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of statics). The condition of existence of accelerations waves can be reduced to the problem of positivity of all
eigenvalues of the algebraic spectral problem for the acoustic tensor for an arbitrary direction of propagation.
From the physical point of view, the hyperbolicity of the equations of motion is a natural property of elastic
media as well as ellipticity is a natural property of statics. Violation of hyperbolicity (or elipticity) means that
discontinuous solutions may appear. Such solutions may model shear-bands, phase transitions, interfaces, frac-
ture, defects, slip surfaces and other phenomena. So, the algebraic criterion for such phenomena is important
in the mechanics of materials.

The investigations of acceleration waves in nonlinear elastic and thermoelastic media were performed in
many works (see, e.g., the original papers [3,4,22,41,47] The main results are summarized in the classical
monographs [20,49–51] where the generalization to materials with memory was also presented.

Acceleration waves in a more complex media such as porous media, fluids with complex constitutive
equations, etc, have been considered in a number of papers. The acceleration waves in elastic micropolar
media were considered in [24]. A generalization is presented in [32], where acceleration waves in elastic and
viscoelastic micropolar media are studied. The relation between the existence of acceleration waves and the
condition of strong ellipticity of the equilibrium equations is established in [11]. The derivation of acoustic
tensor for micropolar media was done in [9] with application to localization phenomena in micropolar elasto-
plasticity. It is worth mentioning the monographs [17,21,35,40], where wave processes in micropolar continua
are presented.

In a micropolar medium (also named Cosserat continuum in some publications), each particle has six
degrees of freedom. From the physical point of view, every material point (or particle) of a micropolar media is
equivalent phenomenologically to a rigid body. Hence rotational counteraction of the particles of the medium
is taken into account. In the micropolar theory, besides ordinary stresses, couple stresses are introduced, see
[6,17,25,27,34,40,42,48]. The Cosserat model is used to describe materials with a complex microstructure
like granular, powder-like materials, soils, polycrystalline and composite materials, nanostructures, magnetic
liquids, polymer suspensions, porous media, electromagnetic and ferromagnetic media (see, e.g., [7,8,10,18,
19,28,29,33,43]). The model has also applications to the construction of nonlinear models for beams, plates,
and shells (see, e.g., [1,16,17,36,46,54,55]).

Acceleration waves were also studied in two-dimensional structures. For micropolar shells, acceleration
waves are considered in [12,14]. Within the framework of the von Kármán plate theory, the propagation of
acceleration waves is investigated in [52].

In nonlinear elasticity of a simple material, existence of acceleration waves is provided by assuming that
the equilibrium equations are strongly elliptic. The strong ellipticity condition is one of the well-known consti-
tutive restrictions in nonlinear elasticity [49,51]. It expresses mathematically a precise and physically intuitive
restriction for constitutive equations of elastic materials. In nonlinear elasticity of simple materials, the ellip-
ticity of the equilibrium equations is considered in a number of papers and books, see, e.g., [26,30,45,49,53].
The formulation of the strong ellipticity condition for micropolar media was given in [13].

In this paper, we extend the acceleration wave propagation analysis presented in [11,15] to the case of a
thermoelastic micropolar medium. Following [17,25], in Sect. 1, we recall general relations for a micropo-
lar continuum. In Sect. 2, we present basic definitions of two types of acceleration waves. The first one is
called the homothermal acceleration wave, it will be investigated in Sect. 3. Here the acoustic tensor is con-
structed. The conditions of propagation of homothermal acceleration wave are reduced to the existence of the
positive eigenvalues of a spectral problem. In Sect. 4, we consider homentropic (homocaloric) accelerations
waves. In Sect. 5, main theorems are formulated and proved. We establish a condition for the existence of
weakly discontinuous solutions to the equations of motion and heat transfer. We prove a theorem analogous to
Fresnel–Hadamard–Duhem theorem in nonlinear mechanics of simple materials [39]. Under natural assump-
tions on the form of the heat conductivity law, we demonstrate that the condition for the existence of an
acceleration wave is similar to the one for the elastic medium without temperature strains. We will show that
the existence of acceleration waves is equivalent to the strong ellipticity condition of equilibrium equations
of a micropolar medium. In Sect. 6, we present an example of the constitutive equations of thermoelastic
micropolar media. For these, a solution of the considered spectral problems is presented.

