen | Microcontinuum Field Theory. I. Foundations and Solids[END_REF][START_REF] Erofeev | Wave Processes in Solids with Microstructure[END_REF][START_REF] Maugin | Nonlinear Waves on Elastic Crystals[END_REF][START_REF] Nowacki | Theory of Asymmetric Elasticity[END_REF], where wave processes in micropolar continua are presented.

In a micropolar medium (also named Cosserat continuum in some publications), each particle has six degrees of freedom. From the physical point of view, every material point (or particle) of a micropolar media is equivalent phenomenologically to a rigid body. Hence rotational counteraction of the particles of the medium is taken into account. In the micropolar theory, besides ordinary stresses, couple stresses are introduced, see [START_REF] Cosserat | Théorie des corps déformables[END_REF][START_REF] Eringen | Microcontinuum Field Theory. I. Foundations and Solids[END_REF][START_REF] Kafadar | Polar field theories[END_REF][START_REF] Koiter | Couple-stresses in the theory of elasticity. Pt I-II[END_REF][START_REF] Maugin | On the structure of the theory of polar elasticity[END_REF][START_REF] Nowacki | Theory of Asymmetric Elasticity[END_REF][START_REF] Pal'mov | Fundamental equations of the theory of asymmetric elasticity[END_REF][START_REF] Toupin | Theories of elasticity with couple-stress[END_REF]. The Cosserat model is used to describe materials with a complex microstructure like granular, powder-like materials, soils, polycrystalline and composite materials, nanostructures, magnetic liquids, polymer suspensions, porous media, electromagnetic and ferromagnetic media (see, e.g., [START_REF] Diebels | A micropolar theory of porous media: constitutive modelling[END_REF][START_REF] Diebels | Stress and couple stress in foams[END_REF][START_REF] Ehlers | From particle ensembles to Cosserat continua: Homogenization of contact forces towards stresses and couple stresses[END_REF][START_REF] Eringen | Microcontinuum Field Theory. II. Fluent Media[END_REF][START_REF] Eringen | Electrodynamics of Continua[END_REF][START_REF] Lakes | Experimental microelasticity of two porous solids[END_REF][START_REF] Lakes | Experimental micro mechanics methods for conventional and negative Poisson's ratio cellular solids as Cosserat continua[END_REF][START_REF] Maugin | Continuum Mechanics of Electromagnetic Solids[END_REF][START_REF] Park | Cosserat micromechanics of human bone: strain redistribution by a hydration-sensitive constituent[END_REF]). The model has also applications to the construction of nonlinear models for beams, plates, and shells (see, e.g., [START_REF] Antman | Nonlinear Problems of Elasticity, 2nd edn[END_REF][START_REF] Ericksen | Exact tbeory of stress and strain in rods and shells[END_REF][START_REF] Eringen | Microcontinuum Field Theory. I. Foundations and Solids[END_REF][START_REF] Naghdi | The theory of plates and shells[END_REF][START_REF] Rubin | Cosserat Theories: Shells, Rods and Points[END_REF][START_REF] Zhilin | Mechanics of deformable directed surfaces[END_REF][START_REF] Zubov | Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies[END_REF]).

Acceleration waves were also studied in two-dimensional structures. For micropolar shells, acceleration waves are considered in [START_REF] Eremeyev | Nonlinear micropolar shells: theory and applications[END_REF][START_REF] Eremeyev | On constitutive inequalities in nonlinear theory of elastic shells[END_REF]. Within the framework of the von Kármán plate theory, the propagation of acceleration waves is investigated in [START_REF] Vassilev | Acceleration waves in the von Kármán plate theory[END_REF].

In nonlinear elasticity of a simple material, existence of acceleration waves is provided by assuming that the equilibrium equations are strongly elliptic. The strong ellipticity condition is one of the well-known constitutive restrictions in nonlinear elasticity [START_REF] Truesdell | A First Course in Rational Continuum Mechanics[END_REF][START_REF] Truesdell | The nonlinear field theories of mechanics[END_REF]. It expresses mathematically a precise and physically intuitive restriction for constitutive equations of elastic materials. In nonlinear elasticity of simple materials, the ellipticity of the equilibrium equations is considered in a number of papers and books, see, e.g., [START_REF] Knowles | On the failure of ellipticity and the emergence of discontinuous deformation gradients in plane finite elastostatics[END_REF][START_REF] Lurie | Nonlinear Theory of Elasticity[END_REF][START_REF] Rosakis | Ellipticity and deformation with discontinuous gradients in finite elastostatics[END_REF][START_REF] Truesdell | A First Course in Rational Continuum Mechanics[END_REF][START_REF] Zee | Ordinary and strong ellipticity in the equilibrium theory of incompressible hyperelastic solids[END_REF]. The formulation of the strong ellipticity condition for micropolar media was given in [START_REF] Eremeyev | On the stability of elastic bodies with couple stresses (in Russ.)[END_REF].

