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Abstract — The aim of this work is to study some numerical solvers for the integration of index-1 and
index-2 differential algebraic equations that describe the dynamics of constrained mechanical systems,
in the framework of event-driven schemes.
These solvers will be compared in terms of drift of the constraints, implementation and the way they
handle cases when the constraints are not sufficiently differentiable.
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1 Introduction

Using the Lagrangian formalism, the dynamics of a rigid multibody system with m frictionless contact
points can be described by 

q̇(t) = v(t) (1a)

M(q(t))v̇(t) = F(t,q(t),v(t))+GT (t,q(t))λ(t) (1b)

0≤ λ(t)⊥ g(q(t))≥ 0, (1c)

where q(t) ∈ Rn is the generalized coordinates vector, v(t) ∈ Rn is the generalized velocities vector,
M(q(t))∈Rn×n is the symmetric definite positive matrix of inertia, F(t,q(t),v(t)) comprises the external
applied loads, the non linear interactions between bodies and the non linear inertial terms, g(q(t))∈Rm is

the vector of constraints, G =
∂

∂q
g(q(t)) is the Jacobian of the constraints and λ(t) ∈Rm is the Lagrange

multiplier which is related to the force at the contact point. The complementarity condition (1c) models
the unilateral contact, or the Signorini condition at the position level.

We suppose that impacts occur in an infinitely short period so that the displacements of the bodies
during the contact period can be negligible and we use the Newton impact law with a coefficient of
restitution e. If g(q(t)) = 0, we compute the impulse pi and the post-impact velocity v+(ti) by solving
the impact equations 

M(q(ti))(v+(ti)− v−(ti)) = GT (ti,q(ti))pi

U+
N (ti) = G(ti,q(ti))v+(ti)

U−N (ti) = G(ti,q(ti))v−(ti)
0≤U+

N (ti)+ eU−N (ti)⊥ pi ≥ 0,

(2)

where UN(t) =
dg
dt

(q(t)) = G(q(t))q̇(t) is the relative normal velocity at contact. The complementarity
condition in (2) describes the Signorini condition written at the velocity level, augmented of the impact
law.

When an event-driven strategy is chosen for the time integration strategy of nonsmooth multibody
systems with unilateral or bilateral constraints, any solver for differential algebraic equations (DAE) can
be used between two events for the time integration of the smooth systems with equality constraints
g(q) = 0. Three index sets are generally introduced in order to characterize the state of the contacts:
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◦ The index set I0 of all possible constraints in the system: I0 = {1, ...,m}

◦ The index set I1 of all closed contacts: I1 = {i ∈ I0|gi(q(t)) = 0}

◦ The index set I2 of all persistent contacts: I2 = {i ∈ I1|ġi(q(t)) = 0}

From the numerical point of view, the smooth dynamics is integrated with some DAE solver, during
periods of time over which the index set I2 is constant. An event detection is performed to find the time
where a new contact occurs or a contact needs to be released. When an event is detected, the impact
equations (2) are solved and the state of the dynamical system is updated. A complete algorithm for the
event-driven schemes is detailed in [1]. As we said above, between two events, we have to solve the
index-3 DAE (3) over the closed contact set I2

q̇(t) = v(t) (3a)

M(q(t))v̇(t) = F(t,q(t),v(t))+GT (t,q(t))λ (3b)

gα(q(t)) = 0, λ
α ≥ 0, ,α ∈ I2. (3c)

It is well known that index-3 DAEs are difficult to numerically handle. Therefore, the dynamics is
usually integrated as an ODE by reducing the original index 3 of the system to 1. It amounts to solving
the problem at the acceleration level by differentiating twice the constraints. Index reduction consists
in differentiating the constraint as many times as necessary to get a set of equations that may be solved
using methods for lower index problems. Hence, if the constraint g is differentiated once with respect to
time, one obtains an index-2 DAE, we solve in this case (3a) and (3b) together with

G(t,q(t))v(t) = 0. (4)

If g is twice differentiated, one gets an index-1 DAE composed of (3a) and (3b) with

G(t,q(t))v̇(t)+Gqq(v,v) = 0. (5)

Numerically, the index reduction leads to the phenomenon of drift of the constraints, at different levels
depending on the index. Indeed, as opposed to the continuous time case, enforcing (5) in discrete time
does not imply that (3c) and (4) are satisfied.