1 Basic relations for micropolar media

Let us briefly recall general relations for a micropolar medium. For a comprehensive approach, we refer the
reader to the books [17,25]. The symbolic (direct) tensor notation follows the one in [31]. The motion of a
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Fig. 1 Kinematics of a micropolar medium

micropolar media is described by two sets of kinematical variables

x = xx(XX , t), χK = χK (XX , t), K = 1, 2, 3, (1)

where xx is the classical motion, while vectors χK represent the micromotion. From the physical point of view,
xx describes the position of a material point in the actual configuration, while X describes the position of the
material point in the reference configuration. χK are called directors, they are attached to each material point.
χK describe the orientation of the material particles in the actual configuration. For micropolar media, χK
constitute orthonormal frame and so χK · χχM = δK M .

Let us introduce three orthonormal directors ζζ i in the reference configuration. For the sake of simplicity,
we choose ζζ K (X) ≡ χK (XX , 0). Next, we introduce the proper orthogonal tensor H ≡ χχK ⊗ ζζ K (detH = 1)
called microrotation tensor, see [38,54,55]. H describes microrotation of a particle of the micropolar media. So
xx describes the position of the particle of the medium at time t , whereas H defines its orientation. Kinematics
of a micropolar medium is depicted in Fig. 1. Here � and ω are the domains occupied by the body in the
reference and actual configurations, respectively. NN and nnn are the unit normals to the boundary of the body in
the reference and actual configurations, respectively.

The velocity is given by the relation vv = ẋxx . For brevity, we write out
·

(. . .)≡ d
dt (. . .), where d

dt denotes
the material derivative with respect to t . The angular velocity vector, called microgyration vector, is given by

ω = −1

2

(
HT · Ḣ

)
× , (2)

where the dot denotes the dot (inner) product and (. . .)T —transposed. Symbol (. . .)× stands for the vector
invariant of a second-rank tensor (cf. [30,31,55]). In particular, for a dyad aaa ⊗bbb we have (aaa ⊗bbb)× = aaa ×bbb,
where × is the vector (cross) product. Relation (2) means that ωω is the axial vector associated with the skew-
symmetric tensor HT · Ḣ, see [31].

The equations of motion for a micropolar continuum, which represent the balance of momentum and of
moment of momentum (the global balance of angular momentum) for an arbitrary part of the body in the
material frame, are [17,25]

Div T + ρ f = ρv̇v, Div M + (F · TT )× + ρm = ργ ω̇. (3)

Here T is the first Piola-Kirchhoff stress tensor and M the couple-stress tensor [31,51], F = Grad xx is the
gradient of the position vector, it is often called the deformation gradient, Grad and Div are the gradient
and divergence operators in Lagrangian coordinates, respectively, ρ is the medium density in the reference
configuration, ff and mm are the vectors of mass forces and mass couples, respectively, ργ is the scalar measure
of the rotational inertia of a particle.

For heat transfer, dynamic equations (3) are supplemented with the heat conduction equation [17,25]

ρθ
dη

dt
= −Div q + ρh, (4)

where θ is the temperature, η is the specific entropy, qq is the heat flux in the reference configuration, and h is
the external heat source density.

The constitutive equations for a Cosserat thermoelastic continuum can be derived through the expression
of the specific free energy

ψ = ψ(E,K, θ) (5)
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as follows

T = ρH · ψ,E, M = ρH · ψ,K, η = −ψ,θ , q = q(E,K, θ,Grad θ), (6)

where E is the Cosserat deformation tensor and K is the wryness tensor that are metric and bending strain
measures, cf. [11,38]. They are defined by the relations

E = HT · F, 1 × K = (HT · Grad H),

where 1 is the unit tensor. Detailed discussion on introduction of strain measures in the micropolar media is
given in [44]. As is known, from the 2nd law of thermodynamics it follows

qq · Grad θ ≤ 0

From now on, we assume ψ to be a twice continuously differentiable function and vector-function qq to be
continuously differentiable. We use the following notation:

ψ,E = ∂ψ

∂E
, ψ,K = ∂ψ

∂K
, ψ, θ = ∂ψ

∂θ
, . . .