In this paper, we extend the acceleration wave propagation analysis presented in [START_REF] Eremeyev | Acceleration waves in micropolar elastic media[END_REF][START_REF] Eremeyev | On the propagation of acceleration waves in thermoelastic micropolar media[END_REF] to the case of a thermoelastic micropolar medium. Following [START_REF] Eringen | Microcontinuum Field Theory. I. Foundations and Solids[END_REF][START_REF] Kafadar | Polar field theories[END_REF], in Sect. 1, we recall general relations for a micropolar continuum. In Sect. 2, we present basic definitions of two types of acceleration waves. The first one is called the homothermal acceleration wave, it will be investigated in Sect. 3. Here the acoustic tensor is constructed. The conditions of propagation of homothermal acceleration wave are reduced to the existence of the positive eigenvalues of a spectral problem. In Sect. 4, we consider homentropic (homocaloric) accelerations waves. In Sect. 5, main theorems are formulated and proved. We establish a condition for the existence of weakly discontinuous solutions to the equations of motion and heat transfer. We prove a theorem analogous to Fresnel-Hadamard-Duhem theorem in nonlinear mechanics of simple materials [START_REF] Noll | A new mathematical theory of simple materials[END_REF]. Under natural assumptions on the form of the heat conductivity law, we demonstrate that the condition for the existence of an acceleration wave is similar to the one for the elastic medium without temperature strains. We will show that the existence of acceleration waves is equivalent to the strong ellipticity condition of equilibrium equations of a micropolar medium. In Sect. 6, we present an example of the constitutive equations of thermoelastic micropolar media. For these, a solution of the considered spectral problems is presented.

Basic relations for micropolar media

Let us briefly recall general relations for a micropolar medium. For a comprehensive approach, we refer the reader to the books [START_REF] Eringen | Microcontinuum Field Theory. I. Foundations and Solids[END_REF][START_REF] Kafadar | Polar field theories[END_REF]. The symbolic (direct) tensor notation follows the one in [START_REF] Lurie | Theory of Elasticity[END_REF]. The motion of a Fig. 1 Kinematics of a micropolar medium micropolar media is described by two sets of kinematical variables

x = x x(X X , t), χ K = χ K (X X , t), K = 1, 2, 3, (1) 
where x x is the classical motion, while vectors χ K represent the micromotion. From the physical point of view, x x describes the position of a material point in the actual configuration, while X describes the position of the material point in the reference configuration. χ K are called directors, they are attached to each material point. χ K describe the orientation of the material particles in the actual configuration. For micropolar media, χ K constitute orthonormal frame and so

χ K • χ χ M = δ K M .
Let us introduce three orthonormal directors ζ ζ i in the reference configuration. For the sake of simplicity, we choose ζ ζ K (X ) ≡ χ K (X X , 0). Next, we introduce the proper orthogonal tensor H ≡ χ χ K ⊗ ζ ζ K (detH = 1) called microrotation tensor, see [START_REF] Nikitin | Conservation laws and conjugate solutions in the elasticity of simple materials and materials with couple stress[END_REF][START_REF] Zhilin | Mechanics of deformable directed surfaces[END_REF][START_REF] Zubov | Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies[END_REF]. H describes microrotation of a particle of the micropolar media. So x x describes the position of the particle of the medium at time t, whereas H defines its orientation. Kinematics of a micropolar medium is depicted in Fig. 1. Here and ω are the domains occupied by the body in the reference and actual configurations, respectively. N N and n n n are the unit normals to the boundary of the body in the reference and actual configurations, respectively.

The velocity is given by the relation v v = ẋ x x. For brevity, we write out • (. . .)≡ d dt (. . .), where d dt denotes the material derivative with respect to t. The angular velocity vector, called microgyration vector, is given by

ω = - 1 2 H T • Ḣ × , ( 2 
)
where the dot denotes the dot (inner) product and (. . .) T -transposed. Symbol (. . .) × stands for the vector invariant of a second-rank tensor (cf. [START_REF] Lurie | Nonlinear Theory of Elasticity[END_REF][START_REF] Lurie | Theory of Elasticity[END_REF][START_REF] Zubov | Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies[END_REF]). In particular, for a dyad a a a ⊗ b b b we have