2 Quick recall on the numerical time-integration schemes

2.1 An index-2 DAE solver. The HEM5 solver

The HEM5 solver is based on a half-explicit 5 order Runge-Kutta method with 8 stages, described in
[2]. Half-Explicit Runge-Kutta methods have been introduced by Ernst Hairer in [3]. The HEM5 solver
is suited to the integration of DAEs, reduced to the index 2 formulation. Let us denote qn, vn and tn the
values of position, velocity and time at the beginning of a time step, and let h be the length of the time
step. The numerical approximation is given by

M(Qi, tn + cih)V̇i = F(tn + cih,Qi,Vi)+GT (tn + cih,Qi)Λi

Q̇i =Vi

G(tn + cih,Qi)Vi = 0,
(6)

where the stages are evaluated as follows : Qi = qn +h ∑
j<i

ai jQ̇ j and Vi = vn +h ∑
j<i

ai jV̇j.

At each stage, the estimations of position and velocity Qi and Vi are explicitly computed, while Λi and V̇i

are implicitly obtained by solving the following linear system[
Mi −GT

i
Gi+1 0

][
V̇i

Λi

]
=

[
Fi

ri

]
, (7)

where ri =−
G(Qi+1)

hai+1,i
(vn +h

i−1

∑
j=1

ai+1, jV̇j).

At the end of the time step, the numerical solution is given by qn+1 = Q9 = qn +h∑
8
i=1 biQ̇i and vn+1 =
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V9 = vn + h∑
8
i=1 biV̇i, with bi = a9i. The computation of coefficients ci and ai j is detailed in [2]. It

is worthwhile to note that the HEM5 solver is constructed in a way that the constraint at the velocity
level is satisfied at each stage: G(Qi)Vi = 0 ,∀i = 1..8. In order to get the acceleration and the Lagrange
multiplier at the end of the time step, an additional linear system has to be solved:[

M −GT

G 0

][
v̇
λ

]
=

[
F
r

]
, (8)

where r =−Gqq(v,v).
The embedded schemes technique is the most suited way to compute the optimal time step when we

deal with Runge-Kutta schemes. Concerning the HEM5 solver, V.Brasey and E.Hairer [2] define an error
based on the 7th and 8th estimations such that

err =
err1

2

err1 +0.01err2
= O(h5), (9)

with
err1 = ‖qn+1−Q8‖s = O(h4) and err2 = ‖qn+1−qn−h(

5
2

Q7−
3
2

Q8)‖
s
= O(h3).

Finally, The optimal step size is computed with (10):

hopt = sh(
tol h
err

)

1
p

, (10)

with p = 5 is the local order of the method, s a safety factor, and tol the user defined tolerance.

2.2 A standard ODE solver. The Runge-Kutta-Fehlberg scheme

This method is suited for the integration of ODEs. It belongs to the family of Runge-Kutta-Embedded
methods and provides 2 approximations of the solution to evaluate the error. The scheme is based on 6
estimations of the derivatives defined as: Yi = yn +hF(∑

j<i
ai jẎj).

In our case, we have: Y =
[

q
q̇

]
and F =

[
v

−M−1GT (GM−1GT )
−1
((Gv)qv+GM−1 f )+M−1 f

]
.

A 4th and 5th order approximations of the solution at the end of the step are computed by yn+1 = yn +

∑
i≤6

biẎj and ỹn+1 = yn +∑
i≤6

b̃iẎj. The computational error is defined with:

err = ‖ỹn+1− yn+1‖. (11)

Finally, the computation of the optimal step size is given by (10) with p = 4.

3 Numerical study of the control of the drift of the constraints

3.1 The four-bar linkage

In this section we consider the four-bar linkage system, with 4 bars linked with revolute joints, and one
of them being grounded, as described in Fig. 1:

Fig. 1: Four-bar linkage
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This system is driven by a torque of value τ = 6N.m and is described by the vector of generalized
coordinates q = [ϕ1, ϕ2, ϕ3] as depicted on the figure. During the simulation, the lengths of the bars must
be kept constant. To this aim, two constraints are defined:{

g1(q) := l1 cos(ϕ1)+ l2 cos(ϕ2)− l3 cos(ϕ3)−d1 = 0

g2(q) := l1 sin(ϕ1)+ l2 sin(ϕ2)− l3 sin(ϕ3) = 0.
(12)

The initial conditions of position and velocity are given by q0 = [π

2 ,0,
π

6 ]
T and v0 = [0,0,0]T . They are

compatible with the constraints at both position and velocity levels. The time step size is controlled in
order to meet a tolerance of 10−10 on the integration error but also to maintain the drift of the constraints
(at position and velocity levels) at an acceptable level (10−6). We set the minimum step size at 10−6s
and the maximum step size at 10−2s. The drift of the constraints at both position and velocity levels, for
both solvers, are plotted in Fig. 2 and Fig. 3.