2 Acceleration waves

We consider motions of the medium when discontinuities of kinematic and dynamic quantities appear at a
smooth surface S(t) that is called singular (Fig. 2). For the quantities describing the motion at S(t), we suppose
existence of unilateral limit values. For the second derivatives of the motion, the limits from each of both sides
from S(t) can differ, in general. A jump for a quantity at S(t) is denoted by the double square brackets, for
example, [[��]] = ��+ −�−.

Under these assumptions, let us derive the conditions for existence of the acceleration wave, that is the
conditions under which weak discontinuous solutions can arise. On the singular surface the following balance
equations must be valid (see [17,25]):

ρV [[vv]] = − [[T]] · NN S, ρV [[ωω]] = − [[M]] · N S, ρθV [[η]] = [[q]] · N S, (7)

where V is the intrinsic speed of propagation of S(t) in the direction N S [49–51] and N S is the unit normal
to S.

An acceleration wave (or weak discontinuity wave, or singular surface of the second order) is a traveling
singular surface S(t) at which the second spatial and time derivatives of the position vector x and of the
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micro-rotation tensor H have jumps, while xx and H together with all their first derivatives are continuous. So
on S(t) we have

[[F]] = 0, [[Grad H]] = 0, [[vv]] = 00, [[ωωω]] = 00. (8)

From (7) and (8) it follows

[[T]] · NN S = 0, [[M]] · NNN S = 0.

Let us consider two types of acceleration waves. The first one is the homothermal acceleration wave when the
temperature field and its first derivatives are continuous at S(t):

[[θ ]] = 0, [[Grad θ ]] = 0,
[[
θ̇
]] = 0. (9)

The second type is the homentropic (or homocaloric) acceleration wave when the entropy field and its first
derivatives are continuous at S(t):

[[η]] = 0, [[Grad η]] = 0, [[η̇]] = 0. (10)

For the homentropic acceleration wave, the Fourier condition holds:

[[qq]] · NNN S = 0. (11)

3 Homothermal acceleration waves

3.1 Transformation of the dynamic equations

First we consider the jump relations that follow from the motion equations. Equations (8) and (9) imply
continuity of the measures of deformation E and K at S(t)

[[E]] = 00, [[K]] = 00.

Hence, in view of the constitutive equations (5), (6), we establish the continuity of the tensors T and M, of the
entropy density, and of the heat flow vector:

[[T]] = 00, [[M]] = 000, [[η]] = 0, [[qq]] = 000.

It follows immediately the balance equations (7) to be valid on S(t).
Let us recall Maxwell’s theorem [49–51]:
For a continuously differentiable field��� such that [[���]] = 0 the following relations hold

[[
�̇�

]] = −V, [[Grad�]] = ⊗ NN S, (12)

where is the tensor amplitude of the jump of the first gradient of �; the tensor amplitude is a tensor of the
rank equal to the rank of �.

Application of Maxwell’s theorem to the continuous fields of v,ω, T, and M yield in the system of equations
that relate the jumps in the derivatives with respect to the spatial variables and time t at S(t)

[[v̇v]] = −V aa, [[Grad v]] = a ⊗ N S, [[ω̇]] = −V bb, [[Gradωω]] = b ⊗ N S,

V [[Div T]] = − [[
Ṫ

]] · NN S, V [[Div M]] = − [[
Ṁ

]] · NN S,

where aa and bb are the vectorial amplitudes of the jumps in the linear and angular accelerations. With this, we
get the relations for the jumps in the derivatives of the strain measures with respect to t

[[
Ė

]] = HT · aa ⊗ NN S,
[[

K̇
]] = HT · bb ⊗ N S . (13)

Let the mass forces and couples be continuous. From the balance equations (3) it follows