(a a a ⊗ b b b) × = a a a × b b b,
where × is the vector (cross) product. Relation (2) means that ω ω is the axial vector associated with the skewsymmetric tensor H T • Ḣ, see [START_REF] Lurie | Theory of Elasticity[END_REF]. The equations of motion for a micropolar continuum, which represent the balance of momentum and of moment of momentum (the global balance of angular momentum) for an arbitrary part of the body in the material frame, are [START_REF] Eringen | Microcontinuum Field Theory. I. Foundations and Solids[END_REF][START_REF] Kafadar | Polar field theories[END_REF] Div

T + ρ f = ρ v v, Div M + (F • T T ) × + ρm = ργ ω. ( 3 
)
Here T is the first Piola-Kirchhoff stress tensor and M the couple-stress tensor [START_REF] Lurie | Theory of Elasticity[END_REF][START_REF] Truesdell | The nonlinear field theories of mechanics[END_REF], F = Grad x x is the gradient of the position vector, it is often called the deformation gradient, Grad and Div are the gradient and divergence operators in Lagrangian coordinates, respectively, ρ is the medium density in the reference configuration, f f and m m are the vectors of mass forces and mass couples, respectively, ργ is the scalar measure of the rotational inertia of a particle. For heat transfer, dynamic equations (3) are supplemented with the heat conduction equation [START_REF] Eringen | Microcontinuum Field Theory. I. Foundations and Solids[END_REF][START_REF] Kafadar | Polar field theories[END_REF] 

ρθ dη dt = -Div q + ρh, ( 4 
)
where θ is the temperature, η is the specific entropy, q q is the heat flux in the reference configuration, and h is the external heat source density.

The constitutive equations for a Cosserat thermoelastic continuum can be derived through the expression of the specific free energy

ψ = ψ(E, K, θ) (5) ∂Ω N N Ω S(t) V Ψ Ψ + _ S Fig. 2 Singular surface
as follows

T = ρH • ψ ,E , M = ρH • ψ ,K , η = -ψ ,θ , q = q(E, K, θ, Grad θ), ( 6 
)
where E is the Cosserat deformation tensor and K is the wryness tensor that are metric and bending strain measures, cf. [START_REF] Eremeyev | Acceleration waves in micropolar elastic media[END_REF][START_REF] Nikitin | Conservation laws and conjugate solutions in the elasticity of simple materials and materials with couple stress[END_REF]. They are defined by the relations

E = H T • F, 1 × K = (H T • Grad H),
where 1 is the unit tensor. Detailed discussion on introduction of strain measures in the micropolar media is given in [START_REF] Pietraszkiewicz | On natural strain measures of the non-linear micropolar continuum[END_REF]. As is known, from the 2nd law of thermodynamics it follows q q • Grad θ ≤ 0

From now on, we assume ψ to be a twice continuously differentiable function and vector-function q q to be continuously differentiable. We use the following notation:

ψ , E = ∂ψ ∂E , ψ , K = ∂ψ ∂K , ψ , θ = ∂ψ ∂θ , . . .

Acceleration waves

We consider motions of the medium when discontinuities of kinematic and dynamic quantities appear at a smooth surface S(t) that is called singular (Fig. 2). For the quantities describing the motion at S(t), we suppose existence of unilateral limit values. For the second derivatives of the motion, the limits from each of both sides from S(t) can differ, in general. A jump for a quantity at S(t) is denoted by the double square brackets, for example, [[ ]] = + --. Under these assumptions, let us derive the conditions for existence of the acceleration wave, that is the conditions under which weak discontinuous solutions can arise. On the singular surface the following balance equations must be valid (see [START_REF] Eringen | Microcontinuum Field Theory. I. Foundations and Solids[END_REF][START_REF] Kafadar | Polar field theories[END_REF]):

ρV [[v v]] = -[[T]] • N N S , ρV [[ω ω]] = -[[M]] • N S , ρθV [[η]] = [[q]] • N S , ( 7 
)
where V is the intrinsic speed of propagation of S(t) in the direction N S [START_REF] Truesdell | A First Course in Rational Continuum Mechanics[END_REF][START_REF] Truesdell | Rational Thermodynamics, 2nd edn[END_REF][START_REF] Truesdell | The nonlinear field theories of mechanics[END_REF] and N S is the unit normal to S. An acceleration wave (or weak discontinuity wave, or singular surface of the second order) is a traveling singular surface S(t) at which the second spatial and time derivatives of the position vector x and of the micro-rotation tensor H have jumps, while x x and H together with all their first derivatives are continuous. So on S(t) we have

[[F]] = 0, [[Grad H]] = 0, [[v v]] = 0 0, [[ω ω ω]] = 0 0. (8) 
From ( 7) and ( 8) it follows

