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Summary : When we consider a congruence T (x) ≡ ax modulo m as a pseudo random num-
ber generator, there are several means of ensuring the independence of two successive numbers.
In this report, we show that this dependence depends on the continued fraction expansion of m/a.
We deduce that the congruences such that m and a are two successive elements of Fibonacci se-
quences are those having the weakest dependence. We use this result in order to obtain sequences
of random numbers proved IID.

Key Words : Fibonacci sequence, Random numbers, Congruence, Dependence, Correct mod-
els.

Résumé : Quand on considère une congruence T (x) ≡ ax + b modulo m comme générateur
de nombres pseudo-aléatoires, il y a plusieurs moyens de s’assurer de l’indépendance de deux nom-
bres successifs. Nous avons deja vu que cette dépendance dépend du développement en fraction
continue de m/a. Dans ce rapport nous continuons cette étude et nous majorons la distance entre
la probabilité empirique d’un rectangle quelquonque et la probabilité uniforme. On a déduit de
ces résultats que les congruences telles que m et a sont deux éléments successifs de la suite de Fi-
bonacci sont celles ayant la dépendance la plus faible. Nous avons utilisé ce résultat pour obtenir
des suites de nombres réellement aléatoires xn.

Mots-clefs : Suite de Fibonacci, Nombres aléatoires, Modelès corrects, Congruence
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Chapter 1

Presentation of results

1.1 Introduction

Congruences T (x) ≡ ax + b mod(m), 0 < a < m, 0 ≤ b < m can be used as pseudo-random
generators. But of course, all the parameters a, b and m are not suitable. They must check a
certain number of conditions. In this report we are interested in conditions about the independence
of 2 successive numbers simulated. More generally, we must impose that the dependence induced
by

(
Tn(x0), ....., T

n+p(x0)
)
, n=1,2,....,m, is as small as possible when p is as large as possible. In

fact, you can hardly go beyond p = log(m)/log(2).
Recall first that the independence induced by

(
Tn(x0), T

n+1(x0)
)
, n=1,2,....,m, does not imply

the independence of
(
Tn(x0), T

n+1(x0), T
n+2(x0)

)
, n=1,2,....,m. And in fact, the conditions which

ensure the best independence of two successive simulated numbers are not the ones which provide
the best independences of 3 successive simulated numbers, and vice versa.

In this report we study the independence of two successive numbers simulated. However,
we saw in [9] and [8] that the dependence of two successive simulated numbers depends on the
development of m

a as continued fraction.

Notations 1.1.1 Let ra
0 = m, ra

1 = a. One denotes by ra
n the sequence defined by ra

n = ha
n+1r

a
n+1+

ra
n+2 the Euclidean division of ra

n by ra
n+1 when ra

n+1 6= 0. One denotes by da the smallest integer
such as ra

da+1 = 0.
One sets ka

0 = 0, ka
1 = 1 and ka

n+2 = ha
n+1k

a
n+1 + ka

n if n ≤ da + 1.

With theses notations, one can write

m

a
= ha

1 +
1

ha
2 + 1

ha
3
+ 1

ha
4
+....

.

Then, in order that the independence of two successive simulated numbers is good, it is neces-
sary that the ha

i ’s are small.
Indeed, in [16] (cf also [10] [9] [15]), we have shown the following theorem.

Theorem 1.1.2 Let (x0, y0) ∈ E2. Let n ∈ {1, 2, ...., da + 1}.
If n is even,

E2 ∩ R0 =
{
(x0 + ka

n−1ℓ , y0 + ra
n−1ℓ)

∣∣ℓ = 0, 1, 2, ...., ha
n−1

}
,

where R0 = [x0, x0 + ka
n] ⊗ [y0, y0 + ra

n−2[⊂ [0, m[2.

If n is odd,

E2 ∩ R0 =
{
(x0 + ka

n−1ℓ , y0 − ra
n−1ℓ)

∣∣ℓ = 0, 1, 2, ...., ha
n−1

}
,
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where R0 = [x0, x0 + ka
n] ⊗ [y0 − ra

n−2, y0[⊂ [0, m[2 1.

This allows to obtain a lower bound of the coefficient of discrepancy.

Definition 1.1.3 For all z ∈ Z, we denote by z the integer z such that z ≡ z modulo m and
0 ≤ z < m. For all rectangle, R = [s1, s2] × [t1 t2] ⊂ [0, m]2, we denote by Nn

R the number of

points of the sample (T
i
(x0), T

i+1
(x0)), i=1,2,....,n, belonging to the rectangle R and by SR the

area SR = (s2 − s1)(t2 − t1). If n= m, one sets NR = Nm
R .

We call coefficient of discrepancy D2
m

2 the number

D2
m = MaxR

(∣∣∣NR −
SR

m

∣∣∣
)

,

where the maximum is taken over all the rectangles R = [s1, s2] × [t1 t2] ⊂ [0, m]2 such that
(s1, s2, t1, t2) ∈ {0, 1, .....,m}4.

We shall deduce from theorem 3.1.1 the following proposition (proof is in lemma 3.1.3) .

Proposition 1.1.4 The following inequality holds :

Maxi=1,...,da(ha
i )

4
≤ D2

m .

It allows to understand that the independence of two successive simulated numbers depends
on the ha

i ’s. Naturally, the study of independence between two successive simulated numbers had
already been studied by various authors, and for some ones, one recognizes a connection with the
ha

i ’s.

Thus the simplest test which springs immediately to mind is the serial test. This one is just the
chi squared test with several dimensions (cf. [1] page 62). Unfortunately it does not use the best
chi squared test. Indeed, in this case, it is better to use the chi squared independence test which is
more powerful: in 2 dimensions it uses χ2

X,Y −χ2
X −χ2

Y where χ2
X,Y , χ2

X , χ2
Y are respectively, the

classical chi square statistics with two dimensions, the classical chi square statistics for the first
marginal distribution, and the classical chi square statistics for the secund marginal distribution
(cf Blacher [7], [6]). In fact it means to use empirical higher order correlations coefficients (cf [5])
and Hilbertian test (cf [4], [6]).

Now the spectral test is also interested in the problem of n-tuples of successive numbers: in the
case of two dimensions we therefore studied the sequence (T i(x0), T

i+1(x0)), i=1,2,....,m. It is easy
to see that the points of these sequences are distributed over the parallel lines of the plane. Then,
by [1] page 94, in order to use the spectral test, one uses 1/ν2 the maximum distance between
lines taken over all families of parallel straight that cover the points (T i(x0)/m, T i+1(x0)/m) : the
spectral test is based on the value of ν2.

On the other hand, Marsaglia has studied lattices and showed how they are connected to the
dependence of p successive numbers. Unfortunately, we know that, from this point of view, linear
congruences are very bad random generators: they do not pass the test of lattices. This is due
to the structure of hyperplane of the samples (aj+1x0, a

j+2x0, .....a
j+jx0), j=1,2.....m. However,

there are methods to mix a congruential generator in order to destroy its regularity of crystal
: Knuth (cf [1], M. D Maclaren and G marsaglia (cf [21] ). In the search of linear congruences
candidates for this mixture, one chooses those ones of which the lattice (e.g. in size 2,3,4,5) is not
too distant from the ideal lattice: it is assumed that this is the case when the quotient Beyer of
its reduced base is close to 1 (cf [3]). There are examples in [2] page 73.

1There was an error of writing in [16] . Here, it is corrected
2This is a slightly different definition of the usual definition. Indeed, generally, one calls coefficient of discrepancy

the number D2
m/m : e.g. cf [1] page 110
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Now, Dieter has studied in 1972 (cf [18]) the case of a two-dimensional dependence. In fact,
he studied the discrepancy coefficients D2

m = MaxR

∣∣NR − SR

m

∣∣.
Indeed Dieter (1972) showed that the dependence between two successive numbers simulated

depends generalized Dedekind sums s(a, c|x, y) =
∑|c|−1

µ=0 Q
(

µ+y
c

)
Q

(
aµ+y

c + x
)

where Q(x) = 0

if x ≡ 0 mod 1 and Q(x) = x − ⌊x⌋ − 1/2 if x 6≡ 0 mod 1 when ⌊x⌋ is the integer part of x.
For example suppose b=0, and m = 2e. One supposes that m is the length of the generated

pseudo random sequence. Then,

D2
m =

2∑

λ,µ=1

(−1)λ+µs(a, n|asλ − tµ, 1/4 − nsλ) + ρ

where ρ is bounded by 4.

It leads to the following rule for the choice of the factor a : The factor a has to be chosen in
such a way that the Euclidean Algorithm for a and m (b 6= 0, or a and m/4 (b=0) should have
small quotients qi . As a matter of fact qi = ha

i if b 6= 0.

We thus find the same conclusion as we got first in 1983 in [8] and [9]. However, our results
were more detailed and more general. Some of those have been taken up by Niederreiter in 1985
(cf [19]), which has established (with Knuth) connections between the spectral test and serial test.

Let r be the function such that 1/r(u1, u2) = msin(πu1/m)sin(πu2/m) when u1 + au2 ≡ 0
modulo m . Then, Niederreiter proved

D2
m = O

(
log(m)2Maxu1,u2

|r(u1, u2)|
)

(1.1)

when the period is m. Moreover, Niederreiter has proved in 1985 that if m is prime and has a
primitive root modulo m or if m = 2β , β ≥ 3, a ≡ 5 modulo m and b odd or b=0, then

D2
m/m ≤

C ′log(m)2

ρ2(a, m)
(1.2)

where ρ2(a, m) = min(r′(2H1, 2H2)) when r′(H) =
∏2

i=1 max(1, |Hi|) for Hi ∈ Z for all i and
where C’ is a constant (cf also [2], page 79).

This result is similar to our result of 1983. Indeed, by [2], page 79, Zaremba has proved in
1966 that, under these assumptions, ρ2(a, m) depends on the development of m/a in continued
fraction (cf [23]) : ρ2(a, m) ≤ 1

4Maxi(ha
i
) , and then,

D2
m ≤ C ′

4Max(ha
i )log(m)2 .

Now our result of 1983 is more accurate. For example, it has been proved an increase more

detailed than Niederreiter. We thus find a finite sequence of rectangles Rn such that
∣∣∣NRn

− SRn

m

∣∣∣ ≤

1. This helps to understand how rectangles R are filled by the points (T
i
(x0), T

i+1
(x0)).

Then, it is hoped that the following conjecture holds

∣∣NR −
SR

m

∣∣ ≤ Maxi(h
a
i )O

(
log

(
log(m)

))
.

This is still a conjecture ( cf conjecture 1.2.8). On the other hand, one can mathematically prove
an increase more detailed than Niederreiter:

∣∣∣NR −
SR

m

∣∣∣ ≤ Maxi(h
a
i )

2log(m) − log(2)

log(2)
.
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We will return to this below (cf corollary 1.2.5).

Therefore the ha
i ’s must be small. Then, we were also interested in case they are minimum :

ha
i = 1 for i = 1, 2, ...., da − 1 and ha

da = 2 : This is the case of Fibonacci congruences. Thus, in

this case, Zaremba gave an increase more accurate than D2
m ≤ C′4Max(ha

i )log(m)2

m . He proved that

∣∣∣NR −
SR

m

∣∣∣ ≤ 4A
log[(A + 1)m]

log(A + 1)
+ 1 < (7/6)log(15m) ,

where A = supi=1,..,da−1(h
a
i ) = 1 (cf [23]).

Unfortunately, congruences Fibonacci are very bad pseudo-random generators : indeed, in this
case, T 2 ≡ ±Id, where Id is the Identity function. On the other hand, they can be used effectively
in order to calculate double integrals as it is shown by Zaremba (cf [23]).

Moreover, in [17], we have seen that the the congruential functions of Fibonacci Tq make
uniform noises by a remarkable way.

Definition 1.1.5 Let q ∈ N
∗. Let T be a congruence of Fibonacci. We define the congruential

function of Fibonacci Tq by Tq = Prq ◦ T̂ ∈ [0, 1] where

1) T̂ (x) = T (xm)/m, when z ≡ z modulo m and 0 ≤ z < m if z ∈ Z,

2) Prq(z) = 0, b1b2....bq when z = 0, b1b2... is the binary writing of z.

Indeed, for the great majority of noises yn relatively unpredictable, the sequences Tq(yn) admit the
IID model for correct model. It was the first time that such a result was obtained. For example,
before this result, it was written in Handbook of Applied Cryptography ( [20]) : ”Designing a
hardware device or software program to exploit this randomness and produce a bit sequence that
is free of biases and correlation is a difficult task. Moreover, random bit generators based on natural
sources of randomness are subject to influence by external factors, and also to malfunctions. It is
imperative that such devices be tested periodically”.

We will return later to the question of Fibonacci functions which make uniform the most part
of noises (cf section 1.3).

In order to help to clarify these results we will now develop these different results. Unfortu-
nately our report ([9]) and our thesis of 1983 ([8]) are written in French. Also in order to be more
accessible, we will take up a large part of the proofs of 1983 in English. We detail them when it
is necessary. Then we develop them in order to show how you can specify, by a fairly exact way,
the number of points of the sample contained in each rectangle R = [x, x + L[×[y, y + L′[ when x,
y, L, L′ ∈ {0, 1, ....,m}.

1.2 General case

We study the distribution of the points {ℓ, T (ℓ)}.

Notations 1.2.1 Let E2 =
{
ℓ, T (ℓ) | ℓ ∈ {0, 1, .....,m−1}

}
when z ≡ z modulo m and 0 ≤ z < m

if z ∈ Z.

We have just to say that, in order that there have not strong dependences, it is necessary that
the ha

i ’s is small. Indeed, in [15] and [16], we proved that it is a necessary condition in order that
there is empirical asymptotic independence (cf theorem 3.1.1). Thus, if n is even, if x0 = y0 = 0,
theorem 3.1.1 means that the rectangle [0, ka

n/2]⊗ [ra
n−2/2, ra

n−2[ does not contain points of E2 if n
is even : E2 ∩

{
[0, ka

n/2]⊗ [ra
n−2/2, ra

n−2[
}

= ∅ . If ha
n−1 is large, that will mean that an important

rectangle of R
2 is empty of points of E2: that will mark a breakdown of independence.
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For example suppose n=2 and b=0. First, m = ra
0 , ra

1 = a, ka
1 = 1 and ka

2 = ha
1 = ⌊m/a⌋

where ⌊x⌋ means the integer part of x. In this case, one regards the rectangles [0, ka
2 [⊗[0, m[. One

thus finds a traditional technique for n=2. Indeed when one makes chi-squared tests, one can use
rectangles of same type as[0, m/(2a)[⊗[0, m/2[.

Thus if ”a” is not large enough compared to ”m”, there is rupture of independence. The rect-
angle Rect2 = [0, m/(2a)]⊗ [m/2, m[ will not contain any point of E2. However, this rectangle has
its surface equal to m2/(4a): if the points of E2 are distributed in a uniform way, one has about
m/(2a) = ha

1/2 + ra
2/(2a) points of E2 (and not 0). Thus if ”a” is not sufficiently large, i.e if ha

1

is too large, there is breakdown of independence.

For example, choose the congruence T (x) = 103x modulo 106−1 : Rect1 = [0, m/(2a)]⊗[0, m/2[
contains 500 points of E2 roughly and Rect2 contains 0 points. Then the chi-squared test that
one could make with such rectangles are not satisfied.

Now choose m=99, a=5, ka
2 = 19 : cf figure 1.1: Rect1 roughly contains 10 points of E2 for a

total sample of 99.
Choose m=99, a=10, ka

2 = 9 : cf figure 1.2: Rect1 roughly contains 5 points of E2 : the
breakdown is less clear.

0 10 20 30 40 50 60 70 80 90
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40
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90

a=5,m=99

n=2,r 0=m,k2=19

Figure 1.1: Points in rectangles a=5
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a=10,m=99

n=2,rn=m,k2=19

Figure 1.2: Points in rectangles a= 10

In these examples, we studied rectangles [0, ka
2/2] ⊗ [0, m/2[

}
. In the general case, it is neces-

sary that [0, ka
n/2]⊗ [ra

n−2/2, ra
n−2[

}
has not a too big size. It is necessary thus that all the ha

n−1’s
are small.

In fact, the results which we develop in this report will allow to prove that it is also a suf-
ficient condition : if the ha

i ’s are small enough one can suppose that there is independence (cf [10]).

Now we use a sequence hi a little different from ha
i in order to get the exact number of points

contained in some rectangles [x, x + L[×[y, y + L′[.
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Notations 1.2.2 One denotes by rn the sequence defined by : r0 = m, r1 = inf(a, m− a) and by
rn = hn+1rn+1 + rn+2 which denotes the Euclidean division of rn by rn+1 when rn+1 6= 0. One
denotes by d the smallest integer such as rd+1 = 0 (d ≥ 1).

One sets k0 = 0, k1 = 1 and kn+2 = hn+1kn+1 + kn if n ≤ d + 1.

With these new notations, it will be also necessary that the hi are small in order to have a good
independence.

We can deduce an increase of D2
m (cf corollary 2.7.15).

Theorem 1.2.3 Let x, y, L, L′ ∈ {1, 2, ....,m} and let R be the rectangle R = [x, x+L[×[y, y+L′[.
Let hs = sup(hi) and SR be the area of R (SR = LL′), NR = card(E2 ∩ R). We suppose that T
is invertible. Then

∣∣∣NR −
SR

m

∣∣∣ ≤
d∑

i=1

hi + 2 ≤ dhs + 2 .

Moreover, the following proposition holds (cf proposition 2.7.8)

Proposition 1.2.4 We have d ≤ 2 log(m)−log(2)
log(2) .

Then, one deduce the following result.

Corollary 1.2.5 Under the assumptions of theorem 1.2.5,

∣∣∣NR −
SR

m

∣∣∣ ≤
2log(m) − log(2)

log(2
hs .

We see that this equality is more accurate than that obtained by Nederietter and Knuth (cf
equations 1.1 and 1.2).

Remark 1.2.6 In these theorems we require that T is invertible. But there could be results of
the same type if T is not invertible. Indeed, we do not impose any conditions in our calculations
for sections 2.2, 2.3, 2.4, 2.5. In particular, the fundamental proposition 2.5.3 is given under no
hypothesis.

But, to get answers in the general case would complicate the results of this report which are
already long. Moreover, if T is not invertible, the period is smaller than m.

In fact, one can have more accurate results because we have a much more accurate increase
for some rectangles R.

Indeed, the previous increases improve clearly the increase of Niederreiter and Knuth. But it
is still too rough. It is enough to use again the proofs in order to understand that the points of
E2 are distributed by a much more uniform way. Thus, we will prove the following theorem (cf
theorem 2.6.14).

Theorem 1.2.7 Let T be a invertible linear congruence. Let c ∈ {1, 2, ...., d}. Let T ∈ N such
that T + c < d + 1 .

Let λi ∈ N, i = 1, 2, ..., T be a sequence checking λ1 < hc+1, and for all i ∈ {1, 2, ...., T } ,

λi ≤ hc+i and if λi = hc+i, then, λi−1 = 0. We suppose that L =
∑T

i=1 λikc+i.
Let f ∈ N

∗ f ≤ hc. Let Ro = [x, x + L[×[y, y + frc[. Then,

∣∣∣NRo −
SRo

m

]
≤ 1 .

8



This is not the only result that will allow us to refine the increase of D2
m. Thus we can see in

the proofs of Section 2.3 that we know how the rectangles R are filled by the points of E2. We
then realized that we can increase D2

m by a way more accurate than that given in the theorem
1.2.5.

It is shown by numerical studies which we have done for various different rectangles R and
various congruences T (cf chapter 3). Of course, this study was simplified by the theoretical study
that shows how the way points E2 are distributed in the rectangles R (cf chapter 2).

Finally this numerical study and the different lemmas of chapter 2 suggests that the following
conjecture is checked.

Conjecture 1.2.8 The following inequalities hold

hs

4
≤ SupR

(∣∣∣NR −
SR

m

∣∣∣
)
≤ hsO

(
log(log(m))

)
.