[[Div T]] = ρ [[v̇v]] , [[Div M]] = ργ [[ω̇ω]] . (14)
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Using Eqs. (13) and (14) we get the relations

− [[
Ṫ

]] · NNN S = ρV [[v̇v]] , − [[
Ṁ

]] · NN S = ργ V [[ω̇ωω]] . (15)

Differentiating the constitutive equations (6) we obtain
[[

Ṫ
]] = ρψ,EE · ·[[ĖT ]] + ρψ,EK · ·[[K̇T ]],[[

Ṁ
]] = ρψ,KE · ·[[ĖT ]] + ρψ,KK · ·[[K̇T ]].

Next, with regard for (13), we transform (15) into the form containing the vectorial amplitudes a and bb only:

(ψ,EE · ·(N S ⊗ HT · a)) · NN S + (ψ,EK · ·(N S ⊗ HT · bb)) · NN S = V 2HT · a,

(ψ,KE · ·(N S ⊗ HT · a)) · NN S + (ψ,KK · ·(N S ⊗ HT · b)) · N S = γ V 2HT · bb.

Using matrix notation, we rewrite these in a more compact form:

Q(N S) · ξ = V 2B · ξ , (16)

where

ξ = (aa′, b′) ∈ IR6, a′ = HT · a, bb′ = HT · bb, Q(N S) ≡
[
ψ,EE{NNN S} ψ,EK{NNN S}
ψ,KE{NN S} ψ,KK{NN S}

]
, B ≡

[
1 0

0 γ 1

]
.

For arbitrary 4th rank tensor G and vector NN that are represented in a Cartesian basis i k (k = 1, 2, 3), we have
used the notation

G{NN } ≡ Gklmn Nl Nnik ⊗ im . (17)

Q(N S) is an analogy to the homothermal acoustic tensor for the micropolar medium. From existence of
the free energy function ψ it follows that Q(NN S) is symmetric. This provides that the squared velocity of
propagation for an acceleration wave in an elastic micropolar medium is real-valued. The requirement that
Q(N S) has to be positive definite is necessary for existence of an acceleration wave. It coincides with the
condition of strong ellipticity of the equilibrium equations for an elastic micropolar medium [11].

3.2 Transformation of the heat conductivity equation

Now let us consider how the temperature field affects the existence of acceleration waves: we derive some
relations for the jumps. Applying Maxwell’s theorem to the field of qq and to the temperature gradient, we get

V [[Div q]] = − [[q̇]] · N S, [[Grad Grad θ ]] = gg ⊗ NN S,
[[ ·
(Grad θ)

]]
= −V g, (18)

where g is the vector amplitude of the jump in the second gradient of the temperature. Similar to (13), from
(4) it follows that

[[Div q]] = −ρθ [[η̇]] . (19)

From (18) and (19), we obtain

[[q̇]] · N S = ρθ [[η̇]] . (20)

Let us restrict further discussion by the assumption that the constitutive equation for q obeys Fourier’s law

q = −k(θ) · Grad θ, h · k(θ) · h > 0, ∀h �= 00, (21)

where k is the positive definite thermoconductivity tensor. Differentiating (6)3 and (21) with respect to t and
using (20), we get

N S · kk(θ) · g = ρθ
(
aa′ · ψ, θE · N S + bb′ · ψ, θK · NN S

)
. (22)



Acceleration waves and ellipticity in thermoelastic micropolar media 223

Now, using again the matrix notation, we can rewrite (16) and (22)

Qθ (NN S) · ζ = V 2Bθ · ζ , (23)

where ζ = (aa′, b′, g) ∈ IR9, Qθ , and Bθ are matrices with tensor components

Qθ (N S) ≡
⎡
⎢⎣

ψ,EE{NN S} ψ,EK{NN S} 00

ψ,KE{N S} ψ,KK{N S} 00

−ρθNN S · ψ, θE −ρθNN S · ψ, θE NS · k(θ)

⎤
⎥⎦, Bθ ≡

⎡
⎣

1 0 0
0 γ 1 0
0 0 0

⎤
⎦ . (24)

Thus when the heat flow vector obeys Fourier’s law, we reduce the problem of propagation of an accel-
eration wave in a thermoelastic micropolar medium to the spectral problem (23). Namely, an homothermal
acceleration wave exists only if (23) has nontrivial solutions and the eigenvalues for the problem (23) are real
and positive.

