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Abstract

In a model of the form Y = h(X1, . . . , Xd) where the goal is to es-
timate a parameter of the probability distribution of Y , we define new
sensitivity indices which quantify the importance of each variable Xi with
respect to this parameter of interest. The aim of this paper is to define
goal oriented sensitivity indices and we will show that Sobol indices are
sensitivity indices associated to a particular characteristic of the distribu-
tion Y . We name the framework we present as Goal Oriented Sensitivity
Analysis (GOSA).

Mathematics Subject Classification:
Keywords: Sensitivity analysis, Sobol indices

Introduction

From more than one decade, uncertainty propagation and sensitivity analysis
are widely used to handle mathematical models of industrial problems involving
many parameters or variables (e.g. see [8]): geophysics and oil reservoir, safety
in nuclear industry, soil pollution, and more generally domains where it can be
found heavy computation codes with large number of inputs and complex com-
putations so that only few simulations of these codes can be run (for agricultural
example see [4]).
The uncertainty propagation methodology (see [1] for more details) uses random
variables as inputs, even for deterministic codes, and study the distribution (or
some characteristics) of the output. It is justified on the one hand by the poor
knowledge of the input parameter (or variables), and on the other hand by the
relatively small number of observed output available.
Very often, some of the input variables strongly affect the output (or a charac-
teristic), while others have a small effect (and even no effect). The sensitivity
analysis try to quantify these effects. In [9] I.M. Sobol defined indices, now
called Sobol indices, based on the decomposition of the output variance. Using
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the ANOVA decomposition of a function of several variables he defined global
and partial indices for one or a group of variables.
Sensitivity Analysis is of great interest in industrial applications where the en-
gineers deal with heavy computer codes, often with a large input dimension
(about 50 in most of simulations). As a matter of fact, it is necessary to reduce
the input dimension in order to make the simulations more tractable for the
study of interest (thermal, acoustic, electromagnetic study...). Such sensitivity
analysis may be done for instance thanks to experts judgement. In this case
the experts choose the inputs to fix to a "nominal" value and consider the other
ones as "free". A modelling phase is guided by some requirements which give
some characteristics to be satisfied by the simulation. So, the design of a mod-
elling (simulation code), in particular the choice of fixed inputs, may have to be
done considering these requirements. As an example, let us consider a flight of
a commercial aircraft where one of the requirements is that the pressure inside
the cabin must be greater than a specific threshold (about 0.7 bar). The Envi-
ronmental Control System (ECS) of an aircraft is a system providing air supply,
thermal control and cabin pressurization for the crew and the passengers, which
guarantees their comfort. During the design of a new aircraft, the unique way
to forecast the cabin environment is to simulate models representing the ECS,
often very complex. Hence, an important challenge it to have a "good fidelity"
of the ECS modelling so as to make pertinent simulations which will be at the
heart of crucial decisions. The ECS modelling can be basically viewed as a black
box input/output computer code with a large input dimension. Therefore, it is
unavoidable to reduce this dimension by considering only "important" variables.
As said before, a first approach may be to use experts judgement. Then, a very
popular and widely used approach is to compute Sobol indices which give the
contribution of the variability of each input w.r.t the outputs. At this point,
one can wonder if the systematic use of Sobol index, whatever the quantity of
interest, is the best thing that can be done. Indeed, it might be judicious to
adopt a new approach based on the goals of the study. In particular, this new
approach would be to consider the goal of this study example which is to verify
if the cabin pressure is greater than 0.7 bar, and then to select the "impor-
tant" variables w.r.t these requirements. In this paper we will focus on this
latter approach (which is different from the Sobol one) and we will propose a
methodology to build new sensitivity indices based on the quantity of interest
to estimate.
We aim at developing an approach we name Goal Oriented Sensitivity Analysis.
This first study aims at proposing new global indices for one or several vari-
able(s) which generalizes the Sobol ones. The general idea of this work is the
following, the importance of an input variable may vary depending on what the
quantity of interest is.

The paper is organized as follows. Section 1 presents a short discussion ex-
plaining why our new index is interesting. Then we give a motivation of our
work starting from the definition of Sobol indices in Section 2. We define the
notion of contrast function in Section 3 and provide some classical contrasts. In
Section 4 we define a new index which is contrast adapted. Then in Section 5,
we present two simple examples in order to illustrate our index, its properties
and to show that he provides in some cases more information than the classi-
cal Sobol index. Section 6 is devoted to the case of the maximum likelihood
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estimation where we also present a simple analytical example as an illustration.
Section 7 is devoted to the practical estimation of our indices which is applied to
two numerical examples one of them being the study of the classical "Ishigami"
function.