In fact it is even possible that there exists a constant C ”such that SupR

(∣∣∣NR − SR

m

∣∣∣
)
≤ C”hs

3. Then, a study should also be conducted in order to refine this result. We do not it here. This
report is already big enough. But it will be the basis when we shall want to complete this study.
So we will complete this proof later.

1.3 Fibonacci Congruence

By using the theorem 1.2.5, it was proved [10] that in some cases where the hi’s are small enough,
one can consider that one has the independence between two successive elements. So we will take
an interest in case where the hi’s are the smallest possible. As ha

i ≥ 1 and ha
da ≥ 2, the congruence

which defines the best independence of E2 will check ha
i = 1 and ha

da = 2. This case, is the case
of congruences of Fibonacci already studied by Zaremba : cf [23].

Definition 1.3.1 If T checks ha
i = 1 and ha

da = 2 and if T is invertible, we call T congruence of
Fibonacci.

Indeed, the following result holds

Proposition 1.3.2 If there exists n0 such that a = fin0
and m = fin0+1 where fin is defined

by fi1 = fi2 = 1 and if n ≥ 1, fin+2 = fin+1 + fin, T (x) ≡ ax modulo m is a congruence of
Fibonacci.

Proof Because T is invertible, rd = 1 (cf Lemma 2.6.3 ). Moreover, ra
da = 1 (cf lemma 2.1.3). We

deduce the result. �

Of course, there exists an infinity of Fibonacci congruences.

In this case, a = fida+1 and m = fida+2, i.e. n0 = da + 1. More generally, the sequences rn

and kn are the sequence of Fibonacci except for the last terms. For example if da = 6:
ra
da−da = ra

0 = m = 21 , ra
da−(da−1) = ra

1 = a = 13 , ra
2 = 8 , ra

3 = 5 , ra
4 = 3 , ra

da−1 = r5 = 2 ,
ra
da = ra

6 = 1 , ra
da+1 = ra

7 = 0.
ha

1 = ha
2 = ...... = ha

da−1 = 1 and ha
da = 2.

ka
0 = 0 , ka

1 = 1 = fi1 , ka
2 = 1 = fi2 , ka

3 = 2 = fi3 , ka
4 = 3 = fi4 , ka

5 = 5 = fi5 ,
ka
6 = ka

da = 8 = fi6 , ka
7 = ka

da+1 = 21 = m = fi8.

3However, if this were the case, we would not understand why the coefficient O
“

log(log(m))
”

would appear in

the simulations which we have made about the proposition 1.3.7 (cf [17], cf also section 3.2).
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More generally,
ra
da−da = ra

0 = m = fida+2 , ra
da−(da−1) = ra

1 = a = fida+1 , ra
2 = fida , ra

3 = fida−1,.......,
ra
da−2 = 3 , ra

da−1 = 2 , ra
da = 1 , ra

da+1 = 0.
ha

da = 2 , ha
da−1 = ha

da−2 = ...... = ha
2 = ha

1 = 1.
ka
0 = 0 , ka

1 = 1 = fi1 , ka
2 = 1 = fi2 , ka

3 = 2 = fi3,.......,k
a
da = fida , ka

da+1 = m = fida+2.

These properties are reflected by the following proposition (cf also lemma 2.6.16).

Proposition 1.3.3 We suppose that T is the congruence of Fibonnacci. Then, ri = fida−i+2.

We confirm by graphs that it is the Fibonaccci congruence which ensures the best independence
between two simulated successive numbers. We suppose m=21. If a = 13, we have a Fibonacci
congruence : cf figure 1.3. If one chooses a=10, sup(ha

i ) = 20 : cf figure 1.4 . If one chooses a=5,
sup(ha

i ) = 5 : cf figure 1.5.
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Figure 1.3: Fibonacci congruence
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Figure 1.4: sup(ha
i ) = 20
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Figure 1.5: sup(ha
i ) = 5
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Now, we can specify the theorem 1.2.5 for the Fibonacci congruence (cf proposition 2.7.8 and
lemma 2.7.12, 2.7.7).

Proposition 1.3.4 We suppose that T is the congruence of Fibonnacci where d ≥ 13. Then, for
all rectangle R = [x, x + L × [y, y + L′[ ,

∣∣∣NR −
SR

m

∣∣∣ ≤ 4
log(m) − log(2)

log(2)
.

Unfortunately if the Fibonacci congruence ensures the best independence between two simu-
lated successive numbers, it is also a pseudo-random generator very bad. Indeed, by lemma 2.6.16,
we have the following proposition.

Proposition 1.3.5 If T (x) ≡ ax mod m is the congruence of Fibonacci, then T 2 ≡ ±Id where
Id(x) = x.

Therefore, it can not be used as pseudo-random generator.

On the other hand, it can be used in order to make uniform noises. Indeed, we have seen
that if we transform noise yn, n=1,2,....,N, by using the congruential functions of Fibonacci, in
most cases, we transform this noise in IID sequences xn = Tq(yn), n= 1,2,....,N, when q and m are
correctly chosen according to N : very precisely, xn admits the IID model for correct model (cf [17]).

In order to prove this, we use the fact that Fibonacci congruences transform intervals into sets
well distributed in {0, 1, ....,m − 1}.

Notations 1.3.6 We suppose that T is the Fibonacci congruence. Let I = [c, c′[ , c, c′ ∈ {0, 1, ....,m−
1} and let N(I)=c’-c. Let gn be the permutation of {c, c + 1, ...., c′ − c} such that T (g1) < T (g2) <
T (g3) < ...... < T (gc′−c) .

Because, T 2 = ±Id, T−1 = ±T and T
−1

(g1) < T
−1

(g2) < ...... < T
−1

(gc′−c) or T
−1

(g1) >

T
−1

(g2) > ..... > T
−1

(gc′−c).

Since T (I) behaves as independent of I, normally, we should find that T (I) and, therefore

T
−1

(I), is well distributed in {0, 1, ....,m − 1}. As a matter of fact it is indeed the case : for all
numerical simulations which we made, one has always obtained, for r=1,2,....,c’-c-1,

∣∣∣
T (gr)

m
−

r

N(I)

∣∣∣ ≤
ϕ(m)

N(I)
,

where ϕ(m) << Log(m) : cf [10]. In fact, by numerical simulations which we have done, it seems
ϕ(m) is the order of Log(Log(m)). Moreover,

Maxr=0,1,....,N(I)−1

(∣∣∣
N(I)T−1(gr)

m
− r

∣∣∣
)

seems maximum when I is large enough : c′ − c = O(m/2) (cf [10]).

In order to prove this result, we have used simulations. Now with the results of this report we
can prove mathematically a result of the same type. Indeed, by proposition 2.7.16, we have the
following theorem.

Proposition 1.3.7 We suppose that T is the Fibonacci congruence with m ≥ 377. Then, for all
r ∈ {1, 2, ...., N(I) − 1},

|
T (gr)

m
−

r

N(I)
| ≤

φ′(m)

N(I)
,

ou φ′(m) = 4Log(m)−2Log(2)
log(2) .
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By using these increases, it has been obtained in [17] a method in order to obtain a sequence
proved IID, what gives a first solution to this search started since many years. For this, it is
necessary that the noises yn, n=1,2,....,N, admit for correct model a sequence of random variable
Yn, n=1,2,....,N, of which the conditional densities with respect to the uniform discrete measure
have Lipschitz coefficients not too large, i.e. the noise yn is not too deterministic.

At last Zaremba showed that we could use the Fibonacci congruences in order to calculate
double integrals. He has given [23] an increase of the error in this case.
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Chapter 2

Proofs

2.1 Introduction to the proofs

We study the set E2 =
{
ℓ, T (ℓ) | ℓ ∈ {0, 1, .....,m − 1}

}
.

2.1.1 Notations

Remark that we do not use the same notations as in [10] [9] [15] and [16]. Indeed, we suppose
here that r1 = inf(a, m− a). As a matter of fact the sequences rn, hn, kn of [10] [9] [15] and [16]
are the sequences ra

n, ha
n, ka

n of this report. We recall their definition.

Notations 2.1.1 One denotes by rn the sequence defined by : r0 = m, r1 = inf(a, m − a) and
rn = hn+1rn+1 + rn+2 the Euclidean division of rn by rn+1 when rn+1 6= 0.

Moreover, one denotes by d the smallest integer such that rd+1 = 0 (d ≥ 1). One sets rd+2 = 0.

Now we define kn for this new sequence rn. The definition remains the same as before, except
that we change r1.

Notations 2.1.2 One sets k0 = 0, k1 = 1 and kn+2 = hn+1kn+1 + kn if n ≤ d + 1.

Clearly kn is strictly increasing and rn strictly decreasing. Moreover, hn ≥ 1, r1 ≤ m/2.

Finally, there is no difference if r1 ≤ m/2. As a matter of fact the connections between the
sequences ra

n and rn are clarified by the following lemma.

Lemma 2.1.3 If a < m/2, ra
n = rn, ha

n = hn and ka
n = kn.

If a > m/2, ra
0 = r0 = m, ra

1 = a, ra
2 = r1 = m−a, ha

1 = 1, ha
2 +1 = h1 and for n ≥ 2, ra

n+1 = rn,
ha

n+1 = hn and da = d + 1.
Moreover, ka

0 = k0 = 0, ka
1 = k1 = 1, ka

2 = 1, ka
3 = h1 = k2 and for n ≥ 2 ka

n+1 = ka
n.

Proof If a < m/2, it is obvious.

If a > m/2, ra
0 = r0 = m, ra

1 = a.
Now ra

0 = m = a + (m − a) where m − a < a = ra
1 .

Therefore, m = a + (m − a) is the Euclidean division of m by a, i.e. of ra
0 = m by ra

1 = a.
Therefore m = a + (m − a) is identical to ra

0 = ha
1ra

1 + ra
2 .

Therefore, ha
1 = 1 and ra

2 = m − a.

On the other hand, ra
2 = m − a. Therefore, ra

2 = r1.

13



Moreover, m = r0 = h1r1 + r2 is written r0 = m = h1(m − a) + r2 = h1r1 + r2 with h1 ≥ 2.
Therefore, m − r1 = (h1 − 1)r1 + r2 with r2 < r1. Thus it is an Euclidean division.
Because ra

1 = ha
2ra

2 + ra
3 , ha

2 = (h1 − 1) and ra
3 = r2.

Because ra
2 = r1 and ra

3 = r2 the following Euclidean divisions
ra
2 = ha

3ra
3 + ra

4 and r1 = h2r2 + r3

are identical. QED

For the sequences ka
n and kn,

ka
0 = 0, ka

1 = 1,
ka
2 = ha

1ka
1 + ka

0 = 1 ∗ 1 + 0 = 1,
ka
3 = ha

2ka
2 + ka

1 = (h1 − 1) ∗ 1 + 1 = h1,
ka
4 = ha

3ka
3 + ka

2 = ha
3h1 + 1 = h2h1 + 1,

ka
5 = ha

4ka
4 + ka

3 ,

k0 = 0, k1 = 1,
k2 = h1k1 + k0 = h1,
k3 = h2k2 + k1 = h2h1 + 1,
k4 = h3k3 + k2.
And so on. �

Now we shall need the following notations.

Notations 2.1.4 Let Jt = {0, 1, ...., t} and J∗
t = {1, 2, ...., t}, t ∈ N

∗.

Remark that J∗
d+1 is the set of definition of hn.

Notations 2.1.5 We suppose that we have an integer c ∈ J∗
d and an integer f ∈ N

∗ such that
f ≤ hc. We denote by as the number belonging to {a, m−a} such that kcas = rc (cf lemma 2.2.1).
Moreover, in section 2.3, 2.4 and 2.5, we suppose kca = rc. We denote by M, M+ and Mf the
sets

M = {l ∈ N|al < rc},

M+ = {l ∈ N|al ≤ rc},

Mf = {l ∈ N|al ≤ frc}.

We are now going to clarify by graph what represent these notations. As a matter of fact,

because {(ℓ, aℓ + b)|ℓ = 0, 1, ....,m − 1} = {(ℓ, aℓ) + (0, b)|ℓ = 0, 1, ....,m − 1}, we are brought to
the study of the sequence R

2 : Uℓ = (ℓ, aℓ), ℓ ∈ N, or of the sequence {aℓ}.
For example, suppose that a=24298 m= 199017. We see that [0, m/a[×[0, m[ contains 9 points

of E2 of ordinates aℓ and of abscissa ℓ. In this case, we have r1 = a and r2 = m− 8a, i.e. h1 = 8.
Moreover, r2 is the distance of y= 8a, the highest point of E2 in [0, m/a[×[0, m[ , to y= m : cf
figure 2.1.

Now, if we study the points Uℓ of
[

m
a , 2m

a

[
× [0, m[, we understand that their ordinates are

deduced of the ordinates of [0, m/a[×[0, m[ by a translation of −r2. It is the same for the points
of

[
2m
a , 3m

a

[
× [0, m[ with respect to the points of

[
m
a , 2m

a

[
× [0, m[. And so on, untill the distance

of the lowest point to 0 is equal to r3 = r1 − h2r2 : cf figure 2.2.
Then, we have obtained all the points of E2 of the sequence Uℓ of

[
0, 5m

a

[
× [0, m[.

If we continue, we see that the ordinates of the points of Uℓ of
[
5m
a , 10m

a

[
× [0, m[ are deduced

of the points of E2 of
[

m
a , 5m

a

[
× [0, m[ by a vertical translation of r3. And so on when rn decreases

(i.e. n increases).
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Figure 2.1: a=24298, m=199017, r2 = 4633
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On the other hand, it is easy to understand that the points of ordinates y = m − r2 or y = r2

have abscissa equal to x = k2 or x = k3.
Then, the integers kn are the smallest integers ℓ such that the distance of y = ℓa to y=0 or

to y=m is smaller or equal to rn. Then, the rn’s are the distances minimal between the ℓa’s such
that ℓ < kn+1.

The set M is the set of the ℓ ∈ N such that ℓa < r1 = a (when c=1).
At last, k1a = a = r1 (k1 = 1), k2a = m − r2 and k3a = r3.

We shall prove these properties in the following section 2.2 after having given the plan of the
proofs.

2.1.2 Plan of the proofs

In order to prove the announced results, the main part of our work will consist in proving the
property fundamental 5-6. This one gives us in a almost exact way (to within about 1 point) the
number of points of Mf include in intervals of about any length.

In order to obtain this property we prove at first in section 2.2 the general lemmas which we
have just expressed.

Then in section 2.3.1, we shall show that the points of M deduct from each other by translations
of length kc+n′ .

Thanks to this result, it will be easy to us to give in section 2.3.2 a unique decomposition of
any point X of M with regard to the sequence hc+n′ , n′ ∈ Jd+1−c.

Then we can give (in section 2.3.3) an also unique decomposition of the difference Y-X of two
points X and Y of M with regard to the same sequence.

With these results we shall calculate in section 2.4 the number of points of M include in intervals
of the form [X,Y [when X and Y belong to M

Finally, we shall deduct in section 2.5 the number of points of Mf contained in intervals [x,
x+L [ where x ∈ N and where L is about anything. This result is the fundamental property.

We shall generalize then this property in section 2.6 by studying the conditions for which T
is invertible (untill now this condition was not imposed) and we shall obtain the fundamental
theorem which will assert us that, for rectangles of height frc and of about any width, we have
the inequality |NR − mSR| < 1 when we transform our results into [0, 1]2 by homotethy.

Then, we shall give in section 2.7 some mathematical consequences of these theorems.

2.2 General properties

We are now going to prove the observations which we have just written above. We shall prove
in a meticulous way the first lemma and the beginning of the second one. But as the kind of
arguments used here returns constantly and have not major difficulties (those are rather simple
as soon as we assimilated the notations). So afterward we shall not rewrite the smallest steps of
this kind of approach.

Lemma 2.2.1 Let n ∈ J∗
d+1. Then, if a = r1,

kna = rn if n odd and therefore kna ≡ rn.
kna = m − rn if n even and rn 6= 0 and therefore kna ≡ −rn.
kna = 0 if rn = 0 and therefore kna ≡ 0.

If m − a = r1, then
kna = m − rn if n odd and rn 6= 0 and therefore kna ≡ −rn.
kna = rn if n even and rn 6= 0 and therefore kna ≡ rn.
kna = 0 if rn = 0 and therefore kna ≡ 0.
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Proof Suppose a = r1. We prove the lemma by induction.
If n=1, r1 = k1a by definition.
If n=2, because m = h1r1 + r2 and k2 = h1, then, k2a ≡ m − r2.
Now because 0 ≤ m − r2 < m, (if r2 6= 0 1), then, k2a = m − r2.

Suppose that lemma holds for all integer n′ ≤ n + 1 such that rn+1 6= 0 and suppose n even.
Then,

kn+2a ≡ kn+1hn+1a + kna, (2.1)

and therefore,
kn+2a ≡ hn+1rn+1 + m − rn , (induction)

and therefore,
kn+2a ≡ m − rn+2 . (2.2)

Because 0 ≤ m − rn+2 < m (if rn+2 6= 0),

kn+2a = m − rn+2. QED

(if rn+2 = 0, then, obviously kn+2a = 0).

Suppose n odd and reason by the same way. Then,

kn+2a ≡ hn+1(m − rn+1) + rn ,

i.e. kn+2a ≡ rn+2, and therefore, kn+2a = rn+2. QED

Suppose at last r1 = m − a.
In this case, because the sequences rn, kn, and hn are identical for congruences T and

T ′ ≡ r1x + b, on proves easily the result. �

Remark that we have used the following reasoning : in order to prove that, for example,
kna = rn, we prove at first, kna ≡ rn and after 0 ≤ rn < m.

This reasoning returns constanly afterward and has no difficulty. According to what we an-
nounced, we shall not specify it any more from now on.

Lemma 2.2.2 Let n ∈ Jd+1, n > 1 and let k ∈ N, such that 0 < k < kn. Then, rn−1 ≤ ka ≤
m − rn−1.

Proof Suppose a = r1 and let us prove this lemma by induction.

It holds if n=2. Indeed, remark that h1 ≥ 2 (because a = r1), and then, {k ∈ N|1 ≤ k < h1 =
k2} 6= ∅.

Then, r1 = a ≤ ka ≤ (h1 − 1)a = m − r2 − a. Then, r1 ≤ ka ≤ m − r2 − r1 ≤ m − r1. QED

Suppose that the lemma holds for all integer n′ ≤ n such that n > 1 and rn 6= 0 (that means
that rn+1 exists. If rn = 0, the proof is finished).

As a matter of fact, it is enough to prove the lemma for all integer k such that kn ≤ k < kn+1.
Indeed, if k < kn, the induction and the fact that rn is strictly decreasing prove the property.

Then, we can write the Euclidean division of k by kn : k = hkn + ℓ. Then, the definition of kn

imposes that h ≤ hn, and that, if h = hn, then ℓ < kn−1 (if not, one obtains k ≥ kn+1 ).

1If r2 = 0, the lemma holds obviously
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Suppose ℓ = 0. Then, h > 0 and one obtains hkna ≡ ±hrn (cf lemma 2.2.1 ).
On the other hand, rn ≤ hrn ≤ hnrn = rn−1 − rn+1 ( cf equation 2.2).
At last, because by our assumption, n ≥ 2, we have rn < rn−1 ≤ r1 ≤ m/2 and rn−1 ≤ m/2 <

m − rn. Therefore, rn ≤ hrn ≤ m − rn.
We recall that kna = rn or m − rn (rn 6= 0) (cf lemma 2.2.1 ). Then, we understand that

rn ≤ hkna ≤ m − rn. QED

Suppose ℓ 6= 0 and h < hn.
Then, by the induction, because ℓ < kn, rn−1 ≤ ℓa ≤ m − rn−1, and because kna ≡ ±rn (cf

lemma 2.2.1 ), one obtains easily that rn−1 − (hn − 1)rn ≤ ℓa±hrn ≤ m− rn−1 + (hn − 1)rn, and
therefore, that rn + rn+1 ≤ ℓa±hrn ≤ m− rn − rn+1, and therefore, that rn ≤ ℓa±hrn ≤ m− rn,
i.e. rn ≤ (ℓ + hkn)a ≤ m − rn. QED

Suppose h = hn and n=2. Then, ℓ < kn−1, and therefore ℓ = 0 : it is a case which we have
already seen.