Remark 1 It is easy to see that the results can be extended to the case of a nonlinear thermoconductivity law
having the form

qq = q(θ,Grad θ).

For this, it is sufficient to require that

gg · qq ,Grad θ · ggg < 0, ∀ggg �= 00 .

Remark 2 In a similar manner, we can consider a more general form of the thermoconductivity law

q = qq(θ,Grad θ,E,K). (25)

Here the form of corresponding matrix Qθ becomes more complex but it does not change main properties of
the spectral problem.

4 Homocaloric (homentropic) acceleration waves

By the definition of an homentropic acceleration wave, we have [[η]] = 0. Let us suppose the temperature field
to be continuous at S(t), that is [[θ ]] = 0. We can prove that this is valid if

η, θ ≡ −ψ, θθ �= 0 (26)

is true. So we suppose this to hold. A physical reason for assumption (26) is based on the fact that the second
derivative of the free energy corresponds to the heat capacity [31], but a real material with zero heat capacity
does not exist.

Applying Maxwell’s theorem, we define a scalar thermal amplitude � such that
[[
θ̇
]] = −V�, [[Grad θ ]] = �N S . (27)

Differentiating constitutive equations (6), we obtain
[[

Ṫ
]] = ρψ,EE · ·[[ĖT ]] + ρψ,EK · ·[[K̇T ]] + ρψ,Eθ

[[
θ̇
]]
,[[

Ṁ
]] = ρψ,KE · ·[[ĖT ]] + ρψ,KK · ·[[K̇T ]] + ρψ,Kθ

[[
θ̇
]]
.

For Fourier’s law (21), from Eq. (11) we get

NNN S · k · [[Grad θ ]] = NN S · k · NN S� = 0. (28)

For a more general thermoconductivity law (25), using k = −qq,Gradθ , we also can get (28). Relation
(28) means that for any heat conductive media with a positive definite thermoconductivity tensor, the thermal
amplitude is zero. Thus, for a heat conductive media we have established that the acceleration wave should be
homothermal. This result was presented in [51] for simple materials.

For heat non-conductors, k = 0. We can use this assumption if we neglect the heat conductivity or consider
deformation processes to be very fast. Considering a heat non-conductive media, we may obtain a homocaloric
acoustic tensor that differs, in general, from Q.
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5 Existence of acceleration waves

In what follows, we will treat heat conductive media only. Let us consider the problem of existence of positive
solutions to the spectral problem (23). In general, Qθ is not symmetric and Bθ is not positive definite. How-
ever, it is possible to extend the Fresnel–Hadamard–Duhem theorem to the case of a thermoelastic micropolar
medium.

Theorem 1 For any propagation directions defined by the vector NN S, the homothermal acoustic numbers are
real.

Proof The acoustic numbers are the squared speeds of propagation of acceleration waves. Spectral problem
(23) splits into two problems, namely the problems (16) and (22). The components of Q are composed of the
mixed derivatives of the free energy ψ and so Q is symmetric. B also is a symmetric matrix, moreover it is
positively definite. So spectral problem (16) has only real-valued solutions. Let us solve problem (16). As k
is a nonsingular tensor, from Eq. (22) we find vector ggg that is uniquely defined.

Thus the theorem is proved under the assumptions of [11], that are supplemented by the requirement that
the heat conductivity tensor k must be positively definite. �	

This theorem does not guarantee existence of an acceleration wave as problem (16) may have zero or
negative eigenvalues. For existence of acceleration waves, all eigenvalues of (16) must be positive for any
N S . Thus, we should impose some additional restrictions on the constitutive equations. We will use the strong
ellipticity condition as such a constitutive restriction. For a micropolar media, the condition is represented by
the inequality [13]

d2

dτ 2 ψ(E + τa′ ⊗ NN S,K + τb′ ⊗ N S)
∣∣
τ=0 > 0, ∀N S : |N S| = 1, aa′ �= 0, b′ �= 00, (29)

Similar to [11,15], we establish the following theorem.

