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When we consider a congruence T (x) ≡ ax modulo m as a pseudo random number generator, there are several means of ensuring the independence of two successive numbers. In this report, we show that this dependence depends on the continued fraction expansion of m/a. We deduce that the congruences such that m and a are two successive elements of Fibonacci sequences are those having the weakest dependence. We use this result in order to obtain sequences of random numbers proved IID.

Chapter 1

Presentation of results

Introduction

Congruences T (x) ≡ ax + b mod(m), 0 < a < m, 0 ≤ b < m can be used as pseudo-random generators. But of course, all the parameters a, b and m are not suitable. They must check a certain number of conditions. In this report we are interested in conditions about the independence of 2 successive numbers simulated. More generally, we must impose that the dependence induced by T n (x 0 ), ....., T n+p (x 0 ) , n=1,2,....,m, is as small as possible when p is as large as possible. In fact, you can hardly go beyond p = log(m)/log [START_REF] Baya | Contribution à la génération de vecteurs aléatoires et à la cryptographie[END_REF].

Recall first that the independence induced by T n (x 0 ), T n+1 (x 0 ) , n=1,2,....,m, does not imply the independence of T n (x 0 ), T n+1 (x 0 ), T n+2 (x 0 ) , n=1,2,....,m. And in fact, the conditions which ensure the best independence of two successive simulated numbers are not the ones which provide the best independences of 3 successive simulated numbers, and vice versa.

In this report we study the independence of two successive numbers simulated. However, we saw in [START_REF] Blacher R | Quelques propriétés des congruences linéaires considérées comme générateur de nombres pseudo-aléatoires[END_REF] and [START_REF] Blacher R | Indicateurs de dépendance fournis par le développement en série de la densité de probabilité[END_REF] that the dependence of two successive simulated numbers depends on the development of m a as continued fraction. Notations 1.1.1 Let r a 0 = m, r a 1 = a. One denotes by r a n the sequence defined by r a n = h a n+1 r a n+1 + r a n+2 the Euclidean division of r a n by r a n+1 when r a n+1 = 0. One denotes by d a the smallest integer such as r a d a +1 = 0. One sets k a 0 = 0, k a 1 = 1 and k a n+2 = h a n+1 k a n+1 + k a n if n ≤ d a + 1.

With theses notations, one can write

m a = h a 1 + 1 h a 2 + 1 h a 3 + 1 h a 4 +.... .
Then, in order that the independence of two successive simulated numbers is good, it is necessary that the h a i 's are small. Indeed, in [START_REF] Blacher R | Fibonacci congruences and applications[END_REF] (cf also [START_REF] Blacher R | A Perfect Random Number Generator[END_REF] [9] [START_REF] Blacher R | Fibonacci congruences and applications[END_REF]), we have shown the following theorem.

Theorem 1.1.2 Let (x 0 , y 0 ) ∈ E 2 . Let n ∈ {1, 2, ...., d a + 1}.

If n is even, E 2 ∩ R 0 = (x 0 + k a n-1 ℓ , y 0 + r a n-1 ℓ) ℓ = 0, 1, 2, ...., h a n-1 ,

where

R 0 = [x 0 , x 0 + k a n ] ⊗ [y 0 , y 0 + r a n-2 [⊂ [0, m[ 2 .
If n is odd,

E 2 ∩ R 0 = (x 0 + k a n-1 ℓ , y 0 -r a n-1 ℓ) ℓ = 0, 1, 2, ...., h a n-1 , where R 0 = [x 0 , x 0 + k a n ] ⊗ [y 0 -r a n-2 , y 0 [⊂ [0, m[ 2 1 .
This allows to obtain a lower bound of the coefficient of discrepancy.

Definition 1.1.3 For all z ∈ Z, we denote by z the integer z such that z ≡ z modulo m and 0 ≤ z < m. For all rectangle, R = [s 1 , s 2 ] × [t 1 t 2 ] ⊂ [0, m]2 , we denote by N n R the number of points of the sample (T i (x 0 ), T i+1 (x 0 )), i=1,2,....,n, belonging to the rectangle R and by S R the area S R = (s 2s 1 )(t 2t 1 ). If n= m, one sets N R = N m R . We call coefficient of discrepancy D 2 m 2 the number

D 2 m = M ax R N R - S R m ,
where the maximum is taken over all the rectangles R = [s 1 , s 2 ] × [t 1 t 2 ] ⊂ [0, m] 2 such that (s 1 , s 2 , t 1 , t 2 ) ∈ {0, 1, ....., m} 4 .

We shall deduce from theorem 3.1.1 the following proposition (proof is in lemma 3.1.3) .

Proposition 1.1. [START_REF] Bosq | Lois limites et efficacité asymptotique des tests Hilbertiens de diverses lois sous des hypothèses adjacentes[END_REF] The following inequality holds :

M ax i=1,...,d a (h a i ) 4 ≤ D 2 m .
It allows to understand that the independence of two successive simulated numbers depends on the h a i 's. Naturally, the study of independence between two successive simulated numbers had already been studied by various authors, and for some ones, one recognizes a connection with the h a i 's.

Thus the simplest test which springs immediately to mind is the serial test. This one is just the chi squared test with several dimensions (cf. [START_REF] Knuth | The Art of Computer Programming[END_REF] page 62). Unfortunately it does not use the best chi squared test. Indeed, in this case, it is better to use the chi squared independence test which is more powerful: in 2 dimensions it uses χ 2 X,Yχ 2 Xχ 2 Y where χ 2 X,Y , χ 2 X , χ 2 Y are respectively, the classical chi square statistics with two dimensions, the classical chi square statistics for the first marginal distribution, and the classical chi square statistics for the secund marginal distribution (cf Blacher [START_REF] Blacher R | A new form for the chi squared independence test[END_REF], [START_REF] Blacher R | Quelques applications des fonctions orthogonales en probabilité et statistique[END_REF]). In fact it means to use empirical higher order correlations coefficients (cf [START_REF] Blacher R | Higher Order Correlation Coefficients[END_REF]) and Hilbertian test (cf [START_REF] Bosq | Lois limites et efficacité asymptotique des tests Hilbertiens de diverses lois sous des hypothèses adjacentes[END_REF], [START_REF] Blacher R | Quelques applications des fonctions orthogonales en probabilité et statistique[END_REF]). Now the spectral test is also interested in the problem of n-tuples of successive numbers: in the case of two dimensions we therefore studied the sequence (T i (x 0 ), T i+1 (x 0 )), i=1,2,....,m. It is easy to see that the points of these sequences are distributed over the parallel lines of the plane. Then, by [START_REF] Knuth | The Art of Computer Programming[END_REF] page 94, in order to use the spectral test, one uses 1/ν 2 the maximum distance between lines taken over all families of parallel straight that cover the points (T i (x 0 )/m, T i+1 (x 0 )/m) : the spectral test is based on the value of ν 2 .

On the other hand, Marsaglia has studied lattices and showed how they are connected to the dependence of p successive numbers. Unfortunately, we know that, from this point of view, linear congruences are very bad random generators: they do not pass the test of lattices. This is due to the structure of hyperplane of the samples (a j+1 x 0 , a j+2 x 0 , .....a j+j x 0 ), j=1,2.....m. However, there are methods to mix a congruential generator in order to destroy its regularity of crystal : Knuth (cf [START_REF] Knuth | The Art of Computer Programming[END_REF], M. D Maclaren and G marsaglia (cf [START_REF] Maclaren | Uniform random number generators[END_REF] ). In the search of linear congruences candidates for this mixture, one chooses those ones of which the lattice (e.g. in size 2,3,4,5) is not too distant from the ideal lattice: it is assumed that this is the case when the quotient Beyer of its reduced base is close to 1 (cf [START_REF] Beyer | Lattice structure and reduced bases of random vectors generated by linear recurrences[END_REF]). There are examples in [START_REF] Baya | Contribution à la génération de vecteurs aléatoires et à la cryptographie[END_REF] page 73. Now, Dieter has studied in 1972 (cf [START_REF] Dieter | Statistical interdependence of pseudo-random numbers generated by the linear congruential method, Applications of Number Theory to Numerical Analysis[END_REF]) the case of a two-dimensional dependence. In fact, he studied the discrepancy coefficients D 2 m = M ax R N R -S R m . Indeed [START_REF] Dieter | Statistical interdependence of pseudo-random numbers generated by the linear congruential method, Applications of Number Theory to Numerical Analysis[END_REF] showed that the dependence between two successive numbers simulated depends generalized Dedekind sums s(a, c|x, y) = |c|-1 µ=0 Q µ+y c Q a µ+y c + x where Q(x) = 0 if x ≡ 0 mod 1 and Q(x) = x -⌊x⌋ -1/2 if x ≡ 0 mod 1 when ⌊x⌋ is the integer part of x.

For example suppose b=0, and m = 2 e . One supposes that m is the length of the generated pseudo random sequence. Then,

D 2 m = 2 λ,µ=1
(-1) λ+µ s(a, n|as λt µ , 1/4ns λ ) + ρ where ρ is bounded by 4.

It leads to the following rule for the choice of the factor a : The factor a has to be chosen in such a way that the Euclidean Algorithm for a and m (b = 0, or a and m/4 (b=0) should have small quotients q i . As a matter of fact q i = h a i if b = 0.

We thus find the same conclusion as we got first in 1983 in [START_REF] Blacher R | Indicateurs de dépendance fournis par le développement en série de la densité de probabilité[END_REF] and [START_REF] Blacher R | Quelques propriétés des congruences linéaires considérées comme générateur de nombres pseudo-aléatoires[END_REF]. However, our results were more detailed and more general. Some of those have been taken up by Niederreiter in 1985 (cf [START_REF] Niederreiter | The serial test for pseudo random numbers generated by the linear congruential method[END_REF]), which has established (with Knuth) connections between the spectral test and serial test.

Let r be the function such that 1/r(u 1 , u 2 ) = msin(πu 1 /m)sin(πu 2 /m) when u 1 + au 2 ≡ 0 modulo m . Then, Niederreiter proved

D 2 m = O log(m) 2 M ax u1,u2 |r(u 1 , u 2 )| (1.1)
when the period is m. Moreover, Niederreiter has proved in 1985 that if m is prime and has a primitive root modulo m or if m = 2 β , β ≥ 3, a ≡ 5 modulo m and b odd or b=0, then

D 2 m /m ≤ C ′ log(m) 2 ρ 2 (a, m) (1.2) 
where ρ 2 (a, m) = min(r ′ (2H 1 , 2H 2 )) when r ′ (H) = 2 i=1 max(1, |H i |) for H i ∈ Z for all i and where C' is a constant (cf also [START_REF] Baya | Contribution à la génération de vecteurs aléatoires et à la cryptographie[END_REF], page 79). This result is similar to our result of 1983. Indeed, by [START_REF] Baya | Contribution à la génération de vecteurs aléatoires et à la cryptographie[END_REF], page 79, Zaremba has proved in 1966 that, under these assumptions, ρ 2 (a, m) depends on the development of m/a in continued fraction (cf [START_REF] Zaremba | Good lattice points, discrepancy and numerical integration[END_REF]) : ρ 2 (a, m) ≤ 1 4M axi(h a i ) , and then,

D 2 m ≤ C ′ 4 M ax(h a i )log(m) 2 .
Now our result of 1983 is more accurate. For example, it has been proved an increase more detailed than Niederreiter. We thus find a finite sequence of rectangles R n such that N Rn -S Rn m ≤ 1. This helps to understand how rectangles R are filled by the points (T

i (x 0 ), T i+1 (x 0 )).
Then, it is hoped that the following conjecture holds

N R - S R m ≤ M ax i (h a i )O log log(m) .
This is still a conjecture ( cf conjecture 1.2.8). On the other hand, one can mathematically prove an increase more detailed than Niederreiter: 2) .

N R - S R m ≤ M ax i (h a i ) 2log(m) -log(2) log(
We will return to this below (cf corollary 1.2.5).

Therefore the h a i 's must be small. Then, we were also interested in case they are minimum : h a i = 1 for i = 1, 2, ...., d a -1 and h a d a = 2 : This is the case of Fibonacci congruences. Thus, in this case, Zaremba gave an increase more accurate than

D 2 m ≤ C ′ 4M ax(h a i )log(m) 2 m
. He proved that

N R - S R m ≤ 4A log[(A + 1)m] log(A + 1) + 1 < (7/6)log(15m) ,
where A = sup i=1,..,d a -1 (h a i ) = 1 (cf [START_REF] Zaremba | Good lattice points, discrepancy and numerical integration[END_REF]).

Unfortunately, congruences Fibonacci are very bad pseudo-random generators : indeed, in this case, T 2 ≡ ±Id, where Id is the Identity function. On the other hand, they can be used effectively in order to calculate double integrals as it is shown by Zaremba (cf [START_REF] Zaremba | Good lattice points, discrepancy and numerical integration[END_REF]).

Moreover, in [START_REF] Blacher R | A method for Building true random sequences[END_REF], we have seen that the the congruential functions of Fibonacci T q make uniform noises by a remarkable way. Definition 1.1.5 Let q ∈ N * . Let T be a congruence of Fibonacci. We define the congruential function of Fibonacci T q by T q = P r q • T ∈ [0, 1] where 1)

T (x) = T (xm)/m, when z ≡ z modulo m and 0 ≤ z < m if z ∈ Z, 2) P r q (z) = 0, b 1 b 2 ....b q when z = 0, b 1 b 2 ... is the binary writing of z.
Indeed, for the great majority of noises y n relatively unpredictable, the sequences T q (y n ) admit the IID model for correct model. It was the first time that such a result was obtained. For example, before this result, it was written in Handbook of Applied Cryptography ( [START_REF] Menezes | Handbook of Applied Cryptography[END_REF]) : "Designing a hardware device or software program to exploit this randomness and produce a bit sequence that is free of biases and correlation is a difficult task. Moreover, random bit generators based on natural sources of randomness are subject to influence by external factors, and also to malfunctions. It is imperative that such devices be tested periodically".

We will return later to the question of Fibonacci functions which make uniform the most part of noises (cf section 1.3).

In order to help to clarify these results we will now develop these different results. Unfortunately our report ( [START_REF] Blacher R | Quelques propriétés des congruences linéaires considérées comme générateur de nombres pseudo-aléatoires[END_REF]) and our thesis of 1983 ( [START_REF] Blacher R | Indicateurs de dépendance fournis par le développement en série de la densité de probabilité[END_REF]) are written in French. Also in order to be more accessible, we will take up a large part of the proofs of 1983 in English. We detail them when it is necessary. Then we develop them in order to show how you can specify, by a fairly exact way, the number of points of the sample contained in each rectangle

R = [x, x + L[×[y, y + L ′ [ when x, y, L, L ′ ∈ {0, 1, ...., m}.

General case

We study the distribution of the points {ℓ, T (ℓ)}.

Notations 1.2.1 Let E 2 = ℓ, T (ℓ) | ℓ ∈ {0, 1, ....., m -1} when z ≡ z modulo m and 0 ≤ z < m if z ∈ Z.
We have just to say that, in order that there have not strong dependences, it is necessary that the h a i 's is small. Indeed, in [START_REF] Blacher R | Fibonacci congruences and applications[END_REF] and [START_REF] Blacher R | Fibonacci congruences and applications[END_REF], we proved that it is a necessary condition in order that there is empirical asymptotic independence (cf theorem 3.1.1). Thus, if n is even, if x 0 = y 0 = 0, theorem 3.1.1 means that the rectangle [0,

k a n /2] ⊗ [r a n-2 /2, r a n-2 [ does not contain points of E 2 if n is even : E 2 ∩ [0, k a n /2] ⊗ [r a n-2 /2, r a n-2 [ = ∅ . If h a n-1
is large, that will mean that an important rectangle of R 2 is empty of points of E 2 : that will mark a breakdown of independence.

For example suppose n=2 and b=0. First, m = r a 0 , r a 1 = a, k a 1 = 1 and k a 2 = h a 1 = ⌊m/a⌋ where ⌊x⌋ means the integer part of x. In this case, one regards the rectangles [0, k a 2 [⊗[0, m[. One thus finds a traditional technique for n=2. Indeed when one makes chi-squared tests, one can use rectangles of same type as[0, m/(2a)[⊗[0, m/2[. Thus if "a" is not large enough compared to "m", there is rupture of independence. The rectangle Rect 2 = [0, m/(2a)] ⊗ [m/2, m[ will not contain any point of E 2 . However, this rectangle has its surface equal to m 2 /(4a): if the points of E 2 are distributed in a uniform way, one has about m/(2a) = h a 1 /2 + r a 2 /(2a) points of E 2 (and not 0). Thus if "a" is not sufficiently large, i.e if h a 1 is too large, there is breakdown of independence.