That means that the lemma holds for n=2 and n=3.

Suppose h = hn, 1 < ℓ < kn−1 and n > 2. Then, the induction shows that rn−2 ≤ ℓa ≤
m − rn−2, and therefore, rn−2 − hnrn ≤ ℓa ± hnrn ≤ m − rn−2 + hnrn.

Now, because the definition of rn involves that rn−2 − hnrn ≥ rn, then, one obtains rn ≤
(ℓ + hkn)a ≤ m − rn. QED

Now if a = m− r1, because T and T ′(x) ≡ r1x+ b have the same sequences rn, kn and hn, the
result is almost immediate. �

Corollary 2.2.3 Let n ∈ Jd+1, n > 1 and k, k′ ∈ N, such that 0 ≤ k < k′ < kn. Then,
m − rn−1 ≥ |k′a − ka| = k′a − ka ≥ rn−1.

Proof It is enough to remark that if ka = k′a , (k − k′)a ≡ 0, and therefore, (k − k′)a = 0. Now,
by the previous lemma 2.2.2, m − rn−1 ≥ (k − k′)a ≥ rn−1, where (because n > 1) rn−1 > 0.
Then, it is impossible that ka = k′a.

Then, ka > k′a or ka < k′a.
If ka > k′a, (k − k′)a = ka − k′a, and then, by the previous lemma 2.2.2, m − rn−1 ≥

(k − k′)a = ka − k′a = |ka − k′a| ≥ rn−1.
If ka < k′a, (k − k′)a = m + ka − k′a, and then, by the previous lemma 2.2.2, m − rn−1 ≥

(k − k′)a = m + ka − k′a ≥ rn−1.
Then, k′a − ka ≥ rn−1 and k′a − ka ≤ m − rn−1.
Then, m − rn−1 ≥ |k′a − ka| = k′a − ka ≥ rn−1. �

Corollary 2.2.4 Let n ∈ Jd+1, n > 1 and k, k′ ∈ N, such that k′ < kn and k < kn. Then,
ka = k′a ⇐⇒ k = k′.

Proof The proof of this corollary is a direct consequence of corollary 2.2.3. �

Corollary 2.2.5 Let c ∈ J∗
d+1 such that kca = rc. Let n ∈ Jd+1, n > c, and let k ∈ M , k 6= 0,

k 6= kc, k < kn. Then, rn−1 ≤ ka ≤ rc − rn−1.

Proof By Lemma 2.2.2, rn−1 ≤ ka. Because k ∈ M , ak < rc.
If ka > rc − rn−1, (kc − k)a = kca − ka = rc − ka = Di < rn−1. Let k′ = kc − k.
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If kc − k > 0, there exists 0 ≤ k′ = kc − k < kn such that k′a < rn−1. It is impossible because
lemma 2.2.2.

If kc − k < 0, −k′a ≡ −Di, then −k′a = m − Di > m − rn−1. It is impossible because
0 ≤ −k′ < kn and lemma 2.2.2. �

Corollary 2.2.6 We keep the notations of corollary 2.2.5. Let ℓ1 and ℓ2 ∈ M such that there
does not exist ℓ ∈ M , ℓ1 < ℓ < ℓ2.

Then, ℓ2 − ℓ1 = kc+1 or ℓ2 − ℓ1 = kc + kc+1.

Proof Recall that kc+1a = m − rc+1 and kca = rc if rc+1 6= 0.
If ℓ1a ≥ rc+1, then rc ≥ (ℓ1 + kc+1)a ≥ 0, and therefore, ℓ′ = ℓ1 + kc+1 ∈ M .
If not, rc > ℓ1a + rc − rc+1 ≥ 0, and therefore, ℓ” = ℓ1 + kc + kc+1 ∈ M .
Therefore ℓ2 ≤ max(ℓ′, ℓ”).
If there exists ℓ ∈ M , ℓ1 < ℓ ≤ ℓ2, ℓ 6= ℓ′, and ℓ 6= ℓ”,
or ℓ − ℓ1 < kc+1, or ℓ2 − ℓ < kc+1.

If ℓ − ℓ1 < kc+1, m − rc ≥ (ℓ − ℓ1)a ≥ rc by lemma 2.2.2.
Then, if (ℓ − ℓ1)a = ℓa − ℓ1a, ℓa − ℓ1a ≥ rc and ℓ /∈ M .
If (ℓ − ℓ1)a = m + ℓa − ℓ1a, ℓa < ℓ1a < rc and then, (ℓ − ℓ1)a = m + ℓa − ℓ1a > m − rc what

is a contradiction.

If ℓ2 − ℓ < kc+1, m − rc ≥ (ℓ2 − ℓ)a ≥ rc by lemma 2.2.2.
Then, if (ℓ2 − ℓ)a = ℓ2a − ℓa, (ℓ2 − ℓ)a = ℓ2a − ℓa < rc what is a contradiction.
If (ℓ2 − ℓ)a = m + ℓ2a− ℓa, ℓa > ℓ2a and, if ℓ ∈ M , ℓa < rc. Then, (ℓ2 − ℓ)a = m + ℓ2a− ℓa >

m − rc, what is a contradiction.
Then, ℓ /∈ M . It is a contradiction.

Therefore ℓ2 is not different from ℓ′ or ℓ”.

If rc+1 = 0, the proof is identical. �

Lemma 2.2.7 Let {λi}, i=1,2,...,d, be a sequence of N such that λi ≤ hi for i=1,2,...,d. Let
n ∈ N

∗ and k ∈ N such that 3n + 2k ≤ d. Then,

n+k∑

i=n

λn+2irn+2i ≤ rn−1 − rn+2k+1 .

Proof We have
n+k∑

i=n

λn+2irn+2i ≤
n+k∑

i=n

hn+2irn+2i

≤
n+k∑

i=n

[rn+2i−1 − rn+2i+1] = rn+2n−1 − rn+2(n+k)+1 = r3n−1 − r3n+2k+1 .

Then, if n = 1, 2 = 3n − 1 ≥ n − 1 = 0 and (3n − 1) ≥ [n − 1] + 2.
Then if n ≥ 2, 3n − 1 ≥ n + 3 and [3n − 1] ≥ [n − 1] + 4.
Therefore, for all n such that n + 2 ≤ d + 1,

rn = hn+1rn+1 + rn+2 ≥ rn+1 + rn+2 ≥ rn+1 .

Therefore,

rn = hn+1rn+1 + rn+2 ≥ rn+1 + rn+2 ≥ [rn+2 + rn+3] + [rn+2] ≥ 2rn+2 .
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Therefore,

rn−1 − rn+2k+1 ≥ 2r[n−1]+2 − rn+2k+1 ≥ 2r3n−1 − rn+2k+1 ≥ r3n−1 ≥ r3n−1 − rn+2k+1 . �

2.3 Study of M

Now, we study the points of M, i.e. the points of N such that la ≤ rc. For this study, we assume
the following assumptions hold.

Assumptions 2.3.1 We assume that 0 < c < d and kca = rc (in sections 2.3, 2.4 and 2.5 ).
Under these assumptions, for all n ∈ Z such that n+ c ∈ Jd+1, we set Kn = kc+n, Rn = rc+n and
Hn = hn+c.

Then, the following lemma is obvious.

Lemma 2.3.1 We have R0 ≤ m/2, Kna = Rn, and Kna ≡ Rn if n is even,
Kna = m − Rn, and Kna ≡ −Rn if n is odd, and Rn 6= 0,
Kna = 0, and Kna ≡ 0 if Rn = 0.

Proof It is enough to apply lemma 2.2.1. �

2.3.1 Properties of Translation

Now, look at figure 2.3 : it shows the points of M+ in the case where a =24298 and m=199017
when c=1, i.e. R0 = a.

We understand that the points of M+ ∩ [0, K2[ are the points {0, K0, K0 +K1, K0 +2K1, K0 +
3K1, K0 +4K1}, and that the points of M ∩ [2K2, 3K2[, for example, are deduced from the points
of M ∩ [0, K2[ by a translation of 2K2.

If we extend the graph towards the right, we would also see, for example, that the points of
M ∩ [3K3, 4K3[, are deduced from the points of {M+\{0}} ∩ [0, K3[ by a translation of 3K3.

In this case indeed, this horizontal translation of abscissas is translated by one negative vertical
translation of the ordinates and K0 will play the role of 0 in the previous case.

They are these properties which we study now.

Proposition 2.3.2 Let n ∈ N
∗ such that n + c < d + 1. Let ℓ ∈ [Kn, Kn+1[∩N. Then, one can

write ℓ = hKn + ℓ0 with h ∈ N
∗ and ℓ0 ∈ N, ℓ0 < Kn and h ≤ Hn, and if h = Hn, then ℓ0 < Kn−1

and if n=1, then h < H1.
Then, ℓ ∈ M+ (resp M) if and only if ℓ0 ∈ M+\{0} if n is odd, and ℓ0 ∈ M if n is even.

Proof The writing ℓ = hKn + ℓ0 is that of the Euclidean division. The associated inequalities are
due to the definitions of Kn, Hn and ℓ.

In particular, if n=1, and h = H1, ℓ = H1K1 + ℓ0 = K2 − K0 + ℓ0 < K2 : ℓ0 < K0. Then, by
lemma 2.2.2, ℓa ≥ rc−1 > rc and ℓ0 /∈ M .

Let ℓ0 and h defined as in the statement ( ℓ0 ∈ M+\{0} or ℓ0 ∈ M). We prove now that
ℓ0 + hKn ∈ M+.

Suppose that n is even, i.e. Kna = Rn.
Then, 0 ≤ ℓ0a ≤ R0−Rn−1 (by corollary 2.2.5). Then, ℓ0 ∈ M . We deduce 0 ≤ ℓ0a+hRn ≤ R0,

and then 0 ≤ (ℓ0 + hKn)a ≤ R0, i.e. ℓ = ℓ0 + hKn ∈ M+. QED
If n+c is even, one uses the same reasoning.
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Reciprocally, let ℓ ∈ M+ ∩ [Kn, Kn+1[ : ℓ = ℓ0 + hKn.
Suppose n even, i.e. Kna = Rn. Because Rn < R0, and n+ c ≥ 2 it is easy to understand that

R0 < R0 + hRn < m. Therefore that (K0 + hKn)a > R0, i.e. K0 + hKn /∈ M+, and therefore
ℓ0 6= K0.

Because, on the other hand, Rn ≤ ℓa ≤ R0 (by lemma 2.2.2 and by assumption), then,
−(Hn − 1)Rn ≤ ℓa − hRn < R0.

If ℓa−hRn < 0, then, (ℓ − hKn)a = m+ℓa−hRn, and therefore, m−Rn−1 < (ℓ − hKn)a < m.
Now, ℓ − hKn < Kn, which is in contradiction with the lemma 2.2.2.
Therefore, 0 ≤ ℓa − hRn < R0, i.e. ℓ0 ∈ M . QED

If n is odd the proof is identical.

Then, it remains to prove the equivalence between ℓ ∈ M+ and ℓ ∈ M . It is due to the
following lemma 2.3.3 which is a direct consquence of corollary 2.2.4. �

Lemma 2.3.3 The only point of M+ ∩ [0, kd+1[ such that ℓa = R0 is the point K0.

Lemma 2.3.4 We have
M ∩ [0, K2[=

{
0, K0 + K1, K0 + 2K1, ........., K0 + (H1 − 1)K1

}
,

M ∩ [0, K1[= {0},
M+ ∩ [0, K1[=

{
0, K0

}
,

M+ ∩ [0, K2[=
{
M ∩ [0, K2[

}
∪ {K0}.

Proof It is enough to apply the previous results and corollary 2.2.6. �

2.3.2 Writting of points of M

With the previous results, we understand that it is easy to give a writing of elements of M by
induction.

Let ℓ ∈ M ∩ [hKT , (h + 1)KT [ where h + 1 ≤ HT . Then, ℓ − hKt ∈ M+ by proposition 2.3.2.
Finally, we shall come down easily to the elements of M ∩ [0, K2[ of which we know the form

(cf lemma 2.3.4).

That means that ℓ can be written ℓ = δK0 +
∑T

t=1 gtKt where δ = 0 or δ = 1 and gt ≤ Ht. At
last, if gt = Ht, proposition 2.3.2 shows that ℓ0 < Kt−1, i.e. gt−1 = 0.

Now, we shall prove these results and we shall understand that this writing of ℓ is unique.

Lemma 2.3.5 Let ℓ ∈ M+, ℓ < kd+1 such that there exists T ∈ N
∗ checking c + T ≤ d and let

gT ∈ N
∗, such that ℓ ∈ [gT KT , (gT + 1)KT [∩[0, KT+1[.

Then, one can write ℓ in the form

ℓ = δK0 +

T∑

t=1

gtKt ,

with
1) δ = 0 or δ = 1 ,
2) gt ≤ Ht where t ∈ N

∗, t ≤ T ,
3) If gt = Ht , then gt−1 = 0,
4) g1 < H1.

Proof We prove this lemma by recurence. It holds for T=1 and T=2 (cf lemma 2.3.4).

Suppose that it holds for all integer T ′ ≤ T and suppose that c + T + 2 ≤ d + 1.
Then, if ℓ = ℓ0+gT+1KT+1 means the Euclidean division of ℓ by KT+1, ℓ0 ∈ M+ (cf proposition

2.3.2) and it is enough to apply the induction in order to obtain the announced results. �
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Lemma 2.3.6 Let gt, t=1,2,...,T, be a sequence checking the conditions of lemma 2.3.5 where
T ∈ N

∗, and T ≤ d − c. Let δ = 0 or δ = 1.
Then,

δK0 +
T∑

t=1

gtKt ∈ [0, KT+1[ .

Proof The proof is easily done by induction by using definition of sequence Kn. �

One deduce also easily the following lemma.

Lemma 2.3.7 We keep the notations and assumptions of lemma 2.3.6. Then,

δK0 +
T∑

t=1

gtKt ∈ [gT KT , (gT + 1)KT [∩[0, KT+1[ .

Lemma 2.3.8 The decomposition of ℓ ∈ M+ given in lemma 2.3.5 is unique.

Proof In the decomposition of all ℓ ∈ M+ given in lemma 2.3.5, gT is determined in a unique
way by lemma 2.3.7. Then, we deduce the lemma . �

We gave the only writing of any element ℓ ∈ M ∩ [0, kd+1[. Now we have to generalize this
result for all ℓ ∈ M .

Proposition 2.3.9 The lemma 2.3.5, 2.3.6, 2.3.7 and 2.3.8 hold again, if we replace the condition
c + T ≤ d by c + T ≤ d + 1.

Moreover, if ℓ ∈ [gkd+1, (g + 1)kd+1[, g ∈ N, then ℓ ∈ M (resp ℓ ∈ M+) if and only if
ℓ′ = ℓ − gkd+1 ∈ M (resp ℓ′ ∈ M+).

Moreover, ℓ′a = ℓa.

Proof It is enough to recall rd+1 = 0, i.e. kd+1a = 0. �

2.3.3 Study of Y-X with X, Y ∈ M

Then, we have a decomposition of the points of M. But, later, when we want to compute the
number of theses points belonging to an interval [X, Y [, where X and Y belongs to M, we had to
know also a decomposition of Y-X. It is this problem that we study now.

This study is based on a simple idea. :
if Y a > Xa, then, (Y − X)a < R0 and therefore Y − X ∈ M .
If not, m − R0 ≤ m + Y a − Xa < m, that is to say 0 ≤ R0 + Y a − Xa < R0, and therefore,
K0 + (Y − X) ∈ M .

Lemma 2.3.10 Let ℓ ∈ N such that ℓ =
∑T

i=1 λiKi, where T ∈ N
∗ and checks c + T ≤ d + 1 and

where λi ∈ N , λi ≤ Hi, λ1 < H1, and if λi = Hi, then λi−1 = 0.
And let X ∈ M . Then,

OR ℓ ∈ M , and, in this case, or X + ℓ ∈ M or X + ℓ − K0 ∈ M ,
OR K0 + ℓ ∈ M and, in this case, or X + ℓ ∈ M or X + ℓ + K0 ∈ M .

Proof By lemma 2.2.1, we can write ℓa =
∑T

i=1 λiKia, in the form

ℓa ≡
∑

i+c∈2N∗, i+c≤T

λiRi −
∑

i+c∈2N+1, i+c≤T

λiRi .

Then, by lemma 2.2.7,
∑

i+c∈2N∗, i+c≤T λiRi = α1 < R0 and
∑

i+c∈2N+1, i+c≤T λiRi = α2 ≤
R0 with αs ∈ N for s=1,2.

24



Therefore, if α1 > α2, then, ℓa = α1 −α2 < R0, and therefore ℓ ∈ M . If not, 0 ≤ α1 −α2 +R0

and ℓ + K0 ∈ M . QED

Then, let X ∈ M .
If ℓ ∈ M , 0 ≤ ℓa + Xa < 2R0 ≤ m, and then

or ℓa + Xa < R0, and then, X + ℓ ∈ M ,
or ℓa + Xa ≥ R0, and then, X + ℓ − K0 ∈ M .

If ℓ + K0 ∈ M , we use the same way. �

Lemma 2.3.11 Let X and Y belonging to M+ such that X < Y . Let

X = δ′K0 +

T∑

i=1

xiKi and Y = δ”K0 +

T∑

i=1

yiKi

be the decompositions of X and Y according to proposition 2.3.9 , i.e. lemma 2.3.5 if c + T ≤ d
(it is possible that xT = 0).

Then, Y-X is written, by a alone way

Y − X = ∆K0 +

T∑

i=1

ziKi ,

with zi ∈ N, zi ≤ Hi, z1 < H1, and if zi = Hi, then zi−1 = 0,
and where ∆ = 0 or 1 if Y a ≥ Xa, ∆ = 0 or -1 if Y a < Xa.

Proof If Y a ≥ Xa, then, Y −X ∈ M+, and then, Y −X is decomposed by an alone way according

criteria of proposition 2.3.9 (cf also lemma 2.3.8) : Y − X = δK0 +
∑T ′

t=1 ztKt.

If Y a < Xa, then, K0 + Y − X ∈ M+, and then, K0 + Y − X = δK0 +
∑T ′

t=1 ztKt and then,

Y − X = (δ − 1)K0 +
∑T ′

t=1 ztKt.

It remains to prove that T ′ ≤ T .
If Y − X ∈ M+, then Y − X ≤ Y < KT+1 (cf lemma 2.3.6), and therefore T ′ ≤ T (cf lemma

2.3.7).
If K0 + Y − X ∈ M+ , Y − X /∈ M+ and if X 6= 0, then X ≥ K0 (cf lemma 2.2.2), and

therefore K0 + Y − X ≤ Y < KT+1 and therefore T ′ ≤ T (cf lemma 2.3.7).
At last, if X=0, then, R0 ≥ Y a−Xa = Y a ≥ 0. Then, R0 ≥ (Y − X)a = Y a−Xa ≥ 0. Then,

Y − X ∈ M+. �

Lemma 2.3.12 Let X and Y belonging to M+ such that X < Y . Then the following logical
equivalences holds

1) Y a ≥ Xa ⇐⇒ Y − X ∈ M+ ,

2) Y a < Xa ⇐⇒ K0 + Y − X ∈ M ,

3) Y a ≤ Xa ⇐⇒ K0 + Y − X ∈ M+ ,

Proof In the previous proof, we have just proved the direct implications. It remains to prove
the reciprocal implications.

They follow from the fact that the two conditions
Y − X ∈ M+ and K0 + Y − X ∈ M are incompatible. �

It is necessary to complete these properties by the following property.

25



Let us suppose that we have X belonging to M and ℓ defined as in the lemma 2.3.10 : ℓ =∑T
i=1 λiKi.
Then, let Y ′ ∈ M defined also by lemma 2.3.10 : Y ′ = X + ℓ ± δK0 with δ = 0 or 1.