[[T]] • N N S = 0, [[M]] • N N N S = 0.
Let us consider two types of acceleration waves. The first one is the homothermal acceleration wave when the temperature field and its first derivatives are continuous at S(t):

[[θ]] = 0, [[Grad θ ]] = 0, θ = 0. ( 9 
)
The second type is the homentropic (or homocaloric) acceleration wave when the entropy field and its first derivatives are continuous at S(t):

[[η]] = 0, [[Grad η]] = 0, [[ η]] = 0. ( 10 
)
For the homentropic acceleration wave, the Fourier condition holds:

[[q q]] • N N N S = 0. ( 11 
)
3 Homothermal acceleration waves

Transformation of the dynamic equations

First we consider the jump relations that follow from the motion equations. Equations ( 8) and ( 9) imply continuity of the measures of deformation E and K at S(t)

[[E]] = 0 0, [[K]] = 0 0.
Hence, in view of the constitutive equations ( 5), ( 6), we establish the continuity of the tensors T and M, of the entropy density, and of the heat flow vector:

[[T]] = 0 0, [[M]] = 0 0 0, [[η]] = 0, [[q q]] = 0 0 0.
It follows immediately the balance equations [START_REF] Diebels | A micropolar theory of porous media: constitutive modelling[END_REF] to be valid on S(t).

Let us recall Maxwell's theorem [START_REF] Truesdell | A First Course in Rational Continuum Mechanics[END_REF][START_REF] Truesdell | Rational Thermodynamics, 2nd edn[END_REF][START_REF] Truesdell | The nonlinear field theories of mechanics[END_REF]: For a continuously differentiable field such that [[ ]] = 0 the following relations hold

˙ = -V , [[Grad ]] = ⊗ N N S , (12) 
where is the tensor amplitude of the jump of the first gradient of ; the tensor amplitude is a tensor of the rank equal to the rank of . Application of Maxwell's theorem to the continuous fields of v, ω, T, and M yield in the system of equations that relate the jumps in the derivatives with respect to the spatial variables and time t at S(t)

[[ v v]] = -V a a, [[Grad v]] = a ⊗ N S , [[ ω]] = -V b b, [[Grad ω ω]] = b ⊗ N S , V [[Div T]] = -Ṫ • N N S , V [[Div M]] = -Ṁ • N N S ,
where a a and b b are the vectorial amplitudes of the jumps in the linear and angular accelerations. With this, we get the relations for the jumps in the derivatives of the strain measures with respect to t

Ė = H T • a a ⊗ N N S , K = H T • b b ⊗ N S . ( 13 
)
Let the mass forces and couples be continuous. From the balance equations (3) it follows

[[Div T]] = ρ [[ v v]] , [[Div M]] = ργ [[ ω ω]] . ( 14 
)
Using Eqs. ( 13) and ( 14) we get the relations

-Ṫ • N N N S = ρV [[ v v]] , -Ṁ • N N S = ργ V [[ ω ω ω]] . ( 15 
)
Differentiating the constitutive equations ( 6) we obtain

Ṫ = ρψ , EE • •[[ ĖT ]] + ρψ , EK • •[[ KT ]], Ṁ = ρψ , KE • •[[ ĖT ]] + ρψ , KK • •[[ KT ]].
Next, with regard for (13), we transform (15) into the form containing the vectorial amplitudes a and b b only:

(ψ , EE • •(N S ⊗ H T • a)) • N N S + (ψ , EK • •(N S ⊗ H T • b b)) • N N S = V 2 H T • a, (ψ , KE • •(N S ⊗ H T • a)) • N N S + (ψ , KK • •(N S ⊗ H T • b)) • N S = γ V 2 H T • b b.
Using matrix notation, we rewrite these in a more compact form:

Q(N S ) • ξ = V 2 B • ξ , ( 16 
)
where

ξ = (a a , b ) ∈ IR 6 , a = H T • a, b b = H T • b b, Q(N S ) ≡ ψ , EE {N N N S } ψ , EK {N N N S } ψ , KE {N N S } ψ , KK {N N S } , B ≡ 1 0 0 γ 1 .
For arbitrary 4th rank tensor G and vector N N that are represented in a Cartesian basis i k (k = 1, 2, 3), we have used the notation

G{N N } ≡ G klmn N l N n i k ⊗ i m . ( 17 
)
Q(N S ) is an analogy to the homothermal acoustic tensor for the micropolar medium. From existence of the free energy function ψ it follows that Q(N N S ) is symmetric. This provides that the squared velocity of propagation for an acceleration wave in an elastic micropolar medium is real-valued. The requirement that Q(N S ) has to be positive definite is necessary for existence of an acceleration wave. It coincides with the condition of strong ellipticity of the equilibrium equations for an elastic micropolar medium [START_REF] Eremeyev | Acceleration waves in micropolar elastic media[END_REF].