For example, choose the congruence T (x) = 10 In these examples, we studied rectangles [0, k a 2 /2] ⊗ [0, m/2[ . In the general case, it is necessary that [0, k a n /2] ⊗ [r a n-2 /2, r a n-2 [ has not a too big size. It is necessary thus that all the h a n-1 's are small. In fact, the results which we develop in this report will allow to prove that it is also a sufficient condition : if the h a i 's are small enough one can suppose that there is independence (cf [START_REF] Blacher R | A Perfect Random Number Generator[END_REF]).

Now we use a sequence h i a little different from h a i in order to get the exact number of points contained in some rectangles [x, x + L[×[y, y + L ′ [. Notations 1.2.2 One denotes by r n the sequence defined by : r 0 = m, r 1 = inf (a, ma) and by r n = h n+1 r n+1 + r n+2 which denotes the Euclidean division of r n by r n+1 when r n+1 = 0. One denotes by d the smallest integer such as r d+1 = 0 (d ≥ 1).

One sets

k 0 = 0, k 1 = 1 and k n+2 = h n+1 k n+1 + k n if n ≤ d + 1.
With these new notations, it will be also necessary that the h i are small in order to have a good independence.

We can deduce an increase of D 2 m (cf corollary 2.7.15).

Theorem 1.2.3 Let x, y, L, L ′ ∈ {1, 2, ...., m} and let R be the rectangle

R = [x, x+L[×[y, y+L ′ [. Let h s = sup(h i ) and S R be the area of R (S R = LL ′ ), N R = card(E 2 ∩ R). We suppose that T is invertible. Then N R - S R m ≤ d i=1 h i + 2 ≤ dh s + 2 .
Moreover, the following proposition holds (cf proposition 2.7.8)

Proposition 1.2.4 We have d ≤ 2 log(m)-log(2) log (2) 
.

Then, one deduce the following result.

Corollary 1.2.5 Under the assumptions of theorem 1.2.5,

N R - S R m ≤ 2log(m) -log(2) log(2 h s .
We see that this equality is more accurate than that obtained by Nederietter and Knuth (cf equations 1.1 and 1.2).

Remark 1.2.6 In these theorems we require that T is invertible. But there could be results of the same type if T is not invertible. Indeed, we do not impose any conditions in our calculations for sections 2.2, 2.3, 2.4, 2.5. In particular, the fundamental proposition 2.5.3 is given under no hypothesis. But, to get answers in the general case would complicate the results of this report which are already long. Moreover, if T is not invertible, the period is smaller than m.

In fact, one can have more accurate results because we have a much more accurate increase for some rectangles R.

Indeed, the previous increases improve clearly the increase of Niederreiter and Knuth. But it is still too rough. It is enough to use again the proofs in order to understand that the points of E 2 are distributed by a much more uniform way. Thus, we will prove the following theorem (cf theorem 2.6.14).

Theorem 1.2.7 Let T be a invertible linear congruence. Let c ∈ {1, 2, ...., d}. Let T ∈ N such that T + c < d + 1 .

Let λ i ∈ N, i = 1, 2, ..., T be a sequence checking λ 1 < h c+1 , and for all i ∈ {1, 2, ...., T } ,

λ i ≤ h c+i and if λ i = h c+i , then, λ i-1 = 0. We suppose that L = T i=1 λ i k c+i . Let f ∈ N * f ≤ h c . Let R o = [x, x + L[×[y, y + f r c [. Then, N R o - S R o m ≤ 1 .
This is not the only result that will allow us to refine the increase of D 2 m . Thus we can see in the proofs of Section 2.3 that we know how the rectangles R are filled by the points of E 2 . We then realized that we can increase D 2 m by a way more accurate than that given in the theorem 1.2.5. It is shown by numerical studies which we have done for various different rectangles R and various congruences T (cf chapter 3). Of course, this study was simplified by the theoretical study that shows how the way points E 2 are distributed in the rectangles R (cf chapter 2).

Finally this numerical study and the different lemmas of chapter 2 suggests that the following conjecture is checked.

Conjecture 1.2.8 The following inequalities hold

h s 4 ≤ Sup R N R - S R m ≤ h s O log(log(m)) .
In fact it is even possible that there exists a constant C "such that Sup R N R -S R m ≤ C"h s3 . Then, a study should also be conducted in order to refine this result. We do not it here. This report is already big enough. But it will be the basis when we shall want to complete this study. So we will complete this proof later.

Fibonacci Congruence

By using the theorem 1.2.5, it was proved [START_REF] Blacher R | A Perfect Random Number Generator[END_REF] that in some cases where the h i 's are small enough, one can consider that one has the independence between two successive elements. So we will take an interest in case where the h i 's are the smallest possible. As h a i ≥ 1 and h a d a ≥ 2, the congruence which defines the best independence of E 2 will check h a i = 1 and h a d a = 2. This case, is the case of congruences of Fibonacci already studied by Zaremba : cf [START_REF] Zaremba | Good lattice points, discrepancy and numerical integration[END_REF].

Definition 1.3.1 If T checks h a i = 1 and h a d a = 2 and if T is invertible, we call T congruence of Fibonacci.

Indeed, the following result holds Proposition 1.3.2 If there exists n 0 such that a = f i n0 and m = f i n0+1 where f i n is defined by

f i 1 = f i 2 = 1 and if n ≥ 1, f i n+2 = f i n+1 + f i n , T (x) ≡ ax modulo m is a congruence of Fibonacci.
Proof Because T is invertible, r d = 1 (cf Lemma 2.6.3 ). Moreover, r a d a = 1 (cf lemma 2.1.3). We deduce the result.

Of course, there exists an infinity of Fibonacci congruences.

In this case, a = f i d a +1 and m = f i d a +2 , i.e. n 0 = d a + 1. More generally, the sequences r n and k n are the sequence of Fibonacci except for the last terms. For example if d a = 6:

r a d a -d a = r a 0 = m = 21 , r a d a -(d a -1) = r a 1 = a = 13 , r a 2 = 8 , r a 3 = 5 , r a 4 = 3 , r a d a -1 = r 5 = 2 , r a d a = r a 6 = 1 , r a d a +1 = r a 7 = 0. h a 1 = h a 2 = ...... = h a d a -1 = 1 and h a d a = 2. k a 0 = 0 , k a 1 = 1 = f i 1 , k a 2 = 1 = f i 2 , k a 3 = 2 = f i 3 , k a 4 = 3 = f i 4 , k a 5 = 5 = f i 5 , k a 6 = k a d a = 8 = f i 6 , k a 7 = k a d a +1 = 21 = m = f i 8 . More generally, r a d a -d a = r a 0 = m = f i d a +2 , r a d a -(d a -1) = r a 1 = a = f i d a +1 , r a 2 = f i d a , r a 3 = f i d a -1 ,......., r a d a -2 = 3 , r a d a -1 = 2 , r a d a = 1 , r a d a +1 = 0. h a d a = 2 , h a d a -1 = h a d a -2 = ...... = h a 2 = h a 1 = 1. k a 0 = 0 , k a 1 = 1 = f i 1 , k a 2 = 1 = f i 2 , k a 3 = 2 = f i 3 ,.......,k a d a = f i d a , k a d a +1 = m = f i d a +2 .
These properties are reflected by the following proposition (cf also lemma 2.6.16).

Proposition 1.3.3 We suppose that T is the congruence of Fibonnacci. Then,

r i = f i d a -i+2 .
We confirm by graphs that it is the Fibonaccci congruence which ensures the best independence between two simulated successive numbers. We suppose m=21. If a = 13, we have a Fibonacci congruence : cf figure 1 Now, we can specify the theorem 1.2.5 for the Fibonacci congruence (cf proposition 2.7.8 and lemma 2.7.12, 2.7.7). Proposition 1.3. [START_REF] Bosq | Lois limites et efficacité asymptotique des tests Hilbertiens de diverses lois sous des hypothèses adjacentes[END_REF] We suppose that T is the congruence of Fibonnacci where d ≥ 13. Then, for all rectangle

R = [x, x + L × [y, y + L ′ [ , N R - S R m ≤ 4 log(m) -log(2) log (2) 
.

Unfortunately if the Fibonacci congruence ensures the best independence between two simulated successive numbers, it is also a pseudo-random generator very bad. Indeed, by lemma 2.6.16, we have the following proposition.

Proposition 1.3.5 If T (x) ≡ ax mod m is the congruence of Fibonacci, then T 2 ≡ ±Id where Id(x) = x. Therefore, it can not be used as pseudo-random generator.

On the other hand, it can be used in order to make uniform noises. Indeed, we have seen that if we transform noise y n , n=1,2,....,N, by using the congruential functions of Fibonacci, in most cases, we transform this noise in IID sequences x n = T q (y n ), n= 1,2,....,N, when q and m are correctly chosen according to N : very precisely, x n admits the IID model for correct model (cf [START_REF] Blacher R | A method for Building true random sequences[END_REF]).

In order to prove this, we use the fact that Fibonacci congruences transform intervals into sets well distributed in {0, 1, ...., m -1}. Notations 1.3.6 We suppose that T is the Fibonacci congruence. Let I = [c, c ′ [ , c, c ′ ∈ {0, 1, ...., m-1} and let N(I)=c'-c. Let g n be the permutation of {c, c + 1, ...., c ′ -c} such that T (g 1 ) < T (g 2 ) < T (g 3 ) < ...... < T (g c ′ -c ) .

Because, T 2 = ±Id, T -1 = ±T and T -1 (g 1 ) < T -1 (g 2 ) < ...... < T -1 (g c ′ -c ) or T -1 (g 1 ) > T -1 (g 2 ) > ..... > T -1 (g c ′ -c ).
Since T (I) behaves as independent of I, normally, we should find that T (I) and, therefore T -1 (I), is well distributed in {0, 1, ...., m -1}. As a matter of fact it is indeed the case : for all numerical simulations which we made, one has always obtained, for r=1,2,....,c'-c-1,

T (g r ) m - r N (I) ≤ ϕ(m) N (I) ,
where ϕ(m) << Log(m) : cf [START_REF] Blacher R | A Perfect Random Number Generator[END_REF]. In fact, by numerical simulations which we have done, it seems ϕ(m) is the order of Log(Log(m)). Moreover,

M ax r=0,1,....,N (I)-1 N (I)T -1 (g r ) m -r
seems maximum when I is large enough : c ′c = O(m/2) (cf [START_REF] Blacher R | A Perfect Random Number Generator[END_REF]).

In order to prove this result, we have used simulations. Now with the results of this report we can prove mathematically a result of the same type. Indeed, by proposition 2.7.16, we have the following theorem. Proposition 1.3.7 We suppose that T is the Fibonacci congruence with m ≥ 377. Then, for all r ∈ {1, 2, ...., N (I) -1},

| T (g r ) m - r N (I) | ≤ φ ′ (m) N (I) , ou φ ′ (m) = 4Log(m)-2Log(2) log(2)
.

By using these increases, it has been obtained in [START_REF] Blacher R | A method for Building true random sequences[END_REF] a method in order to obtain a sequence proved IID, what gives a first solution to this search started since many years. For this, it is necessary that the noises y n , n=1,2,....,N, admit for correct model a sequence of random variable Y n , n=1,2,....,N, of which the conditional densities with respect to the uniform discrete measure have Lipschitz coefficients not too large, i.e. the noise y n is not too deterministic.

At last Zaremba showed that we could use the Fibonacci congruences in order to calculate double integrals. He has given [START_REF] Zaremba | Good lattice points, discrepancy and numerical integration[END_REF] an increase of the error in this case.

Chapter 2 Proofs

Introduction to the proofs

We study the set

E 2 = ℓ, T (ℓ) | ℓ ∈ {0, 1, ....., m -1} .

Notations

Remark that we do not use the same notations as in [START_REF] Blacher R | A Perfect Random Number Generator[END_REF] [9] [START_REF] Blacher R | Fibonacci congruences and applications[END_REF] and [START_REF] Blacher R | Fibonacci congruences and applications[END_REF]. Indeed, we suppose here that r 1 = inf (a, ma). As a matter of fact the sequences r n , h n , k n of [START_REF] Blacher R | A Perfect Random Number Generator[END_REF] [9] [START_REF] Blacher R | Fibonacci congruences and applications[END_REF] and [START_REF] Blacher R | Fibonacci congruences and applications[END_REF] are the sequences r a n , h a n , k a n of this report. We recall their definition.

Notations 2.1.1 One denotes by r n the sequence defined by : r 0 = m, r 1 = inf (a, ma) and r n = h n+1 r n+1 + r n+2 the Euclidean division of r n by r n+1 when r n+1 = 0. Moreover, one denotes by d the smallest integer such that r d+1 = 0 (d ≥ 1). One sets r d+2 = 0. Now we define k n for this new sequence r n . The definition remains the same as before, except that we change r 1 .

Notations 2.1.2 One sets k 0 = 0, k 1 = 1 and k n+2 = h n+1 k n+1 + k n if n ≤ d + 1.
Clearly k n is strictly increasing and r n strictly decreasing. Moreover,

h n ≥ 1, r 1 ≤ m/2.
Finally, there is no difference if r 1 ≤ m/2. As a matter of fact the connections between the sequences r a n and r n are clarified by the following lemma.

Lemma 2.1.3 If a < m/2, r a n = r n , h a n = h n and k a n = k n . If a > m/2, r a 0 = r 0 = m, r a 1 = a, r a 2 = r 1 = m -a, h a 1 = 1, h a 2 + 1 = h 1 and for n ≥ 2, r a n+1 = r n , h a n+1 = h n and d a = d + 1. Moreover, k a 0 = k 0 = 0, k a 1 = k 1 = 1, k a 2 = 1, k a 3 = h 1 = k 2 and for n ≥ 2 k a n+1 = k a n . Proof If a < m/2, it is obvious. If a > m/2, r a 0 = r 0 = m, r a 1 = a. Now r a 0 = m = a + (m -a) where m -a < a = r a 1 . Therefore, m = a + (m -a) is the Euclidean division of m by a, i.e. of r a 0 = m by r a 1 = a. Therefore m = a + (m -a) is identical to r a 0 = h a 1 r a 1 + r a 2 . Therefore, h a 1 = 1 and r a 2 = m -a.
On the other hand,

r a 2 = m -a. Therefore, r a 2 = r 1 . Moreover, m = r 0 = h 1 r 1 + r 2 is written r 0 = m = h 1 (m -a) + r 2 = h 1 r 1 + r 2 with h 1 ≥ 2. Therefore, m -r 1 = (h 1 -1)r 1 + r 2 with r 2 < r 1 . Thus it is an Euclidean division. Because r a 1 = h a 2 r a 2 + r a 3 , h a 2 = (h 1 -1) and r a 3 = r 2 .
Because r a 2 = r 1 and r a 3 = r 2 the following Euclidean divisions r a 2 = h a 3 r a 3 + r a 4 and r 1 = h 2 r 2 + r 3 are identical. QED For the sequences k a n and k n ,

k a 0 = 0, k a 1 = 1, k a 2 = h a 1 k a 1 + k a 0 = 1 * 1 + 0 = 1, k a 3 = h a 2 k a 2 + k a 1 = (h 1 -1) * 1 + 1 = h 1 , k a 4 = h a 3 k a 3 + k a 2 = h a 3 h 1 + 1 = h 2 h 1 + 1, k a 5 = h a 4 k a 4 + k a 3 , k 0 = 0, k 1 = 1, k 2 = h 1 k 1 + k 0 = h 1 , k 3 = h 2 k 2 + k 1 = h 2 h 1 + 1, k 4 = h 3 k 3 + k 2 .
And so on. Now we shall need the following notations.

Notations 2.1.4 Let J t = {0, 1, ...., t} and J * t = {1, 2, ...., t}, t ∈ N * . Remark that J * d+1 is the set of definition of h n .

Notations 2.1.5 We suppose that we have an integer c ∈ J * d and an integer f ∈ N * such that f ≤ h c . We denote by a s the number belonging to {a, m -a} such that k c a s = r c (cf lemma 2.2.1). Moreover, in section 2.3, 2.4 and 2.5, we suppose k c a = r c . We denote by M, M + and M f the sets On the other hand, it is easy to understand that the points of ordinates y = mr 2 or y = r 2 have abscissa equal to x = k 2 or x = k 3 .

M = {l ∈ N|al < r c }, M + = {l ∈ N|al ≤ r c }, M f = {l ∈ N|al ≤ f r c }.
Then, the integers k n are the smallest integers ℓ such that the distance of y = ℓa to y=0 or to y=m is smaller or equal to r n . Then, the r n 's are the distances minimal between the ℓa's such that ℓ < k n+1 .

The set M is the set of the ℓ ∈ N such that ℓa < r 1 = a (when c=1). At last,

k 1 a = a = r 1 (k 1 = 1), k 2 a = m -r 2 and k 3 a = r 3 .
We shall prove these properties in the following section 2.2 after having given the plan of the proofs.