1 Sensitivity indices and goal oriented estimation
The Sobol indices have been widely used in many contexts. Application studies
generally show a common drawback : they do not emphasized a capital point,
namely that the efficiency of an index has to be ranked w.r.t. the statistical
parameter(s) or features that have to be estimated.
It seems very intuitive that to estimate a mean or a median (central parameter)
could involve very different variables than estimating extreme quantiles. Thus
the same index should not be used for these two different tasks. So we need
to adapt the indices to each particular goal we track, that we may call a "goal
oriented" sensitivity study. As a matter of fact the Sobol indices are well suited
to quantify the sensitivity of an estimator based on a variance criterion : a
mean.
Shortly speaking, we propose to define an index for each statistical purpose.
Of course it may happen that several goals are to be reached, then one can adopt
a mixed strategy i.e compute various indices related to each goal and combine
them to define some importance criteria of the input variables.

2 Motivations
Let us first recall some well known facts about Sobol index. In a model Y =
h(X1, . . . , Xd) the global Sobol index quantify the influence of a random variable
Xi on the output Y . This index is based on the variance (see [9],[7]): more
precisely, it compares the total variance of Y to the expected variance of the
variable Y conditioned by Xi,

Si =
Var(E[Y |Xi])

Var(Y )
. (1)

By the property of the conditional expectation it writes also

Si =
Var(Y )− E(Var[Y |Xi])

VarY
. (2)

Formula (1) is generally used by people working in the domain of uncertainty
analysis, see [9, 6, 7, 8].
We propose to adopt formula (2) to extend the definition of a global Sobol index
according to the estimation of a parameter.
Indeed, it is well known that the mean EY is the minimizer of the quadratic func-
tion θ 7→ E(Y − θ)2 (we will call it a contrast function later) and that the value
of the minimum is the variance of Y . Now, conditioning by Xi, E[Y |Xi] is the
minimizer of the function E[(Y − θ)2|Xi] and the minimum value is Var[Y |Xi].
So that Si appears to compare the optimal value of the function E(Y − θ)2 to
the expected optimal value of the conditional function E[(Y − θ)2|Xi].
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This remark will guide our definition of a new index associated to a given con-
trast. Indeed, if one replace the contrast function θ 7→ E(Y − θ)2 by an another
contrast, he will obtained naturally an another index.

3 Notion of contrast function

3.1 Definition

Definition 3.1. Let Θ be some generic set and Q be some probability measure
on a space Y. A (Θ, Q)-contrast function, or simply contrast function, is
defined as any function ψ

ψ : Θ −→ L1(Q) (3)
θ 7−→ ψ(·, θ) : y ∈ Y 7−→ Ψ(ρ, y) ,

such that

θ∗ = Argmin
θ∈Θ

EY∼Q ψ(Y ; θ) (4)

is unique. The function Ψ : θ 7→ EY∼Q ψ(Y ; θ) is the average contrast func-
tion, or abusively contrast function if there is no ambiguity.

The contrast function is a very useful object in Statistical Learning Theory (see
[3]) where it defines estimation procedures of some feature θ∗ ∈ Θ (scalar or
functional) associated to a random variable Y . For instance, when observing a
n-sample (Y1, . . . , Yn) of the random variable Y , an estimator of θ∗ is given by
θ̂ = ArgminθΨn(θ), where Ψn is obtained by substituting the expectation w.r.t.
the variable Y by the expectation w.r.t. the empirical measure of the sample.
It reads:

Ψn(θ) =
1

n

n∑
i=1

ψ(Yi; θ).

Then, considering for example the following contrast function

ψ : (y; θ) 7→ (y − θ)2

provides the well known estimation procedure of the mean

θ̂ = Argminθ
1

n

n∑
i=1

(Yi − θ)2 .

That gives obviously

θ̂ =
1

n

n∑
i=1

Yi .

The same stands for "functional" features associated to the random variable Y
(density function, etc.).

Remark 3.1. Feature characterization by contrast. The writing (4) pro-
vides a characterization of a feature θ∗ of Y by a contrast ψ. Notice that it may
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exist various contrasts ψ characterizing θ∗ (see [5] for more details).

In this paper, we do not use contrast functions in order to estimate a feature
of Y but rather for defining new sensitivity indices as we will see. Indeed, our
aim is to define sensitivity indices that rely on specific features of a random
variable of interest Y : sensitivity w.r.t the mean, w.r.t an α-quantile, w.r.t the
density function, etc. For this, we will use the contrasts characterization and we
will see that the Sobol indices are in fact particular indices associated to some
particular contrast.

3.2 Some examples of contrasts

Let us give a non exhaustive list of contrasts that allow to estimate various pa-
rameters associated to a probability distribution. We give the classical contrasts
associated to each parameter.

1. Central parameters:

• The mean : Ψ(θ) = E|Y − θ|2.
• The median (in R) : Ψ(θ) = 1

2E|Y − θ|.