Theorem 2 The condition for existence of a homothermal acceleration wave for all directions of propagations
in a micropolar thermoelastic medium is equivalent to the condition of strong ellipticity of the equilibrium
equations of the medium.

Proof Acceleration waves exist only if all eigenvalues of spectral problem (23) are positive for any NN S defining
the direction of wave propagation and it must hold V 2 > 0. As problem (23) is equivalent to two problems,
(16) and (22), these properties of positiveness are valid if and only if Q is positively definite for any values of
NN S . So by the definition of positiveness, we have

ξξ · Q(NN S) · ξξ > 0, ∀NNN S : |NN S| = 1, ξξξ �= 000 . (30)

This is an additional restriction that is imposed on the constitutive relations of the thermoelastic micropolar
medium. It is easily seen that inequality (30) coincides with (29) that completes the proof. �	
Remark Let us note that positive definiteness of k implies strong ellipticity of the steady-state thermoconduc-
tivity equation. Degeneration of at least one of the quantities A or k leads to the possibility of existence of
non-smooth solutions to the equilibrium equations or the steady-state thermoconductivity equation.

In general, the strong ellipticity of the equations is a property of the material in some area of deformation.
For some deformations it can be fulfilled whereas for others it does not. For a number of real medias that
are modeled by Cosserat continuum, arising of discontinuous solution is physically possible. For example,
such medias are soils, granular and porous media. For some other materials such discontinuities are physi-
cally impossible. Thus, the strong ellipticity condition allows us “to sort” admissible types of the constitutive
equations as well as to determine “dangerous” deformations.

We wish to underline that the existence of acceleration waves in all the directions and the equivalent to
this condition of strong ellipticity are local as they are defined at each point of the medium. In case of non-
homogeneous deformation this means, that the conditions can break or be valid in different parts of the medium.
Thus the condition of strong ellipticity is, besides, a criterion to find “dangerous” domains in a body.
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6 An example

As an example, let us consider a quadratic form as a constitutive equation for the specific free energy. Let us
assume the following relation to be valid

ρψ = W1(E)+ W2(K), (31)

with

2W1(E) = α1tr
(
(E − 1) · (E − 1)T

)
+ α2tr ((E − 1)2)+ α3tr 2 (E − 1)

+ α0(θ − θ0)tr ((E − 1))+ c(θ − θ0)
2,

2W2(K) = β1tr
(

KKT
)

+ β2tr
(
K2) + β3tr 2 (K) ,

where αk , βk (k = 1, 2, 3) are elastic constants, α0 corresponds to the thermal expansion coefficient, c is the
specific heat capacity, and θ0 is the reference temperature. Note we neglect the linear terms of the approximation
of (31).

The structure of Q(NN S) is

Q(NNN S) ≡
[

Q1(N S) 0

0 Q2(NN S)

]
, (32)

where ρQ1(N S) = W1,EE{NN S}, ρQ2(N S) = W2,EE{N S}.
Thus, spectral problem (16) splits into the two problems

Q1(NN S) · a′ = V 2a′, Q2(N S) · b′ = γ V 2bb′. (33)

For constitutive equations (31), inequality (30) splits into two inequalities

a · Q1(NN S) · a > 0, b · Q2 · (N S) · b > 0, ∀NN S : |NN | = 1, a �= 00, bb �= 00, (34)

Considering (32), we see that (34) is equivalent to the following inequalities

α1(aa · aa)2 + (α2 + α3)(a · NN S)
2 > 0, β1(b · a)2 + (β2 + β3)(b · NN S)

2 > 0,

that implies the following

α1 > 0, α1 + α2 + α3 > 0, β1 > 0, β1 + β2 + β3 > 0. (35)

If (35) are valid then the system of equations for a physically linear material defined by relation (32) is
strongly elliptic for any deformations. Then the solutions of (33) are given by