Plan of the proofs

In order to prove the announced results, the main part of our work will consist in proving the property fundamental 5-6. This one gives us in a almost exact way (to within about 1 point) the number of points of M f include in intervals of about any length.

In order to obtain this property we prove at first in section 2.2 the general lemmas which we have just expressed.

Then in section 2.3.1, we shall show that the points of M deduct from each other by translations of length k c+n ′ .

Thanks to this result, it will be easy to us to give in section 2.3.2 a unique decomposition of any point X of M with regard to the sequence

h c+n ′ , n ′ ∈ J d+1-c .
Then we can give (in section 2.3.3) an also unique decomposition of the difference Y-X of two points X and Y of M with regard to the same sequence.

With these results we shall calculate in section 2.4 the number of points of M include in intervals of the form [X,Y [when X and Y belong to M Finally, we shall deduct in section 2.5 the number of points of M f contained in intervals [x, x+L [ where x ∈ N and where L is about anything. This result is the fundamental property.

We shall generalize then this property in section 2.6 by studying the conditions for which T is invertible (untill now this condition was not imposed) and we shall obtain the fundamental theorem which will assert us that, for rectangles of height f r c and of about any width, we have the inequality |N R -mS R | < 1 when we transform our results into [0, 1] 2 by homotethy.

Then, we shall give in section 2.7 some mathematical consequences of these theorems.

General properties

We are now going to prove the observations which we have just written above. We shall prove in a meticulous way the first lemma and the beginning of the second one. But as the kind of arguments used here returns constantly and have not major difficulties (those are rather simple as soon as we assimilated the notations). So afterward we shall not rewrite the smallest steps of this kind of approach.

Lemma 2.2.1 Let n ∈ J * d+1 . Then, if a = r 1 , k n a = r n if n odd and therefore k n a ≡ r n .
k n a = mr n if n even and r n = 0 and therefore k n a ≡ -r n . k n a = 0 if r n = 0 and therefore k n a ≡ 0.

If ma = r 1 , then k n a = mr n if n odd and r n = 0 and therefore k n a ≡ -r n . k n a = r n if n even and r n = 0 and therefore k n a ≡ r n . k n a = 0 if r n = 0 and therefore k n a ≡ 0.

Proof Suppose a = r 1 . We prove the lemma by induction.

If n=1, r 1 = k 1 a by definition. If n=2, because m = h 1 r 1 + r 2 and k 2 = h 1 , then, k 2 a ≡ m -r 2 . Now because 0 ≤ m -r 2 < m, (if r 2 = 0 1 ), then, k 2 a = m -r 2 .
Suppose that lemma holds for all integer n ′ ≤ n + 1 such that r n+1 = 0 and suppose n even. Then,

k n+2 a ≡ k n+1 h n+1 a + k n a, (2.1) 
and therefore,

k n+2 a ≡ h n+1 r n+1 + m -r n , (induction)
and therefore,

k n+2 a ≡ m -r n+2 . (2.2) Because 0 ≤ m -r n+2 < m (if r n+2 = 0), k n+2 a = m -r n+2 . QED (if r n+2 = 0, then, obviously k n+2 a = 0).
Suppose n odd and reason by the same way. Then,

k n+2 a ≡ h n+1 (m -r n+1 ) + r n ,
i.e. k n+2 a ≡ r n+2 , and therefore, k n+2 a = r n+2 . QED Suppose at last r 1 = ma.

In this case, because the sequences r n , k n , and h n are identical for congruences T and T ′ ≡ r 1 x + b, on proves easily the result.

Remark that we have used the following reasoning : in order to prove that, for example, k n a = r n , we prove at first, k n a ≡ r n and after 0 ≤ r n < m.

This reasoning returns constanly afterward and has no difficulty. According to what we announced, we shall not specify it any more from now on.

Lemma 2.2.2 Let n ∈ J d+1 , n > 1 and let k ∈ N, such that 0 < k < k n . Then, r n-1 ≤ ka ≤ m -r n-1 .
Proof Suppose a = r 1 and let us prove this lemma by induction.

It holds if n=2. Indeed, remark that h 1 ≥ 2 (because a = r 1 ), and then, {k

∈ N|1 ≤ k < h 1 = k 2 } = ∅. Then, r 1 = a ≤ ka ≤ (h 1 -1)a = m -r 2 -a. Then, r 1 ≤ ka ≤ m -r 2 -r 1 ≤ m -r 1 . QED
Suppose that the lemma holds for all integer n ′ ≤ n such that n > 1 and r n = 0 (that means that r n+1 exists. If r n = 0, the proof is finished).

As a matter of fact, it is enough to prove the lemma for all integer k such that k n ≤ k < k n+1 . Indeed, if k < k n , the induction and the fact that r n is strictly decreasing prove the property.

Then, we can write the Euclidean division of k by k n : k = hk n + ℓ. Then, the definition of k n imposes that h ≤ h n , and that, if

h = h n , then ℓ < k n-1 (if not, one obtains k ≥ k n+1 ). If k c -k > 0, there exists 0 ≤ k ′ = k c -k < k n such that k ′ a < r n-1 . It is impossible because lemma 2.2.2. If k c -k < 0, -k ′ a ≡ -Di, then -k ′ a = m -Di > m -r n-1 . It is impossible because 0 ≤ -k ′ < k n and lemma 2.2.2.
Corollary 2.2.6 We keep the notations of corollary 2.2.5. Let ℓ 1 and ℓ 2 ∈ M such that there

does not exist ℓ ∈ M , ℓ 1 < ℓ < ℓ 2 .
Then,

ℓ 2 -ℓ 1 = k c+1 or ℓ 2 -ℓ 1 = k c + k c+1 . Proof Recall that k c+1 a = m -r c+1 and k c a = r c if r c+1 = 0. If ℓ 1 a ≥ r c+1 , then r c ≥ (ℓ 1 + k c+1 )a ≥ 0, and therefore, ℓ ′ = ℓ 1 + k c+1 ∈ M . If not, r c > ℓ 1 a + r c -r c+1 ≥ 0, and therefore, ℓ" = ℓ 1 + k c + k c+1 ∈ M . Therefore ℓ 2 ≤ max(ℓ ′ , ℓ"). If there exists ℓ ∈ M , ℓ 1 < ℓ ≤ ℓ 2 , ℓ = ℓ ′ , and ℓ = ℓ", or ℓ -ℓ 1 < k c+1 , or ℓ 2 -ℓ < k c+1 . If ℓ -ℓ 1 < k c+1 , m -r c ≥ (ℓ -ℓ 1 )a ≥ r c by lemma 2.2.2. Then, if (ℓ -ℓ 1 )a = ℓa -ℓ 1 a, ℓa -ℓ 1 a ≥ r c and ℓ / ∈ M . If (ℓ -ℓ 1 )a = m + ℓa -ℓ 1 a, ℓa < ℓ 1 a < r c and then, (ℓ -ℓ 1 )a = m + ℓa -ℓ 1 a > m -r c what is a contradiction. If ℓ 2 -ℓ < k c+1 , m -r c ≥ (ℓ 2 -ℓ)a ≥ r c by lemma 2.2.2. Then, if (ℓ 2 -ℓ)a = ℓ 2 a -ℓa, (ℓ 2 -ℓ)a = ℓ 2 a -ℓa < r c what is a contradiction. If (ℓ 2 -ℓ)a = m + ℓ 2 a -ℓa, ℓa > ℓ 2 a and, if ℓ ∈ M , ℓa < r c . Then, (ℓ 2 -ℓ)a = m + ℓ 2 a -ℓa > m -r c , what is a contradiction. Then, ℓ / ∈ M . It is a contradiction.
Therefore ℓ 2 is not different from ℓ ′ or ℓ".

If r c+1 = 0, the proof is identical. 

λ n+2i r n+2i ≤ r n-1 -r n+2k+1 . Proof We have n+k i=n λ n+2i r n+2i ≤ n+k i=n h n+2i r n+2i ≤ n+k i=n [r n+2i-1 -r n+2i+1 ] = r n+2n-1 -r n+2(n+k)+1 = r 3n-1 -r 3n+2k+1 . Then, if n = 1, 2 = 3n -1 ≥ n -1 = 0 and (3n -1) ≥ [n -1] + 2. Then if n ≥ 2, 3n -1 ≥ n + 3 and [3n -1] ≥ [n -1] + 4.
Therefore, for all n such that n + 2 ≤ d + 1,

r n = h n+1 r n+1 + r n+2 ≥ r n+1 + r n+2 ≥ r n+1 .
Therefore,

r n = h n+1 r n+1 + r n+2 ≥ r n+1 + r n+2 ≥ [r n+2 + r n+3 ] + [r n+2 ] ≥ 2r n+2 .
Therefore,

r n-1 -r n+2k+1 ≥ 2r [n-1]+2 -r n+2k+1 ≥ 2r 3n-1 -r n+2k+1 ≥ r 3n-1 ≥ r 3n-1 -r n+2k+1 .

Study of M

Now, we study the points of M, i.e. the points of N such that la ≤ r c . For this study, we assume the following assumptions hold.

Assumptions 2.3.1 We assume that 0 < c < d and k c a = r c (in sections 2.3, 2.4 and 2.5 ). Under these assumptions, for all n ∈ Z such that n + c ∈ J d+1 , we set

K n = k c+n , R n = r c+n and H n = h n+c .
Then, the following lemma is obvious.

Lemma 2.3.1 We have R 0 ≤ m/2, K n a = R n , and K n a ≡ R n if n is even, K n a = m -R n , and K n a ≡ -R n if n is odd, and R n = 0, K n a = 0, and K n a ≡ 0 if R n = 0.
Proof It is enough to apply lemma 2.2.1.

Properties of Translation

Now, look at figure 2.3 : it shows the points of M + in the case where a =24298 and m=199017 when c=1, i.e. R 0 = a. We understand that the points of If we extend the graph towards the right, we would also see, for example, that the points of M ∩ [3K 3 , 4K 3 [, are deduced from the points of {M + \{0}} ∩ [0, K 3 [ by a translation of 3K 3 .

M + ∩ [0, K 2 [ are the points {0, K 0 , K 0 + K 1 , K 0 + 2K 1 , K 0 + 3K 1 , K 0 + 4K 1 },
In this case indeed, this horizontal translation of abscissas is translated by one negative vertical translation of the ordinates and K 0 will play the role of 0 in the previous case.

They are these properties which we study now.

Proposition 2.3.2 Let n ∈ N * such that n + c < d + 1. Let ℓ ∈ [K n , K n+1 [∩N. Then, one can write ℓ = hK n + ℓ 0 with h ∈ N * and ℓ 0 ∈ N, ℓ 0 < K n and h ≤ H n , and if h = H n , then ℓ 0 < K n-1 and if n=1, then h < H 1 . Then, ℓ ∈ M + (resp M) if and only if ℓ 0 ∈ M + \{0} if n is odd, and ℓ 0 ∈ M if n is even.
Proof The writing ℓ = hK n + ℓ 0 is that of the Euclidean division. The associated inequalities are due to the definitions of K n , H n and ℓ.

In particular, if n=1, and

h = H 1 , ℓ = H 1 K 1 + ℓ 0 = K 2 -K 0 + ℓ 0 < K 2 : ℓ 0 < K 0 . Then, by lemma 2.2.2, ℓa ≥ r c-1 > r c and ℓ 0 / ∈ M .
Let ℓ 0 and h defined as in the statement ( ℓ 0 ∈ M + \{0} or ℓ 0 ∈ M ). We prove now that

ℓ 0 + hK n ∈ M + .
Suppose that n is even, i.e. K n a = R n . Then, 0 ≤ ℓ 0 a ≤ R 0 -R n-1 (by corollary 2.2.5). Then, ℓ 0 ∈ M . We deduce 0 ≤ ℓ 0 a+hR n ≤ R 0 , and then 0

≤ (ℓ 0 + hK n )a ≤ R 0 , i.e. ℓ = ℓ 0 + hK n ∈ M + . QED
If n+c is even, one uses the same reasoning. 

Reciprocally, let ℓ ∈ M + ∩ [K n , K n+1 [ : ℓ = ℓ 0 + hK n .
Suppose n even, i.e. K n a = R n . Because R n < R 0 , and n + c ≥ 2 it is easy to understand that R 0 < R 0 + hR n < m. Therefore that (K 0 + hK n )a > R 0 , i.e. K 0 + hK n / ∈ M + , and therefore

ℓ 0 = K 0 .
Because, on the other hand, R n ≤ ℓa ≤ R 0 (by lemma 2.2.2 and by assumption), then,

-(H n -1)R n ≤ ℓa -hR n < R 0 .
If ℓa-hR n < 0, then, (ℓ -hK n )a = m+ℓa-hR n , and therefore, m-R n-1 < (ℓ -hK n )a < m. Now, ℓ -hK n < K n , which is in contradiction with the lemma 2.2.2. Therefore, 0 ≤ ℓa -hR n < R 0 , i.e. ℓ 0 ∈ M . QED

If n is odd the proof is identical.

Then, it remains to prove the equivalence between ℓ ∈ M + and ℓ ∈ M . It is due to the following lemma 2.3.3 which is a direct consquence of corollary 2.2.4.

Lemma 2.3.3 The only point of M + ∩ [0, k d+1 [ such that ℓa = R 0 is the point K 0 . Lemma 2.3.4 We have M ∩ [0, K 2 [= 0, K 0 + K 1 , K 0 + 2K 1 , ........., K 0 + (H 1 -1)K 1 , M ∩ [0, K 1 [= {0}, M + ∩ [0, K 1 [= 0, K 0 , M + ∩ [0, K 2 [= M ∩ [0, K 2 [ ∪ {K 0 }.
Proof It is enough to apply the previous results and corollary 2.2.6.

Writting of points of M

With the previous results, we understand that it is easy to give a writing of elements of M by induction.

Let ℓ ∈ M ∩ [hK T , (h + 1)K T [ where h + 1 ≤ H T . Then, ℓ -hK t ∈ M + by proposition 2.3.2. Finally, we shall come down easily to the elements of M ∩ [0, K 2 [ of which we know the form (cf lemma 2.3.4).

That means that ℓ can be written ℓ = δK 0 + T t=1 g t K t where δ = 0 or δ = 1 and g t ≤ H t . At last, if g t = H t , proposition 2.3.2 shows that ℓ 0 < K t-1 , i.e. g t-1 = 0. Now, we shall prove these results and we shall understand that this writing of ℓ is unique.

Lemma 2.3.5 Let ℓ ∈ M + , ℓ < k d+1 such that there exists T ∈ N * checking c + T ≤ d and let g T ∈ N * , such that ℓ ∈ [g T K T , (g T + 1)K T [∩[0, K T +1 [.
Then, one can write ℓ in the form

ℓ = δK 0 + T t=1 g t K t , with 1) δ = 0 or δ = 1 , 2) g t ≤ H t where t ∈ N * , t ≤ T , 3) If g t = H t , then g t-1 = 0, 4) g 1 < H 1 .
Proof We prove this lemma by recurence. It holds for T=1 and T=2 (cf lemma 2.3.4).

Suppose that it holds for all integer T ′ ≤ T and suppose that c

+ T + 2 ≤ d + 1. Then, if ℓ = ℓ 0 +g T +1 K T +1 means the Euclidean division of ℓ by K T +1 , ℓ 0 ∈ M + (cf proposition 2.3.
2) and it is enough to apply the induction in order to obtain the announced results. Then,

δK 0 + T t=1 g t K t ∈ [0, K T +1 [ .

Proof

The proof is easily done by induction by using definition of sequence K n .

One deduce also easily the following lemma.

Lemma 2.3.7 We keep the notations and assumptions of lemma 2.3.6. Then,

δK 0 + T t=1 g t K t ∈ [g T K T , (g T + 1)K T [∩[0, K T +1 [ . Lemma 2.3.8
The decomposition of ℓ ∈ M + given in lemma 2.3.5 is unique.

Proof In the decomposition of all ℓ ∈ M + given in lemma 2.3.5, g T is determined in a unique way by lemma 2.3.7. Then, we deduce the lemma .

We gave the only writing of any element ℓ ∈ M ∩ [0, k d+1 [. Now we have to generalize this result for all ℓ ∈ M . Proposition 2.3.9 The lemma 2.3.5, 2.3.6, 2.3.7 and 2.3.8 hold again, if we replace the condition

c + T ≤ d by c + T ≤ d + 1. Moreover, if ℓ ∈ [gk d+1 , (g + 1)k d+1 [, g ∈ N, then ℓ ∈ M (resp ℓ ∈ M + ) if and only if ℓ ′ = ℓ -gk d+1 ∈ M (resp ℓ ′ ∈ M + ).
Moreover, ℓ ′ a = ℓa.