Then, let us write Y’-X according to lemma 2.3.11 : Y ′ − X = ∆K0 +
∑T

i=1 ziKi.
It remains to be proved that λi = zi for i=1,2,...,T. It is what we do in the following lemma.

Lemma 2.3.13 Let X ∈ M . Let ℓ ∈ N defined as in lemma 2.3.10 : ℓ =
∑T

i=1 λiKi.
If ℓ ∈ M , we denote by Y’ that of the two numbers X + ℓ and X + ℓ−K0 belonging to M (there

is an only one by corollary 2.2.6 ).
If K0 + ℓ ∈ M , (what is incompatible with ℓ ∈ M), then Y’ is that of the two numbers X + ℓ

and X + ℓ + K0 belonging to M (there is an only one by corollary 2.2.6).
With theses notations , the decomposition of Y’-X according to lemma 2.3.11 is

Y ′ − X = ∆K0 +
T∑

i=1

λiKi .

Proof Assume ℓ ∈ M . If Y ′ = X+ℓ, then by our assumption Y ′ ∈ M and Y ′−X ∈ M . Therefore
Y ′a ≥ Xa (cf lemma 2.3.12), and therefore, Y ′−X = δK0 +

∑T
i=1 µiKi by an only way by lemma

2.3.11 : because ℓ = Y ′ − X, δ = 0 and λi = µi.

The other cases are proved by the same way. �

Both lemmas which we prove now will be useful later when we shall need a recurrence about
T about the writing of Y-X.

Lemma 2.3.14 Let T ∈ N such that c + T ≤ d + 1 and 2 ≤ T . Let X and Y ∈ M+ ∩ [0, KT+1[,
such that X < Y .

Then, according proposition 2.3.2, there exists X’ and Y ′ ∈ M+ ∩ [0, KT [ such that X =
X ′ + xT KT , Y = Y ′ + yT KT (cf proposition 2.3.9 ) and xT ≤ yT

2 .
We assume yT ≥ 1 and X ′ 6= Y ′. We denote by Y ” = Y ′ + KT (by proposition 2.3.2 and

lemma 2.3.3, Y ” ∈ M ).

Let ∆K0 +
∑T−1

i=1 ziKi be the decomposition according lemma 2.3.11 of Y’-X’ if X ′ < Y ′ and
of Y ” − X ′ if not.

Then, the decomposition of Y-X according to lemma 2.3.11 is

Y − X = ∆K0 +

T∑

i=1

ziKi ,

with zT = yT − xT if X ′ < Y ′, and zT = yT − xT − 1 if not.

Proof Let us assume X ′ < Y ′.
Then, if Xa ≤ Y a, Y − X ∈ M+ by lemma 2.3.12.
Therefore Y ′ − X ′ ∈ M+ by proposition 2.3.2.
Therefore, Y ′ − X ′ = δK0 +

∑T−1
i=1 ziKi by lemma 2.3.5, proposition 2.3.9.

Therefore, Y − X = δK0 +
∑T−1

i=1 ziKi + (yT − xT )KT . QED

If Y a < Xa, then K0 + Y − X ∈ M by lemma 2.3.12.
Therefore K0 + Y ′ − X ′ ∈ M+ by proposition 2.3.2.
Then, (because Y ′ 6= X ′), if n is odd, it is easy to understand that K0 + Y ′ − X ′ ∈ M by

lemma 2.3.3. If n is even, by proposition 2.3.2, K0 + Y ′ − X ′ ∈ M . Then, in all the cases,
K0 + Y ′ − X ′ ∈ M .

Then, K0 + Y ′ − X ′ = δK0 +
∑T−1

i=1 ziKi by lemma 2.3.5, proposition 2.3.9.

2By proposition 2.3.9, if xT > yT , X−Y = X′−Y ′+(xT −yT )KT ≥ −KT−1 +KT > 0, what is a contradiction
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Therefore, Y − X = (δ − 1)K0 +
∑T−1

i=1 ziKi + (yT − xT )KT . QED

Now, clearly yT − xT ≤ HT .
Moreover equality yT −xT = HT involves that yT = HT and xT = 0, and therefore, by lemma

2.3.5, proposition 2.3.9, that Y ′ < KT−1. Then, X ′ < Y ′ < KT−1 because by our assumption for
this part of the proof, X ′ < Y ′. Then, zT−1 = 0 by lemma 2.3.13.

At last Xa ≤ Y a, involves indeed ∆ = 0 or 1 and Y a < Xa involves ∆ = 0 or -1. QED

If Y ′ < X ′ < Y ”, the result is proved by the same way. �

Lemma 2.3.15 Let X’, Y’ and Y” defined as in lemma 2.3.14 such that Y ′ < X ′ < Y ”.
Then the following inequalities are impossible : Y ′a ≤ X ′a ≤ Y ”a or Y ”a ≤ X ′a ≤ Y ′a.

Proof By lemma 2.2.1, (Y ” − Y ′)a ≡ ±RT .
Therefore Y ”a ≡ Y ′a ± RT .
It is easy to deduce that Y ”a = Y ′a±RT if Y ′ 6= 0 because RT < RT−1 ≤ Y ′a ≤ m−RT−1 <

m − RT by lemma 2.2.2.
If Y ′ = 0, the assumptions Y ′ ∈ M+ and Y ∈ M+ will impose that T is even (proposition

2.3.2), and therefore, because by our assumption T ≥ 2, Y ”a = Y ′a + RT (cf lemma 2.2.1).
Then, in all cases, we have Y ”a = Y ′a ± RT .

Then, let us assume Y ′a ≤ X ′a ≤ Y ”a or Y ”a ≤ X ′a ≤ Y ′a.
Then, we have |Y ′a − X ′a| ≤ RT . That is a contradiction with corollary 2.2.3. �

Corollary 2.3.16 Let X’, Y’ and Y” defined as in lemma 2.3.15. Then the following logical
equivalences holds :

X ′ − Y ′ ∈ M ⇐⇒ K0 + Y ” − X ′ ∈ M.

K0 + X ′ − Y ′ ∈ M ⇐⇒ Y ” − X ′ ∈ M.

Proof Suppose X ′ − Y ′ ∈ M . Then, X ′a ≥ Y ′a by lemma 2.3.12. Then, by lemma 2.3.15 ,
X ′a > Y ”a. Then, by lemma 2.3.12, K0 + Y ” − X ′ ∈ M .

Suppose K0 + Y ” − X ′ ∈ M . Then, by lemma 2.3.12, X ′a > Y ”a. Then, by lemma 2.3.15 ,
X ′a > Y ′a. Then, by lemma 2.3.12, X ′ − Y ′ ∈ M+.

Now it is impossible that (X ′ − Y ′)a = R0. Indeed, because X ′a > Y ′a , and by the definition
of lemma 2.3.14, X ′a ≤ R0, R0 ≥ X ′a−Y ′a > 0. Then, (X ′ − Y ′)a = X ′a−Y ′a. If (X ′ − Y ′)a =
R0, it is necessary that X ′a = R0 and Y ′a = 0. Now, because by the definition of lemma 2.3.14,
T ≥ 2, m > RT−1 > 0. Then, because Y ′ < KT , by lemma 2.2.2, Y ′a ≥ RT−1 > 0. Then,
Y ′a > 0, what is a contradiction.

Then, X ′ − Y ′ ∈ M . QED

Now suppose Y ” − X ′ ∈ M . Then, by lemma 2.3.12, X ′a ≤ Y ”a. Then, by lemma 2.3.15 ,
X ′a < Y ′a. Then, by lemma 2.3.12, K0 + X ′ − Y ′ ∈ M .

Now suppose K0 +X ′ −Y ′ ∈ M . Then, by lemma 2.3.12, X ′a < Y ′a. Then, by lemma 2.3.15,
X ′a < Y ”a. Then, by lemma 2.3.12, Y ” − X ′ ∈ M+.

Now it is impossible that (Y ” − X ′)a = R0. Indeed, because X ′a < Y ”a , and by the defi-
nition of lemma 2.3.14, Y ”a ≤ R0, R0 ≥ Y ”a − X ′a > 0. Then, (Y ” − X ′)a = Y ”a − X ′a. If
(Y ” − X ′)a = R0, it is necessary that Y ”a = R0 and X ′a = 0. Now because c ≥ 1, m > RT−1 > 0.
Now, because by the definition of lemma 2.3.14 Y ′ < KT . Then, by lemma 2.2.2, X ′a ≥ RT−1 > 0.
Then, X ′a > 0, what is a contradiction.

Then, Y ” − X ′ ∈ M . QED �
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2.4 Number of points of M in the intervals.

We keep the previous notations and we suppose again that assumptions 2.3.1 hold.

We shall calculate at first the number of points of M belonging to intervals in the form [0,X[,
X ∈ M .

Look at again figure 2.3. We know aleready the numbers of points of M belonging to intervals
[0, K1[ and [0, K2[ : cf lemma 2.3.4.

Then, we understand that it is easy from proposition 2.3.2 to calculate the numbers of points
belonging to [0, K3[ : It will be the numbers of points belonging to [0, K2[, [K2, 2K2[, .......,
[(H2 − 1)K2, H2K2[ and [H2K2, K3[.

Now the first intervals contain the same number of points because they are deduced from each
other by translation (proposition 2.3.2) and the last one contains the same number as [0, K1[
(proposition 2.3.2), and therefore

card
(
[0, K3[∩M

)
= H2card

(
[0, K2[∩M

)
+ card

(
[0, K1[∩M

)
.

They are these simple properties that we prove now.

Notations 2.4.1 We denote by [x, y[, [x, y[⊂ R, the number [x, y[ = card
(
[x, y[∩M

)
.

We define the sequence {Qc
n}, n ∈ N, by Qc

0 = 0, Qc
1 = 1 and Qc

n+1 = Qc
nhn+c + Qc

n−1 when
n ∈ N

∗ and n + c ≤ d + 1.
In order to simplify, in this section, we simplify Qc

n by Qn.

Lemma 2.4.2 Let p ∈ N
∗ such that c + p ≤ d + 1. Let h ∈ N

∗, h < Hp. Then the following
equalities holds :

[hKp, (h + 1)Kp[ = [0, Kp[ ,

[HpKp, Kp+1[ = [0, Kp−1[ , if p ≥ 2 .

Proof It is enough to use proposition 2.3.2 by remarking that card
(
[0, Kp[∩M

)
= card

(
[0, Kp[∩{M

+\

{0}}
)
. �

Lemma 2.4.3 Let p ∈ N
∗ such that p + c ≤ d + 2. Then, [0, Kp[ = Qp.

Proof It is enough to apply lemma 2.3.4 and, by inductive way, the equality quoted at the begin-
ning of this section for p=3, as its proof. �

Lemma 2.4.4 Let X ∈ M and Y = δK0 +
∑T

i=1 giKi be the decomposition of X according

proposition 2.3.9. Then, [0, X[ =
∑T

i=1 giQi.

Proof We prove this lemma by induction on T. It holds for T=0 and T=1 (cf lemma 2.3.4).
Then, it is enough to apply a simple induction. Suppose that this lemma holds for all T ′ ≤ T−1.

Then, L′ =
∑T−1

i=1 giKi < KT by lemma 2.3.6.

Now, by lemma 2.4.2 and 2.4.3, [hKT , hKT + KT [ = QT . Then, [0, gT KT [ = gT QT .
Now, by proposition 2.3.2 there exists a bijection beetwen [gT KT , gT KT +x[∩M and [0, x[∩M

or [0, x[∩{M+ \ {0}} when gT KT + x < KT+1 and x > K0.

Then, because card
(
[0, Kp[∩M

)
= card

(
[0, Kp[∩{M

+ \ {0}}
)
, [gT KT , gT KT + L′[[ = [0, L′[ =∑T−1

i=1 giQi.

Then, [0,
∑T

i=1 giKi[ =
∑T−1

i=1 giQi + gT QT =
∑T

i=1 giQi. �
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Lemma 2.4.5 Let T ∈ N
∗, c+T ≤ d+1, and let Z ∈ [0, KT+1[∩M such that Z+KT ∈ [0, KT+1[.

Then, [Z, Z + KT [ = QT .

Proof It is easy to understand (thanks to proposition 2.3.2) that Z + KT ∈ M , and therefore,

Z + KT is written Z + KT = δK0 +
∑T

i=1 λiKi + KT , and Z : Z = δK0 +
∑T

i=1 λiKi.
The lemma 2.4.4 permits to conclude. �

The lemma which we prove now will be useful in order to prove proposition 2.4.7.

Lemma 2.4.6 Let T ∈ N
∗, T ≤ d + 1. Let ℓ′ and ℓ” ∈ M+ ∩ [0, KT + K0].

Let ℓ′ = δ′K0 +
∑T

i=1 λiKi and ℓ” = δ”K0 +
∑T

i=1 µiKi the decompositions of ℓ′ and ℓ”
according 2.3.9. Assume that ℓ′ + ℓ” = KT + K0.

Then,
∑T

i=1(λi + µi)Qi = QT .

Proof At first, we prove this lemma when ℓ′ (or ℓ”) ∈ [KT , KT + K0].
It is easy to undersand that KT or KT + K0 ∈ M and that [KT , KT + K0] contains an only

point of M (Cf corollary 2.2.6) : ℓ′ = KT + K0 for example. In this case, ℓ” = 0. Then, λT = 1,
λi = 0 if i < T and µj = 0

If ℓ′ = KT , ℓ” = K0 and λT = 1, λi = 0 if i < T and µj = 0 for j=1,2,....,T. QED

Now, let us prove the rest of the lemma by induction.
Thanks to lemma 2.3.4, one understand easily that it holds for T=1 and T=2.
Let us suppose that it holds for all integer T ′ ≤ T when T > 1.
Let L’ and L” ∈ M+ such that L′ + L” = KT+1 + K0 and L′ < KT+1 and L” < KT+1.

Let L′ = δ′K0 +
∑T

i=1 λiKi and L” = δ”K0 +
∑T

i=1 µiKi be the decompositions of L’ and L”
according proposition 2.3.9.

Let ℓ′ = δ′K0 +
∑T−1

i=1 λiKi and ℓ” = δ”K0 +
∑T−1

i=1 µiKi.
Then, ℓ′ and ℓ” ∈ [0, KT [∩M+ (cf proposition 2.3.2 and lemma 2.3.5), and therefore, ℓ′ + ℓ”−

K0 < 2KT .
We deduce easily that

or λT + µT = HT − 1, and therefore ℓ′ + ℓ” − K0 = KT + KT−1,
or λT + µT = HT , and therefore ℓ′ + ℓ” − K0 = KT−1.

If λT + µT = HT − 1, and ℓ′ + ℓ” − K0 = KT + KT−1, then, OR λT−1 6= 0 OR µT−1 6= 0.
Indeed, if not, we have ℓ′ + ℓ” − K0 < KT + KT−1.

If λT−1 6= 0, for example, we set ℓ′1 = ℓ′ − KT−1.
Then, if λT−1 = 1, by proposition 2.3.2, ℓ′1 ∈ M+.
Then, if λT−1 6= 1, by proposition 2.3.2, ℓ′2 = ℓ′ − λT−1KT−1 ∈ M+ \ {0} or ℓ′2 ∈ M . Then,

by proposition 2.3.2, ℓ′1 = ℓ′2 + (λT−1 − 1)KT−1 ∈ M+.

Now, ℓ′1 + ℓ”−K0 = KT . Then, the induction allows to write that
∑T−1

i=1 (λi +µi)Qi −QT−1 =

QT , and, therefore,
∑T

i=1(λi + µi)Qi = QT+1. QED

If λT + µT = HT and ℓ′ + ℓ” − K0 = KT−1, OR ℓ′ = KT−1 (or ℓ” = KT−1) OR ℓ′ < KT−1

and ℓ” < KT−1.
If ℓ′ = KT−1, ℓ” = K0. Then, λT−1 = 1, λi = 0 if i < T − 1 and µj = 0 if j ≤ T − 1. Then,∑T

i=1(λi + µi)Qi = QT+1.

If ℓ′ < KT−1 and ℓ” < KT−1, one can apply the induction. Then,
∑T−1

i=1 (λi + µi)Qi = QT−1.

Then,
∑T

i=1(λi + µi)Qi = QT+1.
�

We are then able to prove a very important theorem for the continuation of our study. We see
that it will allow us a detailed knowledge of the distribution of points of M
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Proposition 2.4.7 Let X ∈ M and Y ∈ M such that Y > X. Let Y − X = ∆K0 +
∑T ′

i=1 ziKi

the decomposition of Y-X according lemma 2.3.11. Then,

[X, Y [ =
T ′∑

i=1

ziQi .

Proof Let X = δ′K0 +
∑T

i=1 xiKi and Y = δ”K0 +
∑T

i=1 yiKi the decompositions of X and Y
according proposition 2.3.9. Then, we prove the proposition by induction on T.

Remark that T ′ ≤ T (lemma 2.3.11) and T ≥ 1 (cf corollary 2.2.6).
Then, the proposition holds for T=1 (cf lemma 2.3.4).

Then, let us assume T ∈ N
∗, T ≤ d − c and that the proposition holds for all integer T ′ ≤ T .

Let X = δ′K0 +
∑T+1

i=1 xiKi ∈ M and Y = δ”K0 +
∑T+1

i=1 yiKi ∈ M . Let X ′, Y ′, Y ” defined
by X ′ = X − xT+1KT+1, Y ′ = Y − yT+1KT+1, Y ” = Y ′ + KT+1. Then, X’, Y ′ ∈ [0, KT+1[∩M+

(cf proposition 2.3.2) and Y ” ∈ M (cf proposition 2.3.2).

Let us assume Y’=X’. Then, by lemma 2.4.5, the proposition is almost obvious.

Let us assume X ′ < Y ′. Let Y ′−X ′ = ∆K0+
∑T

i=1 ziKi the decomposition of Y’-X’ according
lemma 2.3.11. Then, lemma 2.3.14 allows to write

Y − X = ∆K0 +

T∑

i=1

ziKi + (yT+1 − xT+1)KT+1 .

Now,

[X, Y [ = [X ′, Y ′[ + [Y ′, Y [ − [X ′, X[,

[X ′, Y ′[ =
∑T

i=1 ziQi (by induction),

[Y ′, Y [ = yT+1QT+1 (by lemma 2.4.5) ,

[X ′, X[ = xT+1QT+1 (by lemma 2.4.5). QED

Let us assume Y ′ < X ′. In this case, Y ′ < X ′ < Y ” ≤ Y .

If, X ′a < Y ”a, Y ” − X ′ ∈ M . Then, by corollary 2.3.16, K0 + X ′ − Y ′ ∈ M .
Therefore, K0 + X ′ − Y ′ and Y”-X’ check the assumptions of lemma 2.4.6.
Therefore, if Y ” − X ′ = δK0 +

∑T
i=1 z”iKi, and K0 + X ′ − Y ′ = δ′K0 +

∑T
i=1 z′iKi according

proposition 2.3.9, lemma 2.3.11, then,
∑T

i=1(z”i + z′i)Qi = QT+1 by lemma 2.4.6.

Now, Y ” − X ′ = δK0 +
∑T

i=1 z”iKi is also the writing of Y ” − X ′ according lemma 2.3.11
because X ′a < Y ”a and because this writing according lemma 2.3.11 is unique.

Then, by lemma 2.3.14,

Y − X = ∆K0 +
T∑

i=1

ziKi + (yT+1 − xT+1 − 1)KT+1 ,

where z”i = zi. Moreover, [Y ′, X ′[ =
∑T

i=1 z′iQi by induction and [Y ′, Y [ = yT+1QT+1 by

lemma 2.4.5. Then, the equality [X, Y [ = [Y ′, Y [ − [Y ′, X ′[ − [X ′, X[ allows to conclude that

[X, Y [ =
∑T

i=1 ziQi. QED

If Y ”a < X ′a, K0 + Y ” − X ′ ∈ M . Then, by corollary 2.3.16, X ′ − Y ′ ∈ M .
Therefore, by lemma 2.3.11, Y ”−X = ∆K0+

∑T
i=1 z”iKi with ∆ = 0 or -1, i.e., K0+Y ”−X =

δK0 +
∑T

i=1 z”iKi with δ = 0 or 1.
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Moreover, Y ”a < X ′a. Then, by lemma 2.3.15, Y ′a < X ′a. Then, by lemma 2.3.11, X ′−Y ′ =
δ′K0 +

∑T
i=1 z′iKi with δ′ = 0 or 1.