2. An excess probability : Ψ(θ) = E|1Y≥t − θ|2.

3. All the probability tail: Ψ(θ) =
∫∞
t0

E|1Y≥t − θ(t)|2dt.

4. The α-quantile : Ψ(θ) = E(Y − θ)(α− 1Y≤θ).

5. All the quantile "tail": Ψ(θ) =
∫ 1

α0
E(Y − θ(α))(α− 1Y≤θ(α))dα.

6. The probability density function, which is an infinite dimensional param-
eter.

• Using the kernel method with a given kernel K and a window size
r > 0, we set Kr(Y ) = 1

rK(Yr ) and the contrast is:

Ψ(θ) = E
∫ +∞

−∞
(Kr(Y − t)− θ(t))2dt.

In fact it is an unbiased estimator of the convolution of the p.d.f with
Kr, which is the target "parameter".

• Using an orthonormal L2 basis (ϕj , j ≥ 0) truncated at the order N
:

Ψ(θ) = E
N∑
j=0

(ϕj(Y )−
∫ +∞

−∞
ϕj(u)θ(u)du)2.

What is really estimated here, is the orthogonal projection of the
p.d.f on the truncated basis, which is the target "parameter".

Most of these contrasts are of quadratic type, contrary to the contrasts associ-
ated to the quantiles.
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4 Sensitivity with respect to a contrast
We are interested in the sensitivity of a scalar output Y to an input variable
Xk, we assume that Y is a function of some input variables:

Y = h(X1, . . . , Xd) = h(X) .

Generally h is a "black box", in the sense that h is not explicit but results from
heavy computer code, complex mathematical (or statistical) models.

Remark 4.1. For sake of simplicity we consider a scalar output Y but our
method can easily be extended to a multiple output Y ∈ Rq.

We assume that Ψ is a contrast associated to a "parameter" θ∗, where θ∗ =
ArgminΨ(θ). Moreover Ψ writes Ψ(θ) = Eψ(Y ; θ).

We define the contrast variation with respect to the variable Xk.

Definition 4.1. Let Ψ(θ) = Eψ(Y ; θ) be a contrast. The contrast variation due
to Xk is defined as

Vk = min
θ

Ψ(θ)− E(min
θ

E(ψ(Y ; θ)|Xk)),

and we have Vk ≥ 0. We can also write Vk as follows

Vk = E(Xk,Y ) (ψ(Y ; θ∗)− ψ(Y ; θk(Xk))) (5)

where θ∗ = Argmin
θ

Ψ(θ) and θk(x) = Argmin
θ

E(ψ(Y ; θ)|Xk = x) .

Notice that the inequality

E(min
θ

E(ψ(Y ; θ)|Xk)) ≤ min
θ

E(E(ψ(Y ; θ)|Xk)) = Ψ(θ)

implies that Vk is non negative.
Moreover, let us remark that if Y does not depend on Xk, Vk is 0 and conversely
if Y = h(Xk) then Vk is maximum.

We make the following assumption:

Assumption 4.1.
Emin

θ
ψ(Y ; θ) ∈ R.

Notice that all the contrasts we presented in Section 3 satisfy Assumption 4.1
since minθ ψ(Y ; θ) = 0.
Now we are in position to define a new index generalizing the Sobol one based
on contrasts that satisfy Assumption 4.1.

Definition 4.2. ψ-Indices. Assume that a contrast Ψ(θ) = Eψ(Y ; θ) satisfies
Assumption 4.1. The ψ-index of the variable Y = h(X1, . . . , Xd) with respect to
the contrast Ψ and the variable Xk is defined as:

Skψ =
Vk

minθ Ψ(θ)− Eminθ ψ(Y ; θ)
,

or

Skψ =
E(Xk,Y ) (ψ(Y ; θ∗)− ψ(Y ; θk(Xk)))

Ψ(θ∗)− Eminθ ψ(Y ; θ)
. (6)
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Let us make some comments on this new index

1. If Y does not depends on Xk, then Skψ = 0. Moreover, assuming that
the variables (X1, . . . , Xd) are independent, which is the case when people
consider the Sobol indices, if Y = h(Xk) then Skψ = 1 and the other indices
Slψ, l 6= k are 0. In fact, we have that

Skψ ∈ [0, 1] .

These basic properties were expected from a reasonable sensitivity index.

2. As mentioned in the introduction, when considering in (6) the mean-
contrast

ψ : (y; θ) 7→ (y − θ)2 ,

we retrieve the global Sobol index. Indeed, in this case we have that

θ∗ = Argmin
θ

Ψ(θ) = Argmin
θ

E(Y − θ)2 = EY

and

θk(x) = Argmin
θ

E(ψ(Y ; θ)|Xk = x)

= Argmin
θ

E(Y − θ)2|Xk = x)

= E(Y |Xk = x) .