Transformation of the heat conductivity equation

Now let us consider how the temperature field affects the existence of acceleration waves: we derive some relations for the jumps. Applying Maxwell's theorem to the field of q q and to the temperature gradient, we get

V [[Div q]] = -[[ q]] • N S , [[Grad Grad θ ]] = g g ⊗ N N S , • (Grad θ) = -V g, ( 18 
)
where g is the vector amplitude of the jump in the second gradient of the temperature. Similar to [START_REF] Eremeyev | On the stability of elastic bodies with couple stresses (in Russ.)[END_REF], from (4) it follows that

[[Div q]] = -ρθ [[ η]] . ( 19 
)
From ( 18) and ( 19), we obtain

[[ q]] • N S = ρθ [[ η]] . ( 20 
)
Let us restrict further discussion by the assumption that the constitutive equation for q obeys Fourier's law

q = -k(θ) • Grad θ, h • k(θ) • h > 0, ∀h = 0 0, ( 21 
)
where k is the positive definite thermoconductivity tensor. Differentiating (6) 3 and ( 21) with respect to t and using [START_REF] Eringen | Elastodynamics[END_REF], we get

N S • k k(θ) • g = ρθ a a • ψ , θE • N S + b b • ψ , θK • N N S . ( 22 
)
Now, using again the matrix notation, we can rewrite ( 16) and ( 22)

Q θ (N N S ) • ζ = V 2 B θ • ζ , ( 23 
)
where ζ = (a a , b , g) ∈ IR 9 , Q θ , and B θ are matrices with tensor components

Q θ (N S ) ≡ ⎡ ⎢ ⎣ ψ , EE {N N S } ψ , EK {N N S } 0 0 ψ , KE {N S } ψ , KK {N S } 0 0 -ρθ N N S • ψ , θE -ρθ N N S • ψ , θE N S • k(θ) ⎤ ⎥ ⎦, B θ ≡ ⎡ ⎣ 1 0 0 0 γ 1 0 0 0 0 ⎤ ⎦ . ( 24 
)
Thus when the heat flow vector obeys Fourier's law, we reduce the problem of propagation of an acceleration wave in a thermoelastic micropolar medium to the spectral problem [START_REF] Gibson | Cellular Solids: Structure and Properties, 2nd edn[END_REF]. Namely, an homothermal acceleration wave exists only if [START_REF] Gibson | Cellular Solids: Structure and Properties, 2nd edn[END_REF] has nontrivial solutions and the eigenvalues for the problem [START_REF] Gibson | Cellular Solids: Structure and Properties, 2nd edn[END_REF] are real and positive.

Remark 1 It is easy to see that the results can be extended to the case of a nonlinear thermoconductivity law having the form q q = q(θ, Grad θ).

For this, it is sufficient to require that g g • q q , Grad θ • g g g < 0, ∀g g g = 0 0 . Remark 2 In a similar manner, we can consider a more general form of the thermoconductivity law q = q q(θ, Grad θ, E, K).

(

) 25 
Here the form of corresponding matrix Q θ becomes more complex but it does not change main properties of the spectral problem.

Homocaloric (homentropic) acceleration waves

By the definition of an homentropic acceleration wave, we have [[η]] = 0. Let us suppose the temperature field to be continuous at S(t), that is [[θ]] = 0. We can prove that this is valid if

η , θ ≡ -ψ , θθ = 0 ( 26 
)
is true. So we suppose this to hold. A physical reason for assumption [START_REF] Knowles | On the failure of ellipticity and the emergence of discontinuous deformation gradients in plane finite elastostatics[END_REF] is based on the fact that the second derivative of the free energy corresponds to the heat capacity [START_REF] Lurie | Theory of Elasticity[END_REF], but a real material with zero heat capacity does not exist. Applying Maxwell's theorem, we define a scalar thermal amplitude such that

θ = -V , [[Grad θ ]] = N S . ( 27 
)
Differentiating constitutive equations ( 6), we obtain

Ṫ = ρψ , EE • •[[ ĖT ]] + ρψ , EK • •[[ KT ]] + ρψ , Eθ θ , Ṁ = ρψ , KE • •[[ ĖT ]] + ρψ , KK • •[[ KT ]] + ρψ , Kθ θ .
For Fourier's law [START_REF] Erofeev | Wave Processes in Solids with Microstructure[END_REF], from Eq. ( 11) we get

N N N S • k • [[Grad θ]] = N N S • k • N N S = 0. ( 28 
)
For a more general thermoconductivity law (25), using k = -q q , Gradθ , we also can get [START_REF] Lakes | Experimental microelasticity of two porous solids[END_REF]. Relation [START_REF] Lakes | Experimental microelasticity of two porous solids[END_REF] means that for any heat conductive media with a positive definite thermoconductivity tensor, the thermal amplitude is zero. Thus, for a heat conductive media we have established that the acceleration wave should be homothermal. This result was presented in [START_REF] Truesdell | The nonlinear field theories of mechanics[END_REF] for simple materials.