Now, X ′ − Y ′ and K0 + Y ” − X’ check the assumptions of lemma 2.4.6. Moreover, X’,Y’,
Y ” ∈ M . Then,

∑T
i=1(z”i + z′i)Qi = QT+1 by lemma 2.4.6.

Now, by lemma 2.3.14,

Y − X = ∆K0 +
T∑

i=1

ziKi + (yT+1 − xT+1 − 1)KT+1 ,

with z”i = zi.

Now, [Y ′, X ′[ =
∑T

i=1 z′iQi (by induction) and [Y ′, Y [ = yT+1QT+1 by lemma 2.4.5. Then, the

equality [X, Y [ = [Y ′, Y [ − [Y ′, X ′[ − [X ′, X[ allows to conclude that [X, Y [ =
∑T

i=1 ziQi. QED

At last suppose X ′a = Y ”a. Now, T + c ≤ d. Then, T + c + 1 ≤ d + 1. Now, X’,
Y ” < KT+1 ≤ Kd+1. Then, by corollary 2.2.4, Y ” = X ′. But X ′ < KT and KT ≤ Y ”. It
is impossible. �

2.5 Computation of the number of points of M f contained

in intervals

We keep the notations of section 2.3 and 2.4 (in particular, we suppose again that assumptions
2.3.1 hold).

One generalizes very easily the previous results at the case of Mf by remarking that Mf =
{M} ∪ {M + K0} ∪ {M + 2K0} ∪ ................. ∪ {M + (f − 1)K0}. This is reflected in the two
following lemma.

Lemma 2.5.1 The points ℓf ∈ Mf such that tR0 ≤ ℓfa < (t + 1)R0, t ∈ N, t + 1 ≤ f ≤ H0, are
the points of the form ℓf = ℓ + tK0, ℓ ∈ M .

Proof It almost obvious.�

Lemma 2.5.2 Let X, Y ∈ M , X < Y and let X − Y = ∆K0 +
∑T

i=1 ziKi be the decomposition

of Y-X according lemma 2.3.11. Then card
(
[X,Y [∩Mf

)
= f

( ∑T
i=1 ziQi

)
.

Proof Let ℓf ∈ Mf . Let X1 ∈ M , X ≤ X1 < Y . Then, ℓf = X1 + tK0 ∈ Mf according
lemma 2.5.1.

Now, by corollary 2.2.6, Y − X1 ≥ K1. Then, X1 + tK0 ≤ X1 + (H0 − 1)K0 = X1 + K1 −
K−1 − K0 < X1 + K1 ≤ Y . Then, ℓf < Y .

Then, [X, Y [∩Mf = {ℓ + tK0|ℓ ∈ M, t ≤ H0 − 1}.
By using proposition 2.4.7, the proof is almost immediate.�

Now we can prove the fundamental proposition. We understand that, for an integer L, which
is almost anything. We know almost exactly the number of points of Mf contained in any interval
of length L. This result gives us a remarkable knowledge of the distribution of points of E2.

Fundamental Proposition 2.5.3 Let L ∈ N such that L =
∑T

i=1 λiKi with λi ≤ Hi, λ1 < H1,
and if λi = Hi, then, λi−1 = 0.
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Let us denote by Q the number Q =
∑T

i=1 λiQi. Let x ∈ N. Then,

card
(
[x, x + L[∩Mf

)
= fQ or fQ + 1 if L ∈ M ,

card
(
[x, x + L[∩Mf

)
= fQ or fQ − 1 if K0 + L ∈ M .

Proof In this proof, we set [x, y[ = card
(
[x, y[∩Mf

)
when [x,y[ is an interval of R+.

Then, let x ∈ N. Then there exists X ∈ M and X1 ∈ M such that X ≤ x < X1. Let us set
Y=X+L, y=x+L and s=x-X=y-Y.

We recall that L ∈ M or K0 + L ∈ M by lemma 2.3.10.
Then, if L ∈ M , we denote by Y’ the one of the two numbers Y or Y − K0 which belongs to

M according lemma 2.3.13 (cf also lemma 2.3.10).
If K0 + L ∈ M , we denote by Y’ the one of the two numbers Y or Y + K0 which belongs to M

according lemma 2.3.13 (cf also lemma 2.3.10).
At last, we denote by Y ′

1 the follow up of Y’ in M, i.e. Y ′ < Y ′
1 and ]Y ′, Y ′

1 ] ∩ M = {Y ′
1}.

Then, by lemma 2.3.13, proposition 2.4.7 and lemma 2.5.2, [X, Y ′[ = [X1, Y ′
1 [ = fQ.

Now, we need the following lemma.

Lemma 2.5.4 Let α ∈ N and let Z0, Z1 ∈ M such that Z0 ≤ α < Z1 and such that there does
not exist Z ′ ∈ M checking Z0 < Z ′ < Z1.

Let t ∈ N ∪ {−1} such that Z0 + tK0 < α ≤ Z0 + (t + 1)K0 . Then, we denote α ∈ VZ0

t .

Then, [Z0, α[ = inf(f, t + 1) and [α,Z1[ = f − inf(f, t + 1).

Proof Lemma 2.5.1 shows that [Z0, Z1[∩Mf = {Z0, Z0 + K0, Z0 + 2K0, .............., Z0 + (f −
1)K0}.

Moreover 2.5.2 shows that [Z0, Z1[ = f . �

Now we can prove the fundamental proposition. At first, we suppose Y’=Y.
Therefore L ∈ M or K0 + L ∈ M .

1-a) Let us assume Y ′
1 − Y ′ ≥ X1 − X. Then, if x ∈ VX

t , y ∈ VY ′

t . Then, [x, y[ =

[X, Y [ + [Y, y[ − [X, x[ = [X, Y [ = fQ.

On these figures, y-axis has no interest : it is just a matter of showing on two lines the location
of Y,Y’, Y ′

1 , X1, X.

1-b) Let us assume Y ′
1 − Y ′ < X1 − X. Then, X1 − X = K1 + K0 and Y ′

1 − Y ′ = K1 by
corollary 2.2.6. If s ≤ K1, it is the same proof as above in 1-a).

If s > K1, then, y ∈]Y ′
1 , Y ′

1 + K0[, and in this case, K0 + L /∈ M .
Indeed, because X1 − X = K1 + K0, then Xa < R1. Indeed, X1a ≡ Xa + K1a + Ka =

Xa−R1 +R0 < R0 because c is odd (cf lemma 2.2.1). Then, if X1a = Xa+K1a+Ka, Xa < R1.
If X1a = m + Xa + K1a + Ka ≥ m + R0 − R1 + R0 ≥ m/2 + 2R0 because c ≥ 1 and then,
R1 < R0 < m/2. Then, X1a > R0 and X1 /∈ M : there is a contradiction.

Now if K0 + L ∈ M , then, m − R0 ≤ La < m.
Therefore, m − R0 − R1 ≤ Xa + La − R1 < m.
Now, Y=X+L, Y ′

1 = Y + K1. Then, Y ′
1a = (X + L + K1)a = Xa + La − R1 ≥ m − R0 − R1.

Then, Y ′
1 /∈ M .

Now, m − R0 − R1 ≥ R0.
Indeed R0 + R1 ≤ R−1. Then, if R−1 ≤ r1 ≤ m/2, it is obvious.
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If not, R0 = r1, R1 = r2 and then, because r1 ≤ m/2, h0 ≥ 2 and then, r1 + r2 ≤ m − r1.
Therefore, (X + L + K1)a ≥ m − R0 − R1 ≥ R0.
Now, Y=X+L, Y ′

1 = Y + K1. It means Y ′
1 /∈ M . Then, L ∈ M

Now, by lemma 2.3.13, Y’-X is written by an only way Y − X = K0 +
∑T

i=1 λiKi according

lemma 2.3.11. Then, [X, Y [ = fQ according proposition 2.4.7.

Moreover, because y ∈]Y ′
1 , Y ′

1 + K0[, [Y ′
1 , y[ = 1.

Moreover, with the notations of lemma 2.5.4 with x = α, because s ≥ K1 = H0K0 + K−1,

t ≥ f , and then, [X,x[ = f . Now, by lemma 2.5.2, [Y, Y ′
1 [ = f .

Then, [x, y[ = [X, Y [ + [Y, Y ′
1 [ + [Y ′

1 , y[ − [X, x[ = [X, Y [ = fQ + f + 1 − f = fQ + 1. QED

Now we suppose Y ′ = Y + K0. Therefore K0 + L ∈ M .
Now, by lemma 2.3.13, Y’-X is written by an only way Y ′ − X = K0 +

∑T
i=1 λiKi according

lemma 2.3.11. Then, [X, Y ′[ = fQ according proposition 2.4.7.

If x=X, then, [y, Y ′[ = 0 or 1 by lemma 2.5.1.

Therefore, [x, y[ = [X, Y ′[ − [y, Y ′[ = fQ or fQ-1 by using proposition 2.4.7.

If X < x < X + K0, then, [y, Y ′[ = 0 by lemma 2.5.1. Moreover, [X, x[ = 1 by lemma 2.5.1.

Therefore, [x, y[ = [X, Y ′[ − [X, x[ − [y, Y ′[ = fQ − 1.

If X + K0 ≤ x, then, s < K1 + K0 and Y ′
1 − Y ′ ≥ K1 by corollary 2.2.6. Then, Y ′ ≤ y < Y ′

1 .
Then, if x ∈ VX

t , y ∈ VY ′

t−1.

Therefore [Y ′, y[ = [X, x[ − 1.

Therefore, [x, y[ = [X, Y ′[ − [X, x[ + [Y ′, y[ = fQ − 1.

Therefore, [x, y[ = fQ − 1.

Now we suppose Y ′ = Y − K0. Therefore L ∈ M .
Now, by lemma 2.3.13, Y’-X is written by an only way Y ′ −X = −K0 +

∑T
i=1 λiKi according

lemma 2.3.11. Then, [X, Y ′[ = fQ according proposition 2.4.7.

If y ∈ [Y, Y ′
1 ], then if x ∈ VX

t , y ∈ VY ′

t+1. Then, [x, X[ + 1 = [Y ′, y[.

Now, [x, y[ = [X, Y ′[ − [x, X[ + [Y ′, y[ = fQ + 1.

Then, let us suppose y ≥ Y ′
1 .

Now, it is impossible that Y ′
1 −Y ′ < X1−X. Indeed, in this case, by corollary 2.2.6, Y ′

1 −Y ′ =
K1 and X1 − X = K1 + K0.

Now, as previously , Xa < R1. Indeed, X1a ≡ Xa + K1a + K0a = Xa − R1 + R0 < R0.
Moreover, Xa−R1 +R0 < 2R0 < m because m/2 > r1 ≥ R0 ≥ R1. Then, X1a = Xa−R1 +R0 <
R0.

Then, Xa < R1 and La < R0. Then, Xa+La−R0−R1 < 0. Then, Y ′
1a = (X + L − K0 + K1)a =

m + Xa + La − R0 − R1 < m.
Moreover, m + Xa + La−R0 −R1 > m−R0 −R1 ≥ m− r1 − r2 ≥ r1 because h1 ≥ 2. Then,

Y ′
1a > r1 ≥ R0. Therefore Y ′

1 /∈ M .

Now, if y ≥ Y ′
1 and if Y ′

1 − Y ′ > X1 − X, then Y ′
1 − Y ′ = K1 + K0 and X1 − X = K1. Then,

x−X < K1. Then, y = Y + (x−X) = Y ′ +K0 + (x−X) < Y ′ +K0 +K1 = Y ′
1 . It is impossible.
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Therefore, if y ≥ Y ′
1 , Y ′

1−Y ′ = X1−X. Then, if y > Y ′
1 , y ∈]Y ′

1 , Y ′
1 +K0[ and x ∈]X1−K0, X1[.

Then, [X, x[ = f by lemma 2.5.1, [Y ′, Y ′
1 [ = f by lemma 2.5.2 and [Y ′

1 , y[ = 1 by lemma 2.5.1.

Therefore, [x, y[ = [X, Y ′[ − [X, x[ + [Y ′, Y ′
1 [ + [Y ′

1 , y[ = fQ + 1. QED
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Then, the theorem is proved. �

2.6 Generalization

Now that proposition 2.5.3 is proved, one can easily obtain the announced results. Remark that
up to now, we have not assumed that a is invertible. Then, we shall study at first criteria in order
that T is invertible.

For this study, we assume the following assumptions hold.

Assumptions 2.6.1 We assume that the assumptions 2.3.1 except that kca = rc (except in propo-
sition 2.6.10).

2.6.1 Conditions in order that T is invertible

Lemma 2.6.1 We have kd+1a = rd+1 = 0.
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Proof It is the lemma 2.2.1 and the definition of d. �

Lemma 2.6.2 The integer kd+1 is a divisor of m.

Proof At first, kd+1 ≤ m. If not ma = 0 is a contradiction with lemma 2.2.2.
On the other hand, let D be the G.C.D. of m and kd+1. Then, D > 1: if not kd+1 is invertible

because ukd+1 + vm = 1, u, v ∈ Z, admits solutions if and only if kd+1 and m are coprime :
theoreme of Bezout. Then, kd+1a 6= 0, what is contrary to lemma 2.6.1.

Moreover, by Bezout identity , there exists u, v ∈ Z such that ukd+1 + vm = D. Therefore, by
lemma 2.6.1, Da = 0. Then, D ≥ kd+1 by lemma 2.2.2. Then, kd+1 is a divisor of m. �

Lemma 2.6.3 In order that a is invertible it is necessary and sufficient that rd = 1.

Proof If rd = 1, then kda ≡ ±1 (cf lemma 2.2.1).
Reciprocally, if a is invertible, we denote by ki the integer ki = inf

(
k ∈ N|ka ≡ ±1

)
. Then,

ki < kd+1 : if not, (ki − kd+1)a ≡ ±1 by lemma 2.6.1. Then, ki it is not in accordance with its
definition.

Therefore 0 < rd ≤ kia ≤ m − rd < m (cf lemma 2.2.2).

Now, kia = 1 or kia = m − 1. Therefore, rd ≤ 1. Therefore rd = 1. �

Lemma 2.6.4 Si a is invertible, then kda ≡ ±1 and kd = inf
(
a−1, m − a−1

)
.

Proof The first congruence is deduced from lemma 2.2.1 and lemma 2.6.3.
Therefore, kd = a−1 or kd = m − a−1.
If kd > m/2, then, m − kd < m/2 < kd and (m − kd)a ≡ ±1, what is a contradiction with

lemma 2.2.2. �

Lemma 2.6.5 The element a est invertible if and only if kd+1 = m.

Proof By lemma 2.6.2, kd+1 ≤ m.
If a is invertible, because kd+1a ≡ 0 by lemma 2.6.1, we have kd+1aa−1 ≡ kd+1 ≡ 0. Now,

1 = k1 < kd+1 ≤ m. Therefore, kd+1 = m. QED
If kd+1 = m, then, ka 6= 0 if k ∈ N and k < kd+1 by lemma 2.2.2.
Then, the application k 7→ ka is a bijective function {1, 2, ....,m − 1} → {1, 2, ....,m − 1}.

Therefore, there exists k such that ka = 1. QED �

Lemma 2.6.6 Let us suppose a invertible. Let us denote by ro
n, ko

n, and ho
n, the sequences rn,

kn, and hn, for the congruence T−1. Then, ro
n = kd+1−n for n=0,1,....,d+1, and ho

n = hd+1−n for
n=0,1,....,d, and ko

n = rd+1−n for n=0,1,....,d+1.

Proof We have ro
0 = m = kd+1 by lemma 2.6.5 and r0

1 = inf
(
a−1, m − a−1

)
= kd by lemma

2.6.4.
Moreover, the sequence ro

n is defined by the induction thanks to the Euclidean division ro
n =

ho
n+1r

o
n+1 +ro

n+2 and kn−1 is defined by the Euclidean division of kn+1 by kn when n ≥ 2 (because
h1 ≥ 2).

Then, ro
n = kd+1−n when d+1−n ≥ 1, i.e. d ≥ n. Moreover, ho

n = hd+1−n when d+1−n ≥ 2,
i.e. d − 1 ≥ n.

Now, for n=d-1, ro
d−1 = k2 and ho

d−1 = h2. For n=d, ro
d = k1 = 1 (cf lemma 2.6.3). Now

because ro
n−1 > r0

n for n = 1, 2, ...., do + 1, then ro
d+1 = 0 and then d0 = d.
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But ro
do−1 = ho

doro
do and ro

d−1 = k2 = h1k1 + k0 = h1k1 = h1r
o
d. Then, ho

d = h1. Moreover,
ro
d+1 = k0 = 0.

Now one can reverse the roles of T and T−1. Therefore, by the previous results, rn = roo
n =

ko
do+1−n = ko

d+1−n for n=0,1,....,d+1. Then, with n’=d+1-n, rd+1−n′ = ko
n′ for n’=0,1,....,d+1. �

2.6.2 Connection with the continued fractions

It is remarkable that the sequences rn, kn and hn which are used in our study are those of the
development of m/a in continued fractions : cf [22] when a ≤ m/2. Then, we recall now lemma
2.1.3. The following proposition allows to complete this connection when a > m/2.

Proposition 2.6.7 Let ra
0 = m, ra

1 = a and let ra
n = ha

n+1r
a
n+1 + ra

n+2 be the Euclidean division
of ra

n by ra
n+1. Then, if a > m/2, we have

ha
1 = 1, ha

2 + ha
1 = h1, ha

n+1 = hn if n ≥ 2,
ra
1 = a, ra

2 = m − a and ra
n+1 = rn if n ≥ 1.

Corollary 2.6.8 The integer a is invertible in Z/mZ if and only if Inf{ra
n|r

a
n > 0} = 1.

Proof This proof is done without difficulty. �

2.6.3 Generalization of the fundamental proposition

For this generalization, we proceed by steps : We first show that any rectangle [0, m[2, height frc,
and width L, contains Q or Q+1 points of E2. Then, thanks to a simple bijection, we generalize
easily to the case kca = m − rc.

Definition 2.6.9 Let Ro be a rectangle of R
2
+ : Ro = [x, x + L[×[y, y + L′[. We will call the

quotient rectangle resulting from Ro the subset Ro ⊂ [0, m[2 :

Ro =
{
(x′, y′) ∈ [0, m[2

∣∣∃(x, y) ∈ Ro : x′ − x ≡ y′ − y ≡ 0 mod m
}

.

Proposition 2.6.10 Let Ro be a quotient rectangle resulting from Ro when Ro = [x, x+L[×[y, y+

frc[ with (x, y) ∈ N
2, L =

∑T
i=1 λiKi, Q =

∑T
i=1 λiQi and f ∈ N

∗, f ≤ hc according the criteria
of proposition 2.5.3.

We assume kca = rc and that T is invertible : T (x) ≡ ax + b modulo m. Then,

card(Ro ∩ E2) = fQ or fQ + 1 if L ∈ M ,

card(Ro ∩ E2) = fQ or fQ − 1 if kc + L ∈ M .

Proof Because T is invertible, there exists an alone x” ∈ [0, m[ such that ax” = ax − y + b.
Then, let φ be the function φ : Ro ∩ E2 → N

2, defined by φ(x1, y1) = x” + x1 − x.
Because ax1 + b ≡ y1, a(x” + x1 − x) ≡ ax” + ax1 − ax ≡ ax− y + b + (y1 − b)− ax = y1 − y.

Then, a(x” + x1 − x) = y1 − y if y ≤ y1 < y + frc and 0 ≤ a(x” + x1 − x) < frc.

Then, it is obvious that φ(Ro ∩ E2) ⊂ [x”, x” + L[ : φ(Ro ∩ E2) ⊂ [x”, x” + L[∩Mf .
Now, φ is an injection of Ro∩E2 in [x”, x”+L[∩Mf : φ(x1, y1) 6= φ(x′

1, y
′
1) if (x1, y1) 6= (x′

1, y
′
1).