(a) g1 versus time. (b) g2 versus time.

Fig. 2: Four bar linkage example. Drift of the constraints at the position level

(a) ġ1 versus time. (b) ġ2 versus time.

Fig. 3: Four bar linkage example. Drift of the constraints at the velocity level

For the levels of accuracy that we set, the Runge-Kutta-Fehlberg scheme uses the minimum step size
(10−6s) at every time step. This means that the prescribed tolerance is hardly achieved by the scheme
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in this range of time–steps. The time step sizes needed for the simulation with the HEM5 and the
RKFehlberg schemes are presented in Fig. 4.

Fig. 4: Four-bar linkage. Evolution of the time step with the simulation time.

Thanks to its intrinsic characteristic of maintaining the constraint at the velocity level, the HEM5
solver reduces the drift of the constraint drastically at both position and velocity levels, and for a much
lower computational effort compared to the Runge-Kutta-Fehlberg scheme.

3.1.1 The rocking block

The aim is to study the motion of the center of mass of the block depicted in Fig. 5.

Fig. 5: Rocking block

The motion of the block can be described by the generalized coordinates q = [x, z, θ]. During the
simulation time (0.5s), the point A of the block should be in contact with the ground. We varied the
tolerances on the truncation error and on the drift of the constraints, and then we varied the time step
size. The Work/Precision and the error/h diagrams are given in Fig. 6a and Fig. 6b.
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(a) work precision diagram of the rocking block, variable time step (b) log(error)/log(h) diagram of the rocking block, fixed time step

Fig. 6: error and precision diagrams for the rocking block

We can see that holding the drift of constraints under very low thresholds enables the HEM5 solver
to reduce the computational effort for high user-defined tolerances. The Runge-Kutta-Fehlberg needs
lower step sizes to meet the tolerance on the drift of the constraints.
We varied the tolerance for both HEM5 and RKfehlberg schemes, and we computed the average time
step size, the computational effort1 and the maximum drift of g and ġ. Results are detailed in Table 1
and 2.

tolerance average h work gmax ġmax

10−2 0.336 234 3,47.10−5 4,81.10−16

10−3 0.260 460 1,1310−7 3,3410−16

10−4 0.179 624 6,3410−8 6,7210−16

10−5 0.104 988 3,1610−9 6,9710−16

10−6 0.056 1924 4,7610−10 4,5810−16

10−7 0.054 2524 3,7810−10 6,4510−16

10−8 0.046 3120 610−11 6,1310−16

10−9 0.026 5824 8,0110−11 6,8410−16

10−10 0.018 8580 1,2910−11 7,1410−16

10−11 0.010 15548 4,1710−11 9,1710−16

Table 1: Rocking block: average h, work and maximum drift with HEM5

tolerance average h work gmax ġmax

10−2 0,065 390 1,710−4 9,510−5

10−3 0,063 450 2,2110−5 8,0710−5

10−4 0,051 630 1,2110−5 8,0710−5

10−5 0,039 840 2,0210−6 2,3810−6

10−6 0,0009 3036 5,6210−7 9,9810−7

10−7 0,017 2700 4,9310−8 9,7510−8

10−8 0,0029 13560 7,1310−9 10−8

10−9 0,0008 5910 4,1710−10 9,9610−10

10−10 7,6−4 48510 5,310−11 10−10

10−11 1,9710−6 9585990 1.2310−11 9,7910−12

Table 2: Rocking block: average h, work and maximum drift with Runge-Kutta-Fehlberg

1The computational effort is computed by counting the number of function evaluations and the number of linear equations
that are solved.

6



4 Problems with geometrical discontinuities

In this section, we discuss the problems that occur when in a given geometry, there are some edges or
other discontinuities in the contact interface that yield nonsmoothness in the constraint. These disconti-
nuities make the integration of the equations of motion more difficult, and could even lead to incoherent
results if they are not correctly treated. In the case of problems with geometrical discontinuities (edges
for example), the term Gqq of Equation (5) is discontinuous, this leads to a jump in the acceleration and
in the contact force.