For heat non-conductors, k = 0. We can use this assumption if we neglect the heat conductivity or consider deformation processes to be very fast. Considering a heat non-conductive media, we may obtain a homocaloric acoustic tensor that differs, in general, from Q. In what follows, we will treat heat conductive media only. Let us consider the problem of existence of positive solutions to the spectral problem [START_REF] Gibson | Cellular Solids: Structure and Properties, 2nd edn[END_REF]. In general, Q θ is not symmetric and B θ is not positive definite. However, it is possible to extend the Fresnel-Hadamard-Duhem theorem to the case of a thermoelastic micropolar medium.

Theorem 1 For any propagation directions defined by the vector N N S , the homothermal acoustic numbers are real.

Proof The acoustic numbers are the squared speeds of propagation of acceleration waves. Spectral problem [START_REF] Gibson | Cellular Solids: Structure and Properties, 2nd edn[END_REF] splits into two problems, namely the problems ( 16) and [START_REF] Fu | Acceleration wave propagation in an inhomogeneous heat conducting elastic rod of slowly varying cross section[END_REF]. The components of Q are composed of the mixed derivatives of the free energy ψ and so Q is symmetric. B also is a symmetric matrix, moreover it is positively definite. So spectral problem ( 16) has only real-valued solutions. Let us solve problem [START_REF] Ericksen | Exact tbeory of stress and strain in rods and shells[END_REF]. As k is a nonsingular tensor, from Eq. ( 22) we find vector g g g that is uniquely defined.

Thus the theorem is proved under the assumptions of [START_REF] Eremeyev | Acceleration waves in micropolar elastic media[END_REF], that are supplemented by the requirement that the heat conductivity tensor k must be positively definite. This theorem does not guarantee existence of an acceleration wave as problem ( 16) may have zero or negative eigenvalues. For existence of acceleration waves, all eigenvalues of ( 16) must be positive for any N S . Thus, we should impose some additional restrictions on the constitutive equations. We will use the strong ellipticity condition as such a constitutive restriction. For a micropolar media, the condition is represented by the inequality [START_REF] Eremeyev | On the stability of elastic bodies with couple stresses (in Russ.)[END_REF] 

d 2 dτ 2 ψ(E + τ a ⊗ N N S , K + τ b ⊗ N S ) τ =0 > 0, ∀N S : |N S | = 1, a a = 0, b = 0 0, (29) 
Similar to [START_REF] Eremeyev | Acceleration waves in micropolar elastic media[END_REF][START_REF] Eremeyev | On the propagation of acceleration waves in thermoelastic micropolar media[END_REF], we establish the following theorem.

Theorem 2

The condition for existence of a homothermal acceleration wave for all directions of propagations in a micropolar thermoelastic medium is equivalent to the condition of strong ellipticity of the equilibrium equations of the medium.

Proof Acceleration waves exist only if all eigenvalues of spectral problem [START_REF] Gibson | Cellular Solids: Structure and Properties, 2nd edn[END_REF] are positive for any N N S defining the direction of wave propagation and it must hold V 2 > 0. As problem ( 23) is equivalent to two problems, ( 16) and ( 22), these properties of positiveness are valid if and only if Q is positively definite for any values of N N S . So by the definition of positiveness, we have

ξ ξ • Q(N N S ) • ξ ξ > 0, ∀N N N S : |N N S | = 1, ξ ξ ξ = 0 0 0 . ( 30 
)
This is an additional restriction that is imposed on the constitutive relations of the thermoelastic micropolar medium. It is easily seen that inequality (30) coincides with (29) that completes the proof.

Remark Let us note that positive definiteness of k implies strong ellipticity of the steady-state thermoconductivity equation. Degeneration of at least one of the quantities A or k leads to the possibility of existence of non-smooth solutions to the equilibrium equations or the steady-state thermoconductivity equation.

In general, the strong ellipticity of the equations is a property of the material in some area of deformation. For some deformations it can be fulfilled whereas for others it does not. For a number of real medias that are modeled by Cosserat continuum, arising of discontinuous solution is physically possible. For example, such medias are soils, granular and porous media. For some other materials such discontinuities are physically impossible. Thus, the strong ellipticity condition allows us "to sort" admissible types of the constitutive equations as well as to determine "dangerous" deformations.