Indeed, if x1 6= x′
1, it is obvious. If x1 = x′

1, then, y1 = T (x1) = T (x′
1) = y′

1. Therefore,
(x1, y1) = (x′

1, y
′
1)

Moreover, it is obvious that φ is a surjection. Therefore, it is a bijection. Then, it is enough
to use fundamental proposition 2.5.3. �
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Proposition 2.6.11 We keep the notations and assumptions of proposition 2.6.10 except kca = rc

which we replace by kca = m − rc. Let M ′ = {ℓ ∈ N|ℓa′ ≤ rc} when a’=m-a. Then,
card(Ro ∩ E2) = fQ ou fQ+1 if L ∈ M ′,
card(Ro ∩ E2) = fQ ou fQ-1 if kc + L ∈ M ′.

Proof We know that L < m and frc < m. Indeed, L < KT+1 ≤ kd+1 = m (cf proposition
2.3.9 and lemma 2.6.5). Moreover, kca = m − rc > m/2 if c ≥ 2. Then, frc ≤ hcrc < m.

Let E′
2 ⊂ Z

2 : E′
2 = {(x, y) ∈ Z

2|y ≡ a′x − b} where a’=m-a. Then, a′x − b = mx − ax − b.

Suppose ξa + b 6= 0 for all ξ such that x ≤ ξ < x + L and y ≤ m − ξa − b ≤ y + frc. Then,

{
[x, x + L[×[y, y + frc[

}
∩ E′

2

=
{
ξ|x ≤ ξ < x + L : y ≤ m − ξa − b < y + frc

}

=
{
ξ|x ≤ ξ < x + L : y ≤ m − ξa + b < y + frc

}

=
{
ξ|x ≤ ξ < x + L : ξa + b ≤ m − y , m − y − frc < ξa + b

}

=
{
ξ|x ≤ ξ < x + L : m − y − frc < ξa + b ≤ m − y

}

=
{
[x, x + L[×[m − y − frc + 1, m − y + 1[

}
∩ E2 .

Then, card(Ro ∩ E′
2) = card(R1 ∩ E2) where R1 = [x, x + L[×[m − y − frc + 1, m − y + 1[.

Now sequences rn and r′n associated to a and a’ are identical. So it’s the same for sequences hn,
and therefore for the sequences kn. So sequences Qc

n are identical. Then,
card(Ro ∩ E′

2) = fQ or fQ+1 if L ∈ M ′,
card(Ro ∩ E′

2) = fQ or fQ-1 if kc + L ∈ M ′. QED

Now we suppose that there exists ξ such that ξa + b = 0. For example it may be the case if
y < m ≤ y + frc.

Now it is clear that, for c even, c ≥ 2, all rectangle R0 ∩E2 =
{
[x, x + L[×[y, y + frc[

}
∩E2 is

in bijection with the rectangle modulo m
{
[x′, x′ +L[×[y′, y′ + frc[

}
∩E2 where x′ ≥ 0 and where

0 ≤ y′ < y′ + frc < m or m/2 < y′ < m ≤ y′ + frc < 3m/2. Then the proof is done in the case
where y < m ≤ y + frc is sufficient.

Then, we suppose that y < m ≤ y + frc. We are interested by ξ such that there exists ζ
such that x ≤ ξ < x + L and y ≤ ζ ≤ y + frc where ζ ≡ m − ξa − b. We can assume that
m/2 < y < m ≤ y + frc < 3m/2. Indeed, if kca = m− rc, then c ≥ 2 and c < d + 1 (if not, rc = 0
and 0 = kca 6= m = m − rc). Then, frc ≤ h2r2 ≤ r1 ≤ m/2.

Let δξ = 0, 1 such that, for all ξ ∈ N ∩ [x, x + L[, y ≤ δξm + m − ξa − b ≤ y + frc.
If m/2 < m − ξa − b < m, δξ = 0. Moreover, m/2 > ξa + b > 0 and y ≤ δξm + m − ξa − b =

m − ξa − b < m.
If m/2 > m − ξa − b > 0, δξ = 1. Moreover, m/2 < ξa + b and m ≤ δξm + m − ξa − b =

m + m − ξa − b < y + frc.
If m − ξa − b = 0, δξ = 1. Moreover, 0 = ξa + b < m/2 and m ≤ δξm + m − ξa − b = m <

y + frc.

Let δ′ξ = −1, 0 such that δξm + m − ξa − b = δ′ξm + m − ξa + b.

Therefore, if 0 < ξa + b < m/2, m > δξm + m − ξa − b = m − ξa − b = δ′ξm + m − ξa + b ≥ m/2
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: δ′ξ = 0.

Therefore, if ξa + b > m/2, then m ≤ δξm + m − ξa − b = m + m − ξa − b = δ′ξm + m − ξa + b :
therefore δ′ξ = 1.

Therefore, if ξa + b = 0, m > δξm + m − ξa − b = m = δ′ξm + m − ξa + b = m : δ′ξ = 0.

Therefore, if 0 ≤ ξa + b < m/2, δ′ξ = 0.

Therefore, if ξa + b > m/2, then δ′ξ = 1.

Let φ ∈ {0, 1, ....,m − 1}. We set φ
θ

= φ if φ ≤ m/2 and φ
θ

= φ − m if φ > m/2 : φ
θ
≡ φ and

−m/2 < φ
θ

< m/2. Therefore, if y”=m-y and m/2 < y < m ≤ y + frc < 3m/2,

{
[x, x + L[×[y, y + frc[

}
∩ E′

2

=
{
ξ|x ≤ ξ < x + L : y ≤ δξm + m − ξa − b < y + frc

}

=
{
ξ|x ≤ ξ < x + L : y ≤ δ′ξm + m − ξa + b < y + frc

}

=
{
ξ|x ≤ ξ < x + L : ξa + b ≤ δ′ξm + m − y , δ′ξm + m − y − frc < ξa + b

}

=
{
ξ|x ≤ ξ < x + L : δ′ξm + m − y − frc < ξa + b ≤ δ′ξm + m − y

}

=
{
ξ|x ≤ ξ < x + L : m − y − frc < ξa + b − δ′ξm ≤ m − y

}

=
{
ξ|x ≤ ξ < x + L : y” − frc < ξa + b − δ′ξm ≤ y”

}

=
{
ξ|x ≤ ξ < x + L : y” − frc < ξa + b ≤ y”, δ′ξ = 0

}

∪
{
ξ|x ≤ ξ < x + L : y” − frc < ξa + b − m ≤ y”, δ′ξ = 1

}

=
{
ξ| y”−frc < ξa + b ≤ y”, 0 ≤ ξa + b < m/2

}
∪

{
ξ| y”−frc < ξa + b−m ≤ y”, ξa + b > m/2

}

=
{
ξ| 0 ≤ ξa + b ≤ y”, 0 ≤ ξa + b < m/2

}
∪

{
ξ| y” − frc < ξa + b − m < 0, ξa + b > m/2

}

=
{
ξ|x ≤ ξ < x + L : y” − frc < ξa + b

θ
≤ y”

}

=
{
[x, x + L[×[y” − frc + 1, y” + 1[

}
∩ E2

=
{
[x, x + L[×[m − y − frc + 1, m − y + 1[

}
∩ E2 .

Therefore,
card

({
[x, x + L[×[y, y + frc[

}
∩ E′

2

)
= card

(
Ro ∩ E′

2

)

= card
(
R1 ∩ E2

)
= card

({
[x, x + L[×[m − y − frc + 1, m − y + 1[

}
∩ E2

)
.

Let M ′ = {ℓ ∈ N|ℓa′ ≤ rc} when a’=m-a. Then,
card(Ro ∩ E′

2) = fQ or fQ+1 if L ∈ M ′,
card(Ro ∩ E′

2) = fQ or fQ-1 if kc + L ∈ M ′. QED �
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Proposition 2.6.12 The propositions 2.6.10 and 2.6.11 remain true for the quotient rectangles
resulting from rectangles in the form [x, x + f ′kc[×[y, y + L′[ with L′ =

∑T
i=1 λ′

irc−i written ac-
cording the criteria of proposition 2.5.3 when T is replaced by T−1.

Proof It is enough to use lemma 2.6.6 �

Corollary 2.6.13 Let Ro be a rectangle in the form Ro = [x, x + L[×[y, y + rc[.
If L = kc+1, then, card(Ro ∩ E2) = 0 or card(Ro ∩ E2) = 1 .
If L = kc+2, then, card(Ro ∩ E2) = hc+1 or card(Ro ∩ E2) = hc+1 + 1.

Proof Suppose L = kc+1 = K1. Then, f=1 and Q1 = 1.
Suppose kca = rc and c + 1 < d + 1. Then, m − rc ≤ K1a = m − rc+1 < m. Then, kc + L ∈ M .
By proposition 2.6.10, card(Ro ∩ E2) = 1 or card(Ro ∩ E2) = 1 − 1.
Suppose kca = m − rc and c + 1 < d + 1. Then, kca′ = rc with a’=m-a (cf proposition 2.6.11).
Now, m − rc ≤ La′ = kc+1a′ = m − rc+1 < m : i.e. kc + L ∈ M ′. Then, by proposition 2.6.11,
card(Ro ∩ E2) = 1 or card(Ro ∩ E2) = 1 − 1 = 0.
Suppose c+1 = d+1. Then, rc = rd = 1 and kc+1 = kd+1 = m : cf lemma 2.6.3 and 2.6.5. Then,
because T is invertible, it is obvious that card(Ro ∩ E2) = 1.

Suppose L = kc+2 = K2. Then, f=1 and Q2 = hc+1.
Suppose kca = rc and c+2 < d+1. Then, L ∈ M , and by proposition 2.6.10, card(Ro∩E2) = hc+1

or card(Ro ∩ E2) = hc+1 + 1.
Suppose kca = m − rc and c + 2 < d + 1. Then, kca′ = rc with a’=m-a (cf proposition 2.6.11).
Now, L = kc+2 = K2. Then, La′ = kc+2a′ = rc+2 < rc : L ∈ M ′. Then, by proposition 2.6.11,
card(Ro ∩ E2) = hc+1 or card(Ro ∩ E2) = hc+1 + 1.
Suppose c + 2 = d + 1. Then, rc = rd−1 = hdrd = hd = hc+1 and kc+2 = kd+1 = m : cf lemma
2.6.3 and 2.6.5. Then, because T is invertible, it is obvious that card(Ro ∩ E2) = hc+1. �

We can then enunciate the fundamental theorem. That gives us an idea of the quality of the
distribution of points E2 with respect to the rectangles of the type of propositions 2.6.10, 2.6.11
and 2.6.12 : we can compare this result with the test of Gauss. It will be sufficient then that these
rectangles are not very large to ensure a good distribution of points of E2.

Fundamental Theorem 2.6.14 Let (x, y) ∈ [0, m[2∩N
2. Let T be a invertible linear congruence.

Let c′, c” ∈ N such that c′ ≤ d and 0 < c” < d + 1. Let T ′, T” ∈ N such that T ′ + c′ < d + 1 and
c” − T” > 0.

Let λ′
i ∈ N, i=1,2,...,T’ and λ”j ∈ N, j=1,2,...,T” , be two sequences checking

λ′
1 < hc′+1 and λ”1 < hc”−1,

and for all i ∈ {1, 2, ...., T ′} and for all j ∈ {1, 2, ...., T”}, λ′
i ≤ hc′+i and λ”j ≤ hc”−j

and if λ′
i = hc′+i, then, λ′

i−1 = 0,
and if λ”j = hc”−j then, λ”j−1 = 0.

We set L′ =
∑T ′

i=1 λ′
ikc′+i and L” =

∑T”
j=1 λ”jrc”−j.

Let f ′, f” ∈ N
∗ such that f ′ = 1 if c’=0, f”=1 if c”=d+1, f ′ ≤ hc′ if c′ 6= 0 , f” ≤ hc” if

c” 6= d + 1.
Let Ro be a quotient rectangle of [0, m[2 resulting from a rectangle Ro in the form

Ro = [x, x + L′[×[y, y + f ′rc′ [ or Ro = [x, x + f”rc”[×[y, y + L”[.

Let NRo be the integer NRo = card(Ro ∩ E2) and SRo be the area of Ro.
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Then, ∣∣∣NRo −
SRo

m

∣∣∣ ≤ 1 .

Proof For example, assume that Ro = [x, x + L′[×[y, y + f ′rc′ [.
If c′ = 0 or c′ = d, it is obvious because rc′ = m or kc′+1 = m (L’=m), and because, T is

invertible, we have NRo = SRo

m .

Then, let us suppose c′ ∈ {1, 2, ...., d−1} and L′ ∈ M . Then, one can write card(Ro∩E2) = f ′Q′

or card(Ro ∩ E2) = f ′Q′ + 1 with the same notations as in propositions 2.6.10 and 2.6.11.
For example, let us suppose SRo < mf ′Q′. Then, all the rectangles RX = [x, x + L′[×[0, f ′rc′ [

check SRX
< mf ′Q′.

Therefore, these rectangles have an empirical density strictly greater than 1/m2 : the empirical

probability is NRX
/m and the empirical density is

NRX
/m

SRX

> (f ′Q′+δ)/m
mf ′Q′

≥ 1/m2 where δ = 0 or 1.

Therefore the rectangle R” = [0, Km[×[0, f ′rc′ [ - where Km is a multiple of L’- has an empirical
density stricly larger than 1/m2. Therefore, its empirical probability 3 is strictly greater than
Kfrc/m.

Now, because T defines a bijection of {0, 1, 2, 3, ......,m − 1} → {0, 1, 2, 3, ......,m − 1}, then
card({[0, m[×[0, f ′rc′ [} ∩ E2) = f ′rc′ . Then the empirical probability of [0, Km[×[0, f ′rc′ [ is
Kfrc/m2. Therefore, it is a contradiction.

Therefore SRo

m ≥ f ′Q′.

We prove by the same way that SRo

m ≤ f ′Q′ + 1 and all the other cases. �

Proposition 2.6.15 Let Ro be any quotient rectangle in the form described in propositions 2.6.10
or 2.6.11 or 2.6.12 with card(Ro ∩ E2) = fQ or card(Ro ∩ E2) = fQ + ∆ where ∆ = ±1. Then,

fQ ≤
SRo

m
≤ fQ + 1 if ∆ = 1 ,

fQ − 1 ≤
SRo

m
≤ fQ if ∆ = −1 .

Proof It is enough to use the proof of theorem 2.6.14. �

2.6.4 Fibonacci congruences

We give some complementary results to the results of section 2.6.1.

Lemma 2.6.16 If T (x) ≡ ax mod m is the congruence of Fibonacci a ≡ ±a−1 . Moreover
T 2 ≡ ±Id.

Proof Assume m < 5. If m=3, a=2 and the lemma is obvious. If m=2, a=1 and the lemma
is obvious.

Assume m ≥ 5. By definition with the notations 2.1.1, ha
r = 1 if r < da and ha

da = 2. Then,
m = ra

0 = ha
1ra

1 + ra
2 = ha

1a + ra
2 = a + ra

2 where ra
2 < a. Then, a > m/2. Then, by lemma 2.1.3,

r1 = m − a.
Moreover, by lemma 2.1.3, because a > m/2, ha

2 + 1 = h1. Then, h1 = 2.

3In fact, it is not a probability but a measure which is an extension of the probability over [0, m[2.

42



By lemma 2.6.3, because T is invertible, rd = 1.
Moreover, by lemma 2.1.3, ha

n+1 = hn if n ≥ 2 and da = d + 1. Then, ha
da = hd = 2. Then, we

know that rd+1 = 0, rd = 1, rd−1 = 2 (hd = 2), rd−2 = 3, rd−3 = 5, ....
Moreover, k0 = 0, k1 = 1, k2 = h1 = 2, k3 = 3, k4 = 5, k5 = 8, ......
Then, kn = rd−(n−1) if n ≤ d. Moreover, by lemma 2.6.5, kd+1 = m = r0 = rd−d. Then,

kn = rd−(n−1) if n ≤ d + 1.
Then, kd = rd−(d−1) = r1.
Now, kda ≡ ±1 by lemma 2.6.4. Then, kda = r1a = (m − a)a ≡ ±1. Then, a2 ≡ ±1. Because

T (x) ≡ ax, T 2(x) ≡ a2x ≡ ±1. �

For example, r0 = m = 89, a = 55, r1 = 34, r2 = 21, r3 = 13, r4 = 8, r5 = 5, r6 = 3, r7 = 2,
r8 = rd = 1, r9 = rd+1 = 0.

Now, k0 = 0, k1 = 1, k2 = h1 = 2, k3 = 3, k4 = 5, k5 = 8, k6 = 13, k7 = 21, k8 = kd = 34,
k9 = kd+1 = 89.

2.7 Mathematical implications

In this section, we have some implications of the fundamental theorem.

From now on, we assume from now on the following hypothesis.

Assumptions 2.7.1 We assume from now that T is invertible

We imposed in rectangles Ro that L is defined in a precise way. We’ll see from now on how we
return to the general case : our first lemma give the writing of any integer based on the previous
criteria.

Lemma 2.7.1 Let L ∈ {0, 1, .....,m} and c ∈ J∗
d−1 = {1, 2, ...., d − 1}. Then there exists T ∈ N,

T ≤ d + 1− c (T ≤ d + 1− c ≤ d), and a sequence λi ∈ N, i=1,2,....,T, and an integer ǫ ∈ Z such
that λ1 < hc+1, λi ≤ hc+i, and if λi = hc+i, then, λi−1 = 0 and −kc ≤ ǫ < kc+1 checking

L =

T∑

i=1

λikc+i + ǫ .

Proof We use here the notations of section 2.3. It is clear that there exists T ∈ N such that
L ∈ [KT , KT+1[.

If T < 1 the proof is complete.

If not, there exists gT ∈ N
∗ such that L ∈ [gT KT , (gT + 1)KT [ and L − gT KT ∈ [0, KT [.

Then, by reasoning by induction, one can easily write

L =
T∑

i=1

giKi + ǫ′

with ǫ′ < K1.
It is easy to understand that the gi’s checks the conditions of the λi’s. Indeed, if gT = hc+T ,

gT KT = KT+1 − KT−1. Then, L − gT KT ∈ [0, KT−1[. It is the same for the other gi. Then, the
gi’s checks the conditions of the λi’s, except maybe g1 < H1.

If g1 < H1, we set λi = gi and ǫ = ǫ′.
If g1 = H1, we set ǫ” = K0 − ǫ′. Then, 0 < ǫ” ≤ K0, and L = H1K1 +

∑T
i=2 giKi − ǫ” + K0 =

K2 +
∑T

i=2 giKi − ǫ”. Because g1 = H1, then, g2 6= H2.
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Then, if g3 6= H3, L = (g2 + 1)K2 + g3K3 +
∑T

i=4 giKi − ǫ”. QED

If g3 = H3, then, g2 = 0 and g2 + 1 = 1 and the above decomposition does not check the
imposed conditions.

Then, let s be the integer checking g2i+1 = h2i+1 , g2i = 0 for i=1,2,....,s, and g2s+3 6= h2s+3.

Then, L = K2 +
∑2s+1

i=2 giKi +
∑T

i=2s+2 giKi − ǫ”,

and therefore, L = (g2s+2+1)K2s+2+
∑T

i=2s+3 giKi−ǫ” because K2+H3K3 = K4 for example.
Then, on check easily that this decomposition of L is in accordance with the hypotheses. �

We will now proceed to the study of any rectangle, and for that we are reducing to the already
studied case by dividing it horizontally.

Notations 2.7.2 Let x, y, L, L′ ∈ N∩ [0, m] and let R be the rectangle R = [x, x+L[×[y, y +L′[.
We denote by rc the most big rn, n ∈ Jd+1 such that rc ≤ L′ and by kc′ , the most big kn,

n ∈ Jd+1 such that kc′ ≤ L.
Then, we set c’=c+p and we assume that p ∈ N

∗.
Let L =

∑p
i=1 λikc+i + ǫ and L′ =

∑p
j=1 µjrc+j−1 + ǫ′ be the decomposition of L and L’ ac-

cording to lemma 2.7.1 .
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Figure 2.7: l1 = µ1rc, l2 = µ1rc + µ2rc+1, l3 = µ1rc + µ2rc+1 + µ3rc+2
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In order to simplify the notations, we admit that [x, x+ℓ[ denote [x, x+ℓ[ if ℓ ≥ 0 and [x+ℓ, x[
if ℓ < 0.