Thus, it yields

E(Xk,Y ) (ψ(Y ; θ∗)− ψ(Y ; θk(Xk))) = E(Xk,Y )

(
(Y − EY )2 − (Y − E(Y |Xk))2

)
= E(Y − EY )2 − E(Xk,Y )(Y − E(Y |Xk))2

= Var(Y )− EXkE
[
(Y − E(Y |Xk))2|Xk

]
= Var(Y )− EXkVar(Y |Xk)

= Var(E(Y |Xk))

and

min
θ

Ψ(θ)− Emin
θ
ψ(Y ; θ) = Ψ(θ∗)− 0 = Var(Y ) .

Finally, we obtain the following ψ-index

Skψ =
Var(E(Y |Xk))

Var(Y )
,

which is exactly the first order Sobol index defined in equation (1).

Remark 4.2. The indices (6) we propose can be generalized to higher order
indices, for I ⊂ {1, ..., d} and denoting by XI = (Xi)i∈I , we define

SIψ =
E(XI ,Y ) (ψ(Y ; θ∗)− ψ(Y ; θI(XI)))

EY ψ(Y ; θ∗)
(7)

where θI(XI) is the feature associated to the contrast ψ of the random variable
Y |XI .

In the next section we give two simple examples that allow to familiarize with
our indices, and which highlight the differences between our indices and the
Sobol ones.
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5 First examples

In this section, we present two very simple examples in order to show

1. how our indices can be analytically computed in very simple cases.

2. how they differ from classical Sobol indices.
Indeed in Example 1 (see Figure 2) one can see that Sobol indices are
both constant and equal to .5 whereas the new indices are distinct and
non-constant. One can note that Sobol indices give the same importance
for each variable, and the importance of each variable differs while αmoves
for the new indices (indeed for small values of α the second variable is more
important than the first one and for large values of α the first variable is
more important than the second one). This example shows clearly that the
new index is more adapted to the problem than the classical Sobol index.
It seems very intuitive that for large values of α the positive variable has
to be more important than the negative one.

5.1 Example 1

Let Y = X1 + X2, with X1 ∼ Exp(1), X2 ∼ −X1, these two variables being
independent. The variable Y has the Laplace distribution with parameter 1
its density with respect to the Lebesgue’s measure is f(x) = exp(−|x|)/2 (See
Figure 1).
Here, we aim at defining sensitivity indices with respect to the α-quantile qY (α)
of Y . Thus, we propose to use the following contrast

Ψ(θ) = E(Y − θ)(α− 1Y≤θ) ,

which characterises the α-quantile.
Notice that with the previous contrast, Eminθ ψ(Y ; θ) = 0. Now, let us compute
the indices

Skψ =
E(Xk,Y ) (ψ(Y ; θ∗)− ψ(Y ; θk(Xk)))

Eψ(Y ; θ∗)

=
Eψ(Y ; θ∗)− E(Xk,Y ) (ψ(Y ; θk(Xk)))

Eψ(Y ; θ∗)
,

for k = 1, 2, where θ∗ = qY (α), θ1(X1) = qY/X1
(α) and θ2(X2) = qY/X2

(α) .

A simple computation yields

qY (α) =

{
− log(1− α)− log 2 if α ≥ 1/2,

log(2α) if α < 1/2.

and

Ψ(θ) = Eψ(Y ; θ) =

{
exp(θ)

2 − θα if θ < 0,
exp(−θ)

2 − θα+ θ if θ ≥ 0.
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Figure 1: Plot of (0,1)-Laplace distribution

We finally get the following indices (for detailed computations see Annexe 9.1)

S1
ψ =

{
(1−α)(1−log(2(1−α)))+α log(α)

(1−α)(1−log(2(1−α))) if α ≥ 1/2
α(1−log(2α))+α log(α)

α(1−log(2α)) if α < 1/2
(8)

S2
ψ =

{
(1−α)(1−log(2(1−α)))+(1−α) log(1−α)

(1−α)(1−log(2(1−α))) if α ≥ 1/2
α(1−log(2α))+(1−α) log(1−α)

α(1−log(2α)) if α < 1/2
(9)

In Figure 2 we plot the indices S1
ψ and S2

ψ and also the Sobol indices.
As it was expected, we have S1

ψ < S2
ψ for α < 1/2, S1

ψ > S2
ψ for α > 1/2

we and S1
ψ = S2

ψ for α = 1/2. Moreover limα→1 S
1
ψ = limα→0 S

2
ψ = 1 and

limα→0 S
1
ψ = limα→1 S

2
ψ = 0.

In this example the corresponding classical Sobol indices are S1
Sob = S2

Sob = 1/2.
The latter indices do not depend on α, in other words, the Sobol indices do not
include the fact that we are investigating quantiles and hence they are useless
if the statistical aim is to compute quantiles.