We wish to underline that the existence of acceleration waves in all the directions and the equivalent to this condition of strong ellipticity are local as they are defined at each point of the medium. In case of nonhomogeneous deformation this means, that the conditions can break or be valid in different parts of the medium. Thus the condition of strong ellipticity is, besides, a criterion to find "dangerous" domains in a body.

As an example, let us consider a quadratic form as a constitutive equation for the specific free energy. Let us assume the following relation to be valid

ρψ = W 1 (E) + W 2 (K), (31) 
with 2W 1 (E) = α 1 tr (E -1) • (E -1) T + α 2 tr ((E -1) 2 ) + α 3 tr 2 (E -1)

+ α 0 (θ -θ 0 )tr ((E -1)) + c(θ -θ 0 ) 2 , 2W 2 (K) = β 1 tr KK T + β 2 tr K 2 + β 3 tr 2 (K) ,
where α k , β k (k = 1, 2, 3) are elastic constants, α 0 corresponds to the thermal expansion coefficient, c is the specific heat capacity, and θ 0 is the reference temperature. Note we neglect the linear terms of the approximation of [START_REF] Lurie | Theory of Elasticity[END_REF].

The structure of Q(N N S ) is

Q(N N N S ) ≡ Q 1 (N S ) 0 0 Q 2 (N N S ) , ( 32 
)
where

ρQ 1 (N S ) = W 1, EE {N N S }, ρQ 2 (N S ) = W 2, EE {N S }.
Thus, spectral problem ( 16) splits into the two problems

Q 1 (N N S ) • a = V 2 a , Q 2 (N S ) • b = γ V 2 b b . ( 33 
)
For constitutive equations [START_REF] Lurie | Theory of Elasticity[END_REF], inequality [START_REF] Lurie | Nonlinear Theory of Elasticity[END_REF] splits into two inequalities

a • Q 1 (N N S ) • a > 0, b • Q 2 • (N S ) • b > 0, ∀N N S : |N N | = 1, a = 0 0, b b = 0 0, (34) 
Considering [START_REF] Maugin | Acceleration waves in simple and linear viscoelastic micropolar materials[END_REF], we see that ( 34) is equivalent to the following inequalities

α 1 (a a • a a) 2 + (α 2 + α 3 )(a • N N S ) 2 > 0, β 1 (b • a) 2 + (β 2 + β 3 )(b • N N S ) 2 > 0,
that implies the following

α 1 > 0, α 1 + α 2 + α 3 > 0, β 1 > 0, β 1 + β 2 + β 3 > 0. (35) 
If [START_REF] Maugin | Nonlinear Waves on Elastic Crystals[END_REF] are valid then the system of equations for a physically linear material defined by relation ( 32) is strongly elliptic for any deformations. Then the solutions of (33) are given by

V 1,2 = α 1 ρ , ξ ξ 1,2 = (e e e 1,2 , 0 0), V 3 = α 1 + α 2 + α 3 ρ , ξ ξ 3 = (0 0 0, N N S ), V 4,5 = β 1 γρ , ξ ξ 4,5 = (e 4,5 , 0), V 6 = β 1 + β 2 + β 3 γρ , ξ 6 = (0, N S ), (36) 
where [START_REF] Naghdi | The theory of plates and shells[END_REF] coincide with the limits of the phase velocities of plane harmonic waves (acoustic waves) in linear micropolar elasticity (see [START_REF] Eringen | Microcontinuum Field Theory. I. Foundations and Solids[END_REF][START_REF] Pal'mov | Fundamental equations of the theory of asymmetric elasticity[END_REF][START_REF] Nowacki | Theory of Asymmetric Elasticity[END_REF]) when the frequency of the waves tends to infinity.

Remark 1 For Eqs. [START_REF] Lurie | Theory of Elasticity[END_REF] and [START_REF] Maugin | Acceleration waves in simple and linear viscoelastic micropolar materials[END_REF], the strong ellipticity condition reduces to simple inequalities [START_REF] Maugin | Nonlinear Waves on Elastic Crystals[END_REF]. They are expressed in terms of the elastic moduli and do not depend on deformation. For simple nonlinear the analogue of [START_REF] Lurie | Theory of Elasticity[END_REF], and ( 32) is the semi-linear material (see [START_REF] Lurie | Nonlinear Theory of Elasticity[END_REF][START_REF] Lurie | Theory of Elasticity[END_REF]). For the latter, the strong elipticity condition depends on strains as well as the elastic moduli. When the ellipticity condition breaks down, singular solutions arisethese may correspond to infinite rotations, for example [START_REF] Lurie | Nonlinear Theory of Elasticity[END_REF]. Hence it may be simpler to check the strong ellipticity condition for a micropolar material than for a simple nonlinearly elastic material.