Proof It is enough to recall r d+1 = 0, i.e. k d+1 a = 0.

Study of Y-X with X, Y ∈ M

Then, we have a decomposition of the points of M. But, later, when we want to compute the number of theses points belonging to an interval [X, Y [, where X and Y belongs to M, we had to know also a decomposition of Y-X. It is this problem that we study now. This study is based on a simple idea. :

if Y a > Xa, then, (Y -X)a < R 0 and therefore Y -X ∈ M . If not, m -R 0 ≤ m + Y a -Xa < m, that is to say 0 ≤ R 0 + Y a -Xa < R 0 , and therefore, K 0 + (Y -X) ∈ M . Lemma 2.3.10 Let ℓ ∈ N such that ℓ = T i=1 λ i K i , where T ∈ N * and checks c + T ≤ d + 1 and where λ i ∈ N , λ i ≤ H i , λ 1 < H 1 , and if λ i = H i , then λ i-1 = 0.
And let X ∈ M . Then, OR ℓ ∈ M , and, in this case, or

X + ℓ ∈ M or X + ℓ -K 0 ∈ M , OR K 0 + ℓ ∈ M and, in this case, or X + ℓ ∈ M or X + ℓ + K 0 ∈ M . Proof By lemma 2.2.1, we can write ℓa = T i=1 λ i K i a, in the form ℓa ≡ i+c∈2N * , i+c≤T λ i R i - i+c∈2N+1, i+c≤T λ i R i . Then, by lemma 2.2.7, i+c∈2N * , i+c≤T λ i R i = α 1 < R 0 and i+c∈2N+1, i+c≤T λ i R i = α 2 ≤ R 0 with α s ∈ N for s=1,2. Therefore, if α 1 > α 2 , then, ℓa = α 1 -α 2 < R 0 , and therefore ℓ ∈ M . If not, 0 ≤ α 1 -α 2 + R 0 and ℓ + K 0 ∈ M . QED Then, let X ∈ M . If ℓ ∈ M , 0 ≤ ℓa + Xa < 2R 0 ≤ m,
and then or ℓa + Xa < R 0 , and then, X + ℓ ∈ M , or ℓa + Xa ≥ R 0 , and then, X + ℓ -K 0 ∈ M .

If ℓ + K 0 ∈ M , we use the same way.

Lemma 2.3.11 Let X and Y belonging to M + such that X < Y . Let

X = δ ′ K 0 + T i=1 x i K i and Y = δ"K 0 + T i=1 y i K i
be the decompositions of X and Y according to proposition 2.3.9 , i.e. lemma 2.3.

5 if c + T ≤ d (it is possible that x T = 0).
Then, Y-X is written, by a alone way

Y -X = ∆K 0 + T i=1 z i K i , with z i ∈ N, z i ≤ H i , z 1 < H 1 , and if z i = H i , then z i-1 = 0,
and where

∆ = 0 or 1 if Y a ≥ Xa, ∆ = 0 or -1 if Y a < Xa.
Proof If Y a ≥ Xa, then, Y -X ∈ M + , and then, Y -X is decomposed by an alone way according criteria of proposition 2.3.9 (cf also lemma 2.3.8) :

Y -X = δK 0 + T ′ t=1 z t K t . If Y a < Xa, then, K 0 + Y -X ∈ M + , and then, K 0 + Y -X = δK 0 + T ′ t=1 z t K t and then, Y -X = (δ -1)K 0 + T ′ t=1 z t K t . It remains to prove that T ′ ≤ T . If Y -X ∈ M + , then Y -X ≤ Y < K T +1 (cf lemma 2.3.6), and therefore T ′ ≤ T (cf lemma 2.3.7). If K 0 + Y -X ∈ M + , Y -X / ∈ M + and if X = 0, then X ≥ K 0 (cf lemma 2.2.2), and therefore K 0 + Y -X ≤ Y < K T +1 and therefore T ′ ≤ T (cf lemma 2.3.7). At last, if X=0, then, R 0 ≥ Y a -Xa = Y a ≥ 0. Then, R 0 ≥ (Y -X)a = Y a -Xa ≥ 0. Then, Y -X ∈ M + .
Lemma 2.3.12 Let X and Y belonging to M + such that X < Y . Then the following logical equivalences holds

1) Y a ≥ Xa ⇐⇒ Y -X ∈ M + , 2) Y a < Xa ⇐⇒ K 0 + Y -X ∈ M , 3) Y a ≤ Xa ⇐⇒ K 0 + Y -X ∈ M + ,
Proof In the previous proof, we have just proved the direct implications. It remains to prove the reciprocal implications.

They follow from the fact that the two conditions Y -X ∈ M + and K 0 + Y -X ∈ M are incompatible.

It is necessary to complete these properties by the following property.

Let us suppose that we have X belonging to M and ℓ defined as in the lemma 2.3.10 :

ℓ = T i=1 λ i K i .
Then, let Y ′ ∈ M defined also by lemma 2.3.10 : Y ′ = X + ℓ ± δK 0 with δ = 0 or 1. Then, let us write Y'-X according to lemma 2.3.11 :

Y ′ -X = ∆K 0 + T i=1 z i K i .
It remains to be proved that λ i = z i for i=1,2,...,T. It is what we do in the following lemma.

Lemma 2.3.13 Let X ∈ M . Let ℓ ∈ N defined as in lemma 2.3.10 : ℓ = T i=1 λ i K i . If ℓ ∈ M , we denote by Y' that of the two numbers X + ℓ and X + ℓ -K 0 belonging to M (there is an only one by corollary 2.2.6 ).

If K 0 + ℓ ∈ M , (what is incompatible with ℓ ∈ M ), then Y' is that of the two numbers X + ℓ and X + ℓ + K 0 belonging to M (there is an only one by corollary 2.2.6).

With theses notations , the decomposition of Y'-X according to lemma 2.3.11 is

Y ′ -X = ∆K 0 + T i=1 λ i K i .
Proof Assume ℓ ∈ M . If Y ′ = X +ℓ, then by our assumption Y ′ ∈ M and Y ′ -X ∈ M . Therefore Y ′ a ≥ Xa (cf lemma 2.3.12), and therefore, Y ′ -X = δK 0 + T i=1 µ i K i by an only way by lemma 2.3.11 : because ℓ = Y ′ -X, δ = 0 and λ i = µ i .

The other cases are proved by the same way.

Both lemmas which we prove now will be useful later when we shall need a recurrence about T about the writing of Y-X. 

∈ M + ∩ [0, K T +1 [, such that X < Y .
Then, according proposition 2.3.2, there exists X' and

Y ′ ∈ M + ∩ [0, K T [ such that X = X ′ + x T K T , Y = Y ′ + y T K T (
cf proposition 2.3.9 ) and x T ≤ y T 2 . We assume y T ≥ 1 and X ′ = Y ′ . We denote by Y " = Y ′ + K T (by proposition 2.3.2 and lemma 2.3.3, Y " ∈ M ).

Let

∆K 0 + T -1 i=1 z i K i be the decomposition according lemma 2.3.11 of Y'-X' if X ′ < Y ′ and of Y " -X ′ if not.
Then, the decomposition of Y-X according to lemma 2.3.11 is

Y -X = ∆K 0 + T i=1 z i K i , with z T = y T -x T if X ′ < Y ′ , and z T = y T -x T -1 if not. Proof Let us assume X ′ < Y ′ . Then, if Xa ≤ Y a, Y -X ∈ M + by lemma 2.3.12. Therefore Y ′ -X ′ ∈ M + by proposition 2.3.2. Therefore, Y ′ -X ′ = δK 0 + T -1 i=1 z i K i by lemma 2.3.5, proposition 2.3.9. Therefore, Y -X = δK 0 + T -1 i=1 z i K i + (y T -x T )K T . QED If Y a < Xa, then K 0 + Y -X ∈ M by lemma 2.3.12. Therefore K 0 + Y ′ -X ′ ∈ M + by proposition 2.3.2. Then, (because Y ′ = X ′ ), if n is odd, it is easy to understand that K 0 + Y ′ -X ′ ∈ M by lemma 2.3.3. If n is even, by proposition 2.3.2, K 0 + Y ′ -X ′ ∈ M . Then, in all the cases, K 0 + Y ′ -X ′ ∈ M . Then, K 0 + Y ′ -X ′ = δK 0 + T -1
i=1 z i K i by lemma 2.3.5, proposition 2.3.9.

2 By proposition 2.3.9, if

x T > y T , X -Y = X ′ -Y ′ + (x T -y T )K T ≥ -K T -1 + K T > 0, what is a contradiction 2.

Number of points of M in the intervals.

We keep the previous notations and we suppose again that assumptions 2.3.1 hold.

We shall calculate at first the number of points of M belonging to intervals in the form [0,X[, X ∈ M .

Look at again figure 2.3. We know aleready the numbers of points of M belonging to intervals [0, K 1 [ and [0, K 2 [ : cf lemma 2.3.4.

Then, we understand that it is easy from proposition 2.3.2 to calculate the numbers of points belonging to [0, K 3 [ : It will be the numbers of points belonging to [0,

K 2 [, [K 2 , 2K 2 [, ......., [(H 2 -1)K 2 , H 2 K 2 [ and [H 2 K 2 , K 3 [.
Now the first intervals contain the same number of points because they are deduced from each other by translation (proposition 2.3.2) and the last one contains the same number as [0, K 1 [ (proposition 2.3.2), and therefore

card [0, K 3 [∩M = H 2 card [0, K 2 [∩M + card [0, K 1 [∩M .
They are these simple properties that we prove now. We define the sequence

{Q c n }, n ∈ N, by Q c 0 = 0, Q c 1 = 1 and Q c n+1 = Q c n h n+c + Q c n-1 when n ∈ N * and n + c ≤ d + 1.
In order to simplify, in this section, we simplify

Q c n by Q n . Lemma 2.4.2 Let p ∈ N * such that c + p ≤ d + 1. Let h ∈ N * , h < H p .
Then the following equalities holds :

[hK p , (h + 1)K p [ = [0, K p [ , [H p K p , K p+1 [ = [0, K p-1 [ , if p ≥ 2 .
Proof It is enough to use proposition 2.3.2 by remarking that card [0,

K p [∩M = card [0, K p [∩{M + \ {0}} . Lemma 2.4.3 Let p ∈ N * such that p + c ≤ d + 2. Then, [0, K p [ = Q p .
Proof It is enough to apply lemma 2.3.4 and, by inductive way, the equality quoted at the beginning of this section for p=3, as its proof.

Lemma 2.4.4 Let X ∈ M and Y = δK 0 + T i=1 g i K i be the decomposition of X according proposition 2.3.9. Then, [0,

X[ = T i=1 g i Q i .
Proof We prove this lemma by induction on T. It holds for T=0 and T=1 (cf lemma 2.3.4).

Then, it is enough to apply a simple induction. Suppose that this lemma holds for all 

T ′ ≤ T -1. Then, L ′ = T -1 i=1 g i K i < K T by
+ K T [ = Q T . Then, [0, g T K T [ = g T Q T . Now, by proposition 2.3.2 there exists a bijection beetwen [g T K T , g T K T + x[∩M and [0, x[∩M or [0, x[∩{M + \ {0}} when g T K T + x < K T +1 and x > K 0 . Then, because card [0, K p [∩M = card [0, K p [∩{M + \ {0}} , [g T K T , g T K T + L ′ [[ = [0, L ′ [ = T -1 i=1 g i Q i . Then, [0, T i=1 g i K i [ = T -1 i=1 g i Q i + g T Q T = T i=1 g i Q i . Lemma 2.4.5 Let T ∈ N * , c+T ≤ d+1, and let Z ∈ [0, K T +1 [∩M such that Z +K T ∈ [0, K T +1 [. Then, [Z, Z + K T [ = Q T .
Proof It is easy to understand (thanks to proposition 2.3.2) that Z + K T ∈ M , and therefore, The lemma which we prove now will be useful in order to prove proposition 2.4.7.

Z + K T is written Z + K T = δK 0 + T i=1 λ i K i + K T ,
Lemma 2.4.6 Let T ∈ N * , T ≤ d + 1. Let ℓ ′ and ℓ" ∈ M + ∩ [0, K T + K 0 ]. Let ℓ ′ = δ ′ K 0 + T i=1 λ i K i and ℓ" = δ"K 0 + T i=1 µ i K i the decompositions of ℓ ′ and ℓ" according 2.3.9. Assume that ℓ ′ + ℓ" = K T + K 0 .
Then,

T i=1 (λ i + µ i )Q i = Q T .
Proof At first, we prove this lemma when ℓ ′ (or ℓ")

∈ [K T , K T + K 0 ].
It is easy to undersand that K T or K T + K 0 ∈ M and that [K T , K T + K 0 ] contains an only point of M (Cf corollary 2.2.6) : ℓ ′ = K T + K 0 for example. In this case, ℓ" = 0. Then, λ T = 1, λ i = 0 if i < T and µ j = 0 If ℓ ′ = K T , ℓ" = K 0 and λ T = 1, λ i = 0 if i < T and µ j = 0 for j=1,2,....,T. QED Now, let us prove the rest of the lemma by induction. Thanks to lemma 2.3.4, one understand easily that it holds for T=1 and T=2.

Let us suppose that it holds for all integer T ′ ≤ T when T > 1.

Let L' and

L" ∈ M + such that L ′ + L" = K T +1 + K 0 and L ′ < K T +1 and L" < K T +1 . Let L ′ = δ ′ K 0 + T i=1 λ i K i and L" = δ"K 0 + T i=1
µ i K i be the decompositions of L' and L" according proposition 2.3.9.

Let

ℓ ′ = δ ′ K 0 + T -1 i=1 λ i K i and ℓ" = δ"K 0 + T -1 i=1 µ i K i .
Then, ℓ ′ and ℓ" ∈ [0, K T [∩M + (cf proposition 2.3.2 and lemma 2.3.5), and therefore, ℓ ′ + ℓ" -K 0 < 2K T .

We deduce easily that or λ T + µ T = H T -1, and therefore ℓ ′ + ℓ" -

K 0 = K T + K T -1 , or λ T + µ T = H T , and therefore ℓ ′ + ℓ" -K 0 = K T -1 . If λ T + µ T = H T -1, and ℓ ′ + ℓ" -K 0 = K T + K T -1 , then, OR λ T -1 = 0 OR µ T -1 = 0. Indeed, if not, we have ℓ ′ + ℓ" -K 0 < K T + K T -1 . If λ T -1 = 0, for example, we set ℓ ′ 1 = ℓ ′ -K T -1 . Then, if λ T -1 = 1, by proposition 2.3.2, ℓ ′ 1 ∈ M + . Then, if λ T -1 = 1, by proposition 2.3.2, ℓ ′ 2 = ℓ ′ -λ T -1 K T -1 ∈ M + \ {0} or ℓ ′ 2 ∈ M . Then, by proposition 2.3.2, ℓ ′ 1 = ℓ ′ 2 + (λ T -1 -1)K T -1 ∈ M + . Now, ℓ ′ 1 + ℓ" -K 0 = K T .
Then, the induction allows to write that

T -1 i=1 (λ i + µ i )Q i -Q T -1 = Q T , and, therefore, T i=1 (λ i + µ i )Q i = Q T +1 . QED If λ T + µ T = H T and ℓ ′ + ℓ" -K 0 = K T -1 , OR ℓ ′ = K T -1 (or ℓ" = K T -1 ) OR ℓ ′ < K T -1 and ℓ" < K T -1 . If ℓ ′ = K T -1 , ℓ" = K 0 . Then, λ T -1 = 1, λ i = 0 if i < T -1 and µ j = 0 if j ≤ T -1. Then, T i=1 (λ i + µ i )Q i = Q T +1 . If ℓ ′ < K T -1 and ℓ" < K T -1
, one can apply the induction. Then,

T -1 i=1 (λ i + µ i )Q i = Q T -1 . Then, T i=1 (λ i + µ i )Q i = Q T +1 .
We are then able to prove a very important theorem for the continuation of our study. We see that it will allow us a detailed knowledge of the distribution of points of M

Proposition 2.4.7 Let X ∈ M and Y ∈ M such that Y > X. Let Y -X = ∆K 0 + T ′ i=1 z i K i the decomposition of Y-X according lemma 2.3.11. Then, [X, Y [ = T ′ i=1 z i Q i . Proof Let X = δ ′ K 0 + T i=1 x i K i and Y = δ"K 0 + T i=1 y i K i the
decompositions of X and Y according proposition 2.3.9. Then, we prove the proposition by induction on T.

Remark that T ′ ≤ T (lemma 2.3.11) and T ≥ 1 (cf corollary 2.2.6).

Then, the proposition holds for T=1 (cf lemma 2.3.4).