5.2 Example 2
The second example is Y = X1 + X2, with X1 ∼ Exp(1), X2 ∼ Exp(a), a > 0,
two independent variables. Here, we aim at providing a sensitivity index with
respect to the probability of Y to exceed t ≥ 0, i.e P(Y ≥ t). A contrast which
characterises such quantity of interest can be the following

Ψ(θ) = E|1Y≥t − θ|2 (10)

which in fact turns to be a quadratic contrast. Hence, we will recover the sobol
index associated to the variable Z = 1Y≥t. This fact deserves to be observed.
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Figure 2: Sensitivity Indices for Example 1.

The density of Y is for a 6= 1:

f(x) =

{
a
a−1 (e−x − e−ax) for x ≥ 0

0 else

and for a = 1
f(x) = xe−x forx ≥ 0 .

Notice that with the contrast (10), one has Eminθ ψ(Y ; θ) = 0. Now, let us
compute the indices

Skψ =
Eψ(Y ; θ∗)− E(Xk,Y ) (ψ(Y ; θk(Xk)))

Eψ(Y ; θ∗)
,

for k = 1, 2, where θ∗ = P(Y ≥ t), θ1(X1) = P(X2 ≥ t−X1/X1) and θ2(X2) =
P(X1 ≥ t−X2/X2) .
First, we have easily

Eψ(Y ; θ∗) = E(1Y≥t − P(Y ≥ t))2

= Var(1Y≥t)
= P(Y ≥ t)(1− P(Y ≥ t)) .

The computation of the quantities Ek := E(Xk,Y ) (ψ(Y ; θk(Xk))), k = 1, 2, is
not as direct as the previous example. We compute it in Annexe 9.2 and we
obtain the following results

E1 =


e−at−e−t

1−a − e−2at−e−t
1−2a if a /∈ {1, 1/2}

e−2t − (1− t)e−t if a = 1
2e−t/2 − (2 + t)e−t if a = 1/2

10
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Figure 3: Plot of the distribution of Y for three values of a

and

E2 =

a
e−at−e−t

1−a − a e
−at−e−2t

2−a if a /∈ {1, 2}
e−2t − (1− t)e−t if a = 1

2e−t − 2(t+ 1)e−2t if a = 2 .

It is now easy to compute S1
ψ and S2

ψ.
Next, considering the writing Y = ξ1 + 1

aξ2 where ξ1 and ξ2 are two independent
variables with ξ1 ∼ Exp(1), ξ2 ∼ Exp(1), it is easy to see that the Sobol indices
are given by

S1
Sob =

a2

1 + a2
, S2

Sob =
1

1 + a2
.

We provide in Figure 4 the plot of these indices in function of t ∈ [0, 5] for three
values of a.
These plots show first that the relative importance of each variable varies w.r.t
to t when considering the new indices, contrary to the Sobol ones. But, as it was
mentioned at the beginning of this example, the contrast Ψ(θ) = E|1Y≥t − θ|2
induces in fact Sobol indices for the variable Z = 1Y≥t, hence the importance
ranking is preserved using the two types of indices. It was not the case for
Example 1 where, for the new indices, the importance ranking changes with the
quantile level, contrary to the Sobol ones.

6 The case of the maximum likelihood
The use of maximum likelihood techniques in order to estimate a parameter is
one of the most popular technique in statistics. That’s why, in this section we
present the classical example of maximum likelihood for which the contrast is
not necessarily quadratic.
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6.1 A sensitivity analysis related to a maximum likelihood
estimation

Let X be some random vector and assume that its distribution is known. Then,
let us suppose that Y is the result of a parametrized model h(X, θ∗) that we
can analytically handle. We want to estimate θ∗.

For this, we use the maximum likelihood (M.L.) method: the estimation is
based on the contrast Ψ(θ) = −E (log pθ(Y )) where for each θ, pθ(y) is the
p.d.f. of Y . Here, the expectation is taken with respect to the true distribution
of Y . We are now in position to define a sensitivity index of the estimator of
θ∗.

Applying Definition 4.1 the variation of contrast Vi is:

Vi = min
θ

E
(
− log pθ(Y )

)
− E

(
min
θ

E
(
− log pθ(Y )|Xi

))
.

Assuming that the M.L. contrast satisfies Assumption 4.1, we define:

Si =
minθ E

(
− log pθ(Y )

)
− E

(
minθ E

(
− log pθ(Y )|Xi

))
minθ E

(
− log pθ(Y )

)
− E

(
minθ

(
− log pθ(Y )

)) (11)

Remark 6.1. The index Si may also writes

Si =
E(Xi,Y ) (ψ(Y ; θ∗)− ψ(Y ; θk(Xi)))

Ψ(θ∗)− Eminθ ψ(Y ; θ)
,

where ψ(y; θ) = − log(pθ)(y) . This latter expression is very useful when one
knows the quantity of interest θ∗, see Remark 3.1. Here, or more generally for
any model Y = h(X, θ∗), the parameter θ∗ is not directly defined as a specific
feature of the distribution of Y (like a quantile, the mean, etc.), and so it is not
directly computable. Hence, in this case we prefer the writing (11).