Remark 2 In the case of small strains, expressions [START_REF] Lurie | Theory of Elasticity[END_REF] and [START_REF] Maugin | Acceleration waves in simple and linear viscoelastic micropolar materials[END_REF] reduce to the equations of linear micropolar elasticity [START_REF] Eringen | Microcontinuum Field Theory. I. Foundations and Solids[END_REF][START_REF] Nowacki | Theory of Asymmetric Elasticity[END_REF]. The condition of positive semidefiniteness of the energy reduces to the following inequalities [START_REF] Eringen | Microcontinuum Field Theory. I. Foundations and Solids[END_REF]:

α 1 + α 2 ≥ 0, α 1 -α 2 ≥ 0, α 1 + α 2 + 3α 3 ≥ 0, β 1 + β 2 ≥ 0, β 1 -β 2 ≥ 0, β 1 + β 2 + 3β 3 ≥ 0.
These imply [START_REF] Maugin | Nonlinear Waves on Elastic Crystals[END_REF] but not conversely. Naturally, the strong ellipticity conditions are less restrictive than the requirement of positive semidefinitenes of the energy under infinitesimal deformations.

Remark 3 Recently, engineering practitioners have begun to use cellular solids and metal or polymer foams [START_REF] Ashby | Metal Foams: a Design Guid[END_REF][START_REF] Gibson | Cellular Solids: Structure and Properties, 2nd edn[END_REF]. To describe the behaviour of these complex materials, they use the model of a Cosserat continuum [START_REF] Diebels | Stress and couple stress in foams[END_REF][START_REF] Lakes | Experimental microelasticity of two porous solids[END_REF][START_REF] Lakes | Experimental micro mechanics methods for conventional and negative Poisson's ratio cellular solids as Cosserat continua[END_REF][START_REF] Park | Cosserat micromechanics of human bone: strain redistribution by a hydration-sensitive constituent[END_REF] and more complex models of continuum mechanics (cf., for example [START_REF] Cielecka | Elastodynamic behaviour of honeycomb cellular media[END_REF][START_REF] Neff | A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure. Modelling, existence of minimizers, identification of moduli and computational results[END_REF]). The elastic constants of such materials show a significant temperature dependence. For example, Gibson [START_REF] Gibson | Cellular Solids: Structure and Properties, 2nd edn[END_REF] proposed a linear approximation of Young's modulus with respect to temperature having the form

E = E 0 1 -κ θ θ 0 ,
where θ 0 is a melting temperature for metal foams or glass temperature for polymer foams, and E 0 and κ are constants. If one assumes more general relations

α i (θ ) = α 0 i 1 -κ i θ θ 0 , β i (θ ) = β 0 i 1 -γ i θ θ 0 ,
then inequalities [START_REF] Maugin | Nonlinear Waves on Elastic Crystals[END_REF] are nontrivial; they depend on temperature. In the range of temperature where condition [START_REF] Maugin | Nonlinear Waves on Elastic Crystals[END_REF] is not valid, one may expect singular behavior in the strain state; shear bands can arise, for example.

Conclusion

The conditions for the existence of homothermal acceleration waves in a thermoelastic micropolar medium are established. It is shown that the conditions for the existence of acceleration waves in a thermoelastic micropolar medium do not depend on the thermoconductivity defined by Fourier's law. Hence the conditions under which the acceleration waves in a thermoelastic micropolar medium with Fourier's law of thermoconductivity propagate coincide with those for wave propagation in the corresponding elastic medium. Thus, we have shown that for analysis of acceleration waves in thermoelastic bodies in a non-homogeneous temperature field it is sufficient to consider only the equations of motion where the temperature is considered as a parameter. The algebraic criterion for the existence of acceleration waves is formulated. This criterion is the strong ellipticity condition. An example on how to check the strong ellipticity condition is presented. The usage of the strong ellipticity condition in analyzing the behaviour of metallic or polymeric foams, when the elastic moduli are functions of temperature, is discussed.

e e 1 ,

 1 e e 2 , e e e 4 , e e e 5 are arbitrary unit vectors in the tangential plane to S(t) such that e e 1 • e e e 2 = e e e 1 • N N N S = e 2 • N S = 0, e 4 • e e 5 = e 4 • N = e e 5 • N N S = 0. Solutions (36) 1,2 describe transverse and longitudinal acceleration waves, while (36) 4,5 describe transverse and longitudinal acceleration waves of microrotation. The speeds from
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