V1,2 =
√
α1

ρ
, ξξ1,2 = (eee1,2,00), V3 =

√
α1 + α2 + α3

ρ
, ξξ3 = (000, NN S),

V4,5 =
√
β1

γρ
, ξξ4,5 = (e4,5, 0), V6 =

√
β1 + β2 + β3

γρ
, ξ6 = (0, N S),

(36)

where ee1, ee2, eee4, eee5 are arbitrary unit vectors in the tangential plane to S(t) such that ee1 · eee2 = eee1 · NNN S =
e2 · N S = 0, e4 · ee5 = e4 · N = ee5 · NN S = 0.

Solutions (36)1,2 describe transverse and longitudinal acceleration waves, while (36)4,5 describe transverse
and longitudinal acceleration waves of microrotation. The speeds from (36) coincide with the limits of the
phase velocities of plane harmonic waves (acoustic waves) in linear micropolar elasticity (see [17,42,40])
when the frequency of the waves tends to infinity.

Remark 1 For Eqs. (31) and (32), the strong ellipticity condition reduces to simple inequalities (35). They are
expressed in terms of the elastic moduli and do not depend on deformation. For simple nonlinear the analogue
of (31), and (32) is the semi-linear material (see [30,31]). For the latter, the strong elipticity condition depends
on strains as well as the elastic moduli. When the ellipticity condition breaks down, singular solutions arise—
these may correspond to infinite rotations, for example [30]. Hence it may be simpler to check the strong
ellipticity condition for a micropolar material than for a simple nonlinearly elastic material.
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Remark 2 In the case of small strains, expressions (31) and (32) reduce to the equations of linear micropolar
elasticity [17,40]. The condition of positive semidefiniteness of the energy reduces to the following inequalities
[17]:

α1 + α2 ≥ 0, α1 − α2 ≥ 0, α1 + α2 + 3α3 ≥ 0, β1 + β2 ≥ 0, β1 − β2 ≥ 0, β1 + β2 + 3β3 ≥ 0.

These imply (35) but not conversely. Naturally, the strong ellipticity conditions are less restrictive than the
requirement of positive semidefinitenes of the energy under infinitesimal deformations.

Remark 3 Recently, engineering practitioners have begun to use cellular solids and metal or polymer foams
[2,23]. To describe the behaviour of these complex materials, they use the model of a Cosserat continuum
[8,28,29,43] and more complex models of continuum mechanics (cf., for example [5,37]). The elastic con-
stants of such materials show a significant temperature dependence. For example, Gibson [23] proposed a
linear approximation of Young’s modulus with respect to temperature having the form

E = E0

(
1 − κ

θ

θ0

)
,

where θ0 is a melting temperature for metal foams or glass temperature for polymer foams, and E0 and κ are
constants. If one assumes more general relations

αi (θ) = α0
i

(
1 − κi

θ

θ0

)
, βi (θ) = β0

i

(
1 − γi

θ

θ0

)
,

then inequalities (35) are nontrivial; they depend on temperature. In the range of temperature where condition
(35) is not valid, one may expect singular behavior in the strain state; shear bands can arise, for example.

7 Conclusion

The conditions for the existence of homothermal acceleration waves in a thermoelastic micropolar medium are
established. It is shown that the conditions for the existence of acceleration waves in a thermoelastic micropolar
medium do not depend on the thermoconductivity defined by Fourier’s law. Hence the conditions under which
the acceleration waves in a thermoelastic micropolar medium with Fourier’s law of thermoconductivity prop-
agate coincide with those for wave propagation in the corresponding elastic medium. Thus, we have shown
that for analysis of acceleration waves in thermoelastic bodies in a non-homogeneous temperature field it is
sufficient to consider only the equations of motion where the temperature is considered as a parameter.

The algebraic criterion for the existence of acceleration waves is formulated. This criterion is the strong
ellipticity condition. An example on how to check the strong ellipticity condition is presented. The usage of
the strong ellipticity condition in analyzing the behaviour of metallic or polymeric foams, when the elastic
moduli are functions of temperature, is discussed.
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