6.2 An analytical example

As an analytical illustration we take the case of an exact linear gaussian model.
Let Y = θX1+X2, whereX = (X1, X2) has a normal distribution N (0, I2). The
distribution of Y is N (0, θ2 + 1) and the maximum likelihood contrast reads:

Ψ(θ) = E
(

Y 2

2(θ2 + 1)
+

1

2
log(2π(θ2 + 1))

)
.

The minimum is obtained for θ such that EY 2 = θ2 + 1 and has value

1

2
+

1

2
log 2π + logEY 2 .

Likewise, conditionally to Xi we have

E(− log pθ(Y )|Xi) =
E(Y 2|Xi)

θ2 + 1
+

1

2
log(2π(θ2 + 1)).

13



The minimum is 1
2 + 1

2 log 2π + logE(Y 2|Xi).
Now the variation Vi is given by

Vi =
1

2
(logEY 2 − E(logE(Y 2|Xi))).

And finally we may write:

Si =
logEY 2 − E

(
logE(Y 2|Xi)

)
logEY 2 − E log Y 2

=
E log(E(Y 2|Xi)

EY 2 )

E log( Y 2

EY 2 )
.

Thus we obtain the indices :

S1 =
E log(

1+θ2X2
1

1+θ2 )

E log Y 2

1+θ2

, S2 =
E log(

θ2+X2
2

1+θ2 )

E log Y 2

1+θ2

which we rewrite

S1 =
1

γ + ln 2

(
ln(1 + θ2)− E ln(1 + θ2ξ)

)
, S2 =

1

γ + ln 2

(
ln(1 + θ2)− E ln(θ2 + ξ)

)
,

where γ is the Euler constant and ξ is a chi-squared random variable with 1
degree of freedom Indeed, we have that Y 2

1+θ2 is a chi-squared random variable
with 1 degree of freedom and one can verify that the expectation of its logarithm
equals to −(γ + ln 2).

Moreover, one computes easily the Sobol indices

S1
Sob =

θ2

1 + θ2
, S2

Sob =
1

1 + θ2
.

Figure 5 shows that the contrast-based indices and the Sobol ones have the
similar behaviour in that the importance ranking between X1 and X2 is exactly
the same, with an equally importance for θ = 1. The same conclusion was
done for Example 2 where the contrast was "quadratic". Here, the contrast is
not quadratic, but, for the Gaussian linear model considered, it acts like the
mean contrast giving Sobol indices. Yet the ratios are not always of the same
magnitude as can be seen in figure 6. When θ is less than 1 the ratios are closed,
while for large θ, X1 appears to be more important for the indices based on log
contrast than for the Sobol indices, which is almost intuitive.

7 Estimation of the indices.
As in most application, the model h is unknown or too complicated, it is useless
to think that one can reach analytical formulas for our new indices. Hence, it
is natural to wonder how these indices could be estimated. In this section, we
first describe an estimation procedure and then we apply it for two examples.
In order to validate our estimation procedure, we start by considering again
Example 1 of Section 5.1, and show that we indeed recover the theoretical values
of these indices. Then we consider the case of the so-called Ishigami function
(see [2]).
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Figure 5: Sensitivity Indices for the log contrast with θ ∈ [0, 2].
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Figure 6: ratios S1
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for the log contrast with θ ∈ [0, 2].

In this section, we present an estimation method for computing the contrast-
based indices (ψ-indices)

Skψ =
Ψ(θ∗)− E(Xk,Y ) (ψ(Y ; θk(Xk)))

Ψ(θ∗)

or rather

Skψ =
E(Xk,Y ) (ψ(Y ; θ∗)− ψ(Y ; θk(Xk)))

EY ψ(Y ; θ∗)
(12)

for some contrast ψ (see Section 3 for examples of contrasts), θ∗ = Argmin
θ

Eψ(Y ; θ)

and θk(x) = Argmin
θ

E(ψ(Y ; θ)|Xk = x) . Notice that here we considered con-

trasts that satisfied Eminθ ψ(Y ; θ) = 0, which is the case for our numerical
applications.
By definition of the contrast function ψ, the parameter θ∗ is a feature of the
random variable Y , for instance:

• for the mean-contrast Ψ(θ) = E|Y − θ|2, θ∗ is the expectation of Y , that

16



is θ∗ = E(Y ), and hence Ψ(θ∗) = Var(Y ),

• for the α-quantile contrast Ψ(θ) = E(Y −θ)(α−1Y≤θ), θ∗ is the α-quantile
of Y , that is θ∗ = qα(Y ), and thus Ψ(θ∗) = E(Y − qα(Y ))(α−1Y≤qα(Y )),

• etc.