Then, let us assume T ∈ N * , T ≤ dc and that the proposition holds for all integer

T ′ ≤ T . Let X = δ ′ K 0 + T +1 i=1 x i K i ∈ M and Y = δ"K 0 + T +1 i=1 y i K i ∈ M . Let X ′ , Y ′ , Y " defined by X ′ = X -x T +1 K T +1 , Y ′ = Y -y T +1 K T +1 , Y " = Y ′ + K T +1 . Then, X', Y ′ ∈ [0, K T +1 [∩M + (cf proposition 2.3.2) and Y " ∈ M (cf proposition 2.3.2).
Let us assume Y'=X'. Then, by lemma 2.4.5, the proposition is almost obvious.

Let us assume X

′ < Y ′ . Let Y ′ -X ′ = ∆K 0 + T i=1 z i K i the decomposition of Y'-X' according lemma 2.3.11. Then, lemma 2.3.14 allows to write Y -X = ∆K 0 + T i=1 z i K i + (y T +1 -x T +1 )K T +1 . Now, [X, Y [ = [X ′ , Y ′ [ + [Y ′ , Y [ -[X ′ , X[, [X ′ , Y ′ [ = T i=1 z i Q i (by induction), [Y ′ , Y [ = y T +1 Q T +1 (by lemma 2.4.5) , [X ′ , X[ = x T +1 Q T +1 (by lemma 2.4.5). QED Let us assume Y ′ < X ′ . In this case, Y ′ < X ′ < Y " ≤ Y . If, X ′ a < Y "a, Y " -X ′ ∈ M . Then, by corollary 2.3.16, K 0 + X ′ -Y ′ ∈ M . Therefore, K 0 + X ′ -Y ′ and Y"-X' check the assumptions of lemma 2.4.6. Therefore, if Y " -X ′ = δK 0 + T i=1 z" i K i , and K 0 + X ′ -Y ′ = δ ′ K 0 + T i=1 z ′ i K i according proposition 2.3.9, lemma 2.3.11, then, T i=1 (z" i + z ′ i )Q i = Q T +1 by lemma 2.4.6. Now, Y " -X ′ = δK 0 + T i=1 z" i K i is
also the writing of Y " -X ′ according lemma 2.3.11 because X ′ a < Y "a and because this writing according lemma 2.3.11 is unique.

Then, by lemma 2.3.14,

Y -X = ∆K 0 + T i=1 z i K i + (y T +1 -x T +1 -1)K T +1 , where z" i = z i . Moreover, [Y ′ , X ′ [ = T i=1 z ′ i Q i by induction and [Y ′ , Y [ = y T +1 Q T +1 by lemma 2.4.5. Then, the equality [X, Y [ = [Y ′ , Y [ -[Y ′ , X ′ [ -[X ′ , X[ allows to conclude that [X, Y [ = T i=1 z i Q i . QED If Y "a < X ′ a, K 0 + Y " -X ′ ∈ M . Then, by corollary 2.3.16, X ′ -Y ′ ∈ M . Therefore, by lemma 2.3.11, Y "-X = ∆K 0 + T i=1 z" i K i with ∆ = 0 or -1, i.e., K 0 +Y "-X = δK 0 + T i=1 z" i K i with δ = 0 or 1.
Moreover, Y "a < X ′ a. Then, by lemma 2.3.15, Y ′ a < X ′ a. Then, by lemma 2.3.11,

X ′ -Y ′ = δ ′ K 0 + T i=1 z ′ i K i with δ ′ = 0 or 1. Now, X ′ -Y ′ and K 0 + Y " -X' check the assumptions of lemma 2.4.6. Moreover, X',Y', Y " ∈ M . Then, T i=1 (z" i + z ′ i )Q i = Q T +1 by lemma 2.4.6.
Now, by lemma 2.3.14,

Y -X = ∆K 0 + T i=1 z i K i + (y T +1 -x T +1 -1)K T +1 , with z" i = z i . Now, [Y ′ , X ′ [ = T i=1 z ′ i Q i (by induction) and [Y ′ , Y [ = y T +1 Q T +1 by lemma 2.4.5. Then, the equality [X, Y [ = [Y ′ , Y [ -[Y ′ , X ′ [ -[X ′ , X[ allows to conclude that [X, Y [ = T i=1 z i Q i . QED At last suppose X ′ a = Y "a. Now, T + c ≤ d. Then, T + c + 1 ≤ d + 1. Now, X', Y " < K T +1 ≤ K d+1 . Then, by corollary 2.2.4, Y " = X ′ . But X ′ < K T and K T ≤ Y ". It is impossible.

Computation of the number of points of M f contained in intervals

We keep the notations of section 2.3 and 2.4 (in particular, we suppose again that assumptions 2.3.1 hold).

One generalizes very easily the previous results at the case of M f by remarking that M f = {M } ∪ {M + K 0 } ∪ {M + 2K 0 } ∪ ................. ∪ {M + (f -1)K 0 }. This is reflected in the two following lemma.

Lemma 2.5.1 The points ℓ f ∈ M f such that tR 0 ≤ ℓ f a < (t + 1)R 0 , t ∈ N, t + 1 ≤ f ≤ H 0 , are the points of the form ℓ f = ℓ + tK 0 , ℓ ∈ M . Proof It almost obvious. Lemma 2.5.2 Let X, Y ∈ M , X < Y and let X -Y = ∆K 0 + T i=1 z i K i be the decomposition of Y-X according lemma 2.3.11. Then card [X, Y [∩M f = f T i=1 z i Q i . Proof Let ℓ f ∈ M f . Let X 1 ∈ M , X ≤ X 1 < Y . Then, ℓ f = X 1 + tK 0 ∈ M f according lemma 2.5.1. Now, by corollary 2.2.6, Y -X 1 ≥ K 1 . Then, X 1 + tK 0 ≤ X 1 + (H 0 -1)K 0 = X 1 + K 1 - K -1 -K 0 < X 1 + K 1 ≤ Y . Then, ℓ f < Y . Then, [X, Y [∩M f = {ℓ + tK 0 |ℓ ∈ M, t ≤ H 0 -1}.
By using proposition 2.4.7, the proof is almost immediate. Now we can prove the fundamental proposition. We understand that, for an integer L, which is almost anything. We know almost exactly the number of points of M f contained in any interval of length L. This result gives us a remarkable knowledge of the distribution of points of E 2 . If not, R 0 = r 1 , R 1 = r 2 and then, because r 1 ≤ m/2, h 0 ≥ 2 and then,

Fundamental Proposition 2.5.3 Let L ∈ N such that L = T i=1 λ i K i with λ i ≤ H i , λ 1 < H 1 , and if λ i = H i , then, λ i-1 = 0.
r 1 + r 2 ≤ m -r 1 . Therefore, (X + L + K 1 )a ≥ m -R 0 -R 1 ≥ R 0 . Now, Y=X+L, Y ′ 1 = Y + K 1 . It means Y ′ 1 / ∈ M . Then, L ∈ M
Now, by lemma 2.3.13, Y'-X is written by an only way Y -

X = K 0 + T i=1 λ i K i according lemma 2.3.11. Then, [X, Y [ = f Q according proposition 2.4.7. Moreover, because y ∈]Y ′ 1 , Y ′ 1 + K 0 [, [Y ′ 1 , y[ = 1. Moreover, with the notations of lemma 2.5.4 with x = α, because s ≥ K 1 = H 0 K 0 + K -1 , t ≥ f , and then, [X, x[ = f . Now, by lemma 2.5.2, [Y, Y ′ 1 [ = f . Then, [x, y[ = [X, Y [ + [Y, Y ′ 1 [ + [Y ′ 1 , y[ -[X, x[ = [X, Y [ = f Q + f + 1 -f = f Q + 1. QED Now we suppose Y ′ = Y + K 0 . Therefore K 0 + L ∈ M .
Now, by lemma 2.3.13, Y'-X is written by an only way

Y ′ -X = K 0 + T i=1 λ i K i according lemma 2.3.11. Then, [X, Y ′ [ = f Q according proposition 2.4.7. If x=X, then, [y, Y ′ [ = 0 or 1 by lemma 2.5.1. Therefore, [x, y[ = [X, Y ′ [ -[y, Y ′ [ = f Q or fQ-1 by using proposition 2.4.7. If X < x < X + K 0 , then, [y, Y ′ [ = 0 by lemma 2.5.1. Moreover, [X, x[ = 1 by lemma 2.5.1. Therefore, [x, y[ = [X, Y ′ [ -[X, x[ -[y, Y ′ [ = f Q -1. If X + K 0 ≤ x, then, s < K 1 + K 0 and Y ′ 1 -Y ′ ≥ K 1 by corollary 2.2.6. Then, Y ′ ≤ y < Y ′ 1 . Then, if x ∈ V X t , y ∈ V Y ′ t-1 . Therefore [Y ′ , y[ = [X, x[ -1. Therefore, [x, y[ = [X, Y ′ [ -[X, x[ + [Y ′ , y[ = f Q -1. Therefore, [x, y[ = f Q -1.

Now we suppose Y

′ = Y -K 0 . Therefore L ∈ M . Now, by lemma 2.3.13, Y'-X is written by an only way Y ′ -X = -K 0 + T i=1 λ i K i according lemma 2.3.11. Then, [X, Y ′ [ = f Q according proposition 2.4.7. If y ∈ [Y, Y ′ 1 ], then if x ∈ V X t , y ∈ V Y ′ t+1 . Then, [x, X[ + 1 = [Y ′ , y[. Now, [x, y[ = [X, Y ′ [ -[x, X[ + [Y ′ , y[ = f Q + 1. Then, let us suppose y ≥ Y ′ 1 . Now, it is impossible that Y ′ 1 -Y ′ < X 1 -X. Indeed, in this case, by corollary 2.2.6, Y ′ 1 -Y ′ = K 1 and X 1 -X = K 1 + K 0 . Now, as previously , Xa < R 1 . Indeed, X 1 a ≡ Xa + K 1 a + K 0 a = Xa -R 1 + R 0 < R 0 . Moreover, Xa -R 1 + R 0 < 2R 0 < m because m/2 > r 1 ≥ R 0 ≥ R 1 . Then, X 1 a = Xa -R 1 + R 0 < R 0 . Then, Xa < R 1 and La < R 0 . Then, Xa+La-R 0 -R 1 < 0. Then, Y ′ 1 a = (X + L -K 0 + K 1 )a = m + Xa + La -R 0 -R 1 < m. Moreover, m + Xa + La -R 0 -R 1 > m -R 0 -R 1 ≥ m -r 1 -r 2 ≥ r 1 because h 1 ≥ 2. Then, Y ′ 1 a > r 1 ≥ R 0 . Therefore Y ′ 1 / ∈ M . Now, if y ≥ Y ′ 1 and if Y ′ 1 -Y ′ > X 1 -X, then Y ′ 1 -Y ′ = K 1 + K 0 and X 1 -X = K 1 . Then, x -X < K 1 . Then, y = Y + (x -X) = Y ′ + K 0 + (x -X) < Y ′ + K 0 + K 1 = Y ′ 1 .
It is impossible. Then, the theorem is proved.

≥ Y ′ 1 , Y ′ 1 -Y ′ = X 1 -X. Then, if y > Y ′ 1 , y ∈]Y ′ 1 , Y ′ 1 +K 0 [ and x ∈]X 1 -K 0 , X 1 [. Then, [X, x[ = f by lemma 2.5.1, [Y ′ , Y ′ 1 [ = f by lemma 2.5.2 and [Y ′ 1 , y[ = 1 by lemma 2.5.1. Therefore, [x, y[ = [X, Y ′ [ -[X, x[ + [Y ′ , Y ′ 1 [ + [Y ′ 1 , y[ = f Q + 1. QED 0 

Generalization

Now that proposition 2.5.3 is proved, one can easily obtain the announced results. Remark that up to now, we have not assumed that a is invertible. Then, we shall study at first criteria in order that T is invertible.

For this study, we assume the following assumptions hold.

Assumptions 2.6.1 We assume that the assumptions 2.3.1 except that k c a = r c (except in proposition 2.6.10).

Conditions in order that T is invertible

Lemma 2.6.1 We have k d+1 a = r d+1 = 0. But r o d o -1 = h o d o r o d o and r o d-1 = k 2 = h 1 k 1 + k 0 = h 1 k 1 = h 1 r o d . Then, h o d = h 1 . Moreover, r o d+1 = k 0 = 0.
Now one can reverse the roles of T and T -1 . Therefore, by the previous results,

r n = r oo n = k o d o +1-n = k o d+1
-n for n=0,1,....,d+1. Then, with n'=d+1-n, r d+1-n ′ = k o n ′ for n'=0,1,....,d+1.

Connection with the continued fractions

It is remarkable that the sequences r n , k n and h n which are used in our study are those of the development of m/a in continued fractions : cf [START_REF] Valiron | Théorie des fonctions[END_REF] when a ≤ m/2. Then, we recall now lemma 2.1.3. The following proposition allows to complete this connection when a > m/2.

Proposition 2.6.7 Let r a 0 = m, r a 1 = a and let r a n = h a n+1 r a n+1 + r a n+2 be the Euclidean division of r a n by r a n+1 . Then, if a > m/2, we have

h a 1 = 1, h a 2 + h a 1 = h 1 , h a n+1 = h n if n ≥ 2, r a 1 = a, r a 2 = m -a and r a n+1 = r n if n ≥ 1.
Corollary 2.6.8 The integer a is invertible in Z/mZ if and only if Inf {r a n |r a n > 0} = 1.

Proof This proof is done without difficulty.

Generalization of the fundamental proposition

For this generalization, we proceed by steps : We first show that any rectangle [0, m[ 2 , height f r c , and width L, contains Q or Q+1 points of E 2 . Then, thanks to a simple bijection, we generalize easily to the case k c a = mr c .

Definition 2.6.9 Let R o be a rectangle of

R 2 + : R o = [x, x + L[×[y, y + L ′ [. We will call the quotient rectangle resulting from R o the subset R o ⊂ [0, m[ 2 : R o = (x ′ , y ′ ) ∈ [0, m[ 2 ∃(x, y) ∈ R o : x ′ -x ≡ y ′ -y ≡ 0 mod m . Proposition 2.6.10 Let R o be a quotient rectangle resulting from R o when R o = [x, x+L[×[y, y+ f r c [ with (x, y) ∈ N 2 , L = T i=1 λ i K i , Q = T i=1 λ i Q i and f ∈ N * , f ≤ h c according the criteria of proposition 2.5.3.
We assume k c a = r c and that T is invertible :

T (x) ≡ ax + b modulo m. Then, card(R o ∩ E 2 ) = f Q or f Q + 1 if L ∈ M , card(R o ∩ E 2 ) = f Q or f Q -1 if k c + L ∈ M .
Proof Because T is invertible, there exists an alone x" ∈ [0, m[ such that ax" = axy + b. Then, let φ be the function φ : R o ∩ E 2 → N 2 , defined by φ(x 1 , y 1 ) = x" + x 1x.

Because

ax 1 + b ≡ y 1 , a(x" + x 1 -x) ≡ ax" + ax 1 -ax ≡ ax -y + b + (y 1 -b) -ax = y 1 -y. Then, a(x" + x 1 -x) = y 1 -y if y ≤ y 1 < y + f r c and 0 ≤ a(x" + x 1 -x) < f r c . Then, it is obvious that φ(R o ∩ E 2 ) ⊂ [x", x" + L[ : φ(R o ∩ E 2 ) ⊂ [x", x" + L[∩M f . Now, φ is an injection of R o ∩E 2 in [x", x"+L[∩M f : φ(x 1 , y 1 ) = φ(x ′ 1 , y ′ 1 ) if (x 1 , y 1 ) = (x ′ 1 , y ′ 1 ). Indeed, if x 1 = x ′ 1 , it is obvious. If x 1 = x ′ 1 , then, y 1 = T (x 1 ) = T (x ′ 1 ) = y ′ 1 . Therefore, (x 1 , y 1 ) = (x ′ 1 , y ′ 1 )
Moreover, it is obvious that φ is a surjection. Therefore, it is a bijection. Then, it is enough to use fundamental proposition 2.5.3.