Numerically, these discontinuities result in a difficulty when computing the estimations of acceler-
ation or Lagrange multipliers because the system (7) is not well-posed. Let us illustrate this with two
problems presented in Fig. 7a and Fig. 7b.

(a) (b)

Fig. 7: Systems with geometrical discontinuities, illustrative examples

For the system of Fig. 7a, when the sphere arrives at the edge, both constraints are active and with
the HEM5 solver for example, the system (7) is not well-posed, here is an example of such a system:

1 0 −1 −1
0 1 0 0
1 0 0 0
1 6.65031e−5 0 0

[ V̇1
Λ1

]
=


−9.81

0
−3.62238e−2

4.41971e1


At x = 0, two constraints are active (g1 : z = 0 and g2 : z− x2 = 0), but the Hessian of these constraints
are not equal at the edge and this leads to a discontinuity in term Gqq. We propose two methods to solve
this problem.

1st method: Formulating the system as an LCP The first solution consists in re-writing the systems
for the computation for the estimations of accelerations and Lagrange multipliers (for example system (7)
for the HEM5 solver) as a Linear Complementarity Problem:

M(Qi)V̇i−GT (Qi)Λi = Fi

G(Qi+1)V̇i− ri ≥ 0

0≤ V̇i ⊥ Λi ≥ 0.

(13)

This formulation transforms the unfeasible linear problem given by system (7) with two equality con-
straints into a feasible complementarity problem, which enables to find a solution to the problem. For our
simulations, we used for the resolution of these LCPs Lemke’s algorithm available in the open-source
software SICONOS2. When applied to the examples of Fig. 7a and 7b, Lemke’s algorithm provides some
estimations of the acceleration and the contact forces which correspond to the expected theoretical ones.

2nd method: Using the NSCD method The other solution that we propose is to compute the dynamics
in the zone that presents discontinuities with a time-stepping scheme, for instance the Non Smooth
Contact Dynamics (NSCD) method (Moreau–Jean’s time–stepping scheme [4, 5]). The NSCD method
is used here to overcome the difficulty triggered by geometries with non-continuous curvatures. More
precisely, it is used as a way to sort the constraints to be activated, that is decide the ’direction’ to

2http://siconos.gforge.inria.fr
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go through when crossing an edge for example. The following pseudo-algorithm explains the way the
NSCD method is used in the whole integration process:

1. Detect time td when the discontinuity (edge, undetermined normal) occurs

2. Compute the dynamics with the NSCD method

3. Compute the set Id of active constraints at the end of the step

4. Go back at time td and solve the dynamics with a DAE solver with taking into account only the
constraints belonging to Id

We favor the NSCD method as a solution to the presented problems rather than the LCP solution (previ-
ous subsection) since it is a physical solution, so the results are only depending on the dynamics of the
given problem.

5 Conclusion

Even though the HEM5 solver contains more stages (8) than the Rune-Kutta-Fehlberg scheme (6), the
numerical effort of the first solver is lower than that of the second one when they are used with an
adaptive time step. Indeed, the order (5) of the HEM5 solver in addition to its characteristics of reducing
the violation of the constraints, enables using smaller time step sizes than those used for the RKFehlberg
scheme, and thus reduces the computational effort.

The HEM5 solver enforces the constraints at the velocity level and it enables to reduce drastically
the drift at the position level. This enables often to perform the integration without any procedure of
projection of the constraints on the admissible manifold. This is not the case of the RKFehlberg scheme
where a projection on the constraints is mandatory. Discretizing the dynamics with a formulation of the
constraint at the velocity level seems to be a good compromise.

None of the solvers enable to avoid integration issues (systems not well-posed when constraints
are not compatible) that occur at some geometrical discontinuities. We presented two solutions to this
problem: using Lemke’s algorithm which gives correct results when the problem is feasible, or using
the NSCD method. The last solution is promising since it is only driven by the dynamics and does not
depend on any feasibility condition.

Further works will deal with index-3 DAE resolution as in the work of O.Bruls and M.Arnold in [6],
and the use of hybrid mixed time stepping integrators in [7] and projected integration schemes in [8].
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