In fact, for numerical computations, θ∗ may not be seen as an optimisation
problem solution (θ∗ = Argmin

θ
Eψ(Y ; θ∗)) but rather as the quantity of inter-

est defined by the contrast ψ, see Remark 3.1. Like this, we may have a direct
computation of θ∗ in many cases: mean, quantile, etc.
The same thing stands for the conditional parameter θk(x) which is a feature
(depending on the considered contrast) of the random variable Y |Xk = x where
Xk is fixed to x.

The computation of an estimator of the index (12) requires the two following
steps (recall that Y = h(X1, ..., Xp)):

1 Generate Xj
1 , ..., X

j
p and compute the Y j = h(Xj

1 , ..., X
j
p), for j = 1, ..., n1.

Then compute θ̂∗ and replace in (12) the expectations E(Xk,Y ) and EY by
their empirical versions.

2 Generate X ′ j1 , ..., X
′ j
p for j = 1, ..., n2 (independent from the previous

set) and compute the Y ′ j = h(X ′ j1 , ..., X
′ j
p ). Then, from the sample

Y ′ jk (x) = h(X ′ j1 , ..., X
′ j
k−1, x,X

′ j
k+1, ..., X

′ j
p ), j = 1, ..., n2, compute the

function x 7→ θ̂k(x).

Finally, an estimation of the index (12) is given by

Ŝkψ =

1
n1

∑n2

j=1

(
ψ(Y j ; θ̂∗)− ψ(Y j ; θ̂k(Xj

k))
)

1
n1

∑n1

j=1 ψ(Y j ; θ̂∗)
(13)

Remark 7.1. For higher order indices (see Remark 4.2) given by

SIψ =
E(XI ,Y ) (ψ(Y ; θ∗)− ψ(Y ; θI(XI)))

EY ψ(Y ; θ∗)
(14)

the quantity θI(XI) is estimated by using the sample(
Y ′ lI (XI) = h(X′ lIc ,XI)

)
1≤l≤n2

.

Remark 7.2. By considering the mean-contrast ψ(y; θ) = (y−θ)2 we have that
θ̂∗ and θ̂k(Xj

k) are the empirical mean of the samples
(
Y l = h(X l

1, ..., X
l
p)
)

1≤l≤n1

and
(
Y ′ lk (Xj

k) = h(X ′ l1 , ..., X
′ l
k−1, X

j
k, X

′ l
k+1, ..., X

′ l
p )
)

1≤l≤n2

, respectively, that is

θ̂∗ =
1

n1

n1∑
l=1

Y l , θ̂k(Xj
k) =

1

n2

n2∑
l=1

Y ′ lk (Xj
k) .
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Setting n1 = n2 = N , it is easy to check that the index Ŝkψ in (13) is the well
known Monte-Carlo estimator of the first order Sobol indice, see [6]:

Ŝkψ =
YY′k −YY′k

Y2 −Y
2 ,

where Y = (Y 1, ..., Y N ) and Y′k = (Y ′ 1k (X1
k), ..., Y ′Nk (XN

k )) and for any vector
u = (u1, ..., uN )

u =
1

N

N∑
j=1

uj .

Let us now see how our estimation procedure works in practice.

7.1 Numerical resolution of Example 1

Let us remind the first example treated in Section 5.1 where we considered the
relation

Y = X1 +X2 , X1 ∼ Exp(1), X2 ∼ −X1

where X1 and X2 are independents. We have in Section 5.2 analytically com-
puted the indices S1

α and S2
α corresponding to the α-quantile contrast. The

obtained values are given in equations (8) and (9).
To illustrate the estimation method proposed in 7, we now compute the esti-
mation of the indices S1

α and S2
α thanks to the formula (13) using the contrast

ψα(y; θ) = (y − θ)(α− 1y≤θ), for α in [0, 1].
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Figure 7: Numerical Sensitivity Indices for Example 1.

In Figure 7 we plot the estimated values of these indices. Comparing Figure 7
with Figure 2, we conclude that we obtain the same results modulo the Monte-
Carlo errors due to the numerical simulation of the indices.
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7.2 Ishigami function
In this section, we consider a popular function in the domain of sensitivity anal-
ysis, the Ishigami function (see [2]). For instance, let us consider the following
version:

y = sin(ξ1) + 7 sin(ξ2)2 + 0.1 ξ4
3 sin(ξ1),

where the ξj ’s are independent uniform random variables on [−π, π]. Now, we
propose to analyse sensitivity indices of ξ1, ξ2 and ξ3 by considering, first, the
mean-contrast

Ψmean(θ) = E|Y − θ|2 ,
(we denote the corresponding indices by S1

mean, S
2
mean and S3

mean) and then by
considering the α-quantile contrast

Ψα(θ) = E(Y − θ)(α− 1Y≤θ)

(we denote the corresponding indices by S1
α, S

2
α and S3

α).
On the one hand, since the first indices S1

mean, S
2
mean and S3

mean are the classical
Sobol indices, they are known analytically and are

S1
mean = 0.3139, S2

mean = 0.4424 and S3
mean = 0 .