: δ ′ ξ = 0. Therefore, if ξa + b > m/2, then m ≤ δ ξ m + m -ξa -b = m + m -ξa -b = δ ′ ξ m + m -ξa + b : therefore δ ′ ξ = 1. Therefore, if ξa + b = 0, m > δ ξ m + m -ξa -b = m = δ ′ ξ m + m -ξa + b = m : δ ′ ξ = 0. Therefore, if 0 ≤ ξa + b < m/2, δ ′ ξ = 0. Therefore, if ξa + b > m/2, then δ ′ ξ = 1. Let φ ∈ {0, 1, ...., m -1}. We set φ θ = φ if φ ≤ m/2 and φ θ = φ -m if φ > m/2 : φ θ ≡ φ and -m/2 < φ θ < m/2. Therefore, if y"=m-y and m/2 < y < m ≤ y + f r c < 3m/2, [x, x + L[×[y, y + f r c [ ∩ E ′ 2 = ξ|x ≤ ξ < x + L : y ≤ δ ξ m + m -ξa -b < y + f r c = ξ|x ≤ ξ < x + L : y ≤ δ ′ ξ m + m -ξa + b < y + f r c = ξ|x ≤ ξ < x + L : ξa + b ≤ δ ′ ξ m + m -y , δ ′ ξ m + m -y -f r c < ξa + b = ξ|x ≤ ξ < x + L : δ ′ ξ m + m -y -f r c < ξa + b ≤ δ ′ ξ m + m -y = ξ|x ≤ ξ < x + L : m -y -f r c < ξa + b -δ ′ ξ m ≤ m -y = ξ|x ≤ ξ < x + L : y" -f r c < ξa + b -δ ′ ξ m ≤ y" = ξ|x ≤ ξ < x + L : y" -f r c < ξa + b ≤ y", δ ′ ξ = 0 ∪ ξ|x ≤ ξ < x + L : y" -f r c < ξa + b -m ≤ y", δ ′ ξ = 1 = ξ| y"-f r c < ξa + b ≤ y", 0 ≤ ξa + b < m/2 ∪ ξ| y"-f r c < ξa + b-m ≤ y", ξa + b > m/2 = ξ| 0 ≤ ξa + b ≤ y", 0 ≤ ξa + b < m/2 ∪ ξ| y" -f r c < ξa + b -m < 0, ξa + b > m/2 = ξ|x ≤ ξ < x + L : y" -f r c < ξa + b θ ≤ y" = [x, x + L[×[y" -f r c + 1, y" + 1[ ∩ E 2 = [x, x + L[×[m -y -f r c + 1, m -y + 1[ ∩ E 2 . Therefore, card [x, x + L[×[y, y + f r c [ ∩ E ′ 2 = card R o ∩ E ′ 2 = card R 1 ∩ E 2 = card [x, x + L[×[m -y -f r c + 1, m -y + 1[ ∩ E 2 . Let M ′ = {ℓ ∈ N|ℓa ′ ≤ r c } when a'=m-a. Then, card(R o ∩ E ′ 2 ) = f Q or fQ+1 if L ∈ M ′ , card(R o ∩ E ′ 2 ) = f Q or fQ-1 if k c + L ∈ M ′ . QED Then, N R o - S R o m ≤ 1 .
Proof For example, assume that

R o = [x, x + L ′ [×[y, y + f ′ r c ′ [. If c ′ = 0 or c ′ = d, it is obvious because r c ′ = m or k c ′ +1 = m (L'=m), and because, T is invertible, we have N R o = S R o m .
Then, let us suppose c ′ ∈ {1, 2, ...., d-1} and

L ′ ∈ M . Then, one can write card(R o ∩E 2 ) = f ′ Q ′ or card(R o ∩ E 2 ) = f ′ Q ′ + 1
with the same notations as in propositions 2.6.10 and 2.6.11.

For example, let us suppose

S R o < mf ′ Q ′ . Then, all the rectangles R X = [x, x + L ′ [×[0, f ′ r c ′ [ check S R X < mf ′ Q ′ .
Therefore, these rectangles have an empirical density strictly greater than 1/m 2 : the empirical probability is N R X /m and the empirical density is

N R X /m S R X > (f ′ Q ′ +δ)/m mf ′ Q ′ ≥ 1/m 2 where δ = 0 or 1. Therefore the rectangle R" = [0, Km[×[0, f ′ r c ′ [ -
where Km is a multiple of L'-has an empirical density stricly larger than 1/m 2 . Therefore, its empirical probability3 is strictly greater than Kf r c /m. Now, because T defines a bijection of {0,

..., m -1} → {0, 1, 2, 3, ......, m -1}, then card({[0, m[×[0, f ′ r c ′ [} ∩ E 2 ) = f ′ r c ′ . Then the empirical probability of [0, Km[×[0, f ′ r c ′ [ is Kf r c /m 2 . Therefore, it is a contradiction. Therefore S R o m ≥ f ′ Q ′ . 1, 2, 3, ... 
We prove by the same way that S R o m ≤ f ′ Q ′ + 1 and all the other cases.

Proposition 2.6.15 Let R o be any quotient rectangle in the form described in propositions 2.6.10 or 2.6.11 or 2.6.12 with card(

R o ∩ E 2 ) = f Q or card(R o ∩ E 2 ) = f Q + ∆ where ∆ = ±1. Then, f Q ≤ S R o m ≤ f Q + 1 if ∆ = 1 , f Q -1 ≤ S R o m ≤ f Q if ∆ = -1 .
Proof It is enough to use the proof of theorem 2.6.14.

Fibonacci congruences

We give some complementary results to the results of section 2.6. 

Mathematical implications

In this section, we have some implications of the fundamental theorem.

From now on, we assume from now on the following hypothesis.

Assumptions 2.7.1 We assume from now that T is invertible

We imposed in rectangles R o that L is defined in a precise way. We'll see from now on how we return to the general case : our first lemma give the writing of any integer based on the previous criteria. 

∈ Z such that λ 1 < h c+1 , λ i ≤ h c+i , and if λ i = h c+i , then, λ i-1 = 0 and -k c ≤ ǫ < k c+1 checking L = T i=1 λ i k c+i + ǫ .
Proof We use here the notations of section 2.3. It is clear that there exists

T ∈ N such that L ∈ [K T , K T +1 [. If T < 1 the proof is complete. If not, there exists g T ∈ N * such that L ∈ [g T K T , (g T + 1)K T [ and L -g T K T ∈ [0, K T [.
Then, by reasoning by induction, one can easily write

L = T i=1 g i K i + ǫ ′ with ǫ ′ < K 1 .
It is easy to understand that the g i 's checks the conditions of the λ i 's. Indeed, if

g T = h c+T , g T K T = K T +1 -K T -1 . Then, L -g T K T ∈ [0, K T -1 [. It
is the same for the other g i . Then, the g i 's checks the conditions of the λ i 's, except maybe g 1 < H 1 .

If g 1 < H 1 , we set λ i = g i and ǫ = ǫ ′ .

If

g 1 = H 1 , we set ǫ" = K 0 -ǫ ′ . Then, 0 < ǫ" ≤ K 0 , and L = H 1 K 1 + T i=2 g i K i -ǫ" + K 0 = K 2 + T i=2 g i K i -ǫ". Because g 1 = H 1 , then, g 2 = H 2 . Then, if g 3 = H 3 , L = (g 2 + 1)K 2 + g 3 K 3 + T i=4 g i K i -ǫ". QED If g 3 = H 3 ,
then, g 2 = 0 and g 2 + 1 = 1 and the above decomposition does not check the imposed conditions.

Then, let s be the integer checking g 2i+1 = h 2i+1 , g 2i = 0 for i=1,2,....,s, and

g 2s+3 = h 2s+3 . Then, L = K 2 + 2s+1 i=2 g i K i + T i=2s+2 g i K i -ǫ", and therefore, L = (g 2s+2 +1)K 2s+2 + T i=2s+3 g i K i -ǫ" because K 2 +H 3 K 3 = K 4 for example.
Then, on check easily that this decomposition of L is in accordance with the hypotheses.

We will now proceed to the study of any rectangle, and for that we are reducing to the already studied case by dividing it horizontally. 

l 1 = µ 1 r c , l 2 = µ 1 r c + µ 2 r c+1 , l 3 = µ 1 r c + µ 2 r c+1 + µ 3 r c+2
In order to simplify the notations, we admit that

[x, x + ℓ[ denote [x, x + ℓ[ if ℓ ≥ 0 and [x + ℓ, x[ if ℓ < 0.
Then, we denote by R j , (resp R ′ j , R" j ) the rectangles

I × y + j-1 t=1 µ t r c+t-1 , y + j t=1 µ t r c+t-1 ,
where I denotes the interval

[x, x + L[, (resp [x, x + L -ǫ[, [x + L -ǫ, x + L[).
At last, R 0 and R ′ 0 denote the rectangles

I × [y + L ′ -ǫ ′ , y + L ′ [ and [x + L + ǫ, x + L[×[y, y + L ′ [ if ǫ < 0.
We continue to denote by N R and S R respectively, the number of points of E 2 included in R and the area of R.

At last, we set h s = sup i (h i ).

We shall study the different horizontal sections of R, i.e. to the study of the R j 's.

Reminder 2.7.3 We remind that, any rectangle included in a rectangle height r c and width k c+1 contains 1 or 0 points of E 2 : cf corollary 2.6.13.

Lemma 2.7.4 For all j ∈ {1, 2, ..., p}, we have

N Rj - S Rj m ≤ µ j + 1 , S Rj m ≥ µ j p t=j λ t Q c+j-1 t+1-j -2 .
Proof Each rectangle R j , is written in the form

[x, x + L[× y + j-1 t=1 µ t r c+t-1 , y + j t=1 µ t r c+t-1 = [x, x + L[×[y", y" + µ j r c+j-1 [ = [x, x + L[×[y", y" + µ j r c j [ ,
where c j = c+j -1. Then, L = L j +ǫ j where L j = Tj i=1 λ i k c j +i and -k c j ≤ ǫ j < k c j +1 according the writing of L in lemma 2.7.1.

Then, for the rectangle

R j 0 = [x, x + L j [×[y", y" + µ j r c j [ we have N R j 0 - S R j 0 m
≤ 1 by theorem 2.6.14.

For each rectangle 

R j t = [x + L j , x + L j + ǫ j [×[y" + (t -1)r c j , y" + tr c j [, t = 1, 2, ....µ j , we have R j t ⊂ Re j t = [x + L j , x + L j ± k c j +1 [×[y" + (t -1)
m ≥ f Q -1 = f Q c+j-1 -1 = µ j p t=j λ t Q c+j-1
t+1-j -1 with the notations 2.4.1. Moreover, we should also take into account the surface of Rs j = [x + L j , x + L j + ǫ j [×[y", y" + µ j r c j [ which is positive if ǫ j ≥ 0. In this case, the third inequality is proved If ǫ j < 0, we must subtract the area of the rectangle Rs j included in a rectangle [x 0 , x 0 + k 

c j [×[y 0 , y 0 + µ j r c+j-1 [⊂ [x 0 , x 0 + k c+j-1 [×[y 0 , y 0 + r c+j-2 [= R i where S R i m ≤ 1
R0 - S R0 m ≤ h c+p + 1 ≤ h s + 1 . Proof We know that R 0 = [x, x + L[×[y + L ′ -ǫ ′ , y + L ′ [ where |ǫ ′ | < r c+p-1 . Moreover, L < k c+p+1 < (h c+p + 1)k c+p . Then, R 0 ⊂ [x, x+(h c+p +1)k c+p [×[y 1 , y 1 +r c+p-1 [= ∪ hc+p+1 t=1 [x+(t-1)k c+p , x+tk c+p [×[y 1 , y 1 +r c+p-1 [ . Then, RS t = [x + (t -1)k c+p , x + tk c+p [×[y 1 , y 1 + r c+p-
= card{i|λ i = 0} , p" = card{j|µ j = 0} and p o = inf (p ′ , p"). Then, N R - S R m ≤ p j=1 µ j + h c+p + p + 1 ≤ d i=1 h i + 2 ≤ dh s + 2 , N R - S R m ≤ p o (h s + 1) + h s + 1 ≤ (d + 1)(h s + 1) .
Proof It is enough to remark that µ j ≤ h c+j-1 and that if µ j = h c+j-1 , µ j+1 = 0.

Lemma 2.7.7 We suppose that m ≥ 377 and that T is a congruence of Fibonnacci :

h i = 1 if 1 < i < d and h d = h 1 = 2 (cf proof of lemma 2.6.16). Then, N R - S R m ≤ 2(d -1).
Proof It is enough to use the proof of lemma 2.7.4. Then,

N R - S R m ≤ p j=0 N Rj - S Rj m , where N R0 - S R0 m ≤ h c+p + 1 ,
and for all rectangle R j , j ≥ 1,

N Rj - S Rj m ≤ µ j + 1 ≤ h c+j-1 + 1 . Now, in lemma 2.7.1, L = p i=1 λ i k c+i + ǫ where c ≥ 1. Then, λ 1 < h c+1 . Because c ≥ 1, h c+1 ≤ 1. Then, λ 1 < 1. Then, λ 1 = 0.
Lemma 2.7.12 We suppose that T is the Fibonacci Congruence. Let R such that, with the notations 2.7.2, p / ∈ N * . Then, if m ≥ 5,

N R - S R m ≤ 3 ≤ 4 log(m) -log(2) log (2) 
.

Proof By lemma 2.7.9 and 2.7.11, 0 ≤ N R < 3 and 0 ≤ S R /m < 3. Then, N R -S R m ≤ 3. Then, 3 < 5.2877 ≈ 4 log(5)-log (2) log(2) ≤ 4 log(m)-log (2) log [START_REF] Baya | Contribution à la génération de vecteurs aléatoires et à la cryptographie[END_REF] . Now we have another way to prove the lemma 2.7.10 Lemma 2.7.13 Let R such that, with the notations 2.7.2, p /

∈ N * . Then, S R m ≤ h c + 1 and N R ≤ h c + 1 Proof With the notations 2.7.2, L < k c ′ +1 and L ′ < r c-1 where c ′ ≤ c. Then, L < k c+1 .
By the proof of corollary 2.6.13, if 

R ′ = [x, x + k c+1 [×[y, y + r c-1 [ , N R ′ = h (c-1)+1 or N R ′ = h (c-1)+1 + 1 with δ = 1
N R - S R m ≤ d i=1 h i + 2 ≤ dh s + 2 .
Proposition 2.7. [START_REF] Blacher R | Fibonacci congruences and applications[END_REF] We suppose that T is the Fibonacci congruence with m ≥ 377.

Soit I = [C, C ′ [, C, C ′ ∈ N, and N(I)=C'-C. Let k n be the permutation of {C, C + 1, ...., C ′ -1} such that T (k 1 ) < T (k 2 ) < ........ < T (k C ′ -C ) . Then, for all r ∈ {1, 2, ...., N (I) -1}, | T (k r ) m - r N (I) | ≤ φ ′ (m) N (I) , ou φ ′ (m) = 4Log(m)-2Log(2) log (2) 
.

Proof Let r ∈ {1, 2, ...., N (I) -1}. Let D = 4 log(m)-Log(2) log (2) 
.

Let L 1 = ⌊ (r-D-1).m 

N (I) ⌋ = (r-D-1).m N (I) -e where 0 ≤ e < 1. Let R 1 = I × [L 1 , m[. Then, S R 1 m = (m-L1)N (I) m = N (I) -(r-D-1).m N (I) N (I) m + eN (I) m = N (I) -r + D + 1 + e ′ where e ′ = eN (I) m . If L 1 ≥ 0, then, [L 1 , m[ contains t 1 = N R1 points T (k s ) of T (I) : T (k C ′ -C-t1+1 ),........., T (k C ′ -C-1 ), T (k C ′ -C ) where t 1 = N R1 = card(R 1 ∩ E 2 ) . Now, D = 4 log(m)-Log(2) log(2) ≥ 2.3399 because m ≥ 3. Then, S R 1 m ≥ 3 because N (I) -r + D + 1 + e ′ ≥ D + 1 ≥ 3.
∈ N * , N R -S R m ≤ D. Then, N R1 - S R 1 m ≤ D, i.e. -D ≤ t 1 -[N (I) -r + D + 1 + e ′ ] ≤ D, i.e. N (I) -r < -D + N (I) -r + D + 1 + e ′ ≤ t 1 ≤ N (I) -r + D + 1 + e ′ + D, i.e. C ′ -C-t 1 +1 = N (I)-t 1 +1 < r+1, i.e. C ′ -C-t 1 +1 ≤ r. Then, T (k C ′ -C-t1+1 ) ≤ T (k tr ). Then, L 1 ≤ T (k C ′ -C-t1+1 ) ≤ T (k tr ). Si L 1 < 0, then, obviously L 1 ≤ T (k tr ). Let L 2 = ⌊ (r+D+1).m N (I) ⌋ = (r+D+1).m N (I) -f where 0 ≤ f < 1. Let R 2 = I × [0, L 2 [. Suppose L 2 ≤ m. Then, S R 2 m = L2N (I) m = (r+D+1).m N (I) N (I) m -f N (I) m = r + D + 1 -f ′ where f ′ = f N (I) m . Now, D = 4 log(m)-Log(2) log (2) 
≥ 2.3399. Then, S R 2 m ≥ 3. Then, by lemma 2.7.11 we know that p ∈ N * . Then, by proposition 2.7.8, we know that, for all rectangle R checking p

∈ N * , N R -S R m ≤ D. Now, [0, L 2 [ contains t 2 = N R2 points T (k s ) of T (I) : T (k 1 ), T (k 2 ), T (k 3 ), ....., T (k t2 ) where N R2 - S R 2 m ≤ D i.e. N R2 -[r + D + 1 -f ′ ] ≤ D. Then, r < r + 1 -f ′ ≤ r + D + 1 -f ′ -D ≤ N R2 = t 2 ≤ r + D + 1 -f ′ + D. Then, T (k tr ) < T (k t2 ). Then, T (k tr ) ≤ L 2 . If L 2 > m, obviously T (k tr ) ≤ L 2 . Therefore, L 1 ≤ T (k tr ) ≤ L 2 . Then, (r -D -1).m N (I) -e ≤ T (k tr ) ≤ (r + D + 1).m N (I) -f . Therefore, r N (I) - D + 1 N (I) - e m ≤ T (k tr ) m ≤ r N (I) + D + 1 N (I) - f m .
Therefore,

- D + 2 N (I) ≤ T (k tr ) m - r N (I) < D + 1 N (I) . Therefore, | T (k r ) m - r N (I) | ≤ D + 2 N (I) . Now, D = 4 Log(m)-Log(2) log (2) 
. Therefore,

| T (k r ) m - r N (I) | ≤ 4 Log(m)-Log(2) log(2) + 2 
N (I) = 4Log(m)-2Log(2) log(2) N (I) = 4Log(m) -2Log(2) log(2)N (I) .
Remark 2.7.17 There are ways in order to improve these inequalities in the previous proofs.