Then, we denote by Rj, (resp R′
j, R”j) the rectangles

I ×
[
y +

j−1∑

t=1

µtrc+t−1 , y +

j∑

t=1

µtrc+t−1

[
,

where I denotes the interval [x, x + L[, (resp [x, x + L − ǫ[, [x + L − ǫ, x + L[).
At last, R0 and R′

0 denote the rectangles I× [y+L′−ǫ′, y+L′[ and [x+L+ǫ, x+L[×[y, y+L′[
if ǫ < 0.

We continue to denote by NR and SR respectively, the number of points of E2 included in R
and the area of R.

At last, we set hs = supi(hi).

We shall study the different horizontal sections of R, i.e. to the study of the Rj ’s.

Reminder 2.7.3 We remind that, any rectangle included in a rectangle height rc and width kc+1

contains 1 or 0 points of E2 : cf corollary 2.6.13.

Lemma 2.7.4 For all j ∈ {1, 2, ..., p}, we have

∣∣∣NRj
−

SRj

m

∣∣∣ ≤ µj + 1 ,

SRj

m
≥ µj

[ p∑

t=j

λtQ
c+j−1
t+1−j

]
− 2 .

Proof Each rectangle Rj , is written in the form

[x, x + L[×
[
y +

j−1∑

t=1

µtrc+t−1 , y +

j∑

t=1

µtrc+t−1

[
= [x, x + L[×[y”, y” + µjrc+j−1[

= [x, x + L[×[y”, y” + µjrcj [ ,

where cj = c+j−1. Then, L = Lj +ǫj where Lj =
∑Tj

i=1 λikcj+i and −kcj ≤ ǫj < kcj+1 according
the writing of L in lemma 2.7.1.

Then, for the rectangle Rj
0 = [x, x + Lj [×[y”, y” + µjrcj [ we have

∣∣∣NRj
0

−
S

R
j
0

m

∣∣∣ ≤ 1 by theorem

2.6.14.
For each rectangle Rj

t = [x + Lj , x + Lj + ǫj [×[y” + (t − 1)rcj , y” + trcj [, t = 1, 2, ....µj , we

have Rj
t ⊂ Rej

t = [x + Lj , x + Lj ± kcj+1[×[y” + (t − 1)rcj , y” + trcj [. Now, for this rectangle

Rej
t , Qcj = Q

cj

1 = 1 with the notations of proposition 2.6.15. By reminder 2.7.3 (cf also corollary
2.6.13), card(Ro ∩ E2) = Qcj = 1 or Qcj − 1 = 0 with the notations of proposition 2.6.15. Then,

0 ≤
S

Re
j
t

m ≤ 1 by proposition 2.6.15. Then, 0 ≤
S

R
j
t

m ≤ 1. Moreover, NRj
t

= 0 or 1 by reminder

2.7.3. Then,
∣∣∣NRj

t
−

S
R

j
t

m

∣∣∣ ≤ 1.

Because Rj = ∪
µj

t=0R
j
t , then,

∣∣∣NRj
−

SRj

m

∣∣∣ ≤
µj∑

t=0

∣∣∣NRj
t
−

SRj
t

m

∣∣∣ ≤ µj + 1 . QED
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By proposition 2.6.15,
S

R
j
0

m ≥ fQ − 1 = fQc+j−1 − 1 = µj

[ ∑p
t=j λtQ

c+j−1
t+1−j

]
− 1 with the

notations 2.4.1. Moreover, we should also take into account the surface of Rsj = [x+Lj , x+Lj +
ǫj [×[y”, y” + µjrcj [ which is positive if ǫj ≥ 0. In this case, the third inequality is proved

If ǫj < 0, we must subtract the area of the rectangle Rsj included in a rectangle [x0, x0 +

kcj [×[y0, y0 + µjrc+j−1[⊂ [x0, x0 + kc+j−1[×[y0, y0 + rc+j−2[= Ri where
S

Ri

m ≤ 1 by proposition
2.6.15 and reminder 2.7.3 as we have seen above. �

Lemma 2.7.5 We have ∣∣∣NR0
−

SR0

m

∣∣∣ ≤ hc+p + 1 ≤ hs + 1 .

Proof We know that R0 = [x, x + L[×[y + L′ − ǫ′, y + L′[ where |ǫ′| < rc+p−1. Moreover,
L < kc+p+1 < (hc+p + 1)kc+p. Then,

R0 ⊂ [x, x+(hc+p+1)kc+p[×[y1, y1+rc+p−1[= ∪
hc+p+1
t=1 [x+(t−1)kc+p, x+tkc+p[×[y1, y1+rc+p−1[ .

Then, RSt = [x + (t − 1)kc+p, x + tkc+p[×[y1, y1 + rc+p−1[ has a area less than m :
SRSt

m ≤ 1
by proposition 2.6.15 and reminder 2.7.3 as we have seen above in the proof of lemma 2.7.4.

Moreover, by reminder 2.7.3, NRSt
= 0 or 1. Then,

∣∣∣NR0
−

SR0

m

∣∣∣ ≤ hc+p + 1. �

Lemma 2.7.6 We set p′ = card{i|λi 6= 0} , p” = card{j|µj 6= 0} and po = inf(p′, p”). Then,

∣∣∣NR −
SR

m

∣∣∣ ≤
p∑

j=1

µj + hc+p + p + 1 ≤
d∑

i=1

hi + 2 ≤ dhs + 2 ,

∣∣∣NR −
SR

m

∣∣∣ ≤ po(hs + 1) + hs + 1 ≤ (d + 1)(hs + 1) .

Proof It is enough to remark that µj ≤ hc+j−1 and that if µj = hc+j−1, µj+1 = 0. �

Lemma 2.7.7 We suppose that m ≥ 377 and that T is a congruence of Fibonnacci : hi = 1 if
1 < i < d and hd = h1 = 2 (cf proof of lemma 2.6.16). Then,

∣∣∣NR −
SR

m

∣∣∣ ≤ 2(d − 1).

Proof It is enough to use the proof of lemma 2.7.4. Then,

∣∣∣NR −
SR

m

∣∣∣ ≤
p∑

j=0

∣∣∣NRj
−

SRj

m

∣∣∣ ,

where ∣∣∣NR0
−

SR0

m

∣∣∣ ≤ hc+p + 1 ,

and for all rectangle Rj , j ≥ 1,

∣∣∣NRj
−

SRj

m

∣∣∣ ≤ µj + 1 ≤ hc+j−1 + 1 .

Now, in lemma 2.7.1, L =
∑p

i=1 λikc+i + ǫ where c ≥ 1. Then, λ1 < hc+1. Because c ≥ 1,
hc+1 ≤ 1. Then, λ1 < 1. Then, λ1 = 0.

46



Moreover, λi−1 = 0 if λi = 1 for hi ≤ 1, i.e. i ≤ d − 1.
At last, λi ≤ 2 if c+i=d. In this case, if λi = 2, λi−1 = 0.
At last, c + p ≤ d because lemma 2.6.5. Then, p ≤ d − 1.
Then,

∑p
j=1[λj + 1] + hc+p + 1 ≤

∑p
j=1[λj + 1] + 3 ≤

∑d−1
j=1 [λj + 1] + 3 = O(2d/3). Then, a

fortiori, it is easy to understand that
∑d

j=1[λj + 1] + 3 ≤ 2(d− 1) if m ≥ 377 = fi14 (i.e. d ≥ 13).

Of course, the same result holds for the µj : if m ≥ 377 ,
∑d

j=1[µj + 1] + 3 ≤ 2(d − 1). �

We recall that by proposition 1.3.3, if T is the congruence of Fibonsacci, then, ra
0 = m and

ra
i = fid−i+2. Moreover, T is invertible.

Proposition 2.7.8 We have

d <
2log(m) − 2log(2)

log(2)
.

Moreover, for all rectangle R checking the assumptions of notations 2.7.2,

∣∣∣NR −
SR

m

∣∣∣ ≤ (hs + 1)
4log(m) − log(2)

log(2)
.

Proof Let ⌊b⌋ is the integer part of b. We know that r1 ≤ m/2. By the same way r1 ≥ r2 +r3.
Therefore, r3 < r1/2 < m/4.

By the same way r3 ≥ r4 + r5. Therefore, r5 < r3/2 < m/8. And so on.....
Then, r2n+1 < m/2n+1.

Then, if 2n+1=d, 2 ≤ rd < m/2⌊
d
2
⌋+1.

Then, log(2) < log(m) − [⌊d
2⌋ + 1]log(2).

Then, n = ⌊d
2⌋ < log(m)−2log(2)

log(2) .

Then, 2n < 2log(m)−4log(2)
log(2) .

Then, d = 2n + 1 < 2log(m)−3log(2)
log(2) .

Now, r2n+2 < r2n+1 < m/2n+1.

Then, if 2n+2=d, 2 ≤ rd < m/2⌊
d
2
⌋.

Then, log(2) < log(m) − ⌊d
2⌋log(2).

Then, ⌊d
2⌋ < log(m)−log(2)

log(2) .

Then, d < 2log(m)−2log(2)
log(2) .

Then, d + 1 < 4log(m)−log(2)
log(2) . Then, it is enough to use lemma 2.7.7. �

Now, we give sufficient conditions in order that the hypothesis contained in the notation 2.7.2
is checked.

Lemma 2.7.9 We suppose that T is the Fibonacci congruence. Suppose that card(R ∩ E2) ≥ 3.
Then, with the notations 2.7.2, p ∈ N

∗ .

Proof By the notations 2.7.2, c’ is the geatest n such that kn ≤ L. Moreover c is the smallest n
such that rn ≤ L. The assumption contained in notations 2.7.2 is c’=c+p where p ∈ N

∗, i.e. there
exists [x, x + kc+1[×[y, y + rc[⊂ R.

If this is not the case, we can write any rectangle [x0, x0 + kc′ [×[y0, y0 + rc[⊂ R in the form
[x0, x0 + kc′ [×[y0, y0 + rc[= [x0, x0 + kc′ [×[y0, y0 + rc′+q[ where q ∈ N, i.e. c=c’+q. Then,
[x0, x0 + kc′ [×[y0, y0 + rc′+q[⊂ [x0, x0 + kc′ [×[y0, y0 + rc′ [.

Now suppose q ∈ N and R ⊂ [x0, x0+kc′+1[×[y0, y0+rc′+q−1[⊂ [x0, x0+kc′+1[×[y0, y0+rc′−1[.
Then, the rectangle [x0, x0 + kc′+1[×[y0, y0 + rc[⊂ [x0, x0 + kc′+1[×[y0, y0 + rc′ [ contains at most
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one point E2 by corollary 2.6.13. By the same way, if hc′ ≤ 1 (i.e. rc−1 = rc + rc+1), [x0, x0 +
kc′+1[×[y0 + rc′ , y0 + rc′−1[⊂ [x0, x0 + kc′+1[×[y0 + rc′ , y0 + 2rc′ [ contains at most one point E2 by
corollary 2.6.13. Then, if si hc′ ≤ 1, there exists two rectangles Rec1 = [x1, x1+kc′+1[×[y1, y1+rc′ [
and Rec2 = [x1, x1 + kc′+1[×[y1 + rc′ , y1 + 2rc′ [ such that R ⊂ [x1, x1 + kc′+1[×[y1, y1 + rc′−1[⊂
Rec1 ∪ Rec2 = [x1, x1 + kc′+1[×[y1, y1 + 2rc′ [ which contains at most one point E2.

Now, because T is the Fibonnacci congruence hc′ = 2 ≥ 1 if c′ = d or if c’=1. If not, hc′ = 1.
If c’=d, kc′+1 = m (cf Lemma 2.6.5) and rc′ = 1, rc′−1 = 2. Then, [x0, x0+kc′+1[×[y0, y0+rc[⊂

[x0, x0 + kc′+1[×[y0, y0 + rc′−1[= [x0, x0 + m[×[y0, y0 + 2[ which contains at most two points of E2

because T is invertible (rd = 1 and cf Lemma 2.6.3 or proposition 1.3.3).
If c’=1, kc′+1 = k2 = 2 and rc′ = inf(a, m−a), rc′−1 = m. Then, [x0, x0+kc′+1[×[y0, y0+rc[⊂

[x0, x0 + kc′+1[×[y0, y0 + rc′−1[= [x0, x0 + 2[×[y0, y0 + m[ which contains at most two points of E2

because T is invertible (rd = 1).

Therefore, the rectangle [x0, x0 + kc′+1[×[y0, y0 + rc−1[ contains at most two points of E2.
Therefore, if the assumption contained in notations 2.7.2 does not hold, the rectangle R =
[x, x + L[×[y, y + L′[ contains at most two point E2.
Then, any rectangle R = [x, x+L[×[y, y +L′[ which contains three points of E2 checks p ∈ N

∗. �

We prove in the same way the following property.

Lemma 2.7.10 We suppose that card(R∩E2) > hs + 1. Then, with the notations 2.7.2, p ∈ N
∗.

Proof We takes the same beginning of the proof as in lemma 2.7.9 : we suppose p /∈ N
∗. Then,

each rectangle [x0, x0 + kc′+1[×[y0 + (t − 1)rc, y0 + trc[ contains at most one point of E2 . Then,
the rectangle [x0, x0 + kc′+1[×[y0, y0 + rc′−1[⊂ [x0, x0 + kc′+1[×[y0, y0 + (hc′ + 1)rc′ [ contains at
most hc′ + 1 points of E2.

We deduce the result. �

Lemma 2.7.11 We suppose that T is the Fibonacci congruence. Let R such that SR/m ≥ 3.
Then, with the notations 2.7.2, p ∈ N

∗.

Proof One can write R = [x, x + L[×[y, y + L′[. Then, one can assume kc′ ≤ L < kc′+1 and
rc ≤ L′ < rc−1. Then, c′ ≥ c + 1.

If not by corollary 2.6.13, R0 = [x, x + kc+1[×[y, y + rc[ contains at most 1 point of E2. As
a matter of fact, with the notations of corollary 2.6.13 and proposition 2.6.15, Q=1 and δ = −1
by the proof of corollary 2.6.13 . Then, by proposition 2.6.15, SR0

/m ≤ 1. Moreover R ⊂ R0.
Now, if hc = 1, R1 = [x, x + kc+1[×[y + rc, y + rc−1[⊂ R2 = [x, x + kc+1[×[y + rc, y + 2rc[ : we
deduce as previously SR2

/m ≤ 1 (Q=1, δ = −1). Then SR0∪R2
/m ≤ 2. Then SR0∪R1

/m ≤ 2.
If hc = 2 and c = d, [y + rc, y + rc−1[= [y + rd, y + rd−1[= [y + rd, y + 2rd[ because rd−1 = 2rd.
Then, as previously by proposition 2.6.15 and the proof of corollary 2.6.13 , SR1

/m ≤ 1. Then
SR0∪R1

/m ≤ 2.
Moreover, R = [x, x + L[×[y, y + L′[⊂ [x, x + kc+1[×[y, y + rc−1[= R0 ∪ R1. Then, SR/m ≤ 2.

It is impossible.

If hc = 2, c = 1 and c′ ≤ c = 1. Then, kc′ ≤ L < kc′+1 ≤ k2 = 2. Then, L ≤ 1. Then,
SR/m ≤ 1. It is impossible.

Then, c′ ≥ c + 1. Then, with the notations 2.7.2, p ∈ N
∗. �

We deduce the following lemma .
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Lemma 2.7.12 We suppose that T is the Fibonacci Congruence. Let R such that, with the nota-
tions 2.7.2, p /∈ N

∗. Then, if m ≥ 5,

∣∣NR −
SR

m

∣∣ ≤ 3 ≤ 4
log(m) − log(2)

log(2)
.

Proof By lemma 2.7.9 and 2.7.11, 0 ≤ NR < 3 and 0 ≤ SR/m < 3. Then,
∣∣NR − SR

m

∣∣ ≤ 3.

Then, 3 < 5.2877 ≈ 4 log(5)−log(2)
log(2) ≤ 4 log(m)−log(2)

log(2) . �

Now we have another way to prove the lemma 2.7.10

Lemma 2.7.13 Let R such that, with the notations 2.7.2, p /∈ N
∗. Then, SR

m ≤ hc + 1 and
NR ≤ hc + 1

Proof With the notations 2.7.2, L < kc′+1 and L′ < rc−1 where c′ ≤ c. Then, L < kc+1.
By the proof of corollary 2.6.13, if R′ = [x, x + kc+1[×[y, y + rc−1[ , NR′ = h(c−1)+1 or

NR′ = h(c−1)+1 + 1 with δ = 1 with the notations of proposition 2.6.15.

Then, hc ≤ SR′

m ≤ hc + 1 by proposition 2.6.15. Now R ⊂ R′. We deduce the result. �

We deduce the following properties.

Corollary 2.7.14 Let R such that, with the notations 2.7.2, p /∈ N
∗. Then,

∣∣NR −
SR

m

∣∣ ≤ hc + 1 .

Corollary 2.7.15 Let R = [x, x + L[×[y, y + L[ such that x, y, L, L′ /∈ {0, 1, ....,m}. Then,

∣∣∣NR −
SR

m

∣∣∣ ≤
d∑

i=1

hi + 2 ≤ dhs + 2 .

Proposition 2.7.16 We suppose that T is the Fibonacci congruence with m ≥ 377. Soit I =
[C, C ′[, C, C ′ ∈ N, and N(I)=C’-C. Let kn be the permutation of {C, C + 1, ...., C ′ − 1} such that
T (k1) < T (k2) < ........ < T (kC′−C) . Then, for all r ∈ {1, 2, ...., N(I) − 1},

|
T (kr)

m
−

r

N(I)
| ≤

φ′(m)

N(I)
,

ou φ′(m) = 4Log(m)−2Log(2)
log(2) .

Proof Let r ∈ {1, 2, ...., N(I) − 1}. Let D = 4 log(m)−Log(2)
log(2) .

Let L1 = ⌊ (r−D−1).m
N(I) ⌋ = (r−D−1).m

N(I) − e where 0 ≤ e < 1. Let R1 = I × [L1, m[. Then,
SR1

m = (m−L1)N(I)
m = N(I) − (r−D−1).m

N(I)
N(I)

m + eN(I)
m = N(I) − r + D + 1 + e′ where e′ = eN(I)

m .

If L1 ≥ 0, then, [L1, m[ contains t1 = NR1
points T (ks) of T (I) : T (kC′−C−t1+1),.........,

T (kC′−C−1), T (kC′−C) where t1 = NR1
= card(R1 ∩ E2) .

Now, D = 4 log(m)−Log(2)
log(2) ≥ 2.3399 because m ≥ 3. Then,

SR1

m ≥ 3 because N(I)− r +D +1+

e′ ≥ D + 1 ≥ 3. Then, by lemma 2.7.11, with the notations 2.7.2, p ∈ N
∗. Now, by proposition
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2.7.8, we know that, for all rectangle R checking p ∈ N
∗,

∣∣∣NR − SR

m

∣∣∣ ≤ D.

Then,
∣∣NR1

−
SR1

m

∣∣ ≤ D, i.e. −D ≤ t1 − [N(I) − r + D + 1 + e′] ≤ D,
i.e. N(I) − r < −D + N(I) − r + D + 1 + e′ ≤ t1 ≤ N(I) − r + D + 1 + e′ + D,
i.e. C ′−C−t1+1 = N(I)−t1+1 < r+1, i.e. C ′−C−t1+1 ≤ r. Then, T (kC′−C−t1+1) ≤ T (ktr ).
Then, L1 ≤ T (kC′−C−t1+1) ≤ T (ktr ).

Si L1 < 0, then, obviously L1 ≤ T (ktr ).