On the other hand, we do not have a closed formula of the indices S1
α, S

2
α and

S3
α, therefore we compute them numerically for α in [0, 1] and represent the

results in Figure 8. In this Figure one can notice the interesting point: whereas
S3
mean is always equals to 0 which make us think that the third variable has no

influence, S3
α is for example large for extreme values of α and in this case the

third variable is more important than the second one .

This example shows clearly the importance of taking into account the goal of
the study when measuring the impact of the input variables. Indeed when α
is large (for example α > 0.95), one has the intuition that ξ4

3 would have a
significant influence. This important characteristic is detected when using the
index associated with the good contrast, whereas the classical first order Sobol
index is unable to do that.

8 Conclusion
In this paper we introduced new indices measuring the influence of an input
random variable subordinated to a contrast. The range of definition of these
indices is wide and allows to handle many cases that are not directly related
to a variance criterion: our two main examples are the quantiles and many
maximum likelihood estimators, but many others may be handled. Of course
when a quadratic contrast is concerned then our indices coincide with the Sobol
indices. This paper is the first step toward a generalized theory of sensitivity
analysis that embedded the Sobol index as a particular case related to variance
contrasts.

Acknowledgements This work has been partially supported by the French
National Research Agency (ANR) through COSINUS program (project COSTA-
BRAVA no ANR-09-COSI-015).
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Figure 8: Ishigami Sensitivity Indices

9 Annexe

9.1 Analytical computations of Example 1

Hence the minimum value of the contrast is{
minθ Ψ(θ) = Ψ(log(2α)) = α(1− log(2α)) if α < 1/2,
minθ Ψ(θ) = Ψ(− log 2− log(1− α)) = (1− α) (1− log(2(1− α))) if α ≥ 1/2.

Now we condition by X2, and we compute

min
θ

E(X1 − (θ −X2))(α− 1X1≤θ−X2
)|X2).

As the α-quantile of a variable Exp(1) is qX1
(α) = − log(1− α), the minimum

is obtained at θ−X2 = qX1
(α) and is −(1−α) log(1−α), that does not depend

on X2.
Following the same line for X1 yields:

min
θ

E(X2 − (θ −X1))(α− 1X2≤θ−X1)|X1) = −α log(α).

9.2 Analytical computations of Example 2

• Step 1 Computation of minθ Ψ(θ).
Since Ψ(θ) = P(Y ≥ t) − 2θP(Y ≥ t) + θ2, the minimum value of the

20



contrast is obtained at θ = P(Y ≥ t).

P(Y ≥ t) = ae−t−e−at
a−1

min
θ

Ψ(θ) = P(Y ≥ t)− P(Y ≥ t)2

• Step 2 Computation of E (minθ ψ(Y ; θ)).
It is obvious that E (minθ ψ(Y ; θ)) = 0.

• Step 3 Computation of E (minθ E (ψ(Y ; θ)|X1)).
We have

E (ψ(Y ; θ)|X1) = θ2 + (1− 2θ)EX2 (1X2>t−X1)

the minimum of this function is reached for

θ = EX2 (1X2>t−X1) = 1X1>t + 1X1≤te
−a(t−X1).

It follows that

min
θ

E (ψ(Y ; θ)|X1) = 1X1≤t

(
e−a(t−X1) − e−2a(t−X1)

)
and

E
(

min
θ

E (ψ(Y ; θ)|X1)

)
=


e−at−e−t

1−a − e−2at−e−t
1−2a if a /∈ {1, 1/2}

e−2t − (1− t)e−t if a = 1
2e−t/2 − (2 + t)e−t if a = 1/2

• Step 4 Computation of E (minθ E (ψ(Y ; θ)|X2)).
We have

E (ψ(Y ; θ)|X2) = θ2 + (1− 2θ)EX1 (1X1>t−X2)

the minimum of this function is reached for

θ = EX1
(1X1>t−X2

) = 1X2>t + 1X2≤te
−(t−X2).

It follows that

min
θ

E (ψ(Y ; θ)|X2) = 1X2≤t

(
e−(t−X2) − e−2(t−X2)

)
and for a /∈ {1, 2}

E
(

min
θ

E (ψ(Y ; θ)|X2)

)
=

a
e−at−e−t

1−a − a e
−at−e−2t

2−a if a /∈ {1, 2}
e−2t − (1− t)e−t if a = 1

2e−t − 2(t+ 1)e−2t if a = 2
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