For example, to use all the inequalities N R ′j 

..., c ′ -c} such that T (g 1 ) < T (g 2 ) < T (g 3 ) < ...... < T (g c ′ -c ) .
This result is equivalent to know the distribution of the points of T -1 ([c, c ′ [) because, T 2 = ±Id, T -1 = ±T (cf lemma 2.6.16). Now, in [START_REF] Blacher R | Fibonacci congruences and applications[END_REF] and [START_REF] Blacher R | Fibonacci congruences and applications[END_REF], we have proved that

T (g r ) m - r N (I) ≤ ϕ(m) N (I) ,
where ϕ(m) << Log(m) : as a matter of fact, it seems that ϕ(m) is the order of Log(Log(m)). Moreover, M ax r=0,1,....,N (I)-1 N (I)T -1 (g r )/mr seems maximum when I is large enough : c ′c = O(m/2).

We thus had an increase of T (g r ) m -r N (I) sharper than the one that we had obtained in proposition 2.7.16. That was obtained thanks to the increase of N R -S R m of lemma 2.7.6. As a matter of fact, we shall see that we have the inverse implication: the increase of T (g r ) m -r N (I) can give us informations about the increase of

N R -S R m . Lemma 3.2.2 We have T (g r1-1 ) m - T (g r1 ) m ≤ 3m N (I) . Proof Suppose r c ≤ N (I) < r c-1 .
The points T(I) are the points with abscissa x 1 ≤ x ≤ x 0 + L. Therefore, they are the points (x, T (x)), The points (x, ax + b) such that y ≤ ax + b < y + L are the points x = X + x 0 such that y ≤ a(X + x 0 ) + b < y + L. Therefore, if ax 0 + b = y, they are the points 0 ≤ x = X + x 0 < m such that y ≤ aX + y < y + L.

If aX + y < m, they are the points 0 ≤ x = X + x 0 < m such that y ≤ aX + y < y + L, i.e. the points such that 0 ≤ ax < L.

Si aX + y > m, they are the points 0 ≤ x = X + x 0 < m such that y ≤ aX + ym < y + L, i.e. the points such that 0 ≤ axm < L. Now, it is impossible.

Then N R -S R m ≤ 9 + 2ϕ(m).

The proof of this lemma shows that the increase of N R -S R m et ϕ(m) are connected. That means that, if ϕ(m) = O log[log(m)] , it will be probably the same for N R -S R m . It is thus logical to think that D 2 m = O ϕ(m) . It allows to have thus a more precise idea of D 2 m .

Secund inequality of the conjecture : numerical study

In order to understand how the points in rectangles R are distributed, we made simulations, for example, for a=3243, m=12493, h i = 3, 1, 5, 1, 3, 2, 1, 4, 1, 1, 3, we have figure 3.1. We understand well on this figure that the distribution of the points of E 2 is made well. It will be thus difficult to find rectangles R such as N R -S R m is big. We can try for example to draw them with a ruler or to study all the possible cases by computers. We see well that the distribution is good and that the breaks of the independence will be difficult to find on rectangles except the small ones : but it is normal.

In order to try to compute D 2 m , i.e. Sup N R -S R m , simulations were also done. Let us notice well that the results are obtained by simulations. We contented ourselves with estimations because as soon as m is a little big, the number of rectangles which we have to study is too much big because it is necessary to take the sup for any rectangle R : sup R N R -S R m . We thus chose the width of rectangles at random and we have done again the operation a large number of time: for example for m =1711 we have done again it 400.000 times.

At first we studied discrepances D2

m for Fibonacci congruences. These results seem well to show that for the congruences of Fibonacci, D2 m = ϕ(m) ≤ O Log[Log(m)] . In fact, it is possible that this increase can be again improved: maybe ϕ(m) converges even more slowly to infinity, even ϕ(m) can be bounded. But, it is rather difficult to see in the present state of power of computers.

We also studied the other congruences and we saw that we do not find an increase of the type D 2 m ≤ h s O Log[Log(m)] where h s = sup(h a i ). In fact we notice that the increase depends rather on i h a i than of h s (it is not the case of the decrease of the lemma 3.1.3 which depends effectively directly on h s ).

More exactly, when there exists n 0 such that m = f i n0 , we set R F ib In fact the situation is a little more complicated than that. We can see it if m is small: we indeed see that there is another parameter which we have to take in account if T is not invertible: r a d a . Indeed, there is then differences between D 2 m and R F ib i h a i .

In that way for m=144, we have the following .

As a matter of fact, d i=1 h a i is generally smaller than dh s (cf example above) . It is translated by the fact that, in a concrete way, the invertible congruences such as h s ≤ 10 for example are generally good 1 congruences as soon as m ≥ 10 6 .

Then, the increase D 2 m ≤ h s log(m) can be improved and it seems that it is by D 

Conclusion

According to the simulations that we made we find that D 1 from the point of view of the independence of two successive simulated numbers

It is an increase much more accurate than those of Zaremba, Knuth, Niederreiter and even as that of the theorem 1.2.5. It shows that there are many possibilities on the choices of a and m. We can thus impose with no problem the independences required in order to have the best possible simulation.

Then, it is necessary that (T 2i (x 0 ), T 2i+1 (x 0 )) behave as independent, but also, for example, (T 4i (x 0 ), (T 4i+2 (x 0 )) : a sequence of IID random variables {X n } check also that the pairs (X 2n , X 2n+2 ) are independent. That means that m a 2 can be written as a continued fraction with the h 2 i 's not too big: m

a 2 = h 2 1 + 1 h 2 2 + 1 h 2 3 + 1 h 2 4 +.... .
Let us remark that it is also necessary that (X 4n , X 4n+1 , X 4n+2 , , X 4n+3 ) behave as independent. But we know that this result must be checked on hypercubes of width wider in order to have enough points of the sample (T 4i (x 0 ), T 4i+1 (x 0 ), T 4i+21 (x 0 ), T 4i+3 (x 0 )), i=0,1,....,m, in the hypercubes. So, for the bidimensional dependence, we can consider the squares of width 1/2 q where 4 q = O m . In dimension 4, it is necessary that q checks 16 q = O m . After, it is necessary that m a 3 has an expansion in continued fraction with the h 3 i 's not too large:

m a 3 = h 3 1 + 1 h 3 2 + 1 h 3 3 + 1 h 3 4 +....
.

And so on.

Obviously, it will be necessary to check these conditions if we use the congruences in order to make simulations.

If we want to calculate double integrals by using the congruences, Zaremba studied the most favorable case, that of the congruences of Fibonacci. In the same way, if we want to do IID a noise, we saw that the best way was also to use the congruences of Fibonacci. On the contrary, these are very bad pseudo-random generator because T 2 = ±Id.

Figure 1 . 1 :

 11 Figure 1.1: Points in rectangles a=5

Figure 1 . 2 :

 12 Figure 1.2: Points in rectangles a= 10

. 3 .

 3 If one chooses a=10, sup(h a i ) = 20 : cf figure 1.4 . If one chooses a=5, sup(h a i ) = 5 : cf figure 1.5.

Figure 1 . 4 :Figure 1 . 5 :

 1415 Figure 1.3: Fibonacci congruence

  We are now going to clarify by graph what represent these notations. As a matter of fact, because {(ℓ, aℓ + b)|ℓ = 0, 1, ...., m -1} = {(ℓ, aℓ) + (0, b)|ℓ = 0, 1, ...., m -1}, we are brought to the study of the sequence R 2 : U ℓ = (ℓ, aℓ), ℓ ∈ N, or of the sequence {aℓ}.For example, suppose that a=24298 m= 199017. We see that [0, m/a[×[0, m[ contains 9 points of E 2 of ordinates aℓ and of abscissa ℓ. In this case, we have r 1 = a and r 2 = m -8a, i.e. h 1 = 8. Moreover, r 2 is the distance of y= 8a, the highest point of E 2 in [0, m/a[×[0, m[ , to y= m : cf figure 2.1. Now, if we study the points U ℓ of m a , 2m a × [0, m[, we understand that their ordinates are deduced of the ordinates of [0, m/a[×[0, m[ by a translation of -r 2 . It is the same for the points of 2m a , 3m a × [0, m[ with respect to the points of m a , 2m a × [0, m[. And so on, untill the distance of the lowest point to 0 is equal to r 3 = r 1h 2 r 2 : cf figure 2.2. Then, we have obtained all the points of E 2 of the sequence U ℓ of 0, 5m a × [0, m[. If we continue, we see that the ordinates of the points of U ℓ of 5m a , 10m a × [0, m[ are deduced of the points of E 2 of m a , 5m a × [0, m[ by a vertical translation of r 3 . And so on when r n decreases (i.e. n increases).

Figure 2 . 2 :

 22 Figure 2.1: a=24298, m=199017, r 2 = 4633

  and that the points of M ∩ [2K 2 , 3K 2 [, for example, are deduced from the points of M ∩ [0, K 2 [ by a translation of 2K 2 .

Figure 2 . 3 :

 23 Figure 2.3: a=24298, m=199017, r 2 = 4633, r 3 = 1133

Lemma 2 . 3 . 6

 236 Let g t , t=1,2,...,T, be a sequence checking the conditions of lemma 2.3.5 where T ∈ N * , and T ≤ dc. Let δ = 0 or δ = 1.

Lemma 2 . 3 .

 23 [START_REF] Blacher R | File of random Number[END_REF] Let T ∈ N such that c + T ≤ d + 1 and 2 ≤ T . Let X and Y

Notations 2 . 4 . 1

 241 We denote by [x, y[, [x, y[⊂ R, the number [x, y[ = card [x, y[∩M .

  and Z :Z = δK 0 + T i=1 λ i K i .The lemma 2.4.4 permits to conclude.

Figure 2 . 4 :

 24 Figure 2.4: On this figure, y-axis to have no interest

Figure 2 . 5 :

 25 Figure 2.5: On this figure, y-axis to have no interest

Figure 2 . 6 :

 26 Figure 2.6: On this figure, y-axis to have no interest

  = 0, r d = 1, r d-1 = 2 (h d = 2), r d-2 = 3, r d-3 = 5, .... Moreover, k 0 = 0, k 1 = 1, k 2 = h 1 = 2, k 3 = 3, k 4 = 5, k 5 = 8, ...... Then, k n = r d-(n-1) if n ≤ d. Moreover, by lemma 2.6.5, k d+1 = m = r 0 = r d-d . Then, k n = r d-(n-1) if n ≤ d + 1.Then,k d = r d-(d-1) = r 1 . Now, k d a ≡ ±1by lemma 2.6.4. Then, k d a = r 1 a = (ma)a ≡ ±1. Then, a 2 ≡ ±1. Because T (x) ≡ ax, T 2 (x) ≡ a 2 x ≡ ±1. For example, r 0 = m = 89, a = 55, r 1 = 34, r 2 = 21, r 3 = 13, r 4 = 8, r 5 = 5, r 6 = 3, r 7 = 2, r 8 = r d = 1, r 9 = r d+1 = 0. Now, k 0 = 0, k 1 = 1, k 2 = h 1 = 2, k 3 = 3, k 4 = 5, k 5 = 8, k 6 = 13, k 7 = 21, k 8 = k d = 34, k 9 = k d+1 = 89.

Lemma 2 . 7 . 1

 271 Let L ∈ {0, 1, ....., m} and c ∈ J * d-1 = {1, 2, ...., d -1}. Then there exists T ∈ N, T ≤ d + 1c (T ≤ d + 1c ≤ d), and a sequence λ i ∈ N, i=1,2,....,T, and an integer ǫ

Notations 2 . 7 . 2 Figure 2 . 7 :

 27227 Figure 2.7:l 1 = µ 1 r c , l 2 = µ 1 r c + µ 2 r c+1 , l 3 = µ 1 r c + µ 2 r c+1 + µ 3 r c+2

≤ 1

 1 seems too rough and can probably be improve. Moreover, if we use simulations, we find that| T (k r ) m -r N (I) | ≤ φ ′ (m) N (I)where φ(m) = O Log(Log(m)) : cf[START_REF] Blacher R | Fibonacci congruences and applications[END_REF] and[START_REF] Blacher R | Fibonacci congruences and applications[END_REF].Then, N Rv -S Rv m = S Rvm ≥ h a n-1 /4. Now, this result holds for n-2=0 as far as n = d a + 1. Then it holds for h a n-1 such that n -1 = 1, 2, ...., d a .3.2 Secund inequality of the conjecture : comparison withT ([c, c ′ [)In order to have a better increase of D 2 m we are going to compare to results which we had obtained on the distribution of the points of T ([c, c ′ [) in[START_REF] Blacher R | Fibonacci congruences and applications[END_REF]. Notations 3.2.1 We suppose that T is the Fibonacci congruence. Let I = [c, c ′ [, c, c ′ ∈ {0, 1, ...., m-1} and let N(I)=c'-c. Let g n be the permutation of {c, c + 1, .

  x 1 ≤ x ≤ x 0 + L, of the rectangle I × [0, m[. Now, in order to study the points of I × [0, m[, one can also study the points of [0, m[×I because T = ±T -1 .

Figure 3 . 1 :

 31 Figure 3.1: a=3243, m=12493, h i = 3, 1, 5, 1, 3, 2, 1, 4, 1, 1, 3.

  (m)) when m = f i n0 (if m = f i n0 , one compares with the case of the nearest number f i n1 ).

  ) where ϕ(m) = Log[Log(m)].

  3 x modulo 10 6 -1 : Rect 1 = [0, m/(2a)]⊗[0, m/2[ contains 500 points of E 2 roughly and Rect 2 contains 0 points. Then the chi-squared test that one could make with such rectangles are not satisfied.

	Now choose m=99, a=5, k a

2 = 19 : cf figure 1.1: Rect 1 roughly contains 10 points of E 2 for a total sample of 99. Choose m=99, a=10, k a 2 = 9 : cf figure 1.2: Rect 1 roughly contains 5 points of E 2 : the breakdown is less clear.

  lemma 2.3.6. Now, by lemma 2.4.2 and 2.4.3, [hK T , hK T

1 .

 1 Lemma 2.6.[START_REF] Blacher R | Fibonacci congruences and applications[END_REF] If T (x) ≡ ax mod m is the congruence of Fibonacci a ≡ ±a -1 . Moreover T 2 ≡ ±Id. Then, a > m/2. Then, by lemma 2.1.3, r 1 = ma. Moreover, by lemma 2.1.3, because a > m/2, h a 2 + 1 = h 1 . Then, h 1 = 2. By lemma 2.6.3, because T is invertible, r d = 1. Moreover, by lemma 2.1.3, h a n+1 = h n if n ≥ 2 and d a = d + 1. Then, h a d a = h d = 2. Then, we know that r d+1

	Proof Assume m < 5. If m=3, a=2 and the lemma is obvious. If m=2, a=1 and the lemma
	is obvious.
	Assume m ≥ 5. By definition with the notations 2.1.1, h a r = 1 if r < d a and h a d a = 2. Then, m = r a 0 = h a 1 r a 1 + r a 2 = h a 1 a + r a 2 = a + r a 2 where r a 2 < a.

  r c j , y" + tr c j [. Now, for this rectangle Re j t , Q cj = Q

	By proposition 2.6.15,	S R	j 0					
	cj 1 = 1 with the notations of proposition 2.6.15. By reminder 2.7.3 (cf also corollary 2.6.13), card(R o ∩ E 2 ) = Q cj = 1 or Q cj -1 = 0 with the notations of proposition 2.6.15. Then, 0 ≤ S Re j t m ≤ 1 by proposition 2.6.15. Then, 0 ≤ S R j t m ≤ 1. Moreover, N R j = 0 or 1 by reminder t 2.7.3. Then, N R j -S R j t m ≤ 1. t Because R j = ∪ µj t=0 R j t , then,
	N Rj -	S Rj m	≤	µj t=0	N R j t	-	S R j t m	≤ µ j + 1 . QED

  by proposition 2.6.15 and reminder 2.7.3 as we have seen above.