Let L2 = ⌊ (r+D+1).m
N(I) ⌋ = (r+D+1).m

N(I) − f where 0 ≤ f < 1. Let R2 = I × [0, L2[.

Suppose L2 ≤ m. Then,
SR2

m = L2N(I)
m = (r+D+1).m

N(I)
N(I)

m − fN(I)
m = r + D + 1 − f ′ where

f ′ = fN(I)
m . Now, D = 4 log(m)−Log(2)

log(2) ≥ 2.3399. Then,
SR2

m ≥ 3. Then, by lemma 2.7.11 we

know that p ∈ N
∗. Then, by proposition 2.7.8, we know that, for all rectangle R checking p ∈ N

∗,∣∣∣NR − SR

m

∣∣∣ ≤ D.

Now, [0, L2[ contains t2 = NR2
points T (ks) of T (I) : T (k1), T (k2), T (k3), ....., T (kt2) where∣∣NR2

−
SR2

m

∣∣ ≤ D i.e.
∣∣NR2

− [r + D + 1 − f ′]
∣∣ ≤ D.

Then, r < r + 1 − f ′ ≤ r + D + 1 − f ′ − D ≤ NR2
= t2 ≤ r + D + 1 − f ′ + D.

Then, T (ktr ) < T (kt2). Then, T (ktr ) ≤ L2.

If L2 > m, obviously T (ktr ) ≤ L2.

Therefore, L1 ≤ T (ktr ) ≤ L2. Then,

(r − D − 1).m

N(I)
− e ≤ T (ktr ) ≤

(r + D + 1).m

N(I)
− f .

Therefore,
r

N(I)
−

D + 1

N(I)
−

e

m
≤

T (ktr )

m
≤

r

N(I)
+

D + 1

N(I)
−

f

m
.

Therefore,

−
D + 2

N(I)
≤

T (ktr )

m
−

r

N(I)
<

D + 1

N(I)
.

Therefore,

|
T (kr)

m
−

r

N(I)
| ≤

D + 2

N(I)
.

Now, D = 4Log(m)−Log(2)
log(2) . Therefore,

|
T (kr)

m
−

r

N(I)
| ≤

4Log(m)−Log(2)
log(2) + 2

N(I)
=

4Log(m)−2Log(2)
log(2)

N(I)
=

4Log(m) − 2Log(2)

log(2)N(I)
. �

50



Remark 2.7.17 There are ways in order to improve these inequalities in the previous proofs.

For example, to use all the inequalities
∣∣∣NR′j

t
−

S
R

′j
t

m

∣∣∣ ≤ 1 seems too rough and can proba-

bly be improve. Moreover, if we use simulations, we find that |T (kr)
m − r

N(I) | ≤ φ′(m)
N(I) where

φ(m) = O
(
Log(Log(m))

)
: cf [15] and [16].
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Chapter 3

Study of the Conjecture

3.1 First inequality of the conjecture

The first inequality of the conjecture give a lower bound to D2
m :

Maxi=1,...,da(ha
i ) ≤ 4SupR

(∣∣NR −
SR

m

∣∣) .

In fact this first inequality can be proved. In order to do it we recall the following theorem (cf
[15]).

Theorem 3.1.1 Let (x0, y0) ∈ E2. Let n ∈ {1, 2, ...., da + 1}.
If n is even, let R0 = [x0, x0 + ka

n] ⊗ [y0, y0 + ra
n−2[⊂ [0, m[2. Then,

E2 ∩ R0 =
{
(x0 + ka

n−1ℓ , y0 + ra
n−1ℓ)

∣∣ℓ = 0, 1, 2, ...., ha
n−1

}
.

Moreover the points (x0 + ka
n−1ℓ , y0 + ra

n−1ℓ) are lined up modulo m .
If n is odd, let R0 = [x0, x0 + ka

n] ⊗ [y0 − ra
n−2, y0[⊂ [0, m[2. Then,

E2 ∩ R0 =
{
(x0 + ka

n−1ℓ , y0 − ra
n−1ℓ)

∣∣ℓ = 0, 1, 2, ...., ha
n−1

}
.

Moreover, the points (x0 + ka
n−1ℓ , y0 − ra

n−1ℓ) are lined up modulo m.

Then, one can prove the following theorem.

Lemma 3.1.2 We keep the notations of theorem 3.1.1 . Then, there exists a rectangle Rv ⊂ R0

such that SRv ≥
ka

nra
n−2

4 and Rv ∩ E2 = ∅.

Proof Suppose that n is even. We set x1 = x0 + ka
n and y1 = y0 + ra

n−2.

Then, x′ = x0 + ka
n−1h

a
n−1 = x0 + ka

n − ka
n−2 = x1 − ka

n−2. In this point y′ = T (x′) =
y0 + ra

n−1h
a
n−1 = y0 + ra

n−2 − ra
n = y1 − ra

n.
Therefore, one of the rectangles Rv1 or Rv2 does not contain points of E2 where

Rv1 =]x0 + ka
n/2, x0 + ka

n[×]T (x0), T (x0) + ra
n−2/2[,

Rv2 =]x0, x0 + ka
n/2[×]T (x0) + ra

n−2/2, T (x0) + ra
n−2[ .

If n is odd, one uses the same way. �

Now one can prove the first part of the conjecture.

Lemma 3.1.3 We have

Maxi=1,...,da(ha
i )

4
≤ SupR

(∣∣∣NR −
SR

m

∣∣∣
)

.

Proof By lemma 3.1.2 , Rv ∩ E2 = ∅. Then, NRv = 0.
Moreover, NR0 = ha

n−1 or NR0 = ha
n−1 + 1 by corollary 2.6.13, i.e., by proposition 2.6.15,

ha
n−1 ≤

S
R0

m ≤ ha
n−1 + 1. Then, ha

n−1/4 ≤ SRv

m .
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Then,
∣∣∣NRv − SRv

m

∣∣∣ = SRv

m ≥ ha
n−1/4.

Now, this result holds for n-2=0 as far as n = da + 1. Then it holds for ha
n−1 such that

n − 1 = 1, 2, ...., da. �

3.2 Secund inequality of the conjecture : comparison with

T ([c, c′[)

In order to have a better increase of D2
m we are going to compare to results which we had obtained

on the distribution of the points of T ([c, c′[) in [16].

Notations 3.2.1 We suppose that T is the Fibonacci congruence. Let I = [c, c′[, c, c′ ∈ {0, 1, ....,m−
1} and let N(I)=c’-c. Let gn be the permutation of {c, c + 1, ...., c′ − c} such that T (g1) < T (g2) <
T (g3) < ...... < T (gc′−c) .

This result is equivalent to know the distribution of the points of T−1([c, c′[) because, T 2 = ±Id,
T−1 = ±T (cf lemma 2.6.16).

Now, in [15] and [16], we have proved that

∣∣∣
T (gr)

m
−

r

N(I)

∣∣∣ ≤
ϕ(m)

N(I)
,

where ϕ(m) << Log(m) : as a matter of fact, it seems that ϕ(m) is the order of Log(Log(m)).
Moreover,

Maxr=0,1,....,N(I)−1

(∣∣N(I)T−1(gr)/m − r
∣∣)

seems maximum when I is large enough : c′ − c = O(m/2).

We thus had an increase of
∣∣T (gr)

m − r
N(I)

∣∣ sharper than the one that we had obtained in

proposition 2.7.16. That was obtained thanks to the increase of
∣∣NR − SR

m

∣∣ of lemma 2.7.6. As

a matter of fact, we shall see that we have the inverse implication: the increase of
∣∣T (gr)

m − r
N(I)

∣∣

can give us informations about the increase of
∣∣NR − SR

m

∣∣.

Lemma 3.2.2 We have ∣∣∣
T (gr1−1)

m
−

T (gr1)

m

∣∣∣ ≤
3m

N(I)
.

Proof Suppose rc ≤ N(I) < rc−1.
The points T(I) are the points with abscissa x1 ≤ x ≤ x0 + L. Therefore, they are the points

(x, T (x)), x1 ≤ x ≤ x0 + L, of the rectangle I × [0, m[.
Now, in order to study the points of I × [0, m[, one can also study the points of [0, m[×I

because T = ±T−1.

The points (x, ax + b) such that y ≤ ax + b < y + L are the points x = X + x0 such that
y ≤ a(X + x0) + b < y + L. Therefore, if ax0 + b = y, they are the points 0 ≤ x = X + x0 < m
such that y ≤ aX + y < y + L.

If aX + y < m, they are the points 0 ≤ x = X + x0 < m such that y ≤ aX + y < y + L, i.e.
the points such that 0 ≤ ax < L.

Si aX + y > m, they are the points 0 ≤ x = X + x0 < m such that y ≤ aX + y − m < y + L,
i.e. the points such that 0 ≤ ax − m < L. Now, it is impossible.
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Therefore, the points (x, ax + b) such that y ≤ ax + b < y+L are the points 0 ≤ x = X +x0 <
m such that 0 ≤ aX < L.

Therefore, if L = rc, the points (x, ax + b) such that y ≤ ax + b < y + L are the points of M
for intervals X ∈ [−x0, 0[ and X ∈ [0, m − x0[.

By corolary 2.2.6, if L = rc, these successive points which we shall denote ℓn check ℓn+1− ℓn =
kc+1 + kc or ℓn+1 − ℓn = kc+1

By corollary 2.2.6, if L = rc−1, these successive points ℓn check for n=d+1, ℓn+1−ℓn = kc−1+kc

or ℓn+1 − ℓn = kc−1.
Finally (because kc−1 + kc = kc+1 (hi = 1) ), if rc < L < rc−1, the successive points ℓn check

ℓn+1 − ℓn = kc−1 + kc or ℓn+1 − ℓn = kc−1 or ℓn+1 − ℓn = kc+1 or ℓn+1 − ℓn = kc+1 + kc ≤ kc+2.
Therefore,

∣∣T (gr1−1) − T (gr1)
∣∣ ≤ kc+2.

Therefore, it is necessary that N(I) check N(I)kc−1 ≤ m ≤ N(I)kc+2. Moreover, kc+2 ≤ 3kc−1.

Then, kc−1 ≤ m
N(I) ≤ kc+2. Therefore, kc+2

3 ≤ kc−1 ≤ m
N(I) ≤ kc+2.

Therefore,
∣∣T (gr1−1) − T (gr1)

∣∣ ≤ kc+2 ≤ 3m
N(I) . �

Let us remark that we saw in the proof of this lemma how the points of T(I) are distributed
by using for example the proposition 2.3.9 in the case where L = rc or L = rc−1. We can thus
have a more precise idea of the distribution of these points and we shall can maybe improve the
result of the proposition 2.7.16.

Now, one can prove the following proposition.

Lemma 3.2.3 Let R = I × [y, y + L′[⊂ [0, m[2. Then, under the previous assumptions, we have∣∣NR − SR

m

∣∣ ≤ 9 + 2ϕ(m).

Proof Let r1 and r2 such that T (gr1−1) < y ≤ T (gr1) and T (gr2) < y + L′ ≤ T (gr2+1).
Then, NR = r2 − r1 + 1 and SR = (c′ − c)L′.

Now, there exists r′1 and r′2 such that m
r′

1−1
N(I) < y ≤ m

r′

1

N(I) and m
r′

2

N(I) < y + L′ ≤ m
r′

2+1
N(I) .

Then, m
r′

2−r′

1

N(I) ≤ L′ ≤ m
r′

2−r′

1+2
N(I) .

Then, L′ = m
r′

2−r′

1+2|Ob(1)|
N(I) where Ob(a) is the classical ”O” with |Ob(a)| ≤ a.

Then, r′2 − r′1 = N(I)L′

m − 2|Ob(1)| .

Now, T (gr1−1)/m = r1

N(I) + Ob(1)ϕ(m)
N(I) .

Moreover, by lemma 3.2.2, y/m − T (gr1−1)/m ≤ 3
N(I) . And,

r′

1

N(I) − y/m ≤ 1
N(I) . Then,

∣∣ r′

1

N(I) − T (gr1−1)/m
∣∣ ≤ 4

N(I) .

Then,
∣∣ r1

N(I) −
r′

1

N(I)

∣∣ ≤ 4
N(I) + ϕ(m)

N(I) .

By the same way,
∣∣ r2

N(I) −
r′

2

N(I)

∣∣ ≤ 4
N(I) + ϕ(m)

N(I) .

Then
∣∣ r2−r1

N(I) − r′

2−r′

1

N(I)

∣∣ ≤ 8
N(I) + 2ϕ(m)

N(I) .

Then
∣∣(r2 − r1) − (r′2 − r′1)

∣∣ =
∣∣(NR − 1) −

[N(I)L′

m − 2|Ob(1)|
]∣∣ ≤ 8 + 2ϕ(m).

Then
∣∣NR − N(I)L′

m

∣∣ ≤ 9 + 2ϕ(m).
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Then
∣∣NR − SR

m

∣∣ ≤ 9 + 2ϕ(m). �

The proof of this lemma shows that the increase of
∣∣NR − SR

m

∣∣ et ϕ(m) are connected. That

means that, if ϕ(m) = O
(
log[log(m)]

)
, it will be probably the same for

∣∣NR − SR

m

∣∣. It is thus

logical to think that D2
m = O

(
ϕ(m)

)
. It allows to have thus a more precise idea of D2

m.

3.3 Secund inequality of the conjecture : numerical study

In order to understand how the points in rectangles R are distributed, we made simulations, for
example, for a=3243, m=12493, hi = 3, 1, 5, 1, 3, 2, 1, 4, 1, 1, 3, we have figure 3.1.

0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Figure 3.1: a=3243, m=12493, hi = 3, 1, 5, 1, 3, 2, 1, 4, 1, 1, 3.

We understand well on this figure that the distribution of the points of E2 is made well. It
will be thus difficult to find rectangles R such as

∣∣NR − SR

m

∣∣ is big. We can try for example to
draw them with a ruler or to study all the possible cases by computers. We see well that the
distribution is good and that the breaks of the independence will be difficult to find on rectangles
except the small ones : but it is normal.

In order to try to compute D2
m, i.e. Sup

∣∣NR − SR

m

∣∣, simulations were also done.
Let us notice well that the results are obtained by simulations. We contented ourselves with

estimations because as soon as m is a little big, the number of rectangles which we have to study
is too much big because it is necessary to take the sup for any rectangle R : supR

∣∣NR − SR

m

∣∣.
We thus chose the width of rectangles at random and we have done again the operation a large
number of time: for example for m =1711 we have done again it 400.000 times.

At first we studied discrepances D̃2
m for Fibonacci congruences. These results are summarized

in the following table.

m 144 1597 17711 121393 1346269 14930352
a 89 987 10946 75025 832040 9227465
log(log(m)) 1.6034 1.9982 2.2805 2.4602 2.6471 2.8045
D2

m 3.8958 4.1058 4.8353 5.1334 5.2338 5.2993

These results seem well to show that for the congruences of Fibonacci, D̃2
m = ϕ(m) ≤

O
(
Log[Log(m)]

)
. In fact, it is possible that this increase can be again improved: maybe ϕ(m)
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converges even more slowly to infinity, even ϕ(m) can be bounded. But, it is rather difficult to
see in the present state of power of computers.

We also studied the other congruences and we saw that we do not find an increase of the type
D2

m ≤ hsO
(
Log[Log(m)]

)
where hs = sup(ha

i ). In fact we notice that the increase depends rather
on

∑
i ha

i than of hs (it is not the case of the decrease of the lemma 3.1.3 which depends effectively
directly on hs).

More exactly, when there exists n0 such that m = fin0
, we set RFib =

D̃2
m

P

i ha
i

. Let h̃a
i ,

i = 1, 2, ..., d̃a
i , be the sequence ha

i in the case of Fibonacci congruence. Then, we find a relation

of the type D2
m ≤ RFib

( ∑
i ha

)
=

P

i ha
i

P

i h̃a
i

ϕ(m) where ϕ(m) = O
(
Log[Log(m)]

)
.

Thus, for m=1597 , we have the following table.

a 987 983 985 986 988 900 901 902 903 42 41 11∑
i ha

i 16 49 17 18 19 20 20 25 21 80 62 52
D2

m 4.2 13.12 4.83 4.88 5.04 5.25 5.04 6.62 5.46 19.9 15.07 41.47
D2

m ≈ 4.2 12.86 4.4 4.72 4.98 5.25 5.25 6.56 5.51 21 15.75 39.9

For m=17711 , we have the following table.

a 10946 10940 10941 9877 122 1421 9874 6874 20∑
i ha

i 21 37 27 42 159 44 34 31 893
D2

m 4.9 8.5 6.4 9 41 9.4 7.8 6.9 230

RFib

( ∑
i ha

i

)
≈ 4.9 8.63 6.3 9.8 37.1 10.27 7.93 7.23 208.36

In fact the situation is a little more complicated than that. We can see it if m is small: we
indeed see that there is another parameter which we have to take in account if T is not invertible:
ra
da . Indeed, there is then differences between D2

m and RFib

( ∑
i ha

i

)
.

In that way for m=144, we have the following table.

a 89 88 87 86, 25 37 35 52
ra
da 1 8 3 2 1 1 1 4∑

i ha
i 11 7 13 18 15 16 16 9

D2
m 3.6 9.6 6.7 6.5 6.5 5.5 4.9 6.4

RFib

( ∑
i ha

i

)
≈ 3.6 2.2909 4.2545 5.8909 4.9091 5.2364 5.2364 2.9455

Then, we find an inequality of the same type as that of the lemma 2.7.6. Indeed, let us recall

that
∑d

i=1 ha
i ≤ dhs and d ≤ 2 log(m)−log(2)

log(2) .

As a matter of fact,
∑d

i=1 ha
i is generally smaller than dhs (cf example above) . It is translated

by the fact that, in a concrete way, the invertible congruences such as hs ≤ 10 for example are
generally good 1 congruences as soon as m ≥ 106.

Then, the increase D2
m ≤ hslog(m) can be improved and it seems that it is by D2

m ≤
Pd

i=1
ha

i
P

d
i=1

h̃a
i

Log(log(m)) when m = fin0
(if m 6= fin0

, one compares with the case of the nearest

number fin1
).

3.4 Conclusion

According to the simulations that we made we find that D2
m ≤

P

i ha
i

P

i h̃a
i

ϕ(m) where ϕ(m) =

Log[Log(m)].

1from the point of view of the independence of two successive simulated numbers
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It is an increase much more accurate than those of Zaremba, Knuth, Niederreiter and even as
that of the theorem 1.2.5. It shows that there are many possibilities on the choices of a and m. We
can thus impose with no problem the independences required in order to have the best possible
simulation.

Then, it is necessary that (T 2i(x0), T
2i+1(x0)) behave as independent, but also, for exam-

ple, (T 4i(x0), (T
4i+2(x0)) : a sequence of IID random variables {Xn} check also that the pairs

(X2n, X2n+2) are independent. That means that m

a2
can be written as a continued fraction with

the h2
i ’s not too big:

m

a2
= h2

1 +
1

h2
2 + 1

h2
3
+ 1

h2
4
+....

.

Let us remark that it is also necessary that (X4n, X4n+1, X4n+2, , X4n+3) behave as indepen-
dent. But we know that this result must be checked on hypercubes of width wider in order to
have enough points of the sample (T 4i(x0), T

4i+1(x0), T
4i+21(x0), T

4i+3(x0)), i=0,1,....,m, in the
hypercubes. So, for the bidimensional dependence, we can consider the squares of width 1/2q

where 4q = O
(
m

)
. In dimension 4, it is necessary that q checks 16q = O

(
m

)
.

After, it is necessary that m

a3
has an expansion in continued fraction with the h3

i ’s not too large:

m

a3
= h3

1 +
1

h3
2 + 1

h3
3
+ 1

h3
4
+....

.

And so on.

Obviously, it will be necessary to check these conditions if we use the congruences in order to
make simulations.

If we want to calculate double integrals by using the congruences, Zaremba studied the most
favorable case, that of the congruences of Fibonacci. In the same way, if we want to do IID a
noise, we saw that the best way was also to use the congruences of Fibonacci. On the contrary,
these are very bad pseudo-random generator because T 2 = ±Id.
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