	Lemma 2.7.5 We have
	N

  ≤ 1 by proposition 2.6.15 and reminder 2.7.3 as we have seen above in the proof of lemma 2.7.4.Moreover, by reminder 2.7.3, N RSt = 0 or 1. Then, N R0 -

[START_REF] Knuth | The Art of Computer Programming[END_REF] 

[ has a area less than m :

S RS t m S R 0 m ≤ h c+p + 1.

Lemma 2.7.6 We set p ′

  with the notations of proposition 2.6.15. Then, h c ≤ S R ′ m ≤ h c + 1 by proposition 2.6.15. Now R ⊂ R ′ . We deduce the result.

We deduce the following properties.

Corollary 2.7.14 Let R such that, with the notations 2.7.2, p / ∈ N * . Then,

N R -S R m ≤ h c + 1 .

Corollary 2.7.15 Let R = [x, x + L[×[y, y + L[ such that x, y, L, L ′ / ∈ {0, 1, ...., m}. Then,

  Then, by lemma 2.7.11, with the notations 2.7.2, p ∈ N * . Now, by proposition 2.7.8, we know that, for all rectangle R checking p

  These results are summarized in the following table.

	m	144	1597	17711 121393 1346269 14930352
	a	89	987	10946 75025	832040	9227465
	log(log(m)) 1.6034 1.9982 2.2805 2.4602 2.6471	2.8045
	D 2 m	3.8958 4.1058 4.8353 5.1334 5.2338	5.2993

m

  = , i = 1, 2, ..., da i , be the sequence h a i in the case of Fibonacci congruence. Then, we find a relation of the type D 2 m ≤ R F ib i h a = 4.2 13.12 4.83 4.88 5.04 5.25 5.04 6.62 5.46 19.9 15.07 41.47 D 2 m ≈ 4.2 12.86 4.4 4.72 4.98 5.25 5.25 6.56 5.51 21 15.75 39.9 For m=17711 , we have the following table.

													D2 m P i h a i	. Let ha
					P P	i h a i i i ha	ϕ(m) where ϕ(m) = O Log[Log(m)] .	
	Thus, for m=1597 , we have the following table.					
	a	987 983	985 986 988 900 901 902 903 42	41	11
	i h a i D 2	16	49	17	18	19	20	20	25	21	80	62	52
	a		10946 10940 10941 9877 122 1421 9874 6874 20
	i h a i D 2 m R F ib	21 4.9 i ≈ 4.9 i h a		37 8.5 8.63	27 6.4 6.3	42 9 9.8	159 44 41 9.4 37.1 10.27 7.93 7.23 208.36 34 31 893 7.8 6.9 230

i

  table. ≈ 3.6 2.2909 4.2545 5.8909 4.9091 5.2364 5.2364 2.9455Then, we find an inequality of the same type as that of the lemma 2.7.6. Indeed, let us recall that

	a	89 88	87	86,	25	37	35	52
	r a d a i h a i D 2 m R F ib i d i h a i=1 h a i ≤ dh s and d ≤ 2 log(m)-log(2) 1 8 3 11 7 13 3.6 9.6 6.7 log(2)	2 18 6.5	1 15 6.5	1 16 5.5	1 16 4.9	4 9 6.4

There was an error of writing in[START_REF] Blacher R | Fibonacci congruences and applications[END_REF] . Here, it is corrected

This is a slightly different definition of the usual definition. Indeed, generally, one calls coefficient of discrepancy the number D 2 m /m : e.g. cf[START_REF] Knuth | The Art of Computer Programming[END_REF] page 110

However, if this were the case, we would not understand why the coefficient O " log(log(m)) " would appear in the simulations which we have made about the proposition 1.3.7 (cf[START_REF] Blacher R | A method for Building true random sequences[END_REF], cf also section 3.2).

If r

= 0, the lemma holds obviously

In fact, it is not a probability but a measure which is an extension of the probability over [0, m[ 2 .

Suppose ℓ = 0. Then, h > 0 and one obtains hk n a ≡ ±hr n (cf lemma 2.2.1 ). On the other hand, r n ≤ hr n ≤ h n r n = r n-1r n+1 ( cf equation 2.2). At last, because by our assumption, n ≥ 2, we have r n < r n-1 ≤ r 1 ≤ m/2 and r n-1 ≤ m/2 < mr n . Therefore, r n ≤ hr n ≤ mr n .

We recall that k n a = r n or mr n (r n = 0) (cf lemma 2.2.1 ). Then, we understand that r n ≤ hk n a ≤ mr n . QED Suppose ℓ = 0 and h < h n . Then, by the induction, because ℓ < k n , r n-1 ≤ ℓa ≤ mr n-1 , and because k n a ≡ ±r n (cf lemma 2.2.1 ), one obtains easily that r n-1 -(h n -1)r n ≤ ℓa ± hr n ≤ mr n-1 + (h n -1)r n , and therefore, that r n + r n+1 ≤ ℓa ± hr n ≤ mr nr n+1 , and therefore, that r n ≤ ℓa ± hr n ≤ mr n , i.e. r n ≤ (ℓ + hk n )a ≤ mr n . QED Suppose h = h n and n=2. Then, ℓ < k n-1 , and therefore ℓ = 0 : it is a case which we have already seen.

That means that the lemma holds for n=2 and n=3.

Suppose h = h n , 1 < ℓ < k n-1 and n > 2. Then, the induction shows that r n-2 ≤ ℓa ≤ mr n-2 , and therefore, r n-2h n r n ≤ ℓa ± h n r n ≤ mr n-2 + h n r n . Now, because the definition of r n involves that r n-2h n r n ≥ r n , then, one obtains r n ≤ (ℓ + hk n )a ≤ mr n . QED Now if a = mr 1 , because T and T ′ (x) ≡ r 1 x + b have the same sequences r n , k n and h n , the result is almost immediate.

Corollary 2.2.3 Let n ∈ J d+1 , n > 1 and k, k ′ ∈ N, such that 0 ≤ k < k ′ < k n . Then, mr n-1 ≥ |k ′ a -ka| = k ′ aka ≥ r n-1 .

Proof It is enough to remark that if ka = k ′ a , (kk ′ )a ≡ 0, and therefore, (kk ′ )a = 0. Now, by the previous lemma 2.2.2, mr n-1 ≥ (kk ′ )a ≥ r n-1 , where (because n > 1) r n-1 > 0. Then, it is impossible that ka = k ′ a.

Then, ka > k ′ a or ka < k ′ a.

If ka > k ′ a, (kk ′ )a = kak ′ a, and then, by the previous lemma 2.2.2, m -

If ka < k ′ a, (kk ′ )a = m + kak ′ a, and then, by the previous lemma 2.2.2, m -

Corollary 2.2.4 Let n ∈ J d+1 , n > 1 and k, k ′ ∈ N, such that k ′ < k n and k < k n . Then,

Proof The proof of this corollary is a direct consequence of corollary 2.2.3.

Moreover equality y Tx T = H T involves that y T = H T and x T = 0, and therefore, by lemma 2.3.5, proposition 2.3.9, that Y ′ < K T -1 . Then, X ′ < Y ′ < K T -1 because by our assumption for this part of the proof, X ′ < Y ′ . Then, z T -1 = 0 by lemma 2.3.13.

At last Xa ≤ Y a, involves indeed ∆ = 0 or 1 and Y a < Xa involves ∆ = 0 or -1. QED

, the result is proved by the same way.

Lemma 2.3.15 Let X', Y' and Y" defined as in lemma 2.3.14 such that Y ′ < X ′ < Y ".

Then the following inequalities are impossible :

If Y ′ = 0, the assumptions Y ′ ∈ M + and Y ∈ M + will impose that T is even (proposition 2.3.2), and therefore, because by our assumption

Then, in all cases, we have 

Proof Suppose X ′ -Y ′ ∈ M . Then, X ′ a ≥ Y ′ a by lemma 2.3.12. Then, by lemma 2.3.15 , X ′ a > Y "a. Then, by lemma 2.3.12,

Then, by lemma 2.3.12, X ′ a > Y "a. Then, by lemma 2.3.15 ,

and by the definition of lemma 2.3.14,

Then, by lemma 2.3.12, X ′ a ≤ Y "a. Then, by lemma 2.3.15 , X ′ a < Y ′ a. Then, by lemma 2.3.12,

Then, by lemma 2.3.12, X ′ a < Y ′ a. Then, by lemma 2.3.15, X ′ a < Y "a. Then, by lemma 2.3.12, Y " -X ′ ∈ M + . Now it is impossible that (Y " -X ′ )a = R 0 . Indeed, because X ′ a < Y "a , and by the definition of lemma 2.3.14,

Proof 

Now, we need the following lemma.

Lemma 2.5.4 Let α ∈ N and let Z 0 , Z 1 ∈ M such that Z 0 ≤ α < Z 1 and such that there does not exist

Now we can prove the fundamental proposition. At first, we suppose

On these figures, y-axis has no interest : it is just a matter of showing on two lines the location

Proof It is the lemma 2.2.1 and the definition of d.

Lemma 2.6.2 The integer k d+1 is a divisor of m.

Proof At first, k d+1 ≤ m. If not ma = 0 is a contradiction with lemma 2.2.2.

On the other hand, let D be the G.C.D. of m and k d+1 . Then, D > 1: if not k d+1 is invertible because uk d+1 + vm = 1, u, v ∈ Z, admits solutions if and only if k d+1 and m are coprime : theoreme of Bezout. Then, k d+1 a = 0, what is contrary to lemma 2.6.1.

Moreover, by Bezout identity , there exists u, v ∈ Z such that uk d+1 + vm = D. Therefore, by lemma 2.6.1, Da = 0. Then, D ≥ k d+1 by lemma 2.2.2. Then, k d+1 is a divisor of m.

Lemma 2.6.3 In order that a is invertible it is necessary and sufficient that r d = 1.

Reciprocally, if a is invertible, we denote by k i the integer

Proof The first congruence is deduced from lemma 2.2.1 and lemma 2.6.3. Therefore, 

Proposition 2.6.11 We keep the notations and assumptions of proposition 2.6.10 except k c a = r c which we replace by

Proof We know that L < m and f r c < m. Indeed, L < K T +1 ≤ k d+1 = m (cf proposition 2.3.9 and lemma 2.6.5). Moreover,

n associated to a and a' are identical. So it's the same for sequences h n , and therefore for the sequences k n . So sequences Q c n are identical. Then,

Now we suppose that there exists ξ such that ξa + b = 0. For example it may be the case if

Then the proof is done in the case where y < m ≤ y + f r c is sufficient.

Then, we suppose that y < m ≤ y + f r c . We are interested by ξ such that there exists

Proposition 2.6.12 The propositions 2.6.10 and 2.6.11 remain true for the quotient rectangles resulting from rectangles in the form

Proof It is enough to use lemma 2.6.6

Corollary 2.6.13 Let R o be a rectangle in the form

Suppose k c a = r c and c+2 < d+1. Then, L ∈ M , and by proposition 2.6.10,

and k c+2 = k d+1 = m : cf lemma 2.6.3 and 2.6.5. Then, because T is invertible, it is obvious that card(R o ∩ E 2 ) = h c+1 .

We can then enunciate the fundamental theorem. That gives us an idea of the quality of the distribution of points E 2 with respect to the rectangles of the type of propositions 2.6.10, 2.6.11 and 2.6.12 : we can compare this result with the test of Gauss. It will be sufficient then that these rectangles are not very large to ensure a good distribution of points of E 2 .

Fundamental Theorem 2.6.14 Let (x, y)

Let λ ′ i ∈ N, i=1,2,...,T' and λ" j ∈ N, j=1,2,...,T" , be two sequences checking λ ′ 1 < h c ′ +1 and λ" 1 < h c"-1 , and for all i ∈ {1, 2, ...., T ′ } and for all j ∈ {1, 2, ...., T "}, λ ′ i ≤ h c ′ +i and λ" j ≤ h c"-j and if λ ′ i = h c ′ +i , then, λ ′ i-1 = 0, and if λ" j = h c"-j then, λ" j-1 = 0.

Of course, the same result holds for the µ j : if m ≥ 377 ,

We recall that by proposition 1.3.3, if T is the congruence of Fibonsacci, then, r a 0 = m and

. Moreover, T is invertible.

Proposition 2.7.8 We have

Moreover, for all rectangle R checking the assumptions of notations 2.7.2,

Proof Let ⌊b⌋ is the integer part of b. We know that r 1 ≤ m/2. By the same way r 1 ≥ r 2 + r 3 . Therefore, r 3 < r 1 /2 < m/4.

By the same way r 3 ≥ r 4 + r 5 . Therefore, r 5 < r 3 /2 < m/8. And so on..... Then,

.

Then, 2n < 2log(m)-4log( 2)

.

Then, d = 2n + 1 < 2log(m)-3log( 2)

.

.

. Then, it is enough to use lemma 2.7.7. Now, we give sufficient conditions in order that the hypothesis contained in the notation 2.7.2 is checked. Lemma 2.7.9 We suppose that T is the Fibonacci congruence. Suppose that card(R ∩ E 2 ) ≥ 3. Then, with the notations 2.7.2, p ∈ N * .

Proof By the notations 2.7.2, c' is the geatest n such that k n ≤ L. Moreover c is the smallest n such that r n ≤ L. The assumption contained in notations 2.7.2 is c'=c+p where p ∈ N * , i.e. there exists

If this is not the case, we can write any rectangle [x

one point E 2 by corollary 2.6.13. By the same way, if We prove in the same way the following property.

Lemma 2.7.10 We suppose that card(R ∩ E 2 ) > h s + 1. Then, with the notations 2.7.2, p ∈ N * .

Proof We takes the same beginning of the proof as in lemma 2.7.9 : we suppose p / ∈ N * . Then, each rectangle [x 0 , x 0 + k c ′ +1 [×[y 0 + (t -1)r c , y 0 + tr c [ contains at most one point of E 2 . Then, the rectangle [

We deduce the result.

Lemma 2.7.11 We suppose that T is the Fibonacci congruence. Let R such that S R /m ≥ 3.

Then, with the notations 2.7.2, p ∈ N * .

If not by corollary 2.6.13,

As a matter of fact, with the notations of corollary 2.6.13 and proposition 2.6.15, Q=1 and δ = -1 by the proof of corollary 2.6.13 . Then, by proposition 2.6.15, Then, as previously by proposition 2.6.15 and the proof of corollary 2.6.13 , S R1 /m ≤ 1. Then

Then, c ′ ≥ c + 1. Then, with the notations 2.7.2, p ∈ N * .

We deduce the following lemma . 

In fact this first inequality can be proved. In order to do it we recall the following theorem (cf [START_REF] Blacher R | Fibonacci congruences and applications[END_REF]).

Then, E 2 ∩ R 0 = (x 0 + k a n-1 ℓ , y 0r a n-1 ℓ) ℓ = 0, 1, 2, ...., h a n-1 . Moreover, the points (x 0 + k a n-1 ℓ , y 0r a n-1 ℓ) are lined up modulo m. Then, one can prove the following theorem. Proof Suppose that n is even. We set

Therefore, one of the rectangles Rv 1 or Rv 2 does not contain points of E 2 where Rv

If n is odd, one uses the same way.

Now one can prove the first part of the conjecture. 

Therefore, the points (x, ax + b) such that y ≤ ax + b < y + L are the points 0 ≤ x = X + x 0 < m such that 0 ≤ aX < L. Let us remark that we saw in the proof of this lemma how the points of T(I) are distributed by using for example the proposition 2.3.9 in the case where L = r c or L = r c-1 . We can thus have a more precise idea of the distribution of these points and we shall can maybe improve the result of the proposition 2.7.16. Now, one can prove the following proposition. Proof Let r 1 and r 2 such that T (g r1-1 ) < y ≤ T (g r1 ) and T (g r2 ) < y + L ′ ≤ T (g r2+1 ).

Then, N R = r 2r 1 + 1 and S R = (c ′c)L ′ . Now, there exists r ′ 1 and r ′ 